51
|
Zamboni S, D'Ambrosio A, Margutti P. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2023; 71:104554. [PMID: 36842311 DOI: 10.1016/j.msard.2023.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous family of extracellular structures bounded by a phospholipid bilayer, released by all cell types in various biological fluids, such as blood and cerebrospinal fluid (CSF), playing important roles in intercellular communication, both locally and systemically. EVs carry and deliver a variety of bioactive molecules (proteins, nucleic acids, lipids and metabolites), conferring epigenetic and phenotypic changes to the recipient cells and thus resulting as important mediators of both homeostasis and pathogenesis. In neurological diseases, such as multiple sclerosis (MS), the EV ability to cross Blood-Brain Barrier (BBB), moving from central nervous system (CNS) to the peripheral circulation and vice versa, has increased the interest in EV study in the neurological field. In the present review, we will provide an overview of the recent advances made in understanding the pathogenic role of EVs regarding the immune response, the BBB dysfunction and the CNS inflammatory processes.
Collapse
Affiliation(s)
- Silvia Zamboni
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
52
|
Pan L, Trimarco A, Zhang AJ, Fujimori K, Urade Y, Sun LO, Taveggia C, Zhang Y. Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination. eLife 2023; 12:e77441. [PMID: 36779701 PMCID: PMC9946447 DOI: 10.7554/elife.77441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.
Collapse
Affiliation(s)
- Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Amelia Trimarco
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Alice J Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of TokyoFukushimaJapan
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Carla Taveggia
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
53
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
54
|
Elias AE, Nuñez TA, Kun B, Kreiling JA. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data. J Genet Genomics 2023; 50:108-121. [PMID: 36371075 PMCID: PMC9974815 DOI: 10.1016/j.jgg.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Single-nucleus RNA-sequencing technology has revolutionized understanding of nuanced changes in gene expression between cell types within tissues. Unfortunately, our understanding of regulatory RNAs, such as microRNAs (miRNAs), is limited through both single-cell and single-nucleus techniques due to the short length of miRNAs in the cytoplasm and the incomplete reference of longer primary miRNA (pri-miRNA) transcripts in the nucleus. We build a custom reference to align and count pri-miRNA sequences in single-nucleus data. Using young and aged subventricular zone (SVZ) nuclei, we show differential expression of pri-miRNAs targeting genes involved in neural stem cells (NSC) differentiation in the aged SVZ. Furthermore, using wild-type and 5XFAD mouse model cortex nuclei, to validate the use of primiReference, we find cell-type-specific expression of pri-miRNAs known to be involved in Alzheimer's disease (AD). pri-miRNAs likely contribute to NSC dysregulation with age and AD pathology. primiReference is paramount in capturing a global profile of gene expression and regulation in single-nucleus data and can provide key insights into cell-type-specific expression of pri-miRNAs, paving the way for future studies of regulation and pathway dysregulation. By looking at pri-miRNA abundance and transcriptional differences, regulation of gene expression by miRNAs in disease and aging can be further explored.
Collapse
Affiliation(s)
- Amy E Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Thomas A Nuñez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Bianca Kun
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
55
|
Hasan M, Lei Z, Akter M, Iqbal Z, Usaila F, Ramkrishnan AS, Li Y. Chemogenetic activation of astrocytes promotes remyelination and restores cognitive deficits in visceral hypersensitive rats. iScience 2023; 26:105840. [PMID: 36619970 PMCID: PMC9812719 DOI: 10.1016/j.isci.2022.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Using a well-established chronic visceral hypersensitivity (VH) rat model, we characterized the decrease of myelin basic protein, reduced number of mature oligodendrocytes (OLs), and hypomyelination in the anterior cingulate cortex (ACC). The results of rat gambling test showed impaired decision-making, and the results of electrophysiological studies showed desynchronization in the ACC to basolateral amygdala (BLA) neural circuitry. Astrocytes release various factors that modulate oligodendrocyte progenitor cell proliferation and myelination. Astrocytic Gq-modulation through expression of hM3Dq facilitated oligodendrocyte progenitor cell proliferation and OL differentiation, and enhanced ACC myelination in VH rats. Activating astrocytic Gq rescued impaired decision-making and desynchronization in ACC-BLA. These data indicate that ACC hypomyelination is an important component of impaired decision-making and network desynchronization in VH. Astrocytic Gq activity plays a significant role in oligodendrocyte myelination and decision-making behavior in VH. Insights from these studies have potential for interventions in myelin-related diseases such as chronic pain-associated cognitive disorders.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Mastura Akter
