51
|
|
52
|
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98:1864-1878. [PMID: 28699853 DOI: 10.1099/jgv.0.000837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The connection between the repression of human immunodeficiency virus type 1(HIV-1) transcription and the resting CD4+ T cell state suggests that the host transcription factors involved in the active maintenance of lymphocyte quiescence are likely to repress the viral transactivator, Tat, thereby restricting HIV-1 transcription. In this study, we analysed the interplay between Tat and the forkhead box transcription factors, FoxO1 and FoxO4. We show that FoxO1 and FoxO4 antagonize Tat-mediated transactivation of HIV-1 promoter through the repression of Tat protein expression. No effect was observed on the expression of two HIV-1 accessory proteins, Vif and Vpr. Unexpectedly, we found that FoxO1 and FoxO4 expression causes a strong dose-dependent post-transcriptional suppression of Tat mRNA, indicating that FoxO should effectively inhibit HIV-1 replication by destabilizing Tat mRNA and suppressing Tat-mediated HIV-1 transcription. In accordance with this, we observed that the Tat mRNA half-life is reduced by FoxO4 expression. The physiological relevance of our findings was validated using the J-Lat 10.6 model of latently infected cells. We demonstrated that the overexpression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription reactivation in response to T cell activators, such as TNF-α or PMA. Altogether, our findings demonstrate that FoxO factors can control HIV-1 transcription and provide new insights into their potential role during the establishment of HIV-1 latency.
Collapse
Affiliation(s)
- Alexandra Oteiza
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nadir Mechti
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
53
|
Ghosh S, Kaushik A, Khurana S, Varshney A, Singh AK, Dahiya P, Thakur JK, Sarin SK, Gupta D, Malhotra P, Mukherjee SK, Bhatnagar RK. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication. J Biol Chem 2017; 292:12577-12588. [PMID: 28584057 DOI: 10.1074/jbc.m117.775155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/04/2017] [Indexed: 01/28/2023] Open
Abstract
Persistent or chronic infection with the hepatitis B virus (HBV) represents one of the most common viral diseases in humans. The hepatitis B virus deploys the hepatitis B virus X protein (HBx) as a suppressor of host defenses consisting of RNAi-based silencing of viral genes. Because of its critical role in countering host defenses, HBx represents an attractive target for antiviral drugs. Here, we developed and optimized a loss-of-function screening procedure, which identified a potential pharmacophore that abrogated HBx RNAi suppression activity. In a survey of 14,400 compounds in the Maybridge Screening Collection, we prioritized candidate compounds via high-throughput screening based on reversal of green fluorescent protein (GFP)-reported, RNAi-mediated silencing in a HepG2/GFP-shRNA RNAi sensor line. The screening yielded a pharmacologically active compound, N-(2,4-difluorophenyl)-N'-[3-(1H-imidazol-1-yl) propyl] thiourea (IR415), which blocked HBx-mediated RNAi suppression indicated by the GFP reporter assay. We also found that IR415 reversed the inhibitory effect of HBx protein on activity of the Dicer endoribonuclease. We further confirmed the results of the primary screen in IR415-treated, HBV-infected HepG2 cells, which exhibited a marked depletion of HBV core protein synthesis and down-regulation of pre-genomic HBV RNA. Using a molecular interaction analysis system, we confirmed that IR415 selectively targets HBx in a concentration-dependent manner. The screening assay presented here allows rapid and improved detection of small-molecule inhibitors of HBx and related viral proteins. The assay may therefore potentiate the development of next-generation RNAi pathway-based therapeutics and promises to accelerate our search for novel and effective drugs in antiviral research.
Collapse
Affiliation(s)
- Subhanita Ghosh
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Abhinav Kaushik
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Sachin Khurana
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Aditi Varshney
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Avishek Kumar Singh
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Pradeep Dahiya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110070 New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India,.
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agriculture Research Institute, 110012 New Delhi, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067 New Delhi, India.
| |
Collapse
|
54
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
55
|
MicroRNA miR-27 Inhibits Adenovirus Infection by Suppressing the Expression of SNAP25 and TXN2. J Virol 2017; 91:JVI.00159-17. [PMID: 28356525 DOI: 10.1128/jvi.00159-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/22/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies have reported that host microRNAs (miRNAs) regulate infections by several types of viruses via various mechanisms and that inhibition of the miRNA processing factors enhances or prevents viral infection. However, it has not been clarified whether these effects of miRNAs extend to adenovirus (Ad) infection. Here we show that miR-27a and -b efficiently inhibit infection with an Ad via the downregulation of SNAP25 and TXN2, which are members of the SNARE proteins and the thioredoxin family, respectively. Approximately 80% reductions in Ad genomic copy number were found in cells transfected with miR-27a/b mimics, whereas there were approximately 2.5- to 5-fold larger copy numbers of the Ad genome following transfection with miR-27a/b inhibitors. Microarray gene expression analysis and in silico analysis demonstrated that SNAP25 and TXN2 are target genes of miR-27a/b. A reporter assay using plasmids containing the 3' untranslated regions of the SNAP25 and TXN2 genes showed that miR-27a/b directly suppressed SNAP25 and TXN2 expression through posttranscriptional gene silencing. Knockdown of SNAP25 led to a significant inhibition of Ad entry into cells. Knockdown of TXN2 induced cell cycle arrest at G1 phase, leading to a reduction in Ad replication. In addition, overexpression of Ad-encoded small noncoding RNAs (VA-RNAs) restored the miR-27a/b-mediated reduction in infection level with a VA-RNA-lacking Ad mutant due to the VA-RNA-mediated inhibition of miR-27a/b expression. These results indicate that miR-27a and -b suppress SNAP25 and TXN2 expression via posttranscriptional gene silencing, leading to efficient suppression of Ad infection.IMPORTANCE Adenovirus (Ad) is widely used as a platform for replication-incompetent Ad vectors (Adv) and replication-competent oncolytic Ad (OAd) in gene therapy and virotherapy. Regulation of Ad infection is highly important for efficient gene therapies using both Adv and OAd. In this study, we demonstrate that miR-27a and -b, which are widely expressed in host cells, suppress SNAP25 and TXN2 expression through posttranscriptional gene silencing. Suppression of SNAP25 and TXN2 expression leads to inhibition of Ad entry into cells and to cell cycle arrest, respectively, leading to efficient suppression of Ad infection. Our findings provide important clues to the improvement of gene therapies using both Adv and OAd.
