51
|
Kim MJ, Hong E, Yum MS, Lee YJ, Kim J, Ko TS. Deep learning-based, fully automated, pediatric brain segmentation. Sci Rep 2024; 14:4344. [PMID: 38383725 PMCID: PMC10881508 DOI: 10.1038/s41598-024-54663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual correction. Additionally, the volumes which were calculated with the DLS method between the patients and the control group. The volumes of total brain gray and white matter using DLS method were consistent with that volume which were measured by Freesurfer with manual correction in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas measured by DLS methods were significantly different from that measured by Freesurfer with manual correction, and the differences decreased with increasing age in the subgroup analysis. The subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy controls. In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect brain morphological changes in children with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | | | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yun-Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, South Korea
| | | | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
52
|
Finkelstein O, Levakov G, Kaplan A, Zelicha H, Meir AY, Rinott E, Tsaban G, Witte AV, Blüher M, Stumvoll M, Shelef I, Shai I, Riklin Raviv T, Avidan G. Deep learning-based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention. Hum Brain Mapp 2024; 45:e26595. [PMID: 38375968 PMCID: PMC10878010 DOI: 10.1002/hbm.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss.
Collapse
Affiliation(s)
- Ofek Finkelstein
- Department of Cognitive and Brain SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gidon Levakov
- Department of Cognitive and Brain SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Alon Kaplan
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
- The Chaim Sheba Medical Center, Tel HashomerRamat‐GanIsrael
| | - Hila Zelicha
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
| | - Anat Yaskolka Meir
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
| | - Ehud Rinott
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
| | - Gal Tsaban
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
- Soroka University Medical CenterBeer ShevaIsrael
| | - Anja Veronica Witte
- Department of Neurology, Max Planck‐Institute for Human Cognitive and Brain Sciences, and Cognitive NeurologyUniversity of Leipzig Medical CenterLeipzigGermany
| | | | | | - Ilan Shelef
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
- Soroka University Medical CenterBeer ShevaIsrael
| | - Iris Shai
- The Health & Nutrition Innovative International Research Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Tammy Riklin Raviv
- The School of Electrical and Computer EngineeringBen Gurion University of the NegevBeer ShevaIsrael
| | - Galia Avidan
- Department of PsychologyBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
53
|
Chen M, Wang Y, Shi Y, Feng J, Feng R, Guan X, Xu X, Zhang Y, Jin C, Wei H. Brain Age Prediction Based on Quantitative Susceptibility Mapping Using the Segmentation Transformer. IEEE J Biomed Health Inform 2024; 28:1012-1021. [PMID: 38090820 DOI: 10.1109/jbhi.2023.3341629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R2) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.
Collapse
|
54
|
Young AL, Oxtoby NP, Garbarino S, Fox NC, Barkhof F, Schott JM, Alexander DC. Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat Rev Neurosci 2024; 25:111-130. [PMID: 38191721 DOI: 10.1038/s41583-023-00779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to 'black box' machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Collapse
Affiliation(s)
- Alexandra L Young
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | - Sara Garbarino
- Life Science Computational Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| |
Collapse
|
55
|
Guan S, Jiang R, Meng C, Biswal B. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 2024; 46:1-20. [PMID: 37733220 PMCID: PMC10828281 DOI: 10.1007/s11357-023-00924-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, 610041, China.
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Medical Equipment Department, Xiangyang No. 1 People's Hospital, Xiangyang, 441000, China
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
56
|
Brusaferri L, Alshelh Z, Schnieders JH, Sandström A, Mohammadian M, Morrissey EJ, Kim M, Chane CA, Grmek GC, Murphy JP, Bialobrzewski J, DiPietro A, Klinke J, Zhang Y, Torrado-Carvajal A, Mercaldo N, Akeju O, Wu O, Rosen BR, Napadow V, Hadjikhani N, Loggia ML. Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain Behav Immun 2024; 116:259-266. [PMID: 38081435 PMCID: PMC10872439 DOI: 10.1016/j.bbi.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace C Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Bialobrzewski
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa DiPietro
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Klinke
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Zhang Y, Xie R, Beheshti I, Liu X, Zheng G, Wang Y, Zhang Z, Zheng W, Yao Z, Hu B. Improving brain age prediction with anatomical feature attention-enhanced 3D-CNN. Comput Biol Med 2024; 169:107873. [PMID: 38181606 DOI: 10.1016/j.compbiomed.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
Currently, significant progress has been made in predicting brain age from structural Magnetic Resonance Imaging (sMRI) data using deep learning techniques. However, despite the valuable structural information they contain, the traditional engineering features known as anatomical features have been largely overlooked in this context. To address this issue, we propose an attention-based network design that integrates anatomical and deep convolutional features, leveraging an anatomical feature attention (AFA) module to effectively capture salient anatomical features. In addition, we introduce a fully convolutional network, which simplifies the extraction of deep convolutional features and overcomes the high computational memory requirements associated with deep learning. Our approach outperforms several widely-used models on eight publicly available datasets (n = 2501), with a mean absolute error (MAE) of 2.20 years in predicting brain age. Comparisons with deep learning models lacking the AFA module demonstrate that our fusion model effectively improves overall performance. These findings provide a promising approach for combining anatomical and deep convolutional features from sMRI data to predict brain age, with potential applications in clinical diagnosis and treatment, particularly for populations with age-related cognitive decline or neurological disorders.
Collapse
Affiliation(s)
- Yu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Rui Xie
- Department of Psychiatric, Tianshui Third People's Hospital, Tianshui, 741000, China
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| | - Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, Qinghai Province, China
| | - Guowei Zheng
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Zhenwen Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China; School of Medical Technology, Beijing Institute of Technology, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, China.
| |
Collapse
|
58
|
Wu Y, Chen Y, Yang Y, Lin C, Su S, Zhao J, Wu S, Wu G, Liu H, Liu X, Yang Z, Zhang J, Huang B. Predicting brain age using partition modeling strategy and atlas-based attentional enhancement in the Chinese population. Cereb Cortex 2024; 34:bhae030. [PMID: 38342684 DOI: 10.1093/cercor/bhae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
As a biomarker of human brain health during development, brain age is estimated based on subtle differences in brain structure from those under typical developmental. Magnetic resonance imaging (MRI) is a routine diagnostic method in neuroimaging. Brain age prediction based on MRI has been widely studied. However, few studies based on Chinese population have been reported. This study aimed to construct a brain age predictive model for the Chinese population across its lifespan. We developed a partition prediction method based on transfer learning and atlas attention enhancement. The participants were separated into four age groups, and a deep learning model was trained for each group to identify the brain regions most critical for brain age prediction. The Atlas attention-enhancement method was also used to help the models focus only on critical brain regions. The proposed method was validated using 354 participants from domestic datasets. For prediction performance in the testing sets, the mean absolute error was 2.218 ± 1.801 years, and the Pearson correlation coefficient (r) was 0.969, exceeding previous results for wide-range brain age prediction. In conclusion, the proposed method could provide brain age estimation to assist in assessing the status of brain health.
Collapse
Affiliation(s)
- Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Yingqian Chen
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Yang Yang
- Department of Radiology, Suining Central Hospital, 127 Desheng West Road, Suining 629099, Sichuan Province, China
- Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou Province, China
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Shu Su
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Jing Zhao
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Songxiong Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Guangyao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Heng Liu
- Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou Province, China
| | - Xia Liu
- Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, 1080 Cuizhu Road, Shenzhen 518118, Guangdong Province, China
| | - Zhiyun Yang
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| |
Collapse
|
59
|
Soumya Kumari LK, Sundarrajan R. A review on brain age prediction models. Brain Res 2024; 1823:148668. [PMID: 37951563 DOI: 10.1016/j.brainres.2023.148668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Brain age in neuroimaging has emerged over the last decade and reflects the estimated age based on the brain MRI scan from a person. As a person ages, their brain structure will change, and these changes will be exclusive to males and females and will differ for each. White matter and grey matter density have a deeper relationship with brain aging. Hence, if the white matter and grey matter concentrations vary, the rate at which the brain ages will also vary. Neurodegenerative illnesses can be detected using the biomarker known as brain age. The development of deep learning has made it possible to analyze structural neuroimaging data in new ways, notably by predicting brain ages. We introduce the techniques and possible therapeutic uses of brain age prediction in this cutting-edge review. Creating a machine learning regression model to analyze age-related changes in brain structure among healthy individuals is a typical procedure in studies focused on brain aging. Subsequently, this model is employed to forecast the aging of brains in new individuals. The concept of the "brain-age gap" refers to the difference between an individual's predicted brain age and their actual chronological age. This score may serve as a gauge of the general state of the brain's health while also reflecting neuroanatomical disorders. It may help differential diagnosis, prognosis, and therapy decisions as well as early identification of brain-based illnesses. The following is a summary of the many forecasting techniques utilized over the past 11 years to estimate brain age. The study's conundrums and potential outcomes of the brain age predicted by current models will both be covered.