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Faeeqa Usaila
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
56
|
van den Oord EJCG, Xie LY, Zhao M, Aberg KA, Clark SL. A single-nucleus transcriptomics study of alcohol use disorder in the nucleus accumbens. Addict Biol 2023; 28:e13250. [PMID: 36577731 DOI: 10.1111/adb.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/14/2022]
Abstract
Gene expression studies offer promising opportunities to better understand the processes underlying alcohol use disorder (AUD). As cell types differ in their function, gene expression profiles will typically vary across cell types. When studying bulk tissue, failure to account for this cellular diversity has a detrimental impact on the ability to detect disease associations. We therefore assayed the transcriptomes of 32,531 individual nuclei extracted from the nucleus accumbens (NAc) of nine donors with AUD and nine controls (72% male). Our study identified 17 clearly delineated cell types. We detected 26 transcriptome-wide significant differentially expressed genes (DEGs) that mainly involved medium spiny neurons with both D1-type and D2-type dopamine receptors, microglia (MGL) and oligodendrocytes. A higher than expected number of DEGs replicated in an existing single nucleus gene expression study of alcohol dependence in the prefrontal cortex (enrichment ratio 1.91, p value 0.019) with two genes remaining significant after a Bonferroni correction. Our most compelling result involved CD53 in MGL that replicated in the same cell type in the prefrontal cortex and was previously implicated in studies of DNA methylation, bulk gene expression and genetic variants. Several DEGs were previously reported to be associated with AUD (e.g., PER1 and MGAT5). The DEGs for MSN.3 seemed involved in neurodegeneration, disruption of circadian rhythms, alterations in glucose metabolism and changes in synaptic plasticity. For MGL, the DEGs implicated neuroinflammation and immune-related processes and for OLI, disruptions in myelination. This identification of the specific cell-types from which the association signals originate will be key for designing proper follow-up experiments and, eventually, novel clinical interventions.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
57
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
58
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
59
|
Barish S, Senturk M, Schoch K, Minogue AL, Lopergolo D, Fallerini C, Harland J, Seemann JH, Stong N, Kranz PG, Kansagra S, Mikati MA, Jasien J, El-Dairi M, Galluzzi P, Ariani F, Renieri A, Mari F, Wangler MF, Arur S, Jiang YH, Yamamoto S, Shashi V, Bellen HJ. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Hum Mol Genet 2022; 31:2934-2950. [PMID: 35405010 PMCID: PMC9433733 DOI: 10.1093/hmg/ddac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mumine Senturk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diego Lopergolo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
| | - Jake Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jacob H Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke Health, Durham, NC 27710, USA
| | - Paolo Galluzzi
- Department of Medical Genetics, NeuroImaging and NeuroInterventional Unit, Azienda Ospedaliera e Universitaria, Senese, Siena 53100, Italy
| | - Francesca Ariani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong-Hui Jiang
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Yale School of Medicine, New Haven, CT 06510, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
60
|
He L, Wei T, Huang Y, Zhang X, Zhu D, Liu H, Wang Z. miR-214-3p Deficiency Enhances Caspase-1-Dependent Pyroptosis of Microglia in White Matter Injury. J Immunol Res 2022; 2022:1642896. [PMID: 39262408 PMCID: PMC11390193 DOI: 10.1155/2022/1642896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 09/13/2024] Open
Abstract
White matter injury (WMI) is the most frequent impairment of neurodevelopment in preterm infants. Here, we report that the caspase-1 inflammasome is abundantly activated in the microglia of WMI mice and results in increased pyroptosis of microglia. Pharmacology inhibition of caspase-1 cleavage alleviated the pathogenesis of WMI mice. The expression of microRNA miR-214-3p was largely reduced in the microglia of WMI mice compared to controls. Compromised expression of miR-214-3p on microglia gives rise to the inflammasome activation and microglial pyroptosis. Treatment with miR-214-3p agomir is sufficient to relieve the white matter lesion and demyelination in WMI mice. miR-214-3p is able to bind to the 3' region of the NLRP-3 inflammasome compartment NEK7, preventing the transcription of NEK7 mRNA. As a result, in WMI mice, the lack of miR-214-3p leads to the accumulation of NEK7 which supports NLRP 3 inflammasome activation, microglial pyroptosis, and white matter pathogenesis.