Collapse
|
56
|
Abstract
Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to advance medicine.
Collapse
Affiliation(s)
- G Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
57
|
Nizyaeva NV, Kulikova GV, Shchyogolev AI, Zemskov VM. The role of microRNA in regulation of the body’s immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
59
|
Lafreniere MA, Powdrill MH, Singaravelu R, Pezacki JP. 6-Hydroxydopamine Inhibits the Hepatitis C Virus through Alkylation of Host and Viral Proteins and the Induction of Oxidative Stress. ACS Infect Dis 2016; 2:863-871. [PMID: 27682680 DOI: 10.1021/acsinfecdis.6b00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many viruses, including the hepatitis C virus (HCV), are dependent on the host RNA silencing pathway for replication. In this study, we screened small molecule probes, previously reported to disrupt loading of the RNA-induced silencing complex (RISC), including 6-hydroxydopamine (6-OHDA), suramin (SUR), and aurintricarboxylic acid (ATA), to examine their effects on viral replication. We found that 6-OHDA inhibited HCV replication; however, 6-OHDA was a less potent inhibitor of RISC than either SUR or ATA. By generating a novel chemical probe (6-OHDA-yne), we determined that 6-OHDA covalently modifies host and virus proteins. Moreover, 6-OHDA was shown to be an alkylating agent that is capable of generating adducts with a number of enzymes involved in the oxidative stress response. Furthermore, modification of viral enzymes with 6-OHDA and 6-OHDA-yne was found to inhibit their enzymatic activity. Our findings suggest that 6-OHDA is a probe for oxidative stress as well as protein alkylation, and these properties together contribute to the antiviral effects of this compound.
Collapse
Affiliation(s)
- Matthew A. Lafreniere
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
| | - Megan H. Powdrill
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
| | - Ragunath Singaravelu
- Department
of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - John Paul Pezacki
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
- Department
of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| |
Collapse
|
60
|
Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 2016; 23:74. [PMID: 27784307 PMCID: PMC5081962 DOI: 10.1186/s12929-016-0292-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| |
Collapse
|
61
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
62
|
Imran M, Manzoor S, Saalim M, Resham S, Ashraf J, Javed A, Waqar AB. HIV-1 and hijacking of the host immune system: the current scenario. APMIS 2016; 124:817-31. [PMID: 27539675 DOI: 10.1111/apm.12579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/04/2016] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus (HIV) infection is a major health burden across the world which leads to the development of acquired immune deficiency syndrome (AIDS). This review article discusses the prevalence of HIV, its major routes of transmission, natural immunity, and evasion from the host immune system. HIV is mostly prevalent in Sub-Saharan Africa and low income countries. It is mostly transmitted by sharing syringe needles, blood transfusion, and sexual routes. The host immune system is categorized into three main types; the innate, the adaptive, and the intrinsic immune system. Regarding the innate immune system against HIV, the key players are mucosal membrane, dendritic cells (DCs), complement system, interferon, and host Micro RNAs. The major components of the adaptive immune system exploited by HIV are T cells mainly CD4+ T cells and B cells. The intrinsic immune system confronted by HIV involves (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) APOBEC3G, tripartite motif 5-α (TRIM5a), terherin, and (SAM-domain HD-domain containing protein) SAMHD1. HIV-1 efficiently interacts with the host immune system, exploits the host machinery, successfully replicates and transmits from one cell to another. Further research is required to explore evasion strategies of HIV to develop novel therapeutic approaches against HIV.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan.,Department of Medical Laboratory Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies (ICBS), Lahore, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan. ,
| | - Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Aneela Javed
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmed Bilal Waqar
- Department of Medical Laboratory Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies (ICBS), Lahore, Pakistan.,Imperial Post Graduate Medical Institute, Imperial College of Business Studies (ICBS), Lahore, Pakistan
| |
Collapse
|
63
|
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M, Mizuguchi H. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep 2016; 6:27598. [PMID: 27273616 PMCID: PMC4895142 DOI: 10.1038/srep27598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
64
|
Geng G, Liu B, Chen C, Wu K, Liu J, Zhang Y, Pan T, Li J, Yin Y, Zhang J, Huang F, Yu F, Chen J, Ma X, Zhou J, Kuang E, Liu C, Cai W, Zhang H. Development of an Attenuated Tat Protein as a Highly-effective Agent to Specifically Activate HIV-1 Latency. Mol Ther 2016; 24:1528-37. [PMID: 27434587 PMCID: PMC5113098 DOI: 10.1038/mt.2016.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Although combined antiretroviral therapy (cART) successfully decreases plasma viremia to undetectable levels, the complete eradication of human immunodeficiency virus type 1 (HIV-1) remains impractical because of the existence of a viral reservoir, mainly in resting memory CD4(+) T cells. Various cytokines, protein kinase C activators, and histone deacetylase inhibitors (HDACi) have been used as latency-reversing agents (LRAs), but their unacceptable side effects or low efficiencies limit their clinical use. Here, by a mutation accumulation strategy, we generated an attenuated HIV-1 Tat protein named Tat-R5M4, which has significantly reduced cytotoxicity and immunogenicity, yet retaining potent transactivation and membrane-penetration activity. Combined with HDACi, Tat-R5M4 activates highly genetically diverse and replication-competent viruses from resting CD4(+) T lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Thus, Tat-R5M4 has promising potential as a safe, efficient, and specific LRA in HIV-1 treatment.
