51
|
Castro-Morales O, Soria-Herrera RJ, Cornejo-Estudillo G, Avila-Trejo AM, Valencia-Trujillo D, Zanella-Vargas MG, Vázquez-Barrios ME, Rangel-Vargas E, Castro-Rosas J, García-Reyes RL, Rivera-Gutiérrez S, Campos-Peña V, Cerna-Cortés JF. Presence of Indicator Bacteria and Occurrence of Potentially Pathogenic Nontuberculous Mycobacteria Species in Packaged Ice Cubes in Central Mexico. J Food Prot 2024; 87:100318. [PMID: 38876364 DOI: 10.1016/j.jfp.2024.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to determine the bacteriological quality and presence of diarrheagenic Escherichia coli pathotypes (DEP) and nontuberculous mycobacteria (NTM) species in 85 packaged ice samples from 12 different states of central Mexico. Three samples had a pH of 9.8 and therefore fell outside of the acceptable range for pH. All samples were positive for aerobic-mesophilic bacteria, with limits ranging from 1 to 3.47 log CFU/mL. In total, 35, 11, and 3 ice samples were positive for total coliforms (TC), fecal coliforms (FC), and E. coli, respectively. In the samples, the TC concentration ranged from <1.1 to >23 MPN/100 mL and from <1.1 to 23 MPN/100 mL for FC and E. coli. In total, 38 (44.7%) ice samples were outside of Mexico's official guidelines. None of the 12 E. coli strains isolated from the three ice samples belonged to DEP. NTM were recovered from 20 ice samples and included M. neoaurum (n = 7), M. porcinum (n = 2), M. flavescens (n = 2), M. fortuitum (n = 1), M. abscessus (n = 1), M. senegalense (n = 1), M. conceptionense (n = 1), and M. sp. (n = 1). In the remaining four samples, two NTM were isolated simultaneously. Thus, we recommend that producers should evaluate the microbiological quality of purified water used as a raw material as well as that of the final product, the ice should be packed in thick bags to avoid stretching and tearing during transportation or storage to prevent environmental contamination of ice, personnel involved in the production, and handling of ice should be trained in relative hygiene matters and how ice-machines should be cleaned and disinfected and the implementation of hazard analysis and critical control points must be applied throughout the chain of production. Finally, regular inspection by the authorities is also of great importance. These recommendations can be applied in different countries with low microbiological quality packaged ice.
Collapse
Affiliation(s)
- Oscar Castro-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - Amanda Marineth Avila-Trejo
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaria de la Defensa Nacional, Ciudad de México 11200, Mexico
| | - Daniel Valencia-Trujillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaria de la Defensa Nacional, Ciudad de México 11200, Mexico
| | | | | | - Esmeralda Rangel-Vargas
- Área de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo 42184, Mexico
| | - Javier Castro-Rosas
- Área de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo 42184, Mexico
| | - Rocío Liliana García-Reyes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México 14269, Mexico
| | - Jorge Francisco Cerna-Cortés
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
52
|
Lin WH, Yao C, Mei L, Wang DP, Bao XD, Liu SS. Screening, epidemic trends and drug sensitivity analysis of nontuberculous mycobacteria in a local area of China. Am J Transl Res 2024; 16:3298-3305. [PMID: 39114690 PMCID: PMC11301460 DOI: 10.62347/majy5046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To analyze the isolation rate, prevalence trends, species distribution, and drug sensitivity of non-tuberculous mycobacteria (NTM) in Anhui Province, providing a reference for diagnosis and treatment strategies. METHODS Specimens from suspected mycobacterial infection patients at Anhui Chest Hospital (including outpatients and inpatients) from January 2021 to December 2023 were cultured. Identified NTM strains were analyzed for species distribution and drug sensitivity. RESULTS Of 10,519 mycobacteria strains cultured, 1,589 were NTM (15.11%). The top four species were Mycobacterium intracellulare (75.36%), Mycobacterium abscessus (11.78%), Mycobacterium kansasii (7.09%), and Mycobacterium avium (2.85%). NTM strains showed high sensitivity to amikacin and clarithromycin (≥90%) and significant sensitivity to rifabutin, moxifloxacin, and rifampicin (89.03%-79.61%). They exhibited high resistance to imipenem/cilastatin, sulfamethoxazole, minocycline, and doxycycline (≥95%). CONCLUSION NTM isolation rates in Anhui have remained stable, with the predominant species being M. intracellulare, M. kansasii, M. abscessus, and M. avium. NTM strains are highly sensitive to amikacin, clarithromycin, rifabutin, moxifloxacin, and rifampicin. These findings can guide diagnosis, treatment strategies, and drug selection for NTM disease in Anhui Province.
Collapse
Affiliation(s)
- Wen-Hong Lin
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Chao Yao
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Lin Mei
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Dong-Ping Wang
- Department of Laboratory, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Xun-Di Bao
- Department of Laboratory, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Sheng-Sheng Liu
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| |
Collapse
|
53
|
Anh NK, Phat NK, Thu NQ, Tien NTN, Eunsu C, Kim HS, Nguyen DN, Kim DH, Long NP, Oh JY. Discovery of urinary biosignatures for tuberculosis and nontuberculous mycobacteria classification using metabolomics and machine learning. Sci Rep 2024; 14:15312. [PMID: 38961191 PMCID: PMC11222504 DOI: 10.1038/s41598-024-66113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) infection diagnosis remains a challenge due to its overlapping clinical symptoms with tuberculosis (TB), leading to inappropriate treatment. Herein, we employed noninvasive metabolic phenotyping coupled with comprehensive statistical modeling to discover potential biomarkers for the differential diagnosis of NTM infection versus TB. Urine samples from 19 NTM and 35 TB patients were collected, and untargeted metabolomics was performed using rapid liquid chromatography-mass spectrometry. The urine metabolome was analyzed using a combination of univariate and multivariate statistical approaches, incorporating machine learning. Univariate analysis revealed significant alterations in amino acids, especially tryptophan metabolism, in NTM infection compared to TB. Specifically, NTM infection was associated with upregulated levels of methionine but downregulated levels of glutarate, valine, 3-hydroxyanthranilate, and tryptophan. Five machine learning models were used to classify NTM and TB. Notably, the random forest model demonstrated excellent performance [area under the receiver operating characteristic (ROC) curve greater than 0.8] in distinguishing NTM from TB. Six potential biomarkers for NTM infection diagnosis, including methionine, valine, glutarate, 3-hydroxyanthranilate, corticosterone, and indole-3-carboxyaldehyde, were revealed from univariate ROC analysis and machine learning models. Altogether, our study suggested new noninvasive biomarkers and laid a foundation for applying machine learning to NTM differential diagnosis.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Cho Eunsu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| | - Jee Youn Oh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
54
|
Yadav RN, Chowdary YY, Bhalla M, Verma AK. Identification of Nontuberculous Mycobacterium Species by Polymerase Chain Reaction - Restriction Enzyme Analysis (PCR-REA) of rpoB gene in Clinical Isolates. Int J Mycobacteriol 2024; 13:307-313. [PMID: 39277894 DOI: 10.4103/ijmy.ijmy_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) infections are an emerging global health concern with increasing incidence. Conventional identification methods for NTM species in clinical settings are prone to errors. This study evaluates a newer method, polymerase chain reaction-restriction enzyme analysis (PCR-REA) of the rpoB gene, for NTM species identification. The study identified NTM species in clinical samples using conventional biochemical techniques and compared the results with PCR-REA of the rpoB gene. This cross-sectional study was conducted at a tertiary health-care center in North India over 18 months, analyzing both pulmonary and extrapulmonary samples. METHODS Two hundred and forty-seven NTM isolates were identified using phenotypic and biochemical methods. The same isolates were subjected to rpoB gene amplification by PCR followed by REA using Msp I and Hae III enzymes. RESULTS Conventional methods identified 12 different NTM species (153 slow-growing and 94 rapid-growing), whereas PCR-REA identified 16 species (140 slow-growing, 107 rapid-growing). The Mycobacterium avium intracellulare complex was the most common species isolated. PCR-REA demonstrated higher resolution in species identification, particularly in differentiating within species complexes. CONCLUSIONS PCR-REA of the rpoB gene proves to be a simple, rapid, and more discriminative tool for NTM species identification compared to conventional methods. This technique could significantly improve the diagnosis and management of emerging NTM infections in clinical settings.
Collapse
Affiliation(s)
- Raj Narayan Yadav
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Yellanki Yashwanth Chowdary
- Department of Medicine, Shri B. M. Patil Medical College Hospital and Research Center, BLDE (DU), Vijaypura, Karnataka, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ajoy Kumar Verma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| |
Collapse
|
55
|
Aksamit TR, Locantore N, Addrizzo-Harris D, Ali J, Barker A, Basavaraj A, Behrman M, Brunton AE, Chalmers S, Choate R, Dean NC, DiMango A, Fraulino D, Johnson MM, Lapinel NC, Maselli DJ, McShane PJ, Metersky ML, Miller BE, Naureckas ET, O'Donnell AE, Olivier KN, Prusinowski E, Restrepo MI, Richards CJ, Rhyne G, Schmid A, Solomon GM, Tal-Singer R, Thomashow B, Tino G, Tsui K, Varghese SA, Warren HE, Winthrop K, Zha BS. Five-Year Outcomes among U.S. Bronchiectasis and NTM Research Registry Patients. Am J Respir Crit Care Med 2024; 210:108-118. [PMID: 38668710 DOI: 10.1164/rccm.202307-1165oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Nontuberculous mycobacteria (NTM) are prevalent among patients with bronchiectasis. However, the long-term natural history of patients with NTM and bronchiectasis is not well described. Objectives: To assess the impact of NTM on 5-year clinical outcomes and mortality in patients with bronchiectasis. Methods: Patients in the Bronchiectasis and NTM Research Registry with ⩾5 years of follow-up were eligible. Data were collected for all-cause mortality, lung function, exacerbations, hospitalizations, and disease severity. Outcomes were compared between patients with and without NTM at baseline. Mortality was assessed using Cox proportional hazards models and the log-rank test. Measurements and Main Results: In total, 2,634 patients were included: 1,549 (58.8%) with and 1,085 (41.2%) without NTM at baseline. All-cause mortality (95% confidence interval) at Year 5 was 12.1% (10.5%, 13.7%) overall, 12.6% (10.5%, 14.8%) in patients with NTM, and 11.5% (9.0%, 13.9%) in patients without NTM. Independent predictors of 5-year mortality were baseline FEV1 percent predicted, age, hospitalization within 2 years before baseline, body mass index, and sex (all P < 0.01). The probabilities of acquiring NTM or Pseudomonas aeruginosa were approximately 4% and 3% per year, respectively. Spirometry, exacerbations, and hospitalizations were similar, regardless of NTM status, except that annual exacerbations were lower in patients with NTM (P < 0.05). Conclusions: Outcomes, including exacerbations, hospitalizations, rate of loss of lung function, and mortality rate, were similar across 5 years in patients with bronchiectasis with or without NTM.