Collapse
Affiliation(s)
- L K Soumya Kumari
- Computer Science Engineering, Mohandas College of Engineering and Technology, Anad, India.
| | - R Sundarrajan
- Information Technology, School of Computing, Kalasalingam Academy of Research and Education, India.
| |
Collapse
|
60
|
Dartora C, Marseglia A, Mårtensson G, Rukh G, Dang J, Muehlboeck JS, Wahlund LO, Moreno R, Barroso J, Ferreira D, Schiöth HB, Westman E. A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Front Aging Neurosci 2024; 15:1303036. [PMID: 38259636 PMCID: PMC10800627 DOI: 10.3389/fnagi.2023.1303036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction In the last few years, several models trying to calculate the biological brain age have been proposed based on structural magnetic resonance imaging scans (T1-weighted MRIs, T1w) using multivariate methods and machine learning. We developed and validated a convolutional neural network (CNN)-based biological brain age prediction model that uses one T1w MRI preprocessing step when applying the model to external datasets to simplify implementation and increase accessibility in research settings. Our model only requires rigid image registration to the MNI space, which is an advantage compared to previous methods that require more preprocessing steps, such as feature extraction. Methods We used a multicohort dataset of cognitively healthy individuals (age range = 32.0-95.7 years) comprising 17,296 MRIs for training and evaluation. We compared our model using hold-out (CNN1) and cross-validation (CNN2-4) approaches. To verify generalisability, we used two external datasets with different populations and MRI scan characteristics to evaluate the model. To demonstrate its usability, we included the external dataset's images in the cross-validation training (CNN3). To ensure that our model used only the brain signal on the image, we also predicted brain age using skull-stripped images (CNN4). Results The trained models achieved a mean absolute error of 2.99, 2.67, 2.67, and 3.08 years for CNN1-4, respectively. The model's performance in the external dataset was in the typical range of mean absolute error (MAE) found in the literature for testing sets. Adding the external dataset to the training set (CNN3), overall, MAE is unaffected, but individual cohort MAE improves (5.63-2.25 years). Salience maps of predictions reveal that periventricular, temporal, and insular regions are the most important for age prediction. Discussion We provide indicators for using biological (predicted) brain age as a metric for age correction in neuroimaging studies as an alternative to the traditional chronological age. In conclusion, using different approaches, our CNN-based model showed good performance using one T1w brain MRI preprocessing step. The proposed CNN model is made publicly available for the research community to be easily implemented and used to study ageing and age-related disorders.
Collapse
Affiliation(s)
- Caroline Dartora
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gustav Mårtensson
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José Barroso
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, España
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
61
|
Nallapu BT, Petersen KK, Lipton RB, Davatzikos C, Ezzati A. Plasma Biomarkers as Predictors of Progression to Dementia in Individuals with Mild Cognitive Impairment. J Alzheimers Dis 2024; 98:231-246. [PMID: 38393899 PMCID: PMC11044769 DOI: 10.3233/jad-230620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Blood-based biomarkers (BBMs) are of growing interest in the field of Alzheimer's disease (AD) and related dementias. Objective This study aimed to assess the ability of plasma biomarkers to 1) predict disease progression from mild cognitive impairment (MCI) to dementia and 2) improve the predictive ability of magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) measures when combined. Methods We used data from the Alzheimer's Disease Neuroimaging Initiative. Machine learning models were trained using the data from participants who remained cognitively stable (CN-s) and with Dementia diagnosis at 2-year follow-up visit. The models were used to predict progression to dementia in MCI individuals. We assessed the performance of models with plasma biomarkers against those with CSF and MRI measures, and also in combination with them. Results Our models with plasma biomarkers classified CN-s individuals from AD with an AUC of 0.75±0.03 and could predict conversion to dementia in MCI individuals with an AUC of 0.64±0.03 (17.1% BP, base prevalence). Models with plasma biomarkers performed better when combined with CSF and MRI measures (CN versus AD: AUC of 0.89±0.02; MCI-to-AD: AUC of 0.76±0.03, 21.5% BP). Conclusions Our results highlight the potential of plasma biomarkers in predicting conversion to dementia in MCI individuals. While plasma biomarkers could improve the predictive ability of CSF and MRI measures when combined, they also show the potential to predict non-progression to AD when considered alone. The predictive ability of plasma biomarkers is crucially linked to reducing the costly and effortful collection of CSF and MRI measures.
Collapse
Affiliation(s)
- Bhargav T. Nallapu
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Kellen K. Petersen
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Richard B. Lipton
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Christos Davatzikos
- Radiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Ezzati
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
62
|
Shah J, Siddiquee MMR, Su Y, Wu T, Li B. Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION 2024; 2024:7867-7876. [PMID: 38606366 PMCID: PMC11008505 DOI: 10.1109/wacv57701.2024.00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Age is one of the major known risk factors for Alzheimer's Disease (AD). Detecting AD early is crucial for effective treatment and preventing irreversible brain damage. Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions. Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently. However, these methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects. This weakens the reliability of predicted brain age as a valid biomarker for downstream clinical applications. Here, we reformulate the brain age prediction task from regression to classification to address the issue of systematic bias. Recognizing the importance of preserving ordinal information from ages to understand aging trajectory and monitor aging longitudinally, we propose a novel ORdinal Distance Encoded Regularization (ORDER) loss that incorporates the order of age labels, enhancing the model's ability to capture age-related patterns. Extensive experiments and ablation studies demonstrate that this framework reduces systematic bias, outperforms state-of-art methods by statistically significant margins, and can better capture subtle differences between clinical groups in an independent AD dataset. Our implementation is publicly available at https://github.com/jaygshah/Robust-Brain-Age-Prediction.
Collapse
Affiliation(s)
- Jay Shah
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| | | | - Yi Su
- ASU-Mayo Center for Innovative Imaging
- Banner Alzheimer's Institute
| | - Teresa Wu
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| | - Baoxin Li
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| |
Collapse
|
63
|
Nguyen H, Clément M, Mansencal B, Coupé P. Brain structure ages-A new biomarker for multi-disease classification. Hum Brain Mapp 2024; 45:e26558. [PMID: 38224546 PMCID: PMC10785199 DOI: 10.1002/hbm.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024] Open
Abstract
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.
Collapse
Affiliation(s)
- Huy‐Dung Nguyen
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Michaël Clément
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Boris Mansencal
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Pierrick Coupé
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| |
Collapse
|
64
|
Dular L, Špiclin Ž. BASE: Brain Age Standardized Evaluation. Neuroimage 2024; 285:120469. [PMID: 38065279 DOI: 10.1016/j.neuroimage.2023.120469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Brain age, most commonly inferred from T1-weighted magnetic resonance images (T1w MRI), is a robust biomarker of brain health and related diseases. Superior accuracy in brain age prediction, often falling within a 2-3 year range, is achieved predominantly through deep neural networks. However, comparing study results is difficult due to differences in datasets, evaluation methodologies and metrics. Addressing this, we introduce Brain Age Standardized Evaluation (BASE), which includes (i) a standardized T1w MRI dataset including multi-site, new unseen site, test-retest and longitudinal data, and an associated (ii) evaluation protocol, including repeated model training and upon based comprehensive set of performance metrics measuring accuracy, robustness, reproducibility and consistency aspects of brain age predictions, and (iii) statistical evaluation framework based on linear mixed-effects models for rigorous performance assessment and cross-comparison. To showcase BASE, we comprehensively evaluate four deep learning based brain age models, appraising their performance in scenarios that utilize multi-site, test-retest, unseen site, and longitudinal T1w brain MRI datasets. Ensuring full reproducibility and application in future studies, we have made all associated data information and code publicly accessible at https://github.com/AralRalud/BASE.git.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia.