Collapse
Affiliation(s)
- Liufang He
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Tingyan Wei
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Yong Huang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Xueli Zhang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Dongbo Zhu
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| | - Huazhen Liu
- Section of Immunology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Zhangxing Wang
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518190, China
| |
Collapse
|
61
|
MINUTTI-ZANELLA C, BOJALIL-ÁLVAREZ L, GARCÍA-VILLASEÑOR E, LÓPEZ-MARTÍNEZ B, PÉREZ-TURRENT M, MURRIETA-ÁLVAREZ I, RUIZ-DELGADO GJ, ARGÜELLES GJRUIZ. miRNAs in multiple sclerosis: A clinical approach. Mult Scler Relat Disord 2022; 63:103835. [DOI: 10.1016/j.msard.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
|
62
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
63
|
Zhao CS, Liu DX, Fan YH, Wu JK. LncRNA GAS5 promotes epilepsy progression through the epigenetic repression of miR-219, in turn affecting CaMKIIγ/NMDAR pathway. J Neurogenet 2022; 36:32-42. [PMID: 35642561 DOI: 10.1080/01677063.2022.2067536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been widely reported that dysregulated long-chain noncoding RNAs (lncRNAs) are closely associated with epilepsy. This study aimed to probe the function of lncRNA growth arrest-specific 5 (GAS5), microRNA (miR)-219 and Calmodulin-dependent protein kinase II (CaMKII)γ/N-methyl-D-aspartate receptor (NMDAR) pathway in epilepsy. Epileptic cell and animal models were constructed using magnesium deficiency treatment and diazepam injection, respectively. GAS5 and miR-219 expressions in epileptic cell and animal models were determined using qRT-PCR assay. The protein levels of CaMKIIγ, NMDAR and apoptosis-related proteins levels were assessed by western blot. Cell counting kit-8 (CCK-8) assay was employed to determine cell proliferation. Besides, TNFα, IL-1β, IL-6 and IL-8 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Furthermore, cell apoptosis was evaluated using TUNEL staining and flow cytometric analysis. Finally, the binding relationship between GAS5 and EZH2 was verified using RIP and ChIP assay. Our results revealed that GAS5 was markedly upregulated in epileptic cell and animal models, while miR-219 was down-regulated. GAS5 knockdown dramatically increased cell proliferation of epileptic cells, whereas suppressed inflammation and the apoptosis. Furthermore, our results showed that GAS5 epigenetically suppressed transcriptional miR-219 expression via binding to EZH2. miR-219 mimics significantly enhanced cell proliferation of epileptic cells, while inhibited inflammation and the apoptosis, which was neutralized by CaMKIIγ overexpression. Finally, miR-219 inhibition reversed the effects of GAS5 silence on epileptic cells, which was eliminated by CaMKIIγ inhibition. In conclusion, GAS5 affected inflammatory response and cell apoptosis of epilepsy via inhibiting miR-219 and further regulating CaMKIIγ/NMDAR pathway (See graphic summary in Supplementary Material).
Collapse
Affiliation(s)
- Chen-Sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Dong-Xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Yan-Huai Fan
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Jian-Kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| |
Collapse
|
64
|
Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res 2022; 10:30. [PMID: 35550636 PMCID: PMC9102350 DOI: 10.1186/s40364-022-00374-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
65
|
Ngo C, Kothary R. MicroRNAs in oligodendrocyte development and remyelination. J Neurochem 2022; 162:310-321. [PMID: 35536759 DOI: 10.1111/jnc.15618] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Oligodendrocytes are the glial cells responsible for the formation of myelin around axons of the central nervous system (CNS). Myelin is an insulating layer that allows electrical impulses to transmit quickly and efficiently along neurons. If myelin is damaged, as in chronic demyelinating disorders such as multiple sclerosis (MS), these impulses slow down. Remyelination by oligodendrocytes is often ineffective in MS, in part because of the failure of oligodendrocyte precursor cells (OPCs) to differentiate into mature, myelinating oligodendrocytes. The process of oligodendrocyte differentiation is tightly controlled by several regulatory networks involving transcription factors, intracellular signaling pathways, and extrinsic cues. Understanding the factors that regulate oligodendrocyte development is essential for the discovery of new therapeutic strategies capable of enhancing remyelination. Over the past decade, microRNAs (miRNAs) have emerged as key regulators of oligodendrocyte development, exerting effects on cell specification, proliferation, differentiation, and myelination. This article will review the role of miRNAs on oligodendrocyte biology and discuss their potential as promising therapeutic tools for remyelination.