Collapse
Affiliation(s)
- Timothy R Aksamit
- COPD Foundation, Washington, District of Columbia
- Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Juzar Ali
- Health Sciences Center, Louisiana State University, New Orleans, Louisiana
| | - Alan Barker
- Division of Pulmonary and Critical Care, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | | | - Megan Behrman
- University of Kansas Medical Center, University of Kansas, Kansas City, Kansas
| | | | - Sarah Chalmers
- Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Radmila Choate
- COPD Foundation, Washington, District of Columbia
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Nathan C Dean
- Schmidt Chest Clinic, Intermountain Medical Center, Murray, Utah
| | - Angela DiMango
- Center for Chest Disease, College of Physicians and Surgeons, Columbia University, New York, New York
| | - David Fraulino
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | | | - Nicole C Lapinel
- Section of Pulmonary, Critical Care Medicine, Department of Medicine, Northwell Health, New Hyde Park, New York
| | | | - Pamela J McShane
- Health Science Center, University of Texas at Tyler, Tyler, Texas
| | - Mark L Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | | | - Edward T Naureckas
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anne E O'Donnell
- Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Kenneth N Olivier
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elly Prusinowski
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Christopher J Richards
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Gloria Rhyne
- Department of Infectious Disease, Oregon Health and Science University - Portland State University School of Public Health, Oregon Health and Science University School of Medicine, Portland, Oregon; and
| | - Andreas Schmid
- University of Kansas Medical Center, University of Kansas, Kansas City, Kansas
| | - George M Solomon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Byron Thomashow
- Center for Chest Disease, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Gregory Tino
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Tsui
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sumith Abraham Varghese
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Heather E Warren
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Kevin Winthrop
- Department of Infectious Disease, Oregon Health and Science University - Portland State University School of Public Health, Oregon Health and Science University School of Medicine, Portland, Oregon; and
| | | |
Collapse
|
56
|
Chung E, Park Y, Lee HJ, Kang YA. Usefulness of the mini nutritional assessment short-form for evaluating nutritional status in patients with nontuberculous mycobacterial pulmonary disease: a prospective cross-sectional study. BMC Infect Dis 2024; 24:604. [PMID: 38898397 PMCID: PMC11186144 DOI: 10.1186/s12879-024-09499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Although the Mini Nutritional Assessment (MNA) is recognized as a useful tool for evaluating nutritional status in patients with various diseases, its applicability in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) remains undetermined. METHODS We designed a prospective cross-sectional study to investigate whether the MNA Short-Form (MNA-SF) score can serve as a screening tool to assess the nutritional status of patients with NTM-PD. The MNA-SF was conducted upon patient enrollment, and correlation analyses were performed to compare MNA-SF scores with other nutritional measurements and disease severity. Multivariable logistic regression analyses were conducted to evaluate the association between MNA-SF scores and NTM-PD severity. RESULTS The 194 patients with NTM-PD included in the analysis had a median age of 65.0 (59.0-69.0) years; 59.3% (n = 115) had low MNA-SF scores (< 12). The low MNA-SF group exhibited a lower body mass index (19.7 vs. 22.4 kg/m2, p < 0.001) and fat-free mass index (14.7 vs. 15.6 kg/m2, p < 0.001) than the normal MNA-SF group, as well as higher incidences of sarcopenia (20.0% vs. 6.3%, p = 0.008) and adipopenia (35.7% vs. 5.1%, p < 0.001). However, no significant differences in calorie and protein intakes were observed between the two groups. Low MNA-SF scores were associated with radiographic severity (adjusted odds ratio 2.72, 95% confidence interval 1.38-5.36) but not with forced vital capacity. CONCLUSIONS The MNA-SF can effectively assess the nutritional status of patients with NTM-PD and can serve as an important clinical indicator in NTM-PD where treatment timing is determined by clinical judgment.
Collapse
Affiliation(s)
- Eunki Chung
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
- Yonsei University Graduate School of Medicine, Seoul, Republic of Korea
| | - Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye-Jeong Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
57
|
Biciusca T, Zielbauer AS, Anton T, Marschall L, Idris R, Koepsell J, Juergens LJ, Gotta J, Koch V, Wichelhaus TA, Vogl TJ, Vehreschild MJGT, Martin SS, Wetzstein N. Differential radiological features of patients infected or colonised with slow-growing non-tuberculous mycobacteria. Sci Rep 2024; 14:13295. [PMID: 38858499 PMCID: PMC11164953 DOI: 10.1038/s41598-024-64029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is considered a growing health concern. The majority of NTM-PD cases in Europe are caused by slow-growing mycobacteria (SGM). However, distinct radiological features of different SGM remain largely uninvestigated. We applied a previously described radiological score to a patient cohort consisting of individuals with isolation of different SGM. Correlations between clinical data, species and computed tomography (CT) features were examined by logistic and linear regression analyses, as well as over the course of time. Overall, 135 pulmonary CT scans from 84 patients were included. The isolated NTM-species were mainly Mycobacterium avium complex (MAC, n = 49), as well as 35 patients with non-MAC-species. Patients with isolation of M. intracellulare had more extensive CT findings compared to all other SGM species (coefficient 3.53, 95% Cl - 0.37 to 7.52, p = 0.075) while patients meeting the ATS criteria and not undergoing therapy exhibited an increase in CT scores over time. This study provides insights into differential radiological features of slow-growing NTM. While M. intracellulare exhibited a tendency towards higher overall CT scores, the radiological features were similar across different SGM. The applied CT score might be a useful instrument for monitoring patients and could help to guide antimycobacterial therapy.
Collapse
Affiliation(s)
- Teodora Biciusca
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ann-Sophie Zielbauer
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Anton
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lisa Marschall
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Raja Idris
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julia Koepsell
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lisa J Juergens
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Gotta
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Simon S Martin
- Department of Radiology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
58
|
Abbas M, Khan MT, Iqbal Z, Ali A, Eddine BT, Yousaf N, Wei D. Sources, transmission and hospital-associated outbreaks of nontuberculous mycobacteria: a review. Future Microbiol 2024; 19:715-740. [PMID: 39015998 PMCID: PMC11259073 DOI: 10.2217/fmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 07/18/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are widespread environmental organisms found in both natural and man-made settings, such as building plumbing, water distribution networks and hospital water systems. Their ubiquitous presence increases the risk of transmission, leading to a wide range of human infections, particularly in immunocompromised individuals. NTM primarily spreads through environmental exposures, such as inhaling aerosolized particles, ingesting contaminated food and introducing it into wounds. Hospital-associated outbreaks have been linked to contaminated medical devices and water systems. Furthermore, the rising global incidence, prevalence and isolation rates highlight the urgency of addressing NTM infections. Gaining a thorough insight into the sources and epidemiology of NTM infection is crucial for devising novel strategies to prevent and manage NTM transmission and infections.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, 1KM Defense Road, Lahore, 58810, Pakistan
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
| | - Zafar Iqbal
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Arif Ali
- Department of Bioinformatics & Biological Statistics, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Benarfa Taki Eddine
- Echahid Cheikh Larbi Tebessi University Faculty of Exact Sciences & Natural & Life Sciences, Département of Microbiology, Algeria
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Dongqing Wei
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences & School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou, Henan, 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
59
|
Cristancho-Rojas C, Varley CD, Lara SC, Kherabi Y, Henkle E, Winthrop KL. Epidemiology of Mycobacterium abscessus. Clin Microbiol Infect 2024; 30:712-717. [PMID: 37778416 DOI: 10.1016/j.cmi.2023.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are highly abundant in soil, dust, and water sources, making human-pathogen contact frequent and recurrent. NTM represents over 200 species/subspecies; some are considered strict or opportunistic pathogens. Mycobacterium abscessus, often regarded as one of the most antibiotic-resistant mycobacteria, is the second most frequent NTM pulmonary disease pathogen. OBJECTIVES To describe the epidemiology of M. abscessus through a literature review focusing on clinical aspects. SOURCES We conducted searches on PubMed and Web of Knowledge for articles published from 2010 to the present using the keywords 'Mycobacterium abscessus', 'Nontuberculous mycobacteria', and 'epidemiology'. Our search prioritized original reports on the occurrence of NTM and M. abscessus infection/disease. CONTENT Advanced molecular and genetic diagnostic techniques have refined the M. abscessus complex (MABC) microbiological classification over the last few decades. MABC can adhere to surfaces and form a biofilm. This characteristic and its resistance to common disinfectants allow these microorganisms to persist in the water distribution systems, becoming a constant reservoir. The frequency and manifestation of NTM species vary geographically because of environmental conditions and population susceptibility differences. MABC lung disease, the most frequent site of NTM infection in humans, is often seen in patients with underlying lung diseases such as bronchiectasis, whereas MABC disseminated disease is related to immunosuppression. Skin and soft tissue infections are associated with surgical or injection procedures. Epidemiological evidence suggests an overall increase in MABC infection and disease in the last decade. IMPLICATIONS Establishing the burden of this disease is challenging because of varying measures of incidence and prevalence, referral bias, and differences in medical practices and reporting. Furthermore, environmental and structural determinants, infection routes, and MABC pulmonary disease mechanisms require additional investigation. This review contributes to a better understanding of the epidemiology of MABC, which could inform clinical practice and future research.
Collapse
Affiliation(s)
- Cesar Cristancho-Rojas
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Cara D Varley
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| | - Sofia Chapela Lara
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Yousra Kherabi
- Department of Infectious Diseases, Bichat-Claude Bernard Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emily Henkle
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
60
|
Seidel RW, Goddard R, Lang M, Richter A. Nα-Aroyl-N-Aryl-Phenylalanine Amides: A Promising Class of Antimycobacterial Agents Targeting the RNA Polymerase. Chem Biodivers 2024; 21:e202400267. [PMID: 38588490 DOI: 10.1002/cbdv.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
61
|
Piasecki L, Genestet C, Benito Y, Rasigade JP, Lina G, Dumitrescu O, Hodille E. Retrospective and prospective evaluation of the FluoroType®-Mycobacteria VER 1.0 assay for the identification of mycobacteria from cultures in a French center. Eur J Clin Microbiol Infect Dis 2024; 43:1091-1098. [PMID: 38607578 DOI: 10.1007/s10096-024-04825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Rapid, reliable identification of mycobacteria from positive cultures is essential for patient management, particularly for the differential diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) species. The aim of the present study was to evaluate a new "In-Vitro-Diagnostic"-certified PCR kit, FluoroType®-Mycobacteria VER 1.0 (Hain Lifescience GmbH) for NTM and MTBC identification from cultures. METHODS Mycobacteria identification isolated from positive cultures during routine practice at the Lyon university hospital mycobacteria laboratory obtained by hsp65 amplification/sequencing were compared retrospectively and prospectively to those obtained by and the FluoroType®-Mycobacteria VER 1.0 kit. RESULTS The overall agreement between hsp65 amplification/sequencing and the FluoroType®-Mycobacteria VER 1.0 kit was 88.4% (84/95); 91.2% (52/57) for the retrospective period and 84.2% (32/38) for the prospective period. There were 9 (9.5%) minor discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified at genus level): 4 during the retrospective period, 5 during the prospective period; and 2 (2.1%) major discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified incorrectly to species level): 1 during the retrospective period (M. kumamotonense identified as M. abscessus subsp massiliense by the kit) and 1 during the prospective period (M. chimaera identified as M. smegmatis by the kit). Including concordant results at genus level and minor discrepancies, 17.9% (17/95) of strains were identified as Mycobacterium sp. by the FluoroType®-Mycobacteria-VER 1.0 kit. CONCLUSION The good performance of the FluoroType®-Mycobacteria-VER 1.0 kit with few major discrepancies could enable its use for first-line identification of positive mycobacteria cultures. However, an alternative identification method at least for reference laboratories is needed owing to the non-negligible proportion of NTM strains were identified at genus level.