| |
Collapse
|
65
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
66
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Badea CT, Badea A. Feature attention graph neural network for estimating brain age and identifying important neural connections in mouse models of genetic risk for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571574. [PMID: 38168445 PMCID: PMC10760088 DOI: 10.1101/2023.12.13.571574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the most extensively researched neurodegenerative disorders due to its widespread prevalence and complex risk factors. Age is a crucial risk factor for AD, which can be estimated by the disparity between physiological age and estimated brain age. To model AD risk more effectively, integrating biological, genetic, and cognitive markers is essential. Here, we utilized mouse models expressing the major APOE human alleles and human nitric oxide synthase 2 to replicate genetic risk for AD and a humanized innate immune response. We estimated brain age employing a multivariate dataset that includes brain connectomes, APOE genotype, subject traits such as age and sex, and behavioral data. Our methodology used Feature Attention Graph Neural Networks (FAGNN) for integrating different data types. Behavioral data were processed with a 2D Convolutional Neural Network (CNN), subject traits with a 1D CNN, brain connectomes through a Graph Neural Network using quadrant attention module. The model yielded a mean absolute error for age prediction of 31.85 days, with a root mean squared error of 41.84 days, outperforming other, reduced models. In addition, FAGNN identified key brain connections involved in the aging process. The highest weights were assigned to the connections between cingulum and corpus callosum, striatum, hippocampus, thalamus, hypothalamus, cerebellum, and piriform cortex. Our study demonstrates the feasibility of predicting brain age in models of aging and genetic risk for AD. To verify the validity of our findings, we compared Fractional Anisotropy (FA) along the tracts of regions with the highest connectivity, the Return-to-Origin Probability (RTOP), Return-to-Plane Probability (RTPP), and Return-to-Axis Probability (RTAP), which showed significant differences between young, middle-aged, and old age groups. Younger mice exhibited higher FA, RTOP, RTAP, and RTPP compared to older groups in the selected connections, suggesting that degradation of white matter tracts plays a critical role in aging and for FAGNN's selections. Our analysis suggests a potential neuroprotective role of APOE2, relative to APOE3 and APOE4, where APOE2 appears to mitigate age-related changes. Our findings highlighted a complex interplay of genetics and brain aging in the context of AD risk modeling.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Cristian T. Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
67
|
Jönemo J, Eklund A. Brain Age Prediction Using 2D Projections Based on Higher-Order Statistical Moments and Eigenslices from 3D Magnetic Resonance Imaging Volumes. J Imaging 2023; 9:271. [PMID: 38132689 PMCID: PMC10743800 DOI: 10.3390/jimaging9120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Brain age prediction from 3D MRI volumes using deep learning has recently become a popular research topic, as brain age has been shown to be an important biomarker. Training deep networks can be very computationally demanding for large datasets like the U.K. Biobank (currently 29,035 subjects). In our previous work, it was demonstrated that using a few 2D projections (mean and standard deviation along three axes) instead of each full 3D volume leads to much faster training at the cost of a reduction in prediction accuracy. Here, we investigated if another set of 2D projections, based on higher-order statistical central moments and eigenslices, leads to a higher accuracy. Our results show that higher-order moments do not lead to a higher accuracy, but that eigenslices provide a small improvement. We also show that an ensemble of such models provides further improvement.
Collapse
Affiliation(s)
- Johan Jönemo
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
68
|
Dempsey DA, Deardorff R, Wu YC, Yu M, Apostolova LG, Brosch J, Clark DG, Farlow MR, Gao S, Wang S, Saykin AJ, Risacher SL. BrainAGE Estimation: Influence of Field Strength, Voxel Size, Race, and Ethnicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299222. [PMID: 38106123 PMCID: PMC10723496 DOI: 10.1101/2023.12.05.23299222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The BrainAGE method is used to estimate biological brain age using structural neuroimaging. However, the stability of the model across different scan parameters and races/ethnicities has not been thoroughly investigated. Estimated brain age was compared within- and across- MRI field strength and across voxel sizes. Estimated brain age gap (BAG) was compared across demographically matched groups of different self-reported races and ethnicities in ADNI and IMAS cohorts. Longitudinal ComBat was used to correct for potential scanner effects. The brain age method was stable within field strength, but less stable across different field strengths. The method was stable across voxel sizes. There was a significant difference in BAG between races, but not ethnicities. Correction procedures are suggested to eliminate variation across scanner field strength while maintaining accurate brain age estimation. Further studies are warranted to determine the factors contributing to racial differences in BAG.
Collapse
Affiliation(s)
- Desarae A. Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rachael Deardorff
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Liana G. Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jared Brosch
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David G. Clark
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Martin R. Farlow
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sujuan Gao
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sophia Wang
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
69
|
Valdes-Hernandez PA, Nodarse CL, Johnson AJ, Montesino-Goicolea S, Bashyam V, Davatzikos C, Peraza JA, Cole JH, Huo Z, Fillingim RB, Cruz-Almeida Y. Brain-predicted age difference estimated using DeepBrainNet is significantly associated with pain and function-a multi-institutional and multiscanner study. Pain 2023; 164:2822-2838. [PMID: 37490099 PMCID: PMC10805955 DOI: 10.1097/j.pain.0000000000002984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/31/2023] [Indexed: 07/26/2023]
Abstract
ABSTRACT Brain age predicted differences (brain-PAD: predicted brain age minus chronological age) have been reported to be significantly larger for individuals with chronic pain compared with those without. However, a debate remains after one article showed no significant differences. Using Gaussian Process Regression, an article provides evidence that these negative results might owe to the use of mixed samples by reporting a differential effect of chronic pain on brain-PAD across pain types. However, some remaining methodological issues regarding training sample size and sex-specific effects should be tackled before settling this controversy. Here, we explored differences in brain-PAD between musculoskeletal pain types and controls using a novel convolutional neural network for predicting brain-PADs, ie, DeepBrainNet. Based on a very large, multi-institutional, and heterogeneous training sample and requiring less magnetic resonance imaging preprocessing than other methods for brain age prediction, DeepBrainNet offers robust and reproducible brain-PADs, possibly highly sensitive to neuropathology. Controlling for scanner-related variability, we used a large sample (n = 660) with different scanners, ages (19-83 years), and musculoskeletal pain types (chronic low back [CBP] and osteoarthritis [OA] pain). Irrespective of sex, brain-PAD of OA pain participants was ∼3 to 4.7 years higher than that of CBP and controls, whereas brain-PAD did not significantly differ among controls and CBP. Moreover, brain-PAD was significantly related to multiple variables underlying the multidimensional pain experience. This comprehensive work adds evidence of pain type-specific effects of chronic pain on brain age. This could help in the clarification of the debate around possible relationships between brain aging mechanisms and pain.
Collapse
Affiliation(s)
- Pedro A. Valdes-Hernandez
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, University of Florida, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - Chavier Laffitte Nodarse
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, University of Florida, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - Alisa J. Johnson
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, University of Florida, USA
| | - Soamy Montesino-Goicolea
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, University of Florida, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - Vishnu Bashyam
- AI2D Center for AI and Data Science for Integrated Diagnostics; and Center for Biomedical Image Computing & Analytics, Perelman School of Medicine, University of Pennsylvania, USA
- Artificial Intelligence in Biomedical Imaging Lab (AIBIL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics; and Center for Biomedical Image Computing & Analytics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Julio A. Peraza
- Department of Physics, Florida International University, USA
| | - James H. Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, UK
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, USA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, USA
- Pain Research and Intervention Center of Excellence, University of Florida, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
- Department of Neuroscience, College of Medicine, University of Florida, USA
| |
Collapse
|
70
|
Zhang F, Chang H, Schaefer SM, Gou J. Biological age and brain age in midlife: relationship to multimorbidity and mental health. Neurobiol Aging 2023; 132:145-153. [PMID: 37804610 PMCID: PMC10803130 DOI: 10.1016/j.neurobiolaging.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Biological age and brain age estimated using biological and neuroimaging measures have recently emerged as surrogate aging biomarkers shown to be predictive of diverse health outcomes. As aging underlies the development of many chronic conditions, surrogate aging biomarkers capture health at the whole person level, having the potential to improve our understanding of multimorbidity. Our study investigates whether elevated biological age and brain age are associated with an increased risk of multimorbidity using a large dataset from the Midlife in the United States Refresher study. Ensemble learning is utilized to combine multiple machine learning models to estimate biological age using a comprehensive set of biological markers. Brain age is obtained using Gaussian processes regression and neuroimaging data. Our study is the first to examine the relationship between accelerated brain age and multimorbidity. Furthermore, it is the first attempt to explore how biological age and brain age are related to multimorbidity in mental health. Our findings hold the potential to advance the understanding of disease accumulation and their relationship with aging.