Collapse
Affiliation(s)
- Clarissa Ngo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Program in Biomedical Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
66
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
67
|
Antonaci M, Wheeler GN. MicroRNAs in neural crest development and neurocristopathies. Biochem Soc Trans 2022; 50:965-974. [PMID: 35383827 PMCID: PMC9162459 DOI: 10.1042/bst20210828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
The neural crest (NC) is a vertebrate-specific migratory population of multipotent stem cells that originate during late gastrulation in the region between the neural and non-neural ectoderm. This population of cells give rise to a range of derivatives, such as melanocytes, neurons, chondrocytes, chromaffin cells, and osteoblasts. Because of this, failure of NC development can cause a variety of pathologies, often syndromic, that are globally called neurocristopathies. Many genes are known to be involved in NC development, but not all of them have been identified. In recent years, attention has moved from protein-coding genes to non-coding genes, such as microRNAs (miRNA). There is increasing evidence that these non-coding RNAs are playing roles during embryogenesis by regulating the expression of protein-coding genes. In this review, we give an introduction to miRNAs in general and then focus on some miRNAs that may be involved in NC development and neurocristopathies. This new direction of research will give geneticists, clinicians, and molecular biologists more tools to help patients affected by neurocristopathies, as well as broadening our understanding of NC biology.
Collapse
Affiliation(s)
- Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR7 7TJ, U.K
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR7 7TJ, U.K
| |
Collapse
|
68
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
69
|
Bu Shen Yi Sui Capsules Promote Remyelination by Regulating MicroRNA-219 and MicroRNA-338 in Exosomes to Promote Oligodendrocyte Precursor Cell Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3341481. [PMID: 35463062 PMCID: PMC9020954 DOI: 10.1155/2022/3341481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Remyelination is a refractory feature of demyelinating diseases such as multiple sclerosis (MS). Studies have shown that promoting oligodendrocyte precursor cell (OPC) differentiation, which cannot be achieved by currently available therapeutic agents, is the key to enhancing remyelination. Bu Shen Yi Sui capsule (BSYSC) is a traditional Chinese herbal medicine over many years of clinical practice. We have found that BSYSC can effectively treat MS. In this study, the effects of BSYSC in promoting OPCs differentiation and remyelination were assessed using an experimental autoimmune encephalomyelitis (EAE) model in vivo and cultured OPCs in vitro. The results showed that BSYSC reduced clinical function scores and increased neuroprotection. The expression of platelet-derived growth factor receptor α (PDGFR-α) was decreased and the level of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was increased in the brains and spinal cords of mice as well as in OPCs after treatment with BSYSC. We further found that BSYSC elevated the expression of miR-219 or miR-338 in the serum exosomes of mice with EAE, thereby suppressing the expression of Sox6, Lingo1, and Hes5, which negatively regulate OPCs differentiation. Therefore, serum exosomes of BSYSC-treated mice (exos-BSYSC) were extracted and administered to OPCs in which miR-219 or miR-338 expression was knocked down by adenovirus, and the results showed that Sox6, Lingo1, and Hes5 expression was downregulated, MBP expression was upregulated, OPCs differentiation was increased, and the ability of OPCs to wrap around neuronal axons was improved. In conclusion, BSYSC may exert clinically relevant effects by regulating microRNA (miR) levels in exosomes and thus promoting the differentiation and maturation of OPCs.