Collapse
Affiliation(s)
- Lisa Piasecki
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Charlotte Genestet
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Yvonne Benito
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Gérard Lina
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Oana Dumitrescu
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France
| | - Elisabeth Hodille
- Laboratoire des Mycobactérie, Laboratoire de biologie médicale multi-site, Groupement Hospitalier Nord, Hospices civils de Lyon, Lyon, France.
| |
Collapse
|
62
|
Calcagno A, Coppola N, Sarmati L, Tadolini M, Parrella R, Matteelli A, Riccardi N, Trezzi M, Di Biagio A, Pirriatore V, Russo A, Gualano G, Pontali E, Surace L, Falbo E, Mencarini J, Palmieri F, Gori A, Schiuma M, Lapadula G, Goletti D. Drugs for treating infections caused by non-tubercular mycobacteria: a narrative review from the study group on mycobacteria of the Italian Society of Infectious Diseases and Tropical Medicine. Infection 2024; 52:737-765. [PMID: 38329686 PMCID: PMC11142973 DOI: 10.1007/s15010-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are generally free-living organism, widely distributed in the environment, with sporadic potential to infect. In recent years, there has been a significant increase in the global incidence of NTM-related disease, spanning across all continents and an increased mortality after the diagnosis has been reported. The decisions on whether to treat or not and which drugs to use are complex and require a multidisciplinary approach as well as patients' involvement in the decision process. METHODS AND RESULTS This review aims at describing the drugs used for treating NTM-associated diseases emphasizing the efficacy, tolerability, optimization strategies as well as possible drugs that might be used in case of intolerance or resistance. We also reviewed data on newer compounds highlighting the lack of randomised clinical trials for many drugs but also encouraging preliminary data for others. We also focused on non-pharmacological interventions that need to be adopted during care of individuals with NTM-associated diseases CONCLUSIONS: Despite insufficient efficacy and poor tolerability this review emphasizes the improvement in patients' care and the needs for future studies in the field of anti-NTM treatments.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy.
- Stop TB Italy, Milan, Italy.
| | - N Coppola
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - L Sarmati
- Department of System Medicine, Tor Vergata University and Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
| | - M Tadolini
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - R Parrella
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, Cotugno Hospital, A. O. R. N. dei Colli, Naples, Italy
| | - A Matteelli
- Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB Prevention, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - N Riccardi
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - M Trezzi
- Stop TB Italy, Milan, Italy
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - A Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - V Pirriatore
- Stop TB Italy, Milan, Italy
- Unit of Infectious Diseases, "DivisioneA", Ospedale Amedeo di Savoia, ASL CIttà di Torino, Turin, Italy
| | - A Russo
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - G Gualano
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - E Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - L Surace
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - E Falbo
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - J Mencarini
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - F Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - A Gori
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - M Schiuma
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - G Lapadula
- Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - D Goletti
- Stop TB Italy, Milan, Italy
- Translational Research Unit, Epidemiology Department, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| |
Collapse
|
63
|
Zhang Y, Sun R, Yu C, Li J, Lin H, Huang J, Wang Y, Shen X, Jiang Y, Yang C, Xu B. Spatial Heterogeneity of Nontuberculous Mycobacterial Pulmonary Disease in Shanghai: Insights from a Ten-Year Population-Based Study. Int J Infect Dis 2024; 143:107001. [PMID: 38461931 DOI: 10.1016/j.ijid.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
OBJECTIVE To investigate the spatial heterogeneity of nontuberculous mycobacterial pulmonary disease (NTM-PD) in Shanghai. METHODS A population-based retrospective study was conducted using presumptive pulmonary tuberculosis surveillance data of Shanghai between 2010 and 2019. The study described the spatial distribution of NTM-PD notification rates, employing hierarchical Bayesian mapping for high-risk areas and the Getis-Ord Gi* statistic to identify hot spots and explore associated factors. RESULTS Of 1652 NTM-PD cases, the most common species was Mycobacterium kansasii complex (MKC) (41.9%), followed by Mycobacterium avium complex (MAC) (27.1%) and Mycobacterium abscessus complex (MABC) (16.2%). MKC-PD patients were generally younger males with a higher incidence of pulmonary cavities, while MAC-PD patients were more often farmers or had a history of tuberculosis treatment. MKC-PD hot spots were primarily located in the areas alongside the Huangpu River, while MAC-PD hot spots were mainly in the western agricultural areas. Patients with MKC-PD and MAC-PD exhibited a higher risk of spatial clustering compared to those with MABC-PD. CONCLUSIONS Different types of NTM-PD exhibit distinct patterns of spatial clustering and are associated with various factors. These findings underscore the importance of environmental and host factors in the epidemic of NTM-PD.
Collapse
Affiliation(s)
- Yangyi Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety (Ministry of Education), Fudan University, Shanghai, P. R. China; Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P. R. China; Shanghai Institutes of Preventive Medicine, Shanghai, P. R. China
| | - Ruoyao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Chenlei Yu
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P. R. China; Shanghai Institutes of Preventive Medicine, Shanghai, P. R. China
| | - Jing Li
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P. R. China; Shanghai Institutes of Preventive Medicine, Shanghai, P. R. China
| | - Honghua Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China
| | - Jinrong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China; Nanshan District Center for Disease Control and Prevention, Shenzhen, P. R. China
| | - Ying Wang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, P. R. China
| | - Xin Shen
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P. R. China; Shanghai Institutes of Preventive Medicine, Shanghai, P. R. China
| | - Yuan Jiang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P. R. China; Shanghai Institutes of Preventive Medicine, Shanghai, P. R. China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, P. R. China; Nanshan District Center for Disease Control and Prevention, Shenzhen, P. R. China
| | - Biao Xu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety (Ministry of Education), Fudan University, Shanghai, P. R. China.
| |
Collapse
|
64
|
Hayashi M, Takishima H, Kishino S, Kishi K, Takano K, Sakai S, Kakiuchi Y, Matsukura S. Time to diagnosis of nontuberculous mycobacterial pulmonary disease and longitudinal changes on CT before diagnosis. Heliyon 2024; 10:e30060. [PMID: 38707468 PMCID: PMC11066632 DOI: 10.1016/j.heliyon.2024.e30060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background The healthcare burden of nontuberculous mycobacterial pulmonary disease (NTM-PD) is increasing, but the diagnosis remains challenging and sometimes requires considerable time. This nested case-control study aims to clarify the time to diagnosis of NTM-PD, the factors that affect diagnosis and diagnostic delay, and changes in CT findings before diagnosis. Patients and methods We retrospectively analyzed 187 patients suspected of having NTM-PD based on computed tomography (CT) findings at our institution between January 2019 and September 2020. We investigated the time to diagnosis of NTM-PD for all suspected and diagnosed patients. Multivariate analyses identified the factors affecting diagnosis and diagnostic delay over 6 months. We also evaluated longitudinal changes in CT findings during the observation period using CT scoring system. Results The median times to diagnosis of NTM-PD were 71.8 months in all suspected patients and 3.2 months in only the diagnosed patients. Multivariable analysis showed that severity of the cavity domain of the CT score and anti-glycopeptidolipid (GPL)-core immunoglobulin A (IgA) antibody positivity were significantly associated with establishing the diagnosis. A low CT score in the cavity domain was a risk factor for delayed diagnosis. In patients with delayed diagnosis, the total CT score was less severe than that in the early diagnosis patients at their first visits; however, it had deteriorated prior to the diagnosis. Conclusion The diagnosis of NTM-PD sometimes required several years, and the absence or mild cavitation predicted a diagnostic delay. Of concern, a delay in diagnosis can result in a delay in treatment.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Hiroyasu Takishima
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Soma Kishino
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Keitaro Kishi
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Kenji Takano
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Shogo Sakai
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Yusuke Kakiuchi
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| | - Satoshi Matsukura
- Department of Respiratory Medicine, Showa University Northern Yokohama Hospital, Japan
| |
Collapse
|
65
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
66
|
Lang M, Ganapathy US, Abdelaziz R, Dick T, Richter A. Broad-Spectrum In Vitro Activity of Nα-Aroyl- N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases. Antibiotics (Basel) 2024; 13:404. [PMID: 38786132 PMCID: PMC11117372 DOI: 10.3390/antibiotics13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the in vitro activity of Nα-aroyl-N-aryl-phenylalanine amides (AAPs), previously identified as antimycobacterial RNA polymerase (RNAP) inhibitors, against a panel of 25 non-tuberculous mycobacteria (NTM). The compounds, including the hit compound MMV688845, were selected based on their structural diversity and previously described activity against mycobacteria. Bacterial strains, including the M. abscessus complex, M. avium complex, and other clinically relevant NTM, were cultured and subjected to growth inhibition assays. The results demonstrate significant activity against the most common NTM pathogens from the M. abscessus and M. avium complexes. Variations in activity were observed against other NTM species, with for instance M. ulcerans displaying high susceptibility and M. xenopi and M. simiae resistance to AAPs. Comparative analysis of RNAP β and β' subunits across mycobacterial species revealed strain-specific polymorphisms, providing insights into differential compound susceptibility. While conservation of target structures was observed, differences in compound activity suggested influences beyond drug-target interactions. This study highlights the potential of AAPs as effective antimycobacterial agents and emphasizes the complex interplay between compound structure, bacterial genetics, and in vitro activity.
Collapse
Affiliation(s)
- Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
| | - Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
| | - Rana Abdelaziz
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, NJ 07110, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road, Washington, DC 20007, USA
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
| |
Collapse
|
67
|
Park HE, Kim KM, Shin JI, Choi JG, An WJ, Trinh MP, Kang KM, Yoo JW, Byun JH, Jung MH, Lee KH, Kang HL, Baik SC, Lee WK, Shin MK. Prominent transcriptomic changes in Mycobacterium intracellulare under acidic and oxidative stress. BMC Genomics 2024; 25:376. [PMID: 38632539 PMCID: PMC11022373 DOI: 10.1186/s12864-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Jun An
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myung Hwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kon-Ho Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Cheol Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
68
|
Mejía-Ponce PM, Chimal-Muñoz M, Zenteno-Cuevas R, Licona-Cassani C. Draft genome sequences of 12 Mycolicibacterium fortuitum isolates from human pulmonary infections in Veracruz, Mexico. Microbiol Resour Announc 2024; 13:e0102223. [PMID: 38411073 PMCID: PMC11008143 DOI: 10.1128/mra.01022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
Mycolicibacterium fortuitum, a fast-growing nontuberculous mycobacterium, is a significant pathogen in healthcare-associated infections, encompassing skin, soft tissue, and pulmonary diseases. In this study, we present draft genome sequences from 12 M. fortuitum strains isolated from sputum samples from patients diagnosed with pulmonary infections in Mexico.