Collapse
Affiliation(s)
- Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| | - Hansoo Chang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Stacey M Schaefer
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| |
Collapse
|
71
|
Dörfel RP, Arenas‐Gomez JM, Fisher PM, Ganz M, Knudsen GM, Svensson JE, Plavén‐Sigray P. Prediction of brain age using structural magnetic resonance imaging: A comparison of accuracy and test-retest reliability of publicly available software packages. Hum Brain Mapp 2023; 44:6139-6148. [PMID: 37843020 PMCID: PMC10619370 DOI: 10.1002/hbm.26502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Brain age prediction algorithms using structural magnetic resonance imaging (MRI) aim to assess the biological age of the human brain. The difference between a person's chronological age and the estimated brain age is thought to reflect deviations from a normal aging trajectory, indicating a slower or accelerated biological aging process. Several pre-trained software packages for predicting brain age are publicly available. In this study, we perform a comparison of such packages with respect to (1) predictive accuracy, (2) test-retest reliability, and (3) the ability to track age progression over time. We evaluated the six brain age prediction packages: brainageR, DeepBrainNet, brainage, ENIGMA, pyment, and mccqrnn. The accuracy and test-retest reliability were assessed on MRI data from 372 healthy people aged between 18.4 and 86.2 years (mean 38.7 ± 17.5 years). All packages showed significant correlations between predicted brain age and chronological age (r = 0.66-0.97, p < 0.001), with pyment displaying the strongest correlation. The mean absolute error was between 3.56 (pyment) and 9.54 years (ENIGMA). brainageR, pyment, and mccqrnn were superior in terms of reliability (ICC values between 0.94-0.98), as well as predicting age progression over a longer time span. Of the six packages, pyment and brainageR consistently showed the highest accuracy and test-retest reliability.
Collapse
Affiliation(s)
- Ruben P. Dörfel
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Joan M. Arenas‐Gomez
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Patrick M. Fisher
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Melanie Ganz
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Gitte M. Knudsen
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jonas E. Svensson
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Pontus Plavén‐Sigray
- Neurobiology Research UnitCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Centre for Psychiatry Research, Department of Clinical NeuroscienceKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| |
Collapse
|
72
|
Wang H, Hu Z, Jiang D, Lin R, Zhao C, Zhao X, Zhou Y, Zhu Y, Zeng H, Liang D, Liao J, Li Z. Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex-Related Epilepsy Using Deep Learning. AJNR Am J Neuroradiol 2023; 44:1373-1383. [PMID: 38081677 PMCID: PMC10714846 DOI: 10.3174/ajnr.a8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND AND PURPOSE Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex-related epilepsy. MATERIALS AND METHODS We conducted a retrospective study involving 300 children with tuberous sclerosis complex-related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model. RESULTS The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods. CONCLUSIONS The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex-related epilepsy and could be a strong baseline for future studies.
Collapse
Affiliation(s)
- Haifeng Wang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhanqi Hu
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Department of Pediatric Neurology (Z.H.), Boston Children's Hospital, Boston, Massachusetts
| | - Dian Jiang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Rongbo Lin
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Cailei Zhao
- Department of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xia Zhao
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yihang Zhou
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Research Department (Y. Zhou), Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Yanjie Zhu
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hongwu Zeng
- Department of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Dong Liang
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jianxiang Liao
- Department of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Zhicheng Li
- From the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
73
|
Wang Y, Wen J, Xin J, Zhang Y, Xie H, Tang Y. 3DCNN predicting brain age using diffusion tensor imaging. Med Biol Eng Comput 2023; 61:3335-3344. [PMID: 37672142 DOI: 10.1007/s11517-023-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Neuroimaging-based brain age prediction using deep learning is gaining popularity. However, few studies have attempted to leverage diffusion tensor imaging (DTI) to predict brain age. In this study, we proposed a 3D convolutional neural network model (3DCNN) and trained it on fractional anisotropy (FA) data from six publicly available datasets (n = 2406, age = 17-60) to estimate brain age. Implementing a two-loop nested cross-validation scheme with a tenfold cross-validation procedure, we achieved a robust prediction performance of a mean absolute error (MAE) of 2.785 and a correlation coefficient of 0.932. We also employed Grad-Cam++ to visualize the salient features of the proposed model. We identified a few highly salient fiber tracts, including the genu of corpus callosum and the left cerebellar peduncle, among others that play a pivotal role in our model. In sum, our model reliably predicted brain age and provided novel insight into age-related changes in brains' axonal structure.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jingxi Wen
- School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yunhao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hua Xie
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
- Center for Neuroscience Research, Children's National Hospital, Washington, D.C, 20010, USA.
| | - Yan Tang
- School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China.
| |
Collapse
|
74
|
Yang Z, Zhao W, Linli Z, Guo S, Feng J. Associations between polygenic risk scores and accelerated brain ageing in smokers. Psychol Med 2023; 53:7785-7794. [PMID: 37555321 PMCID: PMC10755245 DOI: 10.1017/s0033291723001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smoking contributes to a variety of neurodegenerative diseases and neurobiological abnormalities, suggesting that smoking is associated with accelerated brain aging. However, the neurobiological mechanisms affected by smoking, and whether they are genetically influenced, remain to be investigated. METHODS Using structural magnetic resonance imaging data from the UK Biobank (n = 33 293), a brain age predictor was trained on non-smoking healthy groups and tested on smokers to obtain the BrainAge Gap (BAG). The cumulative effect of multiple common genetic variants associated with smoking was then calculated to acquire a polygenic risk score (PRS). The relationship between PRS, BAG, total gray matter volume (tGMV), and smoking parameters was explored and further genes included in the PRS were annotated to identify potential molecular mechanisms affected by smoking. RESULTS The BrainAge in smokers was predicted with very high accuracy (r = 0.725, MAE = 4.16). Smokers had a greater BAG (Cohen's d = 0.074, p < 0.0001) and higher PRS (Cohen's d = 0.63, p < 0.0001) than non-smokers. A higher PRS was associated with increased amount of smoking, mediated by BAG and tGMV. Several neurotransmitters and ion channel pathways were enriched in the group of smoking-related genes involved in addiction, brain synaptic plasticity, and some neurological disorders. CONCLUSION By using a simplified single indicator of the entire brain (BAG) in combination with the PRS, this study highlights the greater BAG in smokers and its linkage with genes and smoking behavior, providing insight into the neurobiological underpinnings and potential features of smoking-related aging.
Collapse
Affiliation(s)
- Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Zeqiang Linli
- School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, 510006, P.R.China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P.R.China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, P.R.China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai 200433, P.R.China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, England
| |
Collapse
|
75
|
Roca V, Kuchcinski G, Pruvo JP, Manouvriez D, Leclerc X, Lopes R. A three-dimensional deep learning model for inter-site harmonization of structural MR images of the brain: Extensive validation with a multicenter dataset. Heliyon 2023; 9:e22647. [PMID: 38107313 PMCID: PMC10724680 DOI: 10.1016/j.heliyon.2023.e22647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
In multicenter MRI studies, pooling the imaging data can introduce site-related variabilities and can therefore bias the subsequent analyses. To harmonize the intensity distributions of brain MR images in a multicenter dataset, unsupervised deep learning methods can be employed. Here, we developed a model based on cycle-consistent adversarial networks for the harmonization of T1-weighted brain MR images. In contrast to previous works, it was designed to process three-dimensional whole-brain images in a stable manner while optimizing computation resources. Using six different MRI datasets for healthy adults (n=1525 in total) with different acquisition parameters, we tested the model in (i) three pairwise harmonizations with site effects of various sizes, (ii) an overall harmonization of the six datasets with different age distributions, and (iii) a traveling-subject dataset. Our results for intensity distributions, brain volumes, image quality metrics and radiomic features indicated that the MRI characteristics at the various sites had been effectively homogenized. Next, brain age prediction experiments and the observed correlation between the gray-matter volume and age showed that thanks to an appropriate training strategy and despite biological differences between the dataset populations, the model reinforced biological patterns. Furthermore, radiologic analyses of the harmonized images attested to the conservation of the radiologic information in the original images. The robustness of the harmonization model (as judged with various datasets and metrics) demonstrates its potential for application in retrospective multicenter studies.