Collapse
|
70
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
71
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
72
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
73
|
Beyrampour-Basmenj H, Rahmati M, Moghamddam MP, Kalan ME, Alivand M, Aliyari-Serej Z, Nastarin P, Omrani M, Khodakarimi S, Ebrahimi-Kalan A. Association between miRNAs expression and multiple sclerosis pathogenesis: A novel therapeutic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
74
|
Zhou Z, Lin T, Liu Z, Ding Q, Ma Z, Li W, Xie F, Lan Y, Feng Y. IL-17A Mediates Demyelination by Activating A1 Astrocytes via SOCS3 During Angiostrongylus cantonensis Infection. Front Immunol 2022; 13:845011. [PMID: 35296090 PMCID: PMC8918566 DOI: 10.3389/fimmu.2022.845011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Demyelinating disease of the central nervous system is one of the most common neurological diseases and effective treatment is still under in-depth research. Our previous study showed that Angiostrongylus cantonensis infection can induce demyelination injury in mouse brains and IL-17A expression was shown to be significantly increased during this process. Moreover, we found that IL-17A inhibition attenuated the demyelination caused by A. cantonensis infection. However, the underlying mechanisms have not yet been fully elucidated. Methods IL-17A neutralizing antibodies were injected into A. cantonensis infected mice to decrease IL-17A levels. The activation of glial cells in the brain and the expression of cell markers were detected by a variety of methods, including real-time quantitative PCR, western blotting, and immunofluorescence staining. The relationship between IL-17A and astrocyte activation was further identified by in vitro experiments. The role of SOCS3 in the IL-17A stimulating process was determined using RNA-seq data collection of infected mice and the siRNA interference method. Results Demyelination of the corpus callosum was relieved after administration of IL-17A neutralizing antibody and this was accompanied by decreased activation of A1 type astrocytes around this region. The expression of SOCS3 was attenuated and activation of astrocytes by IL-17A was mediated by the IL-17RA/STAT3/SOCS3 pathway. IL-17A not only directly damaged oligodendrocytes but also indirectly damaged oligodendrocytes through A1 astrocyte mediation. Specific siRNA inhibition of IL-17A-inducible SOCS3 in astrocytes alleviated their damaging effects on oligodendrocytes. Conclusion IL-17A plays an important role in demyelination induced by A. cantonensis infection via the IL-17RA/STAT3/SOCS3 pathway in A1-type astrocytes, indicating that specific blockage of IL-17A and SOCS3 activity could be a therapeutic strategy for neuroinflammatory demyelinating diseases associated with astrocyte activation.
Collapse
Affiliation(s)
- Zongpu Zhou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhen Liu
- Department of Blood Transfusion, Guangzhou First People’s Hospital, Guangzhou, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanqi Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fukang Xie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yue Lan, ; Ying Feng,
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yue Lan, ; Ying Feng,
| |
Collapse
|
75
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
76
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
77
|
Dizon MLV, deRegnier RAO, Weiner SJ, Varner MW, Rouse DJ, Costantine MM, Wapner RJ, Thorp JM, Blackwell SC, Ayala NK, Saad AF, Caritis SN. Differential Gene Expression in Cord Blood of Infants Diagnosed with Cerebral Palsy: A Pilot Analysis of the Beneficial Effects of Antenatal Magnesium Cohort. Dev Neurosci 2022; 44:412-425. [PMID: 35705018 PMCID: PMC9474611 DOI: 10.1159/000525483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The Beneficial Effects of Antenatal Magnesium clinical trial was conducted between 1997 and 2007, and demonstrated a significant reduction in cerebral palsy (CP) in preterm infants who were exposed to peripartum magnesium sulfate (MgSO4). However, the mechanism by which MgSO4 confers neuroprotection remains incompletely understood. Cord blood samples from this study were interrogated during an era when next-generation sequencing was not widely accessible and few gene expression differences or biomarkers were identified between treatment groups. Our goal was to use bulk RNA deep sequencing to identify differentially expressed genes comparing the following four groups: newborns who ultimately developed CP treated with MgSO4 or placebo, and controls (newborns who ultimately did not develop CP) treated with MgSO4 or placebo. Those who died after birth were excluded. We found that MgSO4 upregulated expression of SCN5A only in the control group, with no change in gene expression in cord blood of newborns who ultimately developed CP. Regardless of MgSO4 exposure, expression of NPBWR1 and FTO was upregulated in cord blood of newborns who ultimately developed CP compared with controls. These data support that MgSO4 may not exert its neuroprotective effect through changes in gene expression. Moreover, NPBWR1 and FTO may be useful as biomarkers and may suggest new mechanistic pathways to pursue in understanding the pathogenesis of CP. The small number of cases ultimately available for this secondary analysis, with male predominance and mild CP phenotype, is a limitation of the study. In addition, differentially expressed genes were not validated by qRT-PCR.