Collapse
Affiliation(s)
- Paulina M. Mejía-Ponce
- Centro de Biotecnología FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Miguel Chimal-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - Roberto Zenteno-Cuevas
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Ciudad de México, México
| |
Collapse
|
69
|
Castro-Rodriguez B, Franco-Sotomayor G, Rodriguez-Pazmiño ÁS, Cardenas-Franco GE, Orlando SA, Hermoso de Mendoza J, Parra-Vera H, García-Bereguiain MÁ. Rapid and accurate identification and differentiation of Mycobacterium tuberculosis and non-tuberculous mycobacteria using PCR kits available in a high-burden setting. Front Public Health 2024; 12:1358261. [PMID: 38628855 PMCID: PMC11018931 DOI: 10.3389/fpubh.2024.1358261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Infections caused by mycobacteria, including Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), are a major public health issue worldwide. An accurate diagnosis of mycobacterial species is a challenge for surveillance and treatment, particularly in high-burden settings usually associated with low- and middle-income countries. In this study, we analyzed the clinical performance of two commercial PCR kits designed for the identification and differentiation of MTBC and NTM, available in a high-burden setting such as Ecuador. A total of 109 mycobacteria isolates were included in the study, 59 of which were previously characterized as M. tuberculosis and the other 59 as NTM. Both kits displayed great clinical performance for the identification of M. tuberculosis, with 100% sensitivity. On the other hand, for NTM, one of the kits displayed a good clinical performance with a sensitivity of 94.9% (CI 95%: 89-100%), while the second kit had a reduced sensitivity of 77.1% (CI 95%: 65-89%). In conclusion, one of the kits is a fast and reliable tool for the identification and discrimination of MTBC and NTM from clinical isolates.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Solón Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador
- Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Henry Parra-Vera
- Centro de Investigación Microbiológica (CIM), Guayaquil, Ecuador
| | | |
Collapse
|
70
|
Shabani S, Farnia P, Ghanavi J, Velayati AA, Farnia P. Pharmacogenetic Study of Drugs Affecting Mycobacterium tuberculosis. Int J Mycobacteriol 2024; 13:206-212. [PMID: 38916393 DOI: 10.4103/ijmy.ijmy_106_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Pharmacogenetic research has led to significant progress in understanding how genetic factors influence drug response in tuberculosis (TB) treatment. One ongoing challenge is the variable occurrence of adverse drug reactions in some TB patients. Previous studies have indicated that genetic variations in the N-acetyltransferase 2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) genes can impact the blood concentrations of the first-line anti-TB drugs isoniazid (INH) and rifampicin (RIF), respectively. This study aimed to investigate the influence of pharmacogenetic markers in the NAT2 and SLCO1B1 genes on TB treatment outcomes using whole-exome sequencing (WES) analysis. METHODS DNA samples were collected from 30 healthy Iranian adults aged 18-40 years. The allelic frequencies of single-nucleotide polymorphisms (SNPs) in the NAT2 and SLCO1B1 genes were determined through WES. RESULTS Seven frequent SNPs were identified in the NAT2 gene (rs1041983, rs1801280, rs1799929, rs1799930, rs1208, rs1799931, rs2552), along with 16 frequent SNPs in the SLCO1B1 gene (rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs2291075, rs201722521, rs11045852, rs11045854, rs756393362, rs11045859, rs74064211, rs201556175, rs34671512, rs71581985, rs4149085). CONCLUSION Genetic variations in NAT2 and SLCO1B1 can affect the metabolism of INH and RIF, respectively. A better understanding of the pharmacogenetic profile in the study population may facilitate the design of more personalized and effective TB treatment strategies. Further research is needed to directly correlate these genetic markers with clinical outcomes in TB patients.
Collapse
Affiliation(s)
- Samira Shabani
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
71
|
Yan M, Fraser B, McArthur E, Mehrabi M, Brode SK, Marras TK. External Validation of the BACES Score in Canadian Patients With Nontuberculous Mycobacterial Pulmonary Disease. Chest 2024; 165:521-528. [PMID: 37827237 DOI: 10.1016/j.chest.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The clinical course of nontuberculous mycobacterial pulmonary disease (NTM-PD) can be variable and difficult to predict. Recently, the BACES score was developed as a tool to predict all-cause mortality in patients with NTM-PD. This score is calculated based on five patient characteristics (BMI, age, cavity, erythrocyte sedimentation rate, and sex), and higher scores portend worse prognosis. Although the BACES score has been validated in a cohort of South Korean patients, it has not yet been validated in other settings or ethnic groups. RESEARCH QUESTION How well does the BACES mortality score perform in a cohort of Canadian patients with NTM-PD? STUDY DESIGN AND METHODS We performed a single-center retrospective chart review. Patients who were seen between July 2003 and June 2021 were eligible for inclusion if they met guideline-based diagnostic criteria for NTM-PD and were excluded if any component of the BACES score was missing. To assess the model's discriminatory performance, we compared Kaplan-Meier curves between risk groups and calculated Harrell's C index. To assess calibration, we used a graphical calibration curve. RESULTS The cohort included 435 patients with a median follow-up of 5.8 years. The median age was 64 years and 74% were female. Based on the BACES scores, patients were classified into three risk groups: low, moderate, or high. Survival curves showed clear separation of the risk groups. Harrell's C index was 0.733 in the study cohort, indicating moderate to good discriminatory performance, although this was lower than the value reported in the derivation cohort (0.812). The graphical calibration curve showed a tendency of the BACES model to underpredict mortality. INTERPRETATION The BACES model was evaluated in a multicultural cohort of Canadian patients and demonstrated good discriminatory performance but suboptimal calibration, which may be due to population differences, the use of dichotomized variables in model construction, or both.
Collapse
Affiliation(s)
- Marie Yan
- Department of Medicine, University of Toronto, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brooke Fraser
- Department of Medicine, University of Toronto, Canada
| | | | - Matty Mehrabi
- Division of Respirology, Toronto Western Hospital, Toronto, Canada
| | - Sarah K Brode
- Department of Medicine, University of Toronto, Canada; Division of Respirology, Toronto Western Hospital, Toronto, Canada
| | - Theodore K Marras
- Department of Medicine, University of Toronto, Canada; Division of Respirology, Toronto Western Hospital, Toronto, Canada.
| |
Collapse
|
72
|
Kyung Kim J, Jo EK. Host and microbial regulation of mitochondrial reactive oxygen species during mycobacterial infections. Mitochondrion 2024; 75:101852. [PMID: 38360196 DOI: 10.1016/j.mito.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), pose challenges in treatment due to their increased resistance to antibiotics. Following infection, mycobacteria and their components trigger robust innate and inflammatory immune responses intricately associated with the modulation of mitochondrial functions, including oxidative phosphorylation (OXPHOS) and metabolism. Certainly, mitochondrial reactive oxygen species (mtROS) are an inevitable by-product of OXPHOS and function as a bactericidal weapon; however, an excessive accumulation of mtROS are linked to pathological inflammation and necroptotic cell death during mycobacterial infection. Despite previous studies outlining various host pathways involved in regulating mtROS levels during antimicrobial responses in mycobacterial infection, our understanding of the precise mechanisms orchestrating the fine regulation of this response remains limited. Emerging evidence suggests that mycobacterial proteins play a role in targeting the mitochondria of the host, indicating the potential influence of microbial factors on mitochondrial functions within host cells. In this review, we provide an overview of how both host and Mtb factors influence mtROS generation during infection. A comprehensive study of host and microbial factors that target mtROS will shed light on innovative approaches for effectively managing drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
73
|
Royer G, Lecorche E, Sakr C, Cizeau F, Ducellier D, Fihman V, Razazi K, Woerther PL, Decousser JW. Late-onset ventilator-associated pneumonia due to Mycobacterium chelonae and an unusual transmission pathway. Infect Control Hosp Epidemiol 2024; 45:402-403. [PMID: 37920122 DOI: 10.1017/ice.2023.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Guilhem Royer
- Bacteriology Laboratory, Department of Microbiology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- University Paris Est Créteil, Health Faculty, Créteil, France
| | - Emmanuel Lecorche
- Bacteriology Laboratory, Department of Microbiology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Céline Sakr
- University Paris Est Créteil, Health Faculty, Créteil, France
- Infection Control Team, Microbiology Department, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Florence Cizeau
- Infection Control Team, Microbiology Department, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - David Ducellier
- Infection Control Team, Microbiology Department, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Vincent Fihman
- Bacteriology Laboratory, Department of Microbiology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Keyvan Razazi
- Medical Intensive Care Unit, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Paul-Louis Woerther
- Bacteriology Laboratory, Department of Microbiology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- University Paris Est Créteil, Health Faculty, Créteil, France
| | - Jean-Winoc Decousser
- University Paris Est Créteil, Health Faculty, Créteil, France
- Infection Control Team, Microbiology Department, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
74
|
Mullen B, Houpt ER, Colston J, Becker L, Johnson S, Young L, Hearn J, Falkinham J, Heysell SK. Geographic Variation and Environmental Predictors of Nontuberculous Mycobacteria in Laboratory Surveillance, Virginia, USA, 2021-2023 1. Emerg Infect Dis 2024; 30:548-554. [PMID: 38407146 PMCID: PMC10902533 DOI: 10.3201/eid3003.231162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Because epidemiologic and environmental risk factors for nontuberculous mycobacteria (NTM) have been reported only infrequently, little information exists about those factors. The state of Virginia, USA, requires certain ecologic features to be included in reports to the Virginia Department of Health, presenting a unique opportunity to study those variables. We analyzed laboratory reports of Mycobacterium avium complex (MAC) and M. abscessus infections in Virginia during 2021-2023. MAC/M. abscessus was isolated from 6.19/100,000 persons, and 2.37/100,000 persons had MAC/M. abscessus lung disease. M. abscessus accounted for 17.4% and MAC for 82.6% of cases. Saturated vapor pressure was associated with MAC/M. abscessus prevalence (prevalence ratio 1.414, 95% CI 1.011-1.980; p = 0.043). Self-supplied water use was a protective factor (incidence rate ratio 0.304, 95% CI 0.098-0.950; p = 0.041). Our findings suggest that a better understanding of geographic clustering and environmental water exposures could help develop future targeted prevention and control efforts.
Collapse
|
75
|
Heilmann A, Rueda Z, Alexander D, Laupland KB, Keynan Y. Impact of climate change on amoeba and the bacteria they host. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2024; 9:1-5. [PMID: 38567368 PMCID: PMC10984314 DOI: 10.3138/jammi-2023-09-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Ashley Heilmann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zulma Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Alexander
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Cadham Provincial Lab, Winnipeg, Manitoba, Canada
| | - Kevin B Laupland
- Department of Intensive Care Services, Royal Brisbane and Women’s Hospital, Butterfield Street, Brisbane, Queensland, Australia
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
76
|
Zhang K, Limwongyut J, Moreland AS, Wei SCJ, Jim Jia Min T, Sun Y, Shin SJ, Kim SY, Jhun BW, Pethe K, Bazan GC. An anti-mycobacterial conjugated oligoelectrolyte effective against Mycobacterium abscessus. Sci Transl Med 2024; 16:eadi7558. [PMID: 38381846 DOI: 10.1126/scitranslmed.adi7558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Infections caused by nontuberculous mycobacteria have increased more than 50% in the past two decades and more than doubled in the elderly population. Mycobacterium abscessus (Mab), one of the most prevalent of these rapidly growing species, is intrinsically resistant to numerous antibiotics. Current standard-of-care treatments are not satisfactory, with high failure rate and notable adverse effects. We report here a potent anti-Mab compound from the flexible molecular framework afforded by conjugated oligoelectrolytes (COEs). A screen of structurally diverse, noncytotoxic COEs identified a lead compound, COE-PNH2, which was bactericidal against replicating, nonreplicating persisters and intracellular Mab.COE-PNH2 had low propensity for resistance development, with a frequency of resistance below 1.25 × 10-9 and showed no detectable resistance upon serial passaging. Mechanism of action studies were in line with COE-PNH2 affecting the physical and functional integrity of the bacterial envelope and disrupting the mycomembrane and associated essential bioenergetic pathways. Moreover, COE-PNH2 was well-tolerated and efficacious in a mouse model of Mab lung infection. This study highlights desirable in vitro and in vivo potency and safety index of this COE structure, which represents a promising anti-mycobacterial to tackle an unmet medical need.