Collapse
Affiliation(s)
- Vincent Roca
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Grégory Kuchcinski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Jean-Pierre Pruvo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Dorian Manouvriez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Xavier Leclerc
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
- CHU Lille, Department of Neuroradiology, F-59000 Lille, France
| | - Renaud Lopes
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neurosciences & Cognition, F-59000 Lille, France
| |
Collapse
|
76
|
Kraljević N, Langner R, Küppers V, Raimondo F, Patil KR, Eickhoff SB, Müller VI. Network and State Specificity in Connectivity-Based Predictions of Individual Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540387. [PMID: 37215048 PMCID: PMC10197703 DOI: 10.1101/2023.05.11.540387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| |
Collapse
|
77
|
Feng L, Ye Z, Mo C, Wang J, Liu S, Gao S, Ke H, Canida TA, Pan Y, van Greevenbroek MM, Houben AJ, Wang K, Hatch KS, Ma Y, Lei DK, Chen C, Mitchell BD, Hong LE, Kochunov P, Chen S, Ma T. Elevated blood pressure accelerates white matter brain aging among late middle-aged women: a Mendelian Randomization study in the UK Biobank. J Hypertens 2023; 41:1811-1820. [PMID: 37682053 PMCID: PMC11083214 DOI: 10.1097/hjh.0000000000003553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Elevated blood pressure (BP) is a modifiable risk factor associated with cognitive impairment and cerebrovascular diseases. However, the causal effect of BP on white matter brain aging remains unclear. METHODS In this study, we focused on N = 228 473 individuals of European ancestry who had genotype data and clinical BP measurements available (103 929 men and 124 544 women, mean age = 56.49, including 16 901 participants with neuroimaging data available) collected from UK Biobank (UKB). We first established a machine learning model to compute the outcome variable brain age gap (BAG) based on white matter microstructure integrity measured by fractional anisotropy derived from diffusion tensor imaging data. We then performed a two-sample Mendelian randomization analysis to estimate the causal effect of BP on white matter BAG in the whole population and subgroups stratified by sex and age brackets using two nonoverlapping data sets. RESULTS The hypertension group is on average 0.31 years (95% CI = 0.13-0.49; P < 0.0001) older in white matter brain age than the nonhypertension group. Women are on average 0.81 years (95% CI = 0.68-0.95; P < 0.0001) younger in white matter brain age than men. The Mendelian randomization analyses showed an overall significant positive causal effect of DBP on white matter BAG (0.37 years/10 mmHg, 95% CI 0.034-0.71, P = 0.0311). In stratified analysis, the causal effect was found most prominent among women aged 50-59 and aged 60-69. CONCLUSION High BP can accelerate white matter brain aging among late middle-aged women, providing insights on planning effective control of BP for women in this age group.
Collapse
Affiliation(s)
- Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Chen Mo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jingtao Wang
- Department of Hematology, Qilu Hospital of Shandong University
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Hongjie Ke
- Department of Epidemiology and Biostatistics, School of Public Health
| | - Travis A. Canida
- Department of Mathematics, The College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Marleen M.J. van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Alfons J.H.M. Houben
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Kai Wang
- Department of Internal Medicine, Maastricht University Medical Centre
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - David K.Y. Lei
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Braxton D. Mitchell
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health
| |
Collapse
|
78
|
Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, Shin K, Kim KD, Ryu SM, Seo JB, Lee SM, Kim N. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J Radiol 2023; 24:1061-1080. [PMID: 37724586 PMCID: PMC10613849 DOI: 10.3348/kjr.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
Collapse
Affiliation(s)
- Gil-Sun Hong
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Miso Jang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunggu Kyung
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungjin Cho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiheon Jeong
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Grace Yoojin Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Keewon Shin
- Laboratory for Biosignal Analysis and Perioperative Outcome Research, Biomedical Engineering Center, Asan Institute of Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ki Duk Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Ryu
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
79
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540134. [PMID: 37214863 PMCID: PMC10197652 DOI: 10.1101/2023.05.10.540134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI) and represents a simple diagnostic biomarker of brain ageing and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results from different studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and performance metrics used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models presented in recent literature. Four preprocessing pipelines were evaluated, differing in terms of registration, grayscale correction, and software implementation. The results showed that the choice of software or preprocessing steps can significantly affect the prediction error, with a maximum increase of 0.7 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, the affine registration, compared to the rigid registration of T1w images to brain atlas was shown to statistically significantly improve MAE. Models trained on 3D images with isotropic 1 mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Some proved invariant to the preprocessing pipeline, however only after offset correction. Our findings generally indicate that extensive T1w preprocessing enhances the MAE, especially when applied to a new dataset. This runs counter to prevailing research literature which suggests that models trained on minimally preprocessed T1w scans are better poised for age predictions on MRIs from unseen scanners. Regardless of model or T1w preprocessing used, we show that to enable generalization of model's performance on a new dataset with either the same or different T1w preprocessing than the one applied in model training, some form of offset correction should be applied.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
80
|
Chen Q, Dwaraka VB, Carreras-Gallo N, Mendez K, Chen Y, Begum S, Kachroo P, Prince N, Went H, Mendez T, Lin A, Turner L, Moqri M, Chu SH, Kelly RS, Weiss ST, Rattray NJ, Gladyshev VN, Karlson E, Wheelock C, Mathé EA, Dahlin A, McGeachie MJ, Smith R, Lasky-Su JA. OMICmAge: An integrative multi-omics approach to quantify biological age with electronic medical records. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562114. [PMID: 37904959 PMCID: PMC10614756 DOI: 10.1101/2023.10.16.562114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.
Collapse
Affiliation(s)
- Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aaron Lin
- TruDiagnostic, Inc., Lexington, KY USA
| | | | - Mahdi Moqri
- Division of Genetics, Dept. of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Su H. Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas J.W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde, Glasgow, UK
| | - Vadim N. Gladyshev
- Division of Genetics, Dept. of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Karlson
- Department of Personalized Medicine, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Craig Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ewy A. Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michae J. McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
81
|
Yang Y, Sathe A, Schilling K, Shashikumar N, Moore E, Dumitrescu L, Pechman KR, Landman BA, Gifford KA, Hohman TJ, Jefferson AL, Archer DB. A deep neural network estimation of brain age is sensitive to cognitive impairment and decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552494. [PMID: 37645837 PMCID: PMC10461919 DOI: 10.1101/2023.08.10.552494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The greatest known risk factor for Alzheimer's disease (AD) is age. While both normal aging and AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-derived measures and deep learning approaches to predict brain age, which has shown promise as a sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship of actual age and predicted brain ages with cognition. We found that all models accurately predicted actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62×10-32; T1: r=0.61, p=1.45×10-26, FW+T1: r=0.77, p=6.48×10-50) and distinguished between CU and mild cognitive impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age showing best performance. Additionally, all predicted brain age models were significantly associated with cross-sectional cognition (memory, FW: β=-1.094, p=6.32×10-7; T1: β=-1.331, p=6.52×10-7; FW+T1: β=-1.476, p=2.53×10-10; executive function, FW: β=-1.276, p=1.46×10-9; T1: β=-1.337, p=2.52×10-7; FW+T1: β=-1.850, p=3.85×10-17) and longitudinal cognition (memory, FW: β=-0.091, p=4.62×10-11; T1: β=-0.097, p=1.40×10-8; FW+T1: β=-0.101, p=1.35×10-11; executive function, FW: β=-0.125, p=1.20×10-10; T1: β=-0.163, p=4.25×10-12; FW+T1: β=-0.158, p=1.65×10-14). Our findings provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and support predicted brain age as a sensitive biomarker of cognition and cognitive decline.
Collapse
Affiliation(s)
- Yisu Yang
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Aditi Sathe
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Kurt Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Niranjana Shashikumar
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Elizabeth Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Kimberly R. Pechman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Bennett A. Landman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37212
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37212
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA, 37212
| |
Collapse
|
82
|
Weissman DG, Baum GL, Sanders A, Rosen ML, Barch DM, McLaughlin KA, Somerville LH. Family income is not significantly associated with T1w/T2w ratio in the Human Connectome Project in Development. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00021. [PMID: 39006919 PMCID: PMC11242614 DOI: 10.1162/imag_a_00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Growing evidence indicates that brain development varies as a function of family socioeconomic status (SES). Numerous studies have demonstrated that children from low-SES backgrounds have thinner cortex than children from higher-SES backgrounds. A recent study in a large developmental sample found widespread associations between lower SES and greater cortical T1w/T2w ratio-thought to be an indirect proxy for cortical myelin. We evaluated the association of family income with cortical T1w/T2w ratio as a function of age in the Human Connectome Project in Development sample of 989 youth aged 8-21 years. We observed no associations between family income and T1w/T2w ratio that were significant after corrections for multiple comparisons at the region, network, or whole-brain level. Region of practical equivalence (ROPE) analyses were also consistent with the absence of an association between family income and T1w/T2w ratio. We discuss potential methodological sources of inconsistency between this and the previous study examining the same question. While the question of whether family income may influence cortical myelin development remains, these null results may indicate that the association between SES and cortical myelin development may not be as strong as with other aspects of brain structure.