Collapse
Affiliation(s)
- Maria L V Dizon
- The Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | | | - Steven J Weiner
- The George Washington University Biostatistics Center, Washington, District of Columbia, USA
| | - Michael W Varner
- The Departments of Obstetrics and Gynecology of the University of Utah, Salt Lake City, Utah, USA
| | - Dwight J Rouse
- The Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maged M Costantine
- The Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Ronald J Wapner
- The Department of Obstetrics and Gynecology, Thomas Jefferson University and Drexel University, Philadelphia, Pennsylvania, USA
- The Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - John M Thorp
- The Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean C Blackwell
- University of Texas Health Science Center at Houston-Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Nina K Ayala
- The Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island, USA
| | - Antonio F Saad
- The Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steve N Caritis
- The Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
78
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
80
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
81
|
Yousuf A, Qurashi A. Non-coding RNAs in the Pathogenesis of Multiple Sclerosis. Front Genet 2021; 12:717922. [PMID: 34659340 PMCID: PMC8514772 DOI: 10.3389/fgene.2021.717922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is an early onset chronic neurological condition in adults characterized by inflammation, demyelination, gliosis, and axonal loss in the central nervous system. The pathological cause of MS is complex and includes both genetic and environmental factors. Non-protein-coding RNAs (ncRNAs), specifically miRNAs and lncRNAs, are important regulators of various biological processes. Over the past decade, many studies have investigated both miRNAs and lncRNAs in patients with MS. Since then, insightful knowledge has been gained in this field. Here, we review the role of miRNAs and lncRNAs in MS pathogenesis and discuss their implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
82
|
Cardona HJ, Somasundaram A, Crabtree DM, Gadd SL, Becher OJ. Prenatal overexpression of platelet-derived growth factor receptor A results in central nervous system hypomyelination. Brain Behav 2021; 11:e2332. [PMID: 34480532 PMCID: PMC8553322 DOI: 10.1002/brb3.2332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signaling, through the ligand PDGF-A and its receptor PDGFRA, is important for the growth and maintenance of oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). PDGFRA signaling is downregulated prior to OPC differentiation into mature myelinating oligodendrocytes. By contrast, PDGFRA is often genetically amplified or mutated in many types of gliomas, including diffuse midline glioma (DMG) where OPCs are considered the most likely cell-of-origin. The cellular and molecular changes that occur in OPCs in response to unregulated PDGFRA expression, however, are not known. METHODS Here, we created a conditional knock-in (KI) mouse that overexpresses wild type (WT) human PDGFRA (hPDGFRA) in prenatal Olig2-expressing progenitors, and examined in vivo cellular and molecular consequences. RESULTS The KI mice exhibited stunted growth, ataxia, and a severe loss of myelination in the brain and spinal cord. When combined with the loss of p53, a tumor suppressor gene whose activity is decreased in DMG, the KI mice failed to develop tumors but still exhibited hypomyelination. RNA-sequencing analysis revealed decreased myelination gene signatures, indicating a defect in oligodendroglial development. Mice overexpressing PDGFRA in prenatal GFAP-expressing progenitors, which give rise to a broader lineage of cells than Olig2-progenitors, also developed myelination defects. CONCLUSION Our results suggest that embryonic overexpression of hPDGFRA in Olig2- or GFAP-progenitors is deleterious to OPC development and leads to CNS hypomyelination.
Collapse
Affiliation(s)
- Herminio Joey Cardona
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Agila Somasundaram
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Donna M Crabtree
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA.,Office of Clinical Research, Duke University Medical Center, Durham, NC, USA
| | - Samantha L Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Oren J Becher
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
83
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
84
|
Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Nanosystems and exosomes as future approaches in treating multiple sclerosis. Eur J Neurosci 2021; 54:7377-7404. [PMID: 34561918 DOI: 10.1111/ejn.15478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system which leads to neurological dysfunctions and severe disabilities. MS pathology is characterised by damage of the blood-brain barrier and infiltration of autoreactive T cells that overactivate glial cells, thereby initiating neuroinflammation accompanied by the formation of demyelinating plaques and neurodegeneration. Clinical deficits in this multifactorial disease depend on the progression of myelin loss, the stage of inflammation, the status of axons and the activity of oligodendrocyte precursor cells (OPCs). Despite significant progress in the treatment of MS, current therapies remain limited and new approaches are highly desirable. Nanosystems based on liposomes and nanoparticles are among some of the more noteworthy therapeutic strategies being investigated. Applications of nanosystems alone or as drug carriers in animal models of MS have been found to successfully alleviate the symptoms of the disease and exert anti-inflammatory potential