Collapse
Affiliation(s)
- Kaixi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samuel Chan Jun Wei
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Tania Jim Jia Min
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Yan Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- National Centre for Infectious Diseases (NCID), 16 Jalan Tan Tock Seng, 308442 Singapore, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 117544 Singapore, Singapore
| |
Collapse
|
77
|
Kim YJ, Kim S, Ham H, Yu S, Choo HJ, Kim HJ, Heo R, Choi G, Kim SH, Lee HJ. Trend of nontuberculous mycobacteria species and minimal inhibitory concentration in a referral laboratory in Korea from 2013 to 2019. J Infect Public Health 2024; 17:212-216. [PMID: 38113818 DOI: 10.1016/j.jiph.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study investigated the trends of nontuberculous mycobacterial (NTM) isolates and the minimal inhibitory concentrations (MIC) of antimicrobial agents in Korea. METHODS Data from 2013 to 2019 were collected from 69 medical institutions through 12 branches of the Korean Institute of Tuberculosis. NTM identification was conducted using the Advansure Mycobacteria Genoblot assay. The MIC of antibiotics against NTM species were measured using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. RESULTS Over seven years, 86,194 NTM identifications were requested, with an annual increase from 8034 in 2013-17,229 in 2019. The most frequently identified NTM species were M. intracellulare (33,467; 47.3%) and M. avium (19,818; 27.2%), followed by M. abscessus (6858; 9.4%) and M. massiliense (3156; 4.3%). Regarding the antimicrobial agents, imipenem exhibited the greatest difference in MIC between M. intracellulare and M. avium, whereas clarithromycin showed the most significant difference between M. abscessus and M. massiliense. No notable changes were observed in the annual MIC distribution of most antibacterial agents, except for clarithromycin in M. abscessus. CONCLUSIONS The prevalence of NTM in Korea is gradually increasing, and follow-up studies on NTM isolates identified as the causative agents of infection are needed.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Seungmo Kim
- Laboratory Medicine Center, The Korean Institute of Tuberculosis, Korean National Tuberculosis Association, Cheongju, Republic of Korea
| | - Heejung Ham
- Department of Laboratory Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sarah Yu
- College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hyeon-Ju Choo
- Clinical Laboratory Center, Korean National Tuberculosis Association, Seoul, Republic of Korea
| | - Hwi-Jun Kim
- Laboratory Medicine Center, The Korean Institute of Tuberculosis, Korean National Tuberculosis Association, Cheongju, Republic of Korea
| | - Ryeun Heo
- Laboratory Medicine Center, The Korean Institute of Tuberculosis, Korean National Tuberculosis Association, Cheongju, Republic of Korea
| | - Gyeongsik Choi
- Laboratory Medicine Center, The Korean Institute of Tuberculosis, Korean National Tuberculosis Association, Cheongju, Republic of Korea
| | - Soul-Hee Kim
- Laboratory Medicine Center, The Korean Institute of Tuberculosis, Korean National Tuberculosis Association, Cheongju, Republic of Korea
| | - Hee Joo Lee
- Clinical Laboratory Center, Korean National Tuberculosis Association, Seoul, Republic of Korea.
| |
Collapse
|
78
|
Chang LK, Wang PH, Lee TF, Huang YT, Shu CC, Wang HC, Yu CJ. Microbiological persistence in patients with Mycobacterium abscessus complex lung disease: The prevalence, predictors, and the impact on progression. Int J Infect Dis 2024; 139:118-123. [PMID: 37977501 DOI: 10.1016/j.ijid.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVES Persistent growth of Mycobacterium abscessus complex (MABC) in the respiratory system is not uncommon and may indicate continuous infection of MABC lung disease (MABC-LD), but its prevalence, risk factors, and clinical impact have not been investigated. METHODS The present study was conducted in two medical centers in northern Taiwan. We enrolled patients with MABC-LD and investigated the prevalence and predictors of persistent culture positivity (MABC-PP). Furthermore, we analyzed the association between MABC-PP and radiographic or clinical progression. RESULTS Among 189 patients with MABC-LD, 58 were in the MABC-PP group. Independent predictors for MABC-PP included an increasing radiographic score and highest acid-fast stain (AFS) of strong positivity (3-4+) at initial diagnosis (compared with negative AFS). MABC-PP and highest AFS were independently associated with MABC-LD progression by the multivariable analysis model. The adjusted hazard ratio increased to 3.56 when the two independent factors existed. CONCLUSIONS MABC-PP accounted for 30.7% and was predicted by initial AFS grade and radiographic score. Patients with MABC-PP, and highest AFS grade might have disease progression.
Collapse
Affiliation(s)
- Ling-Kai Chang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch BioMedical Park Hospital, Zhubei City, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Huai Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chung Shu
- College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hao-Chien Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch BioMedical Park Hospital, Zhubei City, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
79
|
Abbew ET, Lorent N, Mesic A, Wachinou AP, Obiri-Yeboah D, Decroo T, Rigouts L, Lynen L. Challenges and knowledge gaps in the management of non-tuberculous mycobacterial pulmonary disease in sub-Saharan African countries with a high tuberculosis burden: a scoping review. BMJ Open 2024; 14:e078818. [PMID: 38238184 PMCID: PMC10806640 DOI: 10.1136/bmjopen-2023-078818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION In sub-Saharan African (SSA) countries endemic for tuberculosis (TB), previous TB is a significant risk factor for non-tuberculous mycobacterial pulmonary disease (NTM-PD). The deployment of GeneXpert MTB/RIF in pulmonary TB diagnostic work-up regularly identifies symptomatic patients with a positive smear microscopy but negative GeneXpert, indicative of NTM presence. This scoping review outlines recent evidence for NTM-PD diagnosis and management in SSA. OBJECTIVE The review's objective was to outline the risk factors, available diagnostics, management options and outcomes of NTM-PD in high-burden TB settings in SSA using the population-concept-context framework. DESIGN AND DATA SOURCES We searched existing literature from PubMed, Web of Science, African Journals Online, Google Scholar and grey literature. Studies published between January 2005 and December 2022 were retained. Data were extracted into Rayyan software and Mendeley and summarised using Excel. RESULTS We identified 785 potential articles, of which 105 were included in the full-text review, with 7 papers retained. Included articles used international criteria for diagnosing NTM-PD. Multiple papers were excluded due to non-application of the criteria, suggesting challenging application in the SSA setting. Identified risk factors include previous TB, smoking and mining. Most commonly, chest radiography and not CT was used for the radiological diagnosis of PD, which may miss early changes related to NTM-PD. Molecular methods for NTM species identification were employed in research settings, usually at referral centres, but were unavailable for routine care. Most studies did not report a standardised approach to treatment and they were not offered treatment for the specific disease, marking a lack of guidance in treatment decision-making. When treatment was provided, the outcome was often not reported due to the lack of implementation of standardised outcome definitions. CONCLUSIONS These outlined challenges present a unique opportunity for researchers to undertake further studies in NTM-PD and proffer solutions more applicable to SSA.
Collapse
Affiliation(s)
- Elizabeth Tabitha Abbew
- Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
- Internal Medicine, Cape Coast Teaching Hospital, Cape Coast, Central, Ghana
- Biomedical Sciences, University of Antwerp, Antwerp, Antwerpen, Belgium
| | - Natalie Lorent
- Respiratory Diseases, KU Leuven University Hospitals Leuven, Leuven, Flanders, Belgium
- Chronic Diseases and Metabolism, BREATHE Laboratory, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Anita Mesic
- Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | | | - Dorcas Obiri-Yeboah
- Microbiology and Immunology, University of Cape Coast School of Medical Sciences, Cape Coast, Central, Ghana
| | - Tom Decroo
- Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Leen Rigouts
- Biomedical Sciences, University of Antwerp, Antwerp, Antwerpen, Belgium
- Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Lutgarde Lynen
- Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
80
|
Zheng M, Chen X, Chen Q, Chen X, Huang M. Employing Multicolor Melting Curve Analysis to Rapidly Identify Non-Tuberculous Mycobacteria in Patients with Bronchiectasis: A Study from a Pulmonary Hospital in the Fuzhou District of China, 2018-2022. Crit Rev Immunol 2024; 44:41-49. [PMID: 38505920 DOI: 10.1615/critrevimmunol.2024052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Non-tuberculous mycobacteria (NTM) infection is common in bronchiectasis, with rising incidence globally. However, investigation into NTM in bronchiectasis patients in China remains relatively limited. This work aimed to identify and understand the features of NTM in bronchiectasis patient in Fuzhou district of China. The pulmonary samples were collected from 281 bronchiectasis patients with suspected NTM infection in Fuzhou, 2018-2022. MPB64 antigen detection was employed for the preliminary evaluation of NTM. Further NTM identification was realized using gene chip and gene sequencing. Among 281 patients, 172 (61.21%) patients were NTM-positive (58.72%) according to MPB64 antigen detection, with females (58.72%) outnumbering males (41.28%) and the highest prevalence in the age group of 46-65 years. In total, 47 NTM single infections and 3 mixed infections (1 Mycobacterium tuberculosis complex-M. intracellulare, 1 M. avium-M. intracellulare, and 1 M. abscessus-M. intracellulare) were identified through multicolor melting curve analysis (MMCA), which was compared with gene sequencing results. Both methods suggested Mycobacterium (M.) intracellulare, M. abscessus, and M. avium as the primary NTM species affecting bronchiectasis patients. M. intracellulare and M. abscessus were more frequent in females than males with the highest prevalence in the age group of 46-65 years according to MMCA. This research provides novel insights into the epidemiological and clinical features of NTM in bronchiectasis patients in Southeastern China. Significantly, M. intracellulare, M. abscessus, and M. avium were identified as the major NTM species, contributing to a better understanding and management of bronchiectasis accompanied by NTM infection.
Collapse
Affiliation(s)
- Mintao Zheng
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Xinchao Chen
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Qiaoqian Chen
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Xiaohong Chen
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, Fujian, China
| | - Mingxiang Huang
- Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital
| |
Collapse
|
81
|
Aliberti S, Blasi F, Burgel PR, Calcagno A, Fløe A, Grogono D, Papavasileiou A, Polverino E, Prados C, Rohde G, Salzer HJ, Sánchez-Montalvá A, Shteinberg M, Van Braeckel E, van Ingen J, Veziris N, Wagner D, Loebinger MR. Mycobacterium avium complex pulmonary disease patients with limited treatment options. ERJ Open Res 2024; 10:00610-2023. [PMID: 38226066 PMCID: PMC10789256 DOI: 10.1183/23120541.00610-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/05/2023] [Indexed: 01/17/2024] Open
Abstract
How to identify MAC-PD patients with limited treatment options: an expert consensus https://bit.ly/3QwLQ8T.