Collapse
Affiliation(s)
- David G. Weissman
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Graham L. Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Ashley Sanders
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Maya L. Rosen
- Program in Neuroscience, Smith College, Northampton, MA, United States
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Leah H. Somerville
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
83
|
Busby N, Newman-Norlund S, Sayers S, Newman-Norlund R, Wilmskoetter J, Rorden C, Nemati S, Wilson S, Riccardi N, Roth R, Johnson L, den Ouden DB, Fridriksson J, Bonilha L. Lower socioeconomic status is associated with premature brain aging. Neurobiol Aging 2023; 130:135-140. [PMID: 37506551 DOI: 10.1016/j.neurobiolaging.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Premature age-related brain changes may be influenced by physical health factors. Lower socioeconomic status (SES) is often associated with poorer physical health. In this study, we aimed to investigate the relationship between SES and premature brain aging. METHODS Brain age was estimated from T1-weighted images using BrainAgeR in 217 participants from the ABC@UofSC Repository. The difference between brain and chronological age (BrainGAP) was calculated. Multiple regression models were used to predict BrainGAP with age, SES, body mass index, diabetes, hypertension, sex, race, and education as predictors. SES was calculated from size-adjusted household income and the cost of living. RESULTS Fifty-five participants (25.35%) had greater brain age than chronological age (premature brain aging). Multiple regression models revealed that age, sex, and SES were significant predictors of BrainGAP with lower SES associated with greater BrainGAP (premature brain aging). CONCLUSIONS This study demonstrates that lower SES is an independent contributor to premature brain aging. This may provide additional insight into the mechanisms associated with brain health, cognition, and resilience to neurological injury.
Collapse
Affiliation(s)
- Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Sara Sayers
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Samaneh Nemati
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Sarah Wilson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
84
|
Antonopoulos G, More S, Raimondo F, Eickhoff SB, Hoffstaedter F, Patil KR. A systematic comparison of VBM pipelines and their application to age prediction. Neuroimage 2023; 279:120292. [PMID: 37572766 PMCID: PMC10529438 DOI: 10.1016/j.neuroimage.2023.120292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023] Open
Abstract
Voxel-based morphometry (VBM) analysis is commonly used for localized quantification of gray matter volume (GMV). Several alternatives exist to implement a VBM pipeline. However, how these alternatives compare and their utility in applications, such as the estimation of aging effects, remain largely unclear. This leaves researchers wondering which VBM pipeline they should use for their project. In this study, we took a user-centric perspective and systematically compared five VBM pipelines, together with registration to either a general or a study-specific template, utilizing three large datasets (n>500 each). Considering the known effect of aging on GMV, we first compared the pipelines in their ability of individual-level age prediction and found markedly varied results. To examine whether these results arise from systematic differences between the pipelines, we classified them based on their GMVs, resulting in near-perfect accuracy. To gain deeper insights, we examined the impact of different VBM steps using the region-wise similarity between pipelines. The results revealed marked differences, largely driven by segmentation and registration steps. We observed large variability in subject-identification accuracies, highlighting the interpipeline differences in individual-level quantification of GMV. As a biologically meaningful criterion we correlated regional GMV with age. The results were in line with the age-prediction analysis, and two pipelines, CAT and the combination of fMRIPrep for tissue characterization with FSL for registration, reflected age information better.
Collapse
Affiliation(s)
- Georgios Antonopoulos
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Shammi More
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Federico Raimondo
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
85
|
Jönemo J, Akbar MU, Kämpe R, Hamilton JP, Eklund A. Efficient Brain Age Prediction from 3D MRI Volumes Using 2D Projections. Brain Sci 2023; 13:1329. [PMID: 37759930 PMCID: PMC10526282 DOI: 10.3390/brainsci13091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Using 3D CNNs on high-resolution medical volumes is very computationally demanding, especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20-50 s using a single GPU, which is two orders of magnitude faster than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of redundant information, which can be efficiently compressed using 2D projections. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.
Collapse
Affiliation(s)
- Johan Jönemo
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Muhammad Usman Akbar
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Robin Kämpe
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - J. Paul Hamilton
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
86
|
Zalay O, Bontempi D, Bitterman DS, Birkbak N, Shyr D, Haugg F, Qian JM, Roberts H, Perni S, Prudente V, Pai S, Dekker A, Haibe-Kains B, Guthier C, Balboni T, Warren L, Krishan M, Kann BH, Swanton C, Ruysscher DD, Mak RH, Aerts HJWL. Decoding biological age from face photographs using deep learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295132. [PMID: 37745558 PMCID: PMC10516042 DOI: 10.1101/2023.09.12.23295132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.
Collapse
Affiliation(s)
- Osbert Zalay
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Division of Radiation Oncology, Queen’s University, Kingston, Canada
| | - Dennis Bontempi
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Danielle S Bitterman
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Derek Shyr
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston
| | - Fridolin Haugg
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Jack M Qian
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hannah Roberts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Subha Perni
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Vasco Prudente
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Suraj Pai
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christian Guthier
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Laura Warren
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Monica Krishan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Benjamin H Kann
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Raymond H Mak
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hugo JWL Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
87
|
Funk-White M, Wing D, Eyler LT, Moore AA, Reas ET, McEvoy L. Neuroimaging-Derived Predicted Brain Age and Alcohol Use Among Community-Dwelling Older Adults. Am J Geriatr Psychiatry 2023; 31:669-678. [PMID: 36925380 PMCID: PMC11534213 DOI: 10.1016/j.jagp.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVES Observational studies have suggested that moderate alcohol use is associated with reduced risk of dementia. However, the nature of this association is not understood. We investigated whether light to moderate alcohol use may be associated with slower brain aging, among a cohort of older community-dwelling adults using a biomarker of brain age based on structural neuroimaging measures. DESIGN Cross-sectional observational study. PARTICIPANTS Well-characterized members of a longitudinal cohort study who underwent neuroimaging. We categorized the 163 participants (mean age 76.7 ± 7.7, 60% women) into current nondrinkers, light drinkers (1-7 drinks/week) moderate drinkers (>7-14 drinks/week), or heavier drinkers (>14 drinks/week). MEASUREMENTS We calculated brain-predicted age using structural MRIs processed with the BrainAgeR program, and calculated the difference between brain-predicted age and chronological age (brain-predicted age difference, or brain-PAD). We used analysis of variance to determine if brain-PAD differed across alcohol groups, controlling for potential confounders. RESULTS Brain-PAD differed across alcohol groups (F[3, 150] = 4.02; p = 0.009) with heavier drinkers showing older brain-PAD than light drinkers (by about 6 years). Brain-PAD did not differ across light, moderate, and nondrinkers. Similar results were obtained after adjusting for potentially mediating health-related measures, and after excluding individuals with a history of heavier drinking. DISCUSSION Among this sample of healthy older adults, consumption of more than 14 drinks/week was associated with a biomarker of advanced brain aging. Light and moderate drinking was not associated with slower brain aging relative to non-drinking.