Collapse
Affiliation(s)
- Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yue Yin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fei Yu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
65
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
66
|
Flór TB, Blom B. Pathogens Use and Abuse MicroRNAs to Deceive the Immune System. Int J Mol Sci 2016; 17:538. [PMID: 27070595 PMCID: PMC4848994 DOI: 10.3390/ijms17040538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRs) play a role in the survival and amplification of viruses, bacteria and other pathogens. There are various ways in which pathogens can benefit from miR-directed alterations in protein translation and signal transduction. Members of the herpesviridae family have previously been shown to encode multiple miRs, while the production of miRs by viruses like HIV-1 remained controversial. Recently, novel techniques have facilitated the elucidation of true miR targets by establishing miR-argonaute association and the subsequent interactions with their cognate cellular mRNAs. This, in combination with miR reporter assays, has generated physiologically relevant evidence that miRs from the herpesviridae family have the potential to downregulate multiple cellular targets, which are involved in immune activation, cytokine signaling and apoptosis. In addition, viruses and bacteria have also been linked to the induction of host cellular miRs, which have the capacity to mitigate immune activation, cytokine signaling and apoptosis. Interfering with miR expression may be clinically relevant. In the case of hepatitis C infection, the cellular miR-122 is already targeted therapeutically. This not only exemplifies how important miRs can be for the survival of specific viruses, but it also delineates the potential to use miRs as drug targets. In this paper we will review the latest reports on viruses and bacteria that abuse miR regulation for their benefit, which may be of interest in the development of miR-directed therapies.
Collapse
Affiliation(s)
- Thomas B Flór
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
67
|
Sardo L, Vakil PR, Elbezanti W, El-Sayed A, Klase Z. The inhibition of microRNAs by HIV-1 Tat suppresses beta catenin activity in astrocytes. Retrovirology 2016; 13:25. [PMID: 27060080 PMCID: PMC4826512 DOI: 10.1186/s12977-016-0256-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background
Long term infection with HIV-1, even in the context of therapy, leads to chronic health problems including an array of neurocognitive dysfunctions. The viral Tat protein has previously been implicated in neuropathogenesis through its effect on astrocytes. Tat has also been shown to inhibit the biogenesis of miRNAs by inhibiting the activity of the cellular Dicer protein in an RNA dependent fashion. Whether there is a mechanistic connection between the ability of HIV-1 Tat to alter miRNAs and its observed effects on cells of the central nervous system has not been well examined. Results Here, we examined the ability of HIV-1 Tat to bind to and inhibit the production of over 300 cellular miRNAs. We found that the Tat protein only binds to and inhibits a fraction of the total cellular miRNAs. By mapping the downstream targets of these miRNAs we have determined a possible role for Tat alterations of miRNAs in the development of neuropathogenesis. Specifically, this work points to suppression of miRNAs function as the mechanism for Tat suppression of β-catenin activity. Conclusions The discovery that HIV-1 Tat inhibits only a fraction of miRNAs opens new areas of research regarding changes in cellular pathways through suppression of RNA interference. Our initial analysis strongly suggests that these pathways may contribute to HIV-1 disruption of the central nervous system. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Priyal R Vakil
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Weam Elbezanti
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Anas El-Sayed
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Zachary Klase
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
68
|
Piedade D, Azevedo-Pereira JM. MicroRNAs, HIV and HCV: a complex relation towards pathology. Rev Med Virol 2016; 26:197-215. [PMID: 27059433 DOI: 10.1002/rmv.1881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
69
|
Barandoc-Alviar K, Ramirez GM, Rotenberg D, Whitfield AE. Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev154. [PMID: 28076276 PMCID: PMC5779079 DOI: 10.1093/jisesa/iev154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/09/2015] [Indexed: 06/06/2023]
Abstract
The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV.
Collapse
Affiliation(s)
| | - Girly M Ramirez
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA, and
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA,
| |
Collapse
|
70
|
Li L, Feng H, Da Q, Jiang H, Chen L, Xie L, Huang Q, Xiong H, Luo F, Kang L, Zeng Y, Hu H, Hou W, Feng Y. Expression of HIV-encoded microRNA-TAR and its inhibitory effect on viral replication in human primary macrophages. Arch Virol 2016; 161:1115-23. [PMID: 26831929 DOI: 10.1007/s00705-016-2755-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
A number of virus-encoded microRNAs have been shown to play important roles in virus replication and virus-host interactions, although the expression and function of miR-TAR-3p derived from the human immunodeficiency virus type 1 (HIV-1) TAR element remain controversial. In this study, miR-TAR-3p was detected in human peripheral blood monocyte-derived macrophages (MDMs) infected by HIV-1. Overexpression of miR-TAR-3p impaired viral replication, while inhibition of miR-TAR-3p enhanced it. Additionally, miR-TAR-3p repressed viral transcription and replication by targeting the TAR element in the HIV-1 5'-LTR in a sequence-specific manner. These results confirm the presence of miR-TAR-3p in HIV-1-infected MDMs and suggest that its function might be used as a mechanism to modulate HIV-1 replication through the expression of a negative regulatory factor.