Collapse
Affiliation(s)
- Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Pierre-Régis Burgel
- Respiratory Medicine, Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
- Cochin Hospital, Department of Respiratory Medicine, Publique Hôpitaux de Paris, Paris, France
| | - Andrea Calcagno
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Andreas Fløe
- Department of Respiratory Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Dorothy Grogono
- Cambridge Centre of Lung Infection, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | | | - Eva Polverino
- Respiratory Medicine, Adult Bronchiectasis and Cystic Fibrosis, University Hospital Vall D'Hebron, VHIR, CIBERES, Barcelona, Spain
| | - Concepción Prados
- Pulmonology, Cystic fibrosis, Bronchiectasis, Bronquial Infections, La Paz University Hospital, Madrid, Spain
| | - Gernot Rohde
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Respiratory Medicine and Allergology, Frankfurt am Main, Germany
| | - Helmut J.F. Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine 4 - Pneumology, Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Adrián Sánchez-Montalvá
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS, Universitat Autónoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Micobateria Infection Study Group (GEIM) from Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Michal Shteinberg
- Carmel Medical Center and the Technion-Israel Institute of Technology, B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Jakko van Ingen
- Clinical Microbiologist, Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicolas Veziris
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Department of Bacteriology, Saint-Antoine Hospital, APHP, Sorbonne-Université, Centre National de Référence des Mycobactéries, Paris, France
| | - Dirk Wagner
- Department of Internal Medicine II, Division of Infectious Diseases, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, and NHLI, Imperial College, London, United Kingdom
| |
Collapse
|
82
|
Malhotra AM, Arias M, Backx M, Gadsby J, Goodman A, Gourlay Y, Milburn H, Moncayo-Nieto OL, Shimmin D, Dedicoat M, Kunst H. Extrapulmonary nontuberculous mycobacterial infections: a guide for the general physician. Clin Med (Lond) 2024; 24:100016. [PMID: 38350409 PMCID: PMC11024835 DOI: 10.1016/j.clinme.2024.100016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Non-tuberculous mycobacteria (NTM) infections predominantly present as pulmonary disease. Although relatively rare, 20-30 % originate from extrapulmonary sites resulting in a wide range of clinical syndromes. Immunocompromised individuals are particularly susceptible. Clinical manifestations include skin and soft-tissue infections, lymphadenitis, musculoskeletal infections and disseminated disease. Diagnosing extrapulmonary NTM is challenging, and management is complex, often involving multiple radiological and microbiological investigations, long courses of combination antibiotic regimens and may require adjuvant surgical interventions. We highlight both the importance of involving NTM experts at an early stage and the role of a multidisciplinary approach in the diagnosis and management of these infections.
Collapse
Affiliation(s)
- Akanksha Mimi Malhotra
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | | | | - Jessica Gadsby
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Anna Goodman
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Heinke Kunst
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
83
|
Dreyer V, Sonnenkalb L, Diricks M, Utpatel C, Barilar I, Mohr V, Niemann S, Kohl TA, Merker M. Use of Whole Genome Sequencing for Mycobacterium tuberculosis Complex Antimicrobial Susceptibility Testing: From Sequence Data to Resistance Profiles. Methods Mol Biol 2024; 2833:195-210. [PMID: 38949712 DOI: 10.1007/978-1-0716-3981-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Whole genome sequencing of Mycobacterium tuberculosis complex (MTBC) isolates has been shown to provide accurate predictions for resistance and susceptibility for many first- and second-line anti-tuberculosis drugs. However, bioinformatic pipelines and mutation catalogs to predict antimicrobial resistances in MTBC isolates are often customized and detailed protocols are difficult to access. Here, we provide a step-by-step workflow for the processing and interpretation of short-read sequencing data and give an overview of available analysis pipelines.
Collapse
Affiliation(s)
- Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Vanessa Mohr
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
84
|
Kiselinova M, Naesens L, Huis In ’t Veld D, Boelens J, Van Braeckel E, Vande Weygaerde Y, Callens S. Management Challenges of Extrapulmonary Nontuberculous Mycobacterial Infection: A Single-Center Case Series and Literature Review. Pathogens 2023; 13:12. [PMID: 38276158 PMCID: PMC10819148 DOI: 10.3390/pathogens13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Extrapulmonary nontuberculous mycobacterial (NTM) disease remains largely enigmatic, yet these mycobacteria are increasingly acknowledged as important opportunistic pathogens in humans. Traditionally, NTM infections have been identified across various anatomical locations, with the respiratory system being the most affected and best understood. Historically, extrapulmonary NTM infection was predominantly associated with HIV/AIDS, with Mycobacterium avium lymphadenopathy being the most commonly reported. Today, however, because of the expanding utilization of immunosuppressive therapies and the demographic shift towards an aging population, an increasing number of NTM infections are expected and seen. Hence, a heightened index of suspicion is essential, necessitating a multifaceted approach to identification and drug sensitivity testing to improve treatment outcomes. In extrapulmonary NTM management, expert consultation is strongly recommended to determine the most efficacious treatment regimen, as individualized, patient-tailored therapies are often required. Furthermore, the economic burden of NTM disease is considerable, accompanied by high rates of hospitalization. To optimize the management of these intricate infections, there is an urgent need for comprehensive data on incidence, prevalence, and outcomes. This case-based series delves into the intricate nature of extrapulmonary NTM infections, focusing on both rapid and slow-growing NTM species, and explores therapeutic options, resistance mechanisms, and host-related immunological factors.
Collapse
Affiliation(s)
- Maja Kiselinova
- Department of General Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (L.N.); (S.C.)
| | - Leslie Naesens
- Department of General Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (L.N.); (S.C.)
| | - Diana Huis In ’t Veld
- Department of General Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (L.N.); (S.C.)
| | - Jerina Boelens
- Department of Microbiology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium (Y.V.W.)
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (L.N.); (S.C.)
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
85
|
Kurbatfinski N, Hill PJ, Tobin N, Kramer CN, Wickham J, Goodman SD, Hall-Stoodley L, Bakaletz LO. Disruption of nontuberculous mycobacteria biofilms induces a highly vulnerable to antibiotic killing phenotype. Biofilm 2023; 6:100166. [PMID: 38078059 PMCID: PMC10698573 DOI: 10.1016/j.bioflm.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 02/07/2024] Open
Abstract
Objectives Structural or mucus hypersecretory pulmonary diseases such as cystic fibrosis (CF), wherein viscous mucus accumulates and clearance functions are impaired, predispose people to lung infection by inhaled bacteria that form biofilm aggregates. Nontuberculous mycobacteria (NTM), primarily Mycobacterium abscessus and Mycobacterium avium, are the growing cause of these lung infections and are extremely challenging to treat due to antibiotic recalcitrance. Better therapeutic approaches are urgently needed. We developed a humanized monoclonal antibody (HuTipMab) directed against a biofilm structural linchpin, the bacterial DNABII proteins, that rapidly disrupts biofilms and generates highly vulnerable newly released bacteria (NRel). Methods HuTipMab's ability to recognize HupB, NTM's DNABII homologue was determined by ELISA. Relative ability of HuTipMab to disrupt biofilms formed by lab-passaged and clinical isolates of NTM was assessed by CLSM. Relative sensitivity of NTM NRel to antibiotic killing compared to when grown planktonically was evaluated by plate count. Results HuTipMab recognized HupB and significantly disrupted NTM biofilms in a time- and dose-dependent manner. Importantly, NTM NRel of lab-passaged and clinical isolates were now highly sensitive to killing by amikacin and azithromycin. Conclusions If successful, this combinatorial treatment strategy would empower existing antibiotics to more effectively kill NTM newly released from a biofilm by HuTipMab and thereby both improve clinical outcomes and perhaps decrease length of antibiotic treatment for people that are NTM culture-positive.
Collapse
Affiliation(s)
- Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Preston J. Hill
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12 Ave., Columbus, OH, 43210, USA
| | - Noah Tobin
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Cameron N. Kramer
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12 Ave., Columbus, OH, 43210, USA
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
86
|
Namkoong H, Holland SM. Host Susceptibility to Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:723-730. [PMID: 37890911 PMCID: PMC10614071 DOI: 10.1016/j.ccm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) pulmonary disease is a chronic progressive pulmonary infectious disease caused by low virulence pathogens. The existence of host susceptibility to NTM infection has been recognized from a high incidence among Asians compared to other populations in the United States, a high incidence among slender, middle-aged women, and the presence of familial clusters. Recent whole exome sequencing and genome-wide association studies have identified immune, CFTR, cilia, connective tissue and ion homeostasis genes as host susceptibility genes. Large-scale international collaborative studies and functional analyses are expected to elucidate host susceptibility in the future.
Collapse
Affiliation(s)
- Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi Shinjyuku-ku, Tokyo 160-8582, Japan.
| | - Steven M Holland
- Division of Intramural Research, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 10/11N248, MSC 1960, Bethesda, MD 20892-1960, USA
| |
Collapse
|
87
|
Prevots DR, Marshall JE, Wagner D, Morimoto K. Global Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease: A Review. Clin Chest Med 2023; 44:675-721. [PMID: 37890910 PMCID: PMC10625169 DOI: 10.1016/j.ccm.2023.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacterial (NTM) isolation and pulmonary disease (NTM-PD) have continued to increase in most regions of the world, driven mainly by Mycobacterium avium. Single-center studies also support increasing trends as well as a persistent burden of undiagnosed NTM among persons suspected of having tuberculosis (TB), in countries with moderate-to-high TB prevalence. Cumulative exposure to water and soil presents an increased risk to susceptible hosts, and trace metals in water supply are recently recognized risk factors. Establishing standard case definitions for subnational and national surveillance systems with mandatory notification of NTM-PD are needed to allow comparisons within and across countries and regions.
Collapse
Affiliation(s)
- D Rebecca Prevots
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20852, USA.
| | - Julia E Marshall
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Internal Medicine II, Medical Center- University of Freiburg, Faculty of Medicine, Hugstetter Street. 55, Freiburg b106, Germany
| | - Kozo Morimoto
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24, Matsuyama, Kiyose, Tokyo, Japan
| |
Collapse
|
88
|
Park HJ, Choi B, Song YK, Oh YJ, Lee EB, Kim IW, Oh JM. Association of Tumor Necrosis Factor Inhibitors with the Risk of Nontuberculous Mycobacterial Infection in Patients with Rheumatoid Arthritis: A Nationwide Cohort Study. J Clin Med 2023; 12:6998. [PMID: 38002613 PMCID: PMC10671978 DOI: 10.3390/jcm12226998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tumor necrosis factor inhibitors (TNFi) are proposed as a risk factor for nontuberculous mycobacteria (NTM) infection. Limited research investigates NTM infection risk in rheumatoid arthritis (RA) patients treated with TNFi compared to conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), considering other concurrent or prior non-TNFi antirheumatic drugs. We aimed to evaluate the NTM infection risk associated with TNFi using a real-world database. Patients with RA treated with TNFi or csDMARDs between 2005 and 2016 were identified utilizing the Korean National Health Insurance Service database. To minimize potential bias, we aligned the initiation year of csDMARDs for both TNFi and csDMARD users and tracked them from their respective treatment start dates. The association of TNFi with NTM infection risk was estimated in a one-to-one matched cohort using a multivariable conditional Cox regression analysis. In the matched cohort (n = 4556), the incidence rates of NTM infection were 2.47 and 3.66 per 1000 person-year in TNFi and csDMARD users. Compared to csDMARDs, TNFi did not increase the risk of NTM infection (adjusted hazard ratio (aHR) 0.517 (95% confidence interval, 0.205-1.301)). The TNFi use in RA patients was not associated with an increased risk of NTM infection compared to csDMARDs. Nevertheless, monitoring during TNFi treatment is crucial.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| | - Boyoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi, Republic of Korea
| | - Yun-Kyoung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si 38430, Gyeongbuk, Republic of Korea
| | - Yoon-Jeong Oh
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (Y.-J.O.); (E.B.L.)
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (Y.-J.O.); (E.B.L.)
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| |
Collapse
|
89
|
Tabernero Huguet E, Leal Arranz MV, Garcia Fuertes JA, Santos Zorrozua B, Ortiz Laza N, Ortiz de Urbina B, Azpiazu Monterrubio P, Altube Urrengoechea L. Clinical and Treatment Outcome Differences Between the Most Common Nontuberculous Mycobacteria (NTM) in the Basque Country. Arch Bronconeumol 2023; 59:765-767. [PMID: 37541817 DOI: 10.1016/j.arbres.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Eva Tabernero Huguet
- Pneumology Service, Hospital Universitario Cruces, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| | | | | | - Borja Santos Zorrozua
- Bioinformatics and Statistics Unit, Biocruces Bizkaia Health Research Institute, Spain
| | - Nerea Ortiz Laza
- Pneumology Service, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Borja Ortiz de Urbina
- Pneumology Service, Hospital Universitario Cruces, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | | | | |
Collapse
|
90
|
Dahl VN, Laursen LL, He Y, Zhang YA, Wang MS. Species distribution among patients with nontuberculous mycobacteria pulmonary disease in Europe. J Infect 2023; 87:469-472. [PMID: 36913984 DOI: 10.1016/j.jinf.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Affiliation(s)
- Victor Naestholt Dahl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Center for Global Health, Department of Public Health, Aarhus University (GloHAU), Aarhus, Denmark; International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Yu He
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-An Zhang
- Department of Cardiovascular Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, China; Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China.
| | - Mao-Shui Wang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China; Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China.
| |
Collapse
|
91
|
Gomez-Alvarez V, Ryu H, Tang M, McNeely M, Muhlen C, Urbanic M, Williams D, Lytle D, Boczek L. Assessing residential activity in a home plumbing system simulator: monitoring the occurrence and relationship of major opportunistic pathogens and phagocytic amoebas. Front Microbiol 2023; 14:1260460. [PMID: 37915853 PMCID: PMC10616306 DOI: 10.3389/fmicb.2023.1260460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Opportunistic premise plumbing pathogens (OPPPs) have been detected in buildings' plumbing systems causing waterborne disease outbreaks in the United States. In this study, we monitored the occurrence of OPPPs along with free-living amoeba (FLA) and investigated the effects of residential activities in a simulated home plumbing system (HPS). Water samples were collected from various locations in the HPS and analyzed for three major OPPPs: Legionella pneumophila, nontuberculous mycobacterial species (e.g., Mycobacterium avium, M. intracellulare, and M. abscessus), and Pseudomonas aeruginosa along with two groups of amoebas (Acanthamoeba and Vermamoeba vermiformis). A metagenomic approach was also used to further characterize the microbial communities. Results show that the microbial community is highly diverse with evidence of spatial and temporal structuring influenced by environmental conditions. L. pneumophila was the most prevalent pathogen (86% of samples), followed by M. intracellulare (66%) and P. aeruginosa (21%). Interestingly, M. avium and M. abscessus were not detected in any samples. The data revealed a relatively low prevalence of Acanthamoeba spp. (4%), while V. vermiformis was widely detected (81%) across all the sampling locations within the HPS. Locations with a high concentration of L. pneumophila and M. intracellulare coincided with the highest detection of V. vermiformis, suggesting the potential growth of both populations within FLA and additional protection in drinking water. After a period of stagnation lasting at least 2-weeks, the concentrations of OPPPs and amoeba immediately increased and then decreased gradually back to the baseline. Furthermore, monitoring the microbial population after drainage of the hot water tank and partial drainage of the entire HPS demonstrated no significant mitigation of the selected OPPPs. This study demonstrates that these organisms can adjust to their environment during such events and may survive in biofilms and/or grow within FLA, protecting them from stressors in the supplied water.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Hodon Ryu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Min Tang
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Morgan McNeely
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Christy Muhlen
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Megan Urbanic
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Daniel Williams
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Darren Lytle
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Laura Boczek
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
92
|
Ganapathy US, Lan T, Dartois V, Aldrich CC, Dick T. Blocking ADP-ribosylation expands the anti-mycobacterial spectrum of rifamycins. Microbiol Spectr 2023; 11:e0190023. [PMID: 37681986 PMCID: PMC10580999 DOI: 10.1128/spectrum.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023] Open
Abstract
The clinical utility of rifamycins against non-tuberculous mycobacterial (NTM) disease is limited by intrinsic drug resistance achieved by ADP-ribosyltransferase Arr. By blocking the site of ribosylation, we recently optimized a series of analogs with substantially improved potency against Mycobacterium abscessus. Here, we show that a representative member of this series is significantly more potent than rifabutin against major NTM pathogens expressing Arr, providing a powerful medicinal chemistry approach to expand the antimycobacterial spectrum of rifamycins. IMPORTANCE Lung disease caused by a range of different species of non-tuberculous mycobacteria (NTM) is difficult to cure. The rifamycins are very active against Mycobacterium tuberculosis, which causes tuberculosis (TB), but inactive against many NTM species. Previously, we showed that the natural resistance of the NTM Mycobacterium abscessus to rifamycins is due to enzymatic inactivation of the drug by the bacterium. We generated chemically modified versions of rifamycins that prevent inactivation by the bacterium and thus become highly active against M. abscessus. Here, we show that such a chemically modified rifamycin is also highly active against several additional NTM species that harbor the rifamycin inactivating enzyme found in M. abscessus, including M. chelonae, M. fortuitum, and M. simiae. This finding expands the potential therapeutic utility of our novel rifamycins to include several currently difficult-to-cure NTM lung disease pathogens beyond M. abscessus.
Collapse
Affiliation(s)
- Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
93
|
Park J, Kwak N, Chae JC, Yoon EJ, Jeong SH. A Two-Step Real-Time PCR Method To Identify Mycobacterium tuberculosis Infections and Six Dominant Nontuberculous Mycobacterial Infections from Clinical Specimens. Microbiol Spectr 2023; 11:e0160623. [PMID: 37378523 PMCID: PMC10434164 DOI: 10.1128/spectrum.01606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) is an ongoing threat to public health, and furthermore, the incidence of infections by nontuberculous mycobacteria (NTM), whose symptoms are not distinguishable from TB, is increasing globally, thus indicating a need for accurate diagnostics for patients with suspected mycobacterial infections. Such diagnostic strategies need to include two steps, (i) detecting the mycobacterial infections and, if the case is an NTM infection, (ii) identifying the causative NTM pathogen. To eliminate a false-positive TB diagnosis for a host vaccinated by the bacillus Calmette-Guérin (BCG) strain of Mycobacterium bovis, a new target specific for M. tuberculosis species was selected, together with the species-specific targets for the six dominant NTM species of clinical importance, i.e., M. intracellulare, M. avium, M. kansasii, M. massiliense, M. abscessus, and M. fortuitum. Using sets of primers and probes, a two-step real-time multiplex PCR method was designed. The diagnostic performance was assessed by using a total of 1,772 clinical specimens from patients with suspected TB or NTM infection. A total of 69.4% of M. tuberculosis and 28.8% of NTM infections were positive for the primary step of the real-time PCR corresponding to the culture within 10 weeks, and mycobacterial species of 75.5% of the NTM-positive cases were identified by the secondary step. The two-step method described herein presented promising results and similar diagnostic sensitivity and specificity to commercially available real-time PCR kits for detecting TB and NTM infections. The method also enabled the identification of mycobacterial species in three-quarters of NTM infection cases, thus providing a better treatment strategy. IMPORTANCE Tuberculosis (TB) is an ongoing threat to public health. In addition, infection by nontuberculous mycobacteria (NTM) is a nonnegligible issue for global public health, with increasing incidences. Since the antimicrobial treatment strategy needs to be differed by the causative pathogen, a rapid and accurate diagnostic method is necessary. In this study, we developed a two-step molecular diagnostic method using clinical specimens of TB and NTM infection-suspected patients. The diagnostic power of the new method using the novel target was similar to the widely used TB detection kit, and, among the NTM-positive specimens, three-quarters of the NTM species were able to be identified. This simple and powerful method will be useful as it is, and it could be applied easily to a point-of-care diagnostic apparatus for better application to patients, especially those living in developing countries.
Collapse
Affiliation(s)
- Jungho Park
- Division of Biotechnology, Chongbuk National University, Iksan, South Korea
- BioPark Diagnostics Inc., Seoul, South Korea
| | - Naeun Kwak
- BioPark Diagnostics Inc., Seoul, South Korea
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, South Korea
| | - Jong-Chan Chae
- Division of Biotechnology, Chongbuk National University, Iksan, South Korea
| | - Eun-Jeong Yoon
- Division of Antimicrobial Resistance Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheonju, South Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
94
|
Naito M, Fukushima K, Kusakabe S, Endo T, Shiroyama T, Ohira K, Azuma K, Tanizaki S, Yamamoto Y, Hosono Y, Naito Y, Futami S, Miyake K, Hirata H, Takeda Y, Kumanogoh A. Disseminated non-tuberculous mycobacterial infection caused by Mycobacterium obuense in an immunocompromised patient: a case report. BMC Infect Dis 2023; 23:517. [PMID: 37550642 PMCID: PMC10408174 DOI: 10.1186/s12879-023-08510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Mycobacterium obuense (M. obuense) is a rapidly growing mycobacterium (RGM) which has been considered nonpathogenic. Here, we report a case of disseminated non-tuberculous mycobacterial (NTM) infection caused by M. obuense in an immunocompromised patient. CASE PRESENTATION A 16-year-old boy was referred to our hospital due to acute myeloid leukemia. During the treatment of leukemia, the patient exhibited continuous fever, and diffuse miliary nodules with random distribution were found on chest computed tomography. Repeated examinations of bacterial culture tests revealed sputum and urine samples to be smear-positive for acid-fast bacillus, and blood culture from a peripherally inserted central catheter line showed the growth of NTM. The NTM species was identified as M. obuense by mass spectrometry and confirmed by genome sequencing. Combination therapy with amikacin, rifampicin, azithromycin, and moxifloxacin significantly improved the patient's symptoms and radiological findings. CONCLUSION We report a case of disseminated NTM infection caused by M. obuense for which combination anti-microbial therapy was effective. An immunocompromised host indwelling catheter is at risk of RGM bloodstream infections. Although relatively rare, M. obuense may be considered as a potential pathogen causing infectious diseases, especially in high-risk patients.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takaya Endo
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kika Ohira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Azuma
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Tanizaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumiko Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
95
|
Mejia-Chew C, Chavez MA, Lian M, McKee A, Garrett L, Bailey TC, Spec A, Agarwal M, Turabelidze G. Spatial Epidemiologic Analysis and Risk Factors for Nontuberculous Mycobacteria Infections, Missouri, USA, 2008-2019. Emerg Infect Dis 2023; 29:1540-1546. [PMID: 37486160 PMCID: PMC10370856 DOI: 10.3201/eid2908.230378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are caused by environmental exposure. We describe spatial distribution of NTM infections and associations with sociodemographic factors and flooding in Missouri, USA. Our retrospective analysis of mycobacterial cultures reported to the Missouri Department of Health and Social Services surveillance system during January 1, 2008-December 31, 2019, detected geographic clusters of infection. Multilevel Poisson regression quantified small-area geographic variations and identified characteristics associated with risk for infection. Median county-level NTM infection rate was 66.33 (interquartile range 51-91)/100,000 persons. Risk of clustering was significantly higher in rural areas (rate ratio 2.82, 95% CI 1.90-4.19) and in counties with >5 floodings per year versus no flooding (rate ratio 1.38, 95% CI 1.26-1.52). Higher risk for NTM infection was associated with older age, rurality, and more flooding. Clinicians and public health professionals should be aware of increased risk for NTM infections, especially in similar environments.