Collapse
Affiliation(s)
- Makaya Funk-White
- Interdisciplinary Research on Substance Use (MFW), University of California San Diego, La Jolla, CA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science (DW, LKM), University of California San Diego, La Jolla, CA
| | - Lisa T Eyler
- Department of Psychiatry (LTE), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research (LTE), Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| | - Alison A Moore
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine (AAM), University of California San Diego, La Jolla, CA
| | - Emilie T Reas
- Department of Neurosciences (ETR), University of California San Diego, La Jolla, CA
| | - Linda McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science (DW, LKM), University of California San Diego, La Jolla, CA; Department of Radiology (LKM), University of California San Diego, La Jolla, CA
| |
Collapse
|
88
|
Akinci D’Antonoli T, Todea RA, Leu N, Datta AN, Stieltjes B, Pruefer F, Wasserthal J. Development and Evaluation of Deep Learning Models for Automated Estimation of Myelin Maturation Using Pediatric Brain MRI Scans. Radiol Artif Intell 2023; 5:e220292. [PMID: 37795138 PMCID: PMC10546368 DOI: 10.1148/ryai.220292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 10/06/2023]
Abstract
Purpose To predict the corresponding age of myelin maturation from brain MRI scans in infants and young children by using a deep learning algorithm and to build upon previously published models. Materials and Methods Brain MRI scans acquired between January 1, 2011, and March 17, 2021, in our institution in patients aged 0-3 years were retrospectively retrieved from the archive. An ensemble of two-dimensional (2D) and three-dimensional (3D) convolutional neural network models was trained and internally validated in 710 patients to predict myelin maturation age on the basis of radiologist-generated labels. The model ensemble was tested on an internal dataset of 123 patients and two external datasets of 226 (0-25 months of age) and 383 (0-2 months of age) healthy children and infants, respectively. Mean absolute error (MAE) and Pearson correlation coefficients were used to assess model performance. Results The 2D, 3D, and 2D-plus-3D ensemble models showed MAE values of 1.43, 2.55, and 1.77 months, respectively, on the internal test set, values of 2.26, 2.27, and 1.22 months on the first external test set, and values of 0.44, 0.27, and 0.31 months on the second external test set. The ensemble model outperformed the previous state-of-the-art model on the same external test set (MAE = 1.22 vs 2.09 months). Conclusion The proposed deep learning model accurately predicted myelin maturation age using pediatric brain MRI scans and may help reduce the time needed to complete this task, as well as interobserver variability in radiologist predictions.Keywords: Pediatrics, MR Imaging, CNS, Brain/Brain Stem, Convolutional Neural Network (CNN), Artificial Intelligence, Pediatric Imaging, Myelin Maturation, Brain MRI, Neuroradiology Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Tugba Akinci D’Antonoli
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Ramona-Alexandra Todea
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Nora Leu
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Alexandre N. Datta
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Bram Stieltjes
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Friederike Pruefer
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| | - Jakob Wasserthal
- From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and
Department of Pediatric Neurology and Developmental Medicine (A.N.D.),
University Children’s Hospital Basel, Spitalstrasse 33, 4056 Basel,
Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital
Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of
Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis,
Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital
Basel, Basel, Switzerland
| |
Collapse
|
89
|
Hu L, Wan Q, Huang L, Tang J, Huang S, Chen X, Bai X, Kong L, Deng J, Liang H, Liu G, Liu H, Lu L. MRI-based brain age prediction model for children under 3 years old using deep residual network. Brain Struct Funct 2023; 228:1771-1784. [PMID: 37603065 DOI: 10.1007/s00429-023-02686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Early identification and intervention of abnormal brain development individual subjects are of great significance, especially during the earliest and most active stage of brain development in children aged under 3. Neuroimage-based brain's biological age has been associated with health, ability, and remaining life. However, the existing brain age prediction models based on neuroimage are predominantly adult-oriented. Here, we collected 658 T1-weighted MRI scans from 0 to 3 years old healthy controls and developed an accurate brain age prediction model for young children using deep learning techniques with high accuracy in capturing age-related changes. The performance of the deep learning-based model is comparable to that of the SVR-based model, showcasing remarkable precision and yielding a noteworthy correlation of 91% between the predicted brain age and the chronological age. Our results demonstrate the accuracy of convolutional neural network (CNN) brain-predicted age using raw T1-weighted MRI data with minimum preprocessing necessary. We also applied our model to children with low birth weight, premature delivery history, autism, and ADHD, and discovered that the brain age was delayed in children with extremely low birth weight (less than 1000 g) while ADHD may cause accelerated aging of the brain. Our child-specific brain age prediction model can be a valuable quantitative tool to detect abnormal brain development and can be helpful in the early identification and intervention of age-related brain disorders.
Collapse
Affiliation(s)
- Lianting Hu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 4330060, Hubei, China
| | - Li Huang
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jiajie Tang
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuai Huang
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Xuanhui Chen
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Xiaohe Bai
- School of Physical Sciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Lingcong Kong
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jingyi Deng
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Guangjian Liu
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Hongsheng Liu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
| | - Long Lu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
90
|
Kim SY, Yeh PH, Ollinger JM, Morris HD, Hood MN, Ho VB, Choi KH. Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms. Transl Psychiatry 2023; 13:289. [PMID: 37652994 PMCID: PMC10471788 DOI: 10.1038/s41398-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden among military service members. Although mTBI was once considered relatively benign compared to more severe TBIs, a growing body of evidence has demonstrated the devastating neurological consequences of mTBI, including chronic post-concussion symptoms and deficits in cognition, memory, sleep, vision, and hearing. The discovery of reliable biomarkers for mTBI has been challenging due to under-reporting and heterogeneity of military-related mTBI, unpredictability of pathological changes, and delay of post-injury clinical evaluations. Moreover, compared to more severe TBI, mTBI is especially difficult to diagnose due to the lack of overt clinical neuroimaging findings. Yet, advanced neuroimaging techniques using magnetic resonance imaging (MRI) hold promise in detecting microstructural aberrations following mTBI. Using different pulse sequences, MRI enables the evaluation of different tissue characteristics without risks associated with ionizing radiation inherent to other imaging modalities, such as X-ray-based studies or computerized tomography (CT). Accordingly, considering the high morbidity of mTBI in military populations, debilitating post-injury symptoms, and lack of robust neuroimaging biomarkers, this review (1) summarizes the nature and mechanisms of mTBI in military settings, (2) describes clinical characteristics of military-related mTBI and associated comorbidities, such as post-traumatic stress disorder (PTSD), (3) highlights advanced neuroimaging techniques used to study mTBI and the molecular mechanisms that can be inferred, and (4) discusses emerging frontiers in advanced neuroimaging for mTBI. We encourage multi-modal approaches combining neuropsychiatric, blood-based, and genetic data as well as the discovery and employment of new imaging techniques with big data analytics that enable accurate detection of post-injury pathologic aberrations related to tissue microstructure, glymphatic function, and neurodegeneration. Ultimately, this review provides a foundational overview of military-related mTBI and advanced neuroimaging techniques that merit further study for mTBI diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sharon Y Kim
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John M Ollinger
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Herman D Morris
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Maureen N Hood
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Vincent B Ho
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA.
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
91
|
Ray B, Chen J, Fu Z, Suresh P, Thapaliya B, Farahdel B, Calhoun VD, Liu J. Replication and Refinement of Brain Age Model for adolescent development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553472. [PMID: 37645839 PMCID: PMC10462059 DOI: 10.1101/2023.08.16.553472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.
Collapse
Affiliation(s)
- Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
92
|
Bernard D, Doumard E, Ader I, Kemoun P, Pagès J, Galinier A, Cussat‐Blanc S, Furger F, Ferrucci L, Aligon J, Delpierre C, Pénicaud L, Monsarrat P, Casteilla L. Explainable machine learning framework to predict personalized physiological aging. Aging Cell 2023; 22:e13872. [PMID: 37300327 PMCID: PMC10410015 DOI: 10.1111/acel.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
Collapse
Affiliation(s)
- David Bernard
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
| | - Emmanuel Doumard
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Isabelle Ader
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Philippe Kemoun
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Oral Medicine Department and Hospital of ToulouseToulouse Institute of Oral Medicine and Science, CHU de ToulouseToulouseFrance
| | - Jean‐Christophe Pagès
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- UFR Santé, Département Médecine, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
| | - Anne Galinier
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- UFR Santé, Département Médecine, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
| | - Sylvain Cussat‐Blanc
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
- Artificial and Natural Intelligence Toulouse Institute ANITIToulouseFrance
| | - Felix Furger
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on AgingNIHBaltimoreMarylandUSA
| | - Julien Aligon
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
| | | | - Luc Pénicaud
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Paul Monsarrat
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Oral Medicine Department and Hospital of ToulouseToulouse Institute of Oral Medicine and Science, CHU de ToulouseToulouseFrance
- Artificial and Natural Intelligence Toulouse Institute ANITIToulouseFrance
| | - Louis Casteilla
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| |
Collapse
|
93
|
Jiang D, Liao J, Zhao C, Zhao X, Lin R, Yang J, Li Z, Zhou Y, Zhu Y, Liang D, Hu Z, Wang H. Recognizing Pediatric Tuberous Sclerosis Complex Based on Multi-Contrast MRI and Deep Weighted Fusion Network. Bioengineering (Basel) 2023; 10:870. [PMID: 37508897 PMCID: PMC10375986 DOI: 10.3390/bioengineering10070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification performance. Additionally, the proposed DWF-net delivers a superior classification performance compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in diagnosing TSC children.