Collapse
Affiliation(s)
- Li Li
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Haimin Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qin Da
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Honglin Jiang
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Linlin Xie
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
| | - Qiuling Huang
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Hairong Xiong
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Fan Luo
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lei Kang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Haitao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| | - Yong Feng
- School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang, Wuhan, 430070, Hubei, People's Republic of China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
71
|
Daniels SM, Sinck L, Ward NJ, Melendez-Peña CE, Scarborough RJ, Azar I, Rance E, Daher A, Pang KM, Rossi JJ, Gatignol A. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs. RNA Biol 2015; 12:123-35. [PMID: 25668122 DOI: 10.1080/15476286.2015.1014759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
Collapse
Key Words
- Ago2, Argonaute-2
- EGFP, enhanced green fluorescent protein
- EMSA, electrophoresis mobility shift assay
- FL, firefly luciferase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HIV, human immunodeficiency virus
- HIV-1
- IP, immunoprecipitation
- NC, nucleocapsid
- PAGE, polyacrylamide gel electrophoresis
- RISC, RNA-Induced Silencing Complex
- RL, Renilla luciferase
- RNA interference
- RNA silencing suppressor
- RNAi, RNA interference
- RRE, Rev Response Element
- RSS, RNA silencing suppressor
- RT, reverse transcription
- Rev-Response Element RNA
- TAR RNA Binding Protein (TRBP)
- TAR, trans-activation responsive element
- TRBP, TAR RNA Binding Protein
- Trans-Activation Response Element
- UTR, untranslated region
- VA, virus-associated
- WT, wild-type
- adenovirus
- ds, double-stranded
- lentiviral vectors
- miRNA, micro RNA
- pre-miRNA, precursor miRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Sylvanne M Daniels
- a Virus-Cell Interactions Laboratory ; Lady Davis Institute for Medical Research ; Montréal , Québec , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Zadeh MA, Lepene B, Klase ZA, El-Hage N, Young M, Iordanskiy S, Kashanchi F. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. J Biol Chem 2015; 291:1251-66. [PMID: 26553869 DOI: 10.1074/jbc.m115.662171] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.
Collapse
Affiliation(s)
- Gavin C Sampey
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammed Saifuddin
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Angela Schwab
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Robert Barclay
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Shreya Punya
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Myung-Chul Chung
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Ramin M Hakami
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammad Asad Zadeh
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | | | - Zachary A Klase
- the Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Nazira El-Hage
- the Department of Immunology, Herbert Wertheim College of Medicine, Miami, Florida 33199, and
| | - Mary Young
- the Department of Medicine, Women's Intra-Agency HIV Study, Georgetown University, Washington, D. C. 20007
| | - Sergey Iordanskiy
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| | - Fatah Kashanchi
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|
73
|
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Inhibits RNA-Mediated Gene Silencing by Targeting Ago-2. Viruses 2015; 7:5539-52. [PMID: 26512690 PMCID: PMC4632401 DOI: 10.3390/v7102893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection strongly modulates the host’s immune response. The RNA silencing pathway is an intracellular innate response to viral infections. However, it is unknown whether PRRSV interacts with cellular RNA silencing to facilitate the viral infection. Here, we report for the first time the interaction between PRRSV and RNA silencing in both the porcine macrophages and African green monkey kidney cell line (MARC-145) cell line, which were derived from African green monkey kidney cells and highly permissive for PRRSV infection. Our data demonstrated that PRRSV suppressed RNA silencing induced by short-hairpin (sh) RNA, double-strand (ds) RNA and microRNA (miRNA) and downregulated the expression of argonaute protein-2 (Ago-2), which is a key protein of the RNA silencing pathway in animal cells. Further, exogenous introduction of siRNA and shRNA downregulated Dicer or Ago-2 proteins of the cellular RNA silencing apparatus in MARC-145 cells and porcine macrophages, which, in turn, increased the viral replication and titers. The viral non-structure protein 1α (nsp-1α) and nsp11 of PRRSV were identified as the suppressors for cellular RNA silencing (RSSs) to downregulate the Ago-2 protein. Our results identify that PRRSV, through its nsp proteins, suppresses the cellular RNA silencing apparatus in favor of viral infection and supports a co-evolutionary process of the virus and the cellular RNA silencing process.
Collapse
|
74
|
Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo FM, Rea D, Palmieri C, Caiazzo E, Cicala C, Bellevicine C, Falcone C, Vecchio E, Pisano A, Ceglia S, Mimmi S, Iaccino E, de Laurentiis A, Pontoriero M, Agosti V, Troncone G, Mignogna C, Palma G, Arra C, Mallardo M, Buonaguro FM, Scala G, Quinto I. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice. Sci Rep 2015; 5:13864. [PMID: 26343909 PMCID: PMC4561375 DOI: 10.1038/srep13864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annarita Scialdone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Albano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Rossi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Domenica Rea
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Cristina Falcone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Pisano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Simona Ceglia
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annamaria de Laurentiis
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Marilena Pontoriero
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Chiara Mignogna
- Science of Health Department, University of Catanzaro "Magna Graecia", Italy
| | - Giuseppe Palma
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Claudio Arra
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
75
|
Vongrad V, Imig J, Mohammadi P, Kishore S, Jaskiewicz L, Hall J, Günthard HF, Beerenwinkel N, Metzner KJ. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages. PLoS One 2015; 10:e0132127. [PMID: 26226348 PMCID: PMC4520458 DOI: 10.1371/journal.pone.0132127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background MiRNAs and other small noncoding RNAs (sncRNAs) are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs) have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi) pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM). Methods The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM) were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs. Results and Conclusion PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.
Collapse
Affiliation(s)
- Valentina Vongrad
- University Hospital Zurich, Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Jochen Imig
- ETH Zurich, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Pejman Mohammadi
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Shivendra Kishore
- University of Basel, Computational and Systems Biology, Basel, Switzerland
| | - Lukasz Jaskiewicz
- University of Basel, Computational and Systems Biology, Basel, Switzerland
| | - Jonathan Hall
- ETH Zurich, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Huldrych F. Günthard
- University Hospital Zurich, Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Karin J. Metzner
- University Hospital Zurich, Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Abstract
The discovery of long non-coding RNAs (lncRNAs) and the elucidation of the mechanisms by which they affect different disease states are providing researchers with a better understanding of a wide array of disease pathways. Moreover, lncRNAs are presenting themselves as both unique diagnostic biomarkers as well as novel targets against which to develop new therapeutics. Here we will explore the intricate network of non-coding RNAs associated with infection by the human immunodeficiency virus (HIV). Non-coding RNAs derived from both the human host as well as those from HIV itself are emerging as important regulatory elements. We discuss here the various mechanisms through which both small and long non-coding RNAs impact viral replication, pathogenesis and disease progression. Given the lack of an effective vaccine or cure for HIV and the scale of the current pandemic, a deeper understanding of the complex interplay between non-coding RNAs and HIV will support the development of innovative strategies for the treatment of HIV/acquired immunodeficiency disease (AIDS).
Collapse
Affiliation(s)
- Daniel C Lazar
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia.
| | - Sheena M Saayman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
77
|
The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. J Virol 2015; 89:9029-43. [PMID: 26085159 DOI: 10.1128/jvi.01331-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Collapse
|
78
|
The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response. J Virol 2015; 89:8182-92. [PMID: 26018163 DOI: 10.1128/jvi.00802-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. IMPORTANCE Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a virus-encoded protein in nullifying two key antiviral responses, apoptosis and RNAi.
Collapse
|
79
|
Swaminathan S, Kelleher AD. MicroRNA modulation of key targets associated with T cell exhaustion in HIV-1 infection. Curr Opin HIV AIDS 2015; 9:464-71. [PMID: 25023625 DOI: 10.1097/coh.0000000000000089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The emergence of studies linking microRNAs (miRNAs), a species of small RNA molecules important in gene regulation, with HIV-1 infection has led to a better understanding of the complex molecular changes that occur following infection. We aim to discuss these changes and show how miRNAs may be involved with regulating key immunomodulatory molecules linked to T cell exhaustion at the post-transcriptional level. RECENT FINDINGS Blimp-1 is a recently described T cell exhaustion marker. Reduced levels of miR-9 have been shown to have a functional role in the higher levels of Blimp-1 in CD4 T cells from patients with HIV-1 infection. Reduced levels of let-7 miRNAs have been linked to higher levels of IL-10, again with potential pathophysiological significance in HIV-1 infection. The advent of deep sequencing technologies is allowing detection of virally derived miRNAs expressed at extremely low levels, although some controversy still exists. SUMMARY miRNAs have emerged as important players in the T cell dysfunction observed with HIV-1 infection. It is likely that they may emerge as novel markers of T cell dysfunction and provide potential targets for new therapeutics to reverse dysfunction.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- aDepartment of Clinical Immunology, Westmead and Blacktown Hospitals bSydney Medical School, University of Sydney cSchool of Medicine, University of Western Sydney, Sydney dImmunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst eThe Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | | |
Collapse
|
80
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
81
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
82
|
HIV Latency and the noncoding RNA therapeutic landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:169-89. [PMID: 25757621 DOI: 10.1007/978-1-4939-2432-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Human Immunodeficiency Virus (HIV) belongs to the subfamily of lentiviruses that are characterized by long incubation periods and chronic, persistent infection. The virus integrates into the genome of infected CD4+ cells and, in a subpopulation of cells, adopts a transcriptionally silent state, a process referred to a viral latency. This property makes it exceedingly difficult to therapeutically target the virus and eradicate infection. If left untreated, the inexorable demise of the infected individual's immune system ensues, a causal result of Acquired Immunodeficiency Syndrome (AIDS). Latently infected cells provide a reservoir that maintains viral infection indefinitely. In this chapter we explore the role of noncoding RNAs in HIV infection and in the establishment and maintenance of viral latency. Both short and long noncoding RNAs are endogenous modulators of epigenetic regulation in human cells and play an active role in gene expression. Lastly, we explore therapeutic modalities based on expressed RNAs that are capable of countering infection, transcriptionally regulating the virus, and suppressing or activating the latent state.
Collapse
|
83
|
Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R, Jameel S. The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology 2014; 11:108. [PMID: 25486977 PMCID: PMC4269869 DOI: 10.1186/s12977-014-0108-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/11/2014] [Indexed: 01/12/2023] Open
Abstract
Background Latent reservoirs of HIV-1 provide a major challenge to its cure. There are increasing reports of interplay between HIV-1 replication and host miRNAs. Several host miRNAs, which potentially target the nef-3′LTR region of HIV-1 RNA, including miR-29a, are proposed to promote latency. Findings We used two established cellular models of HIV-1 latency – the U1 monocytic and J1.1 CD4+ T cell lines to show an inverse relationship between HIV-1 replication and miR-29a levels, which was mediated by the HIV-1 Nef protein. Using a miR-29a responsive luciferase reporter plasmid, an expression plasmid and an anti-miR29a LNA, we further demonstrate increased miR-29a levels during latency and reduced levels following active HIV replication. Finally, we show that miR-29a levels in the PBMCs and plasma of HIV infected persons also correlate inversely with latency and active viral replication. Conclusions The levels of miR-29a correlate inversely with active HIV-1 replication in cell culture models and in HIV infected persons. This links miR-29a to viral latency and suggests another approach to activate and destroy latent HIV-1 reservoirs. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0108-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paresh Patel
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Mohammad Yunus Ansari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | | | | | | - Shahid Jameel
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. .,Current Address: The Wellcome Trust/DBT India Alliance, Plot No. 19, 8-2-684/3 K/19, Road No. 12, Banjara Hills, Hyderabad, 500034, India.
| |
Collapse
|
84
|
Regulation of the microRNA processor DGCR8 by hepatitis B virus proteins via the transcription factor YY1. Arch Virol 2014; 160:795-803. [PMID: 25427980 DOI: 10.1007/s00705-014-2286-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 11/15/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a new class of well-conserved small noncoding RNAs that mediate posttranscriptional gene regulation. Hepatitis B virus (HBV) causes various liver diseases, including chronic hepatitis, liver cirrhosis and hepatocellular cancer. Recent data have indicated HBV alters miRNAs expression patterns, but the underlying mechanisms have not been fully established so far. Here, we provide a hypothesis that HBV alters the expressions of miRNAs by playing a role in the microRNA production process. In this study, we demonstrate that HBV downregulates miRNAs processor DGCR8 mRNA and protein expression in stable and transient HBV-expressing cells. HBV downregulates DGCR8 expression by inhibiting its promoter activity, and HBs and HBx may be involved in this process. Ectopic expression and knockdown of YY1 revealed that YY1 suppresses the activity of the DGCR8 promoter, while YY1 expression is significantly upregulated by HBV. In conclusion, our data show that HBV proteins repress DGCR8 promoter activity by upregulating the expression of transcription factor YY1. This provides a new insight into the mechanism of HBV-induced miRNA dysregulation.
Collapse
|
85
|
Bernard MA, Zhao H, Yue SC, Anandaiah A, Koziel H, Tachado SD. Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS One 2014; 9:e106006. [PMID: 25191859 PMCID: PMC4156304 DOI: 10.1371/journal.pone.0106006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine whether HIV-1 produces microRNAs and elucidate whether these miRNAs can induce inflammatory response in macrophages (independent of the conventional miRNA function in RNA interference) leading to chronic immune activation. Methods Using sensitive quantitative Real Time RT-PCR and sequencing, we detected novel HIV-derived miRNAs in the sera of HIV+ persons, and associated with exosomes. Release of TNFα by macrophages challenged with HIV miRNAs was measured by ELISA. Results HIV infection of primary alveolar macrophages produced elevated levels of viral microRNAs vmiR88, vmiR99 and vmiR-TAR in cell extracts and in exosome preparations from conditioned medium. Furthermore, these miRNAs were also detected in exosome fraction of sera from HIV-infected persons. Importantly, vmiR88 and vmiR99 (but not vmiR-TAR) stimulated human macrophage TNFα release, which is dependent on macrophage TLR8 expression. These data support a potential role for HIV-derived vmiRNAs released from infected macrophages as contributing to chronic immune activation in HIV-infected persons, and may represent a novel therapeutic target to limit AIDS pathogenesis. Conclusion Novel HIV vmiR88 and vmiR99 are present in the systemic circulation of HIV+ persons and could exhibit biological function (independent of gene silencing) as ligands for TLR8 signaling that promote macrophage TNFα release, and may contribute to chronic immune activation. Targeting novel HIV-derived miRNAs may represent a therapeutic strategy to limit chronic immune activation and AIDS progression.
Collapse
Affiliation(s)
- Mark A. Bernard
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hui Zhao
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Simon C. Yue
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asha Anandaiah
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Henry Koziel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Souvenir D. Tachado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
86
|
Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG. Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 2014; 11:53. [PMID: 24990269 PMCID: PMC4086691 DOI: 10.1186/1742-4690-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human Immunodeficiency Virus 1 (HIV-1) exhibits a wide range of interactions with the host cell but whether viral proteins interact with cellular RNA is not clear. A candidate interacting factor is the trans-activator of transcription (Tat) protein. Tat is required for expression of virus genes but activates transcription through an unusual mechanism; binding to an RNA stem-loop, the transactivation response element (TAR), with the host elongation factor P-TEFb. HIV-1 Tat has also been shown to alter the expression of host genes during infection, contributing to viral pathogenesis but, whether Tat also interacts with cellular RNAs is unknown. RESULTS Using RNA immunoprecipitation coupled with microarray analysis, we have discovered that HIV-1 Tat is associated with a specific set of human mRNAs in T cells. mRNAs bound by Tat share a stem-loop structural element and encode proteins with common biological roles. In contrast, we do not find evidence that Tat associates with microRNAs or the RNA-induced silencing complex (RISC). The interaction of Tat with cellular RNA requires an intact RNA binding domain and Tat RNA binding is linked to an increase in RNA abundance in cell lines and during infection of primary CD4+ T cells by HIV. CONCLUSIONS We conclude that Tat interacts with a specific set of human mRNAs in T cells, many of which show changes in abundance in response to Tat and HIV infection. This work uncovers a previously unrecognised interaction between HIV and its host that may contribute to viral alteration of the host cellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard G Jenner
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
87
|
Marshall B, Mo J, Covar J, Atherton SS, Zhang M. Decrease of murine cytomegalovirus-induced retinitis by intravenous delivery of immediate early protein-3-specific siRNA. Invest Ophthalmol Vis Sci 2014; 55:4151-7. [PMID: 24906861 DOI: 10.1167/iovs.14-14375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinitis induced by both human and murine cytomegaloviruses following immunosuppression is characterized by progressive loss of retinal architecture, due to necrosis of virus-infected cells as well as widespread apoptosis of uninfected bystander cells. Because small inhibitory RNA molecules (siRNA) can reduce murine cytomegalovirus (MCMV) gene expression and thereby inhibit virus replication in vitro, we tested siRNAs directed against MCMV immediate early protein-3 (IE-3) to determine if MCMV-induced retinitis could be alleviated in vivo. METHODS Immunosuppressed Balb/c mice (2.0 mg methylprednisolone acetate every 3 days beginning on day -2) were infected with 5 × 10(3) pfu of the K181 strain of MCMV via the supraciliary route. At day 2 post infection, mice were treated with various doses of IE-3-specific siRNA ranging from 0.1 nmol to 10 nmol, in a volume of 20 μL PBS via tail vein injection. Injected eyes were collected at various times post inoculation and subjected to plaque assay for virus titer, MCMV antigen staining, H&E staining, TUNEL assay, and Western blot for MCMV IE-3 protein. RESULTS Small but significant amounts of fluorescently labeled IE-3-specific siRNA localized to the RPE layer 48 hours after intravenous injection. IE-3-specific siRNA significantly reduced virus titers at all concentrations tested (ranging from 0.1 nmol to 10 nmol), but the most potent effect of siRNA was observed at a dose of 1 nmol. We also observed that IE-3-specific siRNA produced a substantial decrease in MCMV titers and a substantial reduction in bystander cell apoptosis over the time course of virus infection. CONCLUSIONS Systemic administration of IE-3-specific siRNA could alleviate MCMV retinitis by inhibiting virus replication and subsequent death of uninfected retinal cells.
Collapse
Affiliation(s)
- Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Juan Mo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Jason Covar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Sally S Atherton
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| |
Collapse
|
88
|
Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett 2014; 588:2550-6. [DOI: 10.1016/j.febslet.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/03/2023]
|
89
|
Klase ZA, Houzet L, Jeang KT. Quantification of miRNA by poly(A)-RT-qPCR arrays and verification of target sites in HIV-1 using a one-LTR infectious molecular clone. Methods Mol Biol 2014; 1087:285-96. [PMID: 24158831 DOI: 10.1007/978-1-62703-670-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Quantitative PCR (qPCR) provides a robust method for quantifying DNA species. By combining modern qPCR techniques with the isolation of small RNA, the polyadenylation of the RNA, and the use of reverse transcriptase to create miRNA derived cDNA, it is now possible to use qPCR to quantify miRNA. This method is scalable and provides a useful addition to the retrovirologists' toolbox. Here, we also describe the use of one-LTR infectious molecular clones to verify miRNA target sites within the retroviral LTR.
Collapse
Affiliation(s)
- Zachary A Klase
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
90
|
Harwig A, Das AT, Berkhout B. Retroviral microRNAs. Curr Opin Virol 2014; 7:47-54. [PMID: 24769093 DOI: 10.1016/j.coviro.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells and several DNA viruses encode miRNAs to regulate the expression of specific target genes. It has been controversial whether RNA viruses can encode such miRNAs as miRNA excision may lead to cleavage of the viral RNA genome. We will focus on the retrovirus family, HIV-1 in particular, and discuss the production of virus-encoded miRNAs and their putative function in the viral replication cycle. An intricate scenario of multi-layer virus-host interactions becomes apparent with small RNAs as the regulatory molecules.
Collapse
Affiliation(s)
- Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
91
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
92
|
Swaminathan S, Murray DD, Kelleher AD. miRNAs and HIV: unforeseen determinants of host-pathogen interaction. Immunol Rev 2014; 254:265-80. [PMID: 23772625 DOI: 10.1111/imr.12077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our understanding of the complexity of gene regulation has significantly improved in the last decade as the role of small non-coding RNAs, called microRNAs (miRNAs), has been appreciated. These 19-22 nucleotide RNA molecules are critical regulators of mRNA translation and turnover. The miRNAs bind via a protein complex to the 3' untranslated region (3' UTR) of mRNA, ultimately leading to mRNA translational inhibition, degradation, or repression. Although many mechanisms by which human immunodeficiency virus-1 (HIV-1) infection eventually induces catastrophic immune destruction have been elucidated, the important role that miRNAs play in HIV-1 pathogenesis is only now emerging. Accumulating evidence demonstrates that changes to endogenous miRNA levels following infection is important: in maintaining HIV-1 latency in resting CD4(+) T cells, potentially affect immune function via changes to cytokines such as interleukin-2 (IL-2) and IL-10 and may predict disease progression. We review the roles that both viral and host miRNAs play in different cell types and disease conditions that are important in HIV-1 infection and discuss how miRNAs affect key immunomodulatory molecules contributing to immune dysfunction. Further, we discuss whether miRNAs may be used as novel biomarkers in serum and the potential to modulate miRNA levels as a unique approach to combating this pathogen.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | |
Collapse
|
93
|
Jones R, Gazzard B. HIV/AIDS pathogenesis and treatment options focusing on the viral entry inhibitors. Expert Rev Anti Infect Ther 2014; 4:303-12. [PMID: 16597210 DOI: 10.1586/14787210.4.2.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The advent of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV. A wide variety of antiretroviral agents are now available, allowing patients and physicians a choice of effective therapy. However, drug resistance and toxicities are emerging as major treatment challenges in the HAART era. The development of agents within existing and novel antiretroviral classes remains paramount in order to preserve the reduced morbidity and mortality we have come to expect from HAART use. This article details the development of the HIV epidemic, reviewing current and future treatment strategies, and concentrating upon the viral entry inhibitors.
Collapse
Affiliation(s)
- Rachael Jones
- Department of HIV and GU Medicine, The Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| | | |
Collapse
|
94
|
Abstract
MicroRNAs (miRNAs) are tiny regulators of gene expression on the posttranscriptional level. Since the discovery of the first miRNA 20 years ago, thousands of them have been described. The discovered miRNAs have regulatory functions in biological and pathological processes. Biologically, miRNAs have been implicated in development, differentiation, proliferation, apoptosis, and immune responses. In this work, we summarize the role of miRNA in biological processes taking into account the various areas named above.
Collapse
Affiliation(s)
- Kemal Uğur Tüfekci
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey
| | | | | |
Collapse
|
95
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
96
|
Li Y, Lu J, Han Y, Fan X, Ding SW. RNA interference functions as an antiviral immunity mechanism in mammals. Science 2013; 342:231-4. [PMID: 24115437 DOI: 10.1126/science.1241911] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.
Collapse
Affiliation(s)
- Yang Li
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
97
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 2013; 14:435-45. [PMID: 24075860 DOI: 10.1016/j.chom.2013.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/04/2013] [Accepted: 09/09/2013] [Indexed: 11/21/2022]
Abstract
RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly-ADP-ribosylation of the RNA-induced silencing complex (RISC), a core component of RNAi. Well-established antiviral signaling pathways, including RIG-I/MAVS and RNaseL, contribute to inhibition of RISC. In the absence of virus infection, microRNAs repress interferon-stimulated genes (ISGs) associated with cell death and proliferation, thus maintaining homeostasis. Upon detection of intracellular pathogen-associated molecular patterns, RISC activity decreases, contributing to increased expression of ISGs. Our results suggest that, unlike in lower eukaryotes, mammalian RISC is not antiviral in some contexts, but rather RISC has been co-opted to negatively regulate toxic host antiviral effectors via microRNAs.
Collapse
|
99
|
Brameier M, Ibing W, Höfer K, Montag J, Stahl-Hennig C, Motzkus D. Mapping the small RNA content of simian immunodeficiency virions (SIV). PLoS One 2013; 8:e75063. [PMID: 24086438 PMCID: PMC3781035 DOI: 10.1371/journal.pone.0075063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
Recent evidence indicates that regulatory small non-coding RNAs are not only components of eukaryotic cells and vesicles, but also reside within a number of different viruses including retroviral particles. Using ultra-deep sequencing we have comprehensively analyzed the content of simian immunodeficiency virions (SIV), which were compared to mock-control preparations. Our analysis revealed that more than 428,000 sequence reads matched the SIV mac239 genome sequence. Among these we could identify 12 virus-derived small RNAs (vsRNAs) that were highly abundant. Beside known retrovirus-enriched small RNAs, like 7SL-RNA, tRNALys3 and tRNALys isoacceptors, we also identified defined fragments derived from small ILF3/NF90-associated RNA snaR-A14, that were enriched more than 50 fold in SIV. We also found evidence that small nucleolar RNAs U2 and U12 were underrepresented in the SIV preparation, indicating that the relative number or the content of co-isolated exosomes was changed upon infection. Our comprehensive atlas of SIV-incorporated small RNAs provides a refined picture of the composition of retrovirions, which gives novel insights into viral packaging.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Exosomes/metabolism
- High-Throughput Nucleotide Sequencing
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Recognition Particle/genetics
- Signal Recognition Particle/metabolism
- Simian Immunodeficiency Virus/genetics
- Virion/genetics
Collapse
Affiliation(s)
- Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Wiebke Ibing
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Katharina Höfer
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Judith Montag
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | | | - Dirk Motzkus
- Unit of Infection Models, German Primate Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
100
|
Ponia SS, Arora S, Kumar B, Banerjea AC. Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirology 2013; 10:97. [PMID: 24025624 PMCID: PMC3848888 DOI: 10.1186/1742-4690-10-97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/09/2013] [Indexed: 12/29/2022] Open
Abstract
Background Arginine Rich Motif (ARM) of HIV-1 Tat and Rev are extensively studied linear motifs (LMs). They are already established as an inefficient bipartite nuclear localisation signal (NLS). The unusual passive diffusion of HIV-1 NLS tagged reporter proteins across the nucleus is due to an unknown competing functionality of ARM. Recent findings about the role of retroviral proteins as a suppressor of RNA interference (RNAi) involving their basic residues hint an interesting answer to this alternate functionality. The present work explores the role of HIV-1 ARM as a uniquely evolved viral motif to combat Dicer dependent RNAi. Results We show that RNA binding ARM of both HIV-1 Tat and Rev is a LM with a pattern RXXRRXRRR unique to viruses. Extending the in silico results to wet lab, we proved both HIV-1 Tat and Rev can suppress Dicer dependent RNA silencing process involving ARM. We show, HIV-1 Tat and Rev and their corresponding ARM can bind the RISC loading complex (RLC) components TRBP and PACT confirming ARM as an independent RNAi suppression motif. Enhancement of RNAi in infection scenario through enoxacin increases HIV-1 replication as indicated by p24 levels. Except Dicer, all other cytoplasmic RNAi components enhance HIV-1 replication, indicating crucial role of Dicer independent (Ago2 dependent) RNAi pathway in HIV-1 infection. Sequence and structural analysis of endo/exo-microRNA precursors known to be regulated in HIV-1 infection highlights differential features of microRNA biogenesis. One such set of miRNA is viral TAR encoded HIV-1-miR-TAR-5p (Tar1) and HIV-1-miR-TAR-3p (Tar2) that are known to be present throughout the HIV-1 life cycle. Our qPCR results showed that enoxacin increases Tar2 miRNA level which is interesting as Tar2 precursor shows Ago2 dependent processing features. Conclusions We establish HIV-1 ARM as a novel viral motif evolved to target the Dicer dependent RNAi pathway. The conservation of such motif in other viral proteins possibly explains the potent suppression of Dicer dependent RNAi. Our model argues that HIV-1 suppress the processing of siRNAs through inhibition of Dicer while at the same time manipulates the RNAi machinery to process miRNA involved in HIV-1 replication from Dicer independent pathways.
Collapse
Affiliation(s)
- Sanket Singh Ponia
- Virology Lab II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | | | |
Collapse
|