Collapse
|
96
|
Hamed KA, Tillotson G. A narrative review of nontuberculous mycobacterial pulmonary disease: microbiology, epidemiology, diagnosis, and management challenges. Expert Rev Respir Med 2023; 17:973-988. [PMID: 37962332 DOI: 10.1080/17476348.2023.2283135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) are a diverse group of mycobacterial species that are ubiquitous in the environment. They are opportunistic pathogens that can cause a range of diseases, especially in individuals with underlying structural lung disease or compromised immune systems. AREAS COVERED This paper provides an in-depth analysis of NTM infections, including microbiology, environmental sources and transmission pathways, risk factors for disease, epidemiology, clinical manifestations and diagnostic approaches, guideline-based treatment recommendations, drugs under development, and management challenges. EXPERT OPINION Future approaches to the management of NTM pulmonary disease will require therapies that are well tolerated, can be taken for a shorter time period and perhaps less frequently, have few drug-drug interactions, and are active against the various strains of pathogens. As the numbers of infections increase, such therapies will be welcomed by clinicians and patients.
Collapse
|
97
|
Winthrop KL, Flume P, Hamed KA. Nontuberculous mycobacterial pulmonary disease and the potential role of SPR720. Expert Rev Anti Infect Ther 2023; 21:1177-1187. [PMID: 37862563 DOI: 10.1080/14787210.2023.2270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria infect patients who have structural lung disease or those who are immunocompromised. Nontuberculous mycobacterial pulmonary disease (NTM-PD) is increasing in prevalence. Treatment guidelines for Mycobacterium avium complex (MAC) pulmonary disease involve a three-drug regimen with azithromycin, ethambutol, and rifampin, and those of Mycobacterium abscessus complex (MAB) pulmonary disease involve a combination of three or more antimicrobials including macrolides, amikacin, and a β-lactam or imipenem. However, these regimens are poorly tolerated and generally ineffective. AREAS COVERED SPR720 is a novel therapeutic agent that has demonstrated activity against a range of NTM species, including MAC and MAB. Encouraging in vitro and pre-clinical data demonstrate that SPR720 is active both alone and in combination with standard-of-care agents, with no evidence of cross-resistance to such agents. It is generally well tolerated with mainly gastrointestinal and headache adverse events of mild or moderate severity. EXPERT OPINION Management of NTM-PD is challenging for many reasons including length of therapy, poor efficacy, drug intolerance, recurrence, and resistance development. The current antimicrobial management options for NTM-PD are limited in number and there exists a large unmet need for new treatments. SPR720 has encouraging data that warrant further study in the context of a multidrug regimen.
Collapse
Affiliation(s)
| | - Patrick Flume
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal A Hamed
- Spero Therapeutics, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
98
|
Echeverria G, Rueda V, Espinoza W, Rosero C, Zumárraga MJ, de Waard JH. First Case Reports of Nontuberculous Mycobacterial (NTM) Lung Disease in Ecuador: Important Lessons to Learn. Pathogens 2023; 12:pathogens12040507. [PMID: 37111393 PMCID: PMC10142742 DOI: 10.3390/pathogens12040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) lung infections are often misdiagnosed as tuberculosis, which can lead to ineffective antibiotic treatments. In this report, we present three cases of NTM lung infections in Ecuador that were initially diagnosed and treated as tuberculosis based on the results of sputum smear microscopy. The patients, all male, included two immunocompetent individuals and one HIV-positive subject. Unfortunately, sputum culture was not initiated until late in the course of the disease and the cause of the lung infection, Mycobacterium avium complex (MAC), was only identified after the patients had either passed away or were lost to follow-up. These cases are the first documented cases of NTM lung infections in the English medical literature from Ecuador. We emphasize the importance of accurate diagnosis of NTM infections by culture and identification to species level. Sputum smear staining alone cannot differentiate between mycobacterial species, which can lead to misidentification and ineffective treatments. Additionally, reporting NTM pulmonary disease as a notifiable disease to national TB control programs is recommended to obtain accurate prevalence data. These data are critical in determining the importance of this public health problem and the necessary actions needed to address it.
Collapse
Affiliation(s)
- Gustavo Echeverria
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170518, Ecuador
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina
- División Investigación y Desarrollo, BioGENA, Quito 170509, Ecuador
| | - Veronica Rueda
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170518, Ecuador
| | - Wilson Espinoza
- Departamento de Tuberculosis, Hospital de Especialidades Eugenio Espejo, Quito 170401, Ecuador
| | - Carlos Rosero
- Departamento de Tuberculosis, Hospital de Especialidades Eugenio Espejo, Quito 170401, Ecuador
| | - Martín J Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular, IABIMO, INTA-CONICET, Buenos Aires C1063ACV, Argentina
| | - Jacobus H de Waard
- Departamento de Tuberculosis, Instituto de Biomedicina "Jacinto Convit", Universidad Central de Venezuela, Caracas 1010, Venezuela
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito 180602, Ecuador
| |
Collapse
|
99
|
Kim YJ, Park EJ, Lee SH, Silwal P, Kim JK, Yang JS, Whang J, Jang J, Kim JM, Jo EK. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways. Cell Biosci 2023; 13:49. [PMID: 36882813 PMCID: PMC9993662 DOI: 10.1186/s13578-023-00992-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Itaconate, a crucial immunometabolite, plays a critical role in linking immune and metabolic functions to influence host defense and inflammation. Due to its polar structure, the esterified cell-permeable derivatives of itaconate are being developed to provide therapeutic opportunities in infectious and inflammatory diseases. Yet, it remains largely uncharacterized whether itaconate derivatives have potentials in promoting host-directed therapeutics (HDT) against mycobacterial infections. Here, we report dimethyl itaconate (DMI) as the promising candidate for HDT against both Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria by orchestrating multiple innate immune programs. RESULTS DMI per se has low bactericidal activity against Mtb, M. bovis Bacillus Calmette-Guérin (BCG), and M. avium (Mav). However, DMI robustly activated intracellular elimination of multiple mycobacterial strains (Mtb, BCG, Mav, and even to multidrug-resistant Mtb) in macrophages and in vivo. DMI significantly suppressed the production of interleukin-6 and -10, whereas it enhanced autophagy and phagosomal maturation, during Mtb infection. DMI-mediated autophagy partly contributed to antimicrobial host defenses in macrophages. Moreover, DMI significantly downregulated the activation of signal transducer and activator of transcription 3 signaling during infection with Mtb, BCG, and Mav. CONCLUSION Together, DMI has potent anti-mycobacterial activities in macrophages and in vivo through promoting multifaceted ways for innate host defenses. DMI may bring light to new candidate for HDT against Mtb and nontuberculous mycobacteria, both of which infections are often intractable with antibiotic resistance.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jeong Seong Yang
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, South Korea
| | - Jake Whang
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea. .,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
100
|
Fröberg G, Maurer FP, Chryssanthou E, Fernström L, Benmansour H, Boarbi S, Mengshoel AT, Keller PM, Viveiros M, Machado D, Fitzgibbon MM, Mok S, Werngren J, Cirillo DM, Alcaide F, Hyyryläinen HL, Aubry A, Andres S, Nadarajan D, Svensson E, Turnidge J, Giske CG, Kahlmeter G, Cambau E, van Ingen J, Schön T. Towards clinical breakpoints for non-tuberculous mycobacteria - Determination of epidemiological cut off values for the Mycobacterium avium complex and Mycobacterium abscessus using broth microdilution. Clin Microbiol Infect 2023:S1198-743X(23)00060-5. [PMID: 36813087 DOI: 10.1016/j.cmi.2023.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE For non-tuberculous mycobacteria (NTM), minimum inhibitory concentration (MIC) distributions of wild-type isolates have not been systematically evaluated despite their importance for establishing antimicrobial susceptibility testing (AST) breakpoints. METHODS We gathered MIC distributions for drugs used against the Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) obtained by commercial broth microdilution (SLOMYCOI and RAPMYCOI) from 12 laboratories. Epidemiological cut-off values (ECOFFs) and tentative ECOFFs (TECOFFs) were determined by EUCAST methodology including quality control (QC) strains. RESULTS The clarithromycin ECOFF was 16 mg/L for M. avium (n = 1271) whereas TECOFFs were 8 mg/L for M. intracellulare (n = 415) and 1 mg/L for MAB (n = 1014) confirmed by analysing MAB subspecies without inducible macrolide resistance (n = 235). For amikacin, the ECOFFs were 64 mg/L for MAC and MAB. For moxifloxacin, the WT spanned >8 mg/L for both MAC and MAB. For linezolid, the ECOFF and TECOFF were 64 mg/L for M. avium and M. intracellulare, respectively. Current CLSI breakpoints for amikacin (16 mg/L), moxifloxacin (1 mg/L) and linezolid (8 mg/L) divided the corresponding WT distributions. For QC M. avium and M. peregrinum, ≥95% of MIC values were well within recommended QC ranges. CONCLUSION As a first step towards clinical breakpoints for NTM, (T)ECOFFs were defined for several antimicrobials against MAC and MAB. Broad wild-type MIC distributions indicate a need for further method refinement which is now under development within the EUCAST subcommittee for anti-mycobacterial drug susceptibility testing. In addition, we showed that several CLSI NTM breakpoints are not consistent in relation to the (T)ECOFFs.
Collapse
Affiliation(s)
- Gabrielle Fröberg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Florian P Maurer
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Louise Fernström
- Department of Internal Medicine, Lycksele Hospital, Lycksele, Sweden
| | - Hanaa Benmansour
- AP-HP, GHU Nord, Service de Mycobactériologie Spécialisée et de référence, laboratoire associé au Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Université Paris Cité, Paris, France
| | - Samira Boarbi
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Anne Torunn Mengshoel
- Department of Bacteriology, Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Miguel Viveiros
- Unit of Medical Microbiology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unit of Medical Microbiology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Margaret M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Simone Mok
- Irish Mycobacteria Reference Laboratory, St James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Jim Werngren
- Department of Microbiology, Unit for Laboratory Surveillance of Bacterial Pathogens, Public Health Agency of Sweden, Solna, Sweden
| | | | - Fernando Alcaide
- Department of Clinical Microbiology, Bellvitge University Hospital-IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Alexandra Aubry
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Sönke Andres
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Darshaalini Nadarajan
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Erik Svensson
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - John Turnidge
- School of Biological Sciences and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Kahlmeter
- The EUCAST Development Laboratory, Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Emmanuelle Cambau
- AP-HP, GHU Nord, Service de Mycobactériologie Spécialisée et de référence, laboratoire associé au Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Université Paris Cité, Paris, France
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases in Östergötland, Linköping University, Linköping, Sweden.
| | | |
Collapse
|