Collapse
Affiliation(s)
- Dian Jiang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Cailei Zhao
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Xia Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Rongbo Lin
- Department of Emergency, Shenzhen Children’s Hospital, Shenzhen 518000, China;
| | - Jun Yang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhichen Li
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yihang Zhou
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong 999077, China
| | - Yanjie Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Dong Liang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; (D.J.); (J.Y.); (Z.L.); (Y.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Zhanqi Hu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen 518000, China; (J.L.); (X.Z.)
| | - Haifeng Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
94
|
Wilmskoetter J, Busby N, He X, Caciagli L, Roth R, Kristinsson S, Davis KA, Rorden C, Bassett DS, Fridriksson J, Bonilha L. Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity. Commun Biol 2023; 6:727. [PMID: 37452209 PMCID: PMC10349039 DOI: 10.1038/s42003-023-05119-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.
Collapse
Affiliation(s)
- Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Beijing, China
| | - Lorenzo Caciagli
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, New Mexico, NM, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
95
|
Leonardsen EH, Vidal-Piñeiro D, Roe JM, Frei O, Shadrin AA, Iakunchykova O, de Lange AMG, Kaufmann T, Taschler B, Smith SM, Andreassen OA, Wolfers T, Westlye LT, Wang Y. Genetic architecture of brain age and its causal relations with brain and mental disorders. Mol Psychiatry 2023; 28:3111-3120. [PMID: 37165155 PMCID: PMC10615751 DOI: 10.1038/s41380-023-02087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.
Collapse
Affiliation(s)
- Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, 0317, Oslo, Norway
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1015, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, OX1 2JD, Oxford, UK
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72074, Tübingen, Germany
| | - Bernd Taschler
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
- Department of Psychology, University of Oslo, 0317, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72074, Tübingen, Germany
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
96
|
Korbmacher M, de Lange AM, van der Meer D, Beck D, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain-wide associations between white matter and age highlight the role of fornix microstructure in brain ageing. Hum Brain Mapp 2023; 44:4101-4119. [PMID: 37195079 PMCID: PMC10258541 DOI: 10.1002/hbm.26333] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Unveiling the details of white matter (WM) maturation throughout ageing is a fundamental question for understanding the ageing brain. In an extensive comparison of brain age predictions and age-associations of WM features from different diffusion approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI) data across midlife and older age (N = 35,749, 44.6-82.8 years of age). Conventional and advanced dMRI approaches were consistent in predicting brain age. WM-age associations indicate a steady microstructure degeneration with increasing age from midlife to older ages. Brain age was estimated best when combining diffusion approaches, showing different aspects of WM contributing to brain age. Fornix was found as the central region for brain age predictions across diffusion approaches in complement to forceps minor as another important region. These regions exhibited a general pattern of positive associations with age for intra axonal water fractions, axial, radial diffusivities, and negative relationships with age for mean diffusivities, fractional anisotropy, kurtosis. We encourage the application of multiple dMRI approaches for detailed insights into WM, and the further investigation of fornix and forceps as potential biomarkers of brain age and ageing.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
| | - Ann Marie de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
- LREN, Centre for Research in Neurosciences–Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtNetherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of Psychiatric Research, Diakonhjemmet HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Eli Eikefjord
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
| | - Arvid Lundervold
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Mohn Medical Imaging and Visualisation Center (MMIV)BergenNorway
- Department of RadiologyHaukeland University HospitalBergenNorway
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ivan I. Maximov
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- NORMENT Centre for Psychosis Research, Division of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
| |
Collapse
|
97
|
Salignon J, Faridani OR, Miliotis T, Janssens GE, Chen P, Zarrouki B, Sandberg R, Davidsson P, Riedel CG. Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis. Aging (Albany NY) 2023; 15:5240-5265. [PMID: 37341993 PMCID: PMC10333066 DOI: 10.18632/aging.204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R2 = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.
Collapse
Affiliation(s)
- Jérôme Salignon
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| | - Omid R. Faridani
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
- Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Tasso Miliotis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Georges E. Janssens
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
| | - Ping Chen
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rickard Sandberg
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
- Department of Cellular and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Solna 17165, Sweden
| | - Pia Davidsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian G. Riedel
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
| |
Collapse
|
98
|
Brier MR, Li Z, Ly M, Karim HT, Liang L, Du W, McCarthy JE, Cross AH, Benzinger TLS, Naismith RT, Chahin S. "Brain age" predicts disability accumulation in multiple sclerosis. Ann Clin Transl Neurol 2023; 10:990-1001. [PMID: 37119507 PMCID: PMC10270248 DOI: 10.1002/acn3.51782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/01/2023] Open
Abstract
OBJECTIVE Neurodegenerative conditions often manifest radiologically with the appearance of premature aging. Multiple sclerosis (MS) biomarkers related to lesion burden are well developed, but measures of neurodegeneration are less well-developed. The appearance of premature aging quantified by machine learning applied to structural MRI assesses neurodegenerative pathology. We assess the explanatory and predictive power of "brain age" analysis on disability in MS using a large, real-world dataset. METHODS Brain age analysis is predicated on the over-estimation of predicted brain age in patients with more advanced pathology. We compared the performance of three brain age algorithms in a large, longitudinal dataset (>13,000 imaging sessions from >6,000 individual MS patients). Effects of MS, MS disease course, disability, lesion burden, and DMT efficacy were assessed using linear mixed effects models. RESULTS MS was associated with advanced predicted brain age cross-sectionally and accelerated brain aging longitudinally in all techniques. While MS disease course (relapsing vs. progressive) did contribute to advanced brain age, disability was the primary correlate of advanced brain age. We found that advanced brain age at study enrollment predicted more disability accumulation longitudinally. Lastly, a more youthful appearing brain (predicted brain age less than actual age) was associated with decreased disability. INTERPRETATION Brain age is a technically tractable and clinically relevant biomarker of disease pathology that correlates with and predicts increasing disability in MS. Advanced brain age predicts future disability accumulation.
Collapse
Affiliation(s)
- Matthew R. Brier
- Department of NeurologyWashington University in St. LouisSt LouisMissouriUSA
| | - Zhuocheng Li
- Department of NeurologyWashington University in St. LouisSt LouisMissouriUSA
| | - Maria Ly
- Mallinckrodt Institute of RadiologyWashington University in St. LouisSt LouisMissouriUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Helmet T. Karim
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Leda Liang
- Department of Mathematics and StatisticsWashington University in St. LouisSt LouisMissouriUSA
| | - Weixin Du
- Department of Mathematics and StatisticsWashington University in St. LouisSt LouisMissouriUSA
| | - John E. McCarthy
- Department of Mathematics and StatisticsWashington University in St. LouisSt LouisMissouriUSA
| | - Anne H. Cross
- Department of NeurologyWashington University in St. LouisSt LouisMissouriUSA
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University in St. LouisSt LouisMissouriUSA
| | - Robert T. Naismith
- Department of NeurologyWashington University in St. LouisSt LouisMissouriUSA
| | - Salim Chahin
- Department of NeurologyWashington University in St. LouisSt LouisMissouriUSA
| |
Collapse
|
99
|
Wang H, Treder MS, Marshall D, Jones DK, Li Y. A Skewed Loss Function for Correcting Predictive Bias in Brain Age Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1577-1589. [PMID: 37015392 PMCID: PMC7615262 DOI: 10.1109/tmi.2022.3231730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/18/2022] [Indexed: 06/02/2023]
Abstract
In neuroimaging, the difference between predicted brain age and chronological age, known as brain age delta, has shown its potential as a biomarker related to various pathological phenotypes. There is a frequently observed bias when estimating brain age delta using regression models. This bias manifests as an overestimation of brain age for young participants and an underestimation of brain age for older participants. Therefore, the brain age delta is negatively correlated with chronological age, which can be problematic when evaluating relationships between brain age delta and other age-associated variables. This paper proposes a novel bias correction method for regression models by introducing a skewed loss function to replace the normal symmetric loss function. The regression model then behaves differently depending on whether it makes overestimations or underestimations. Our approach works with any type of MR image and no specific preprocessing is required, as long as the image is sensitive to age-related changes. The proposed approach has been validated using three classic deep learning models, namely ResNet, VGG, and GoogleNet on publicly available neuroimaging aging datasets. It shows flexibility across different model architectures and different choices of hyperparameters. The corrected brain age delta from our approach then has no linear relationship with chronological age and achieves higher predictive accuracy than a commonly-used two-stage approach.
Collapse
Affiliation(s)
- Hanzhi Wang
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - Matthias S. Treder
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - David Marshall
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff UniversityCF24 4HQCardiffU.K
| | - Yuhua Li
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| |
Collapse
|
100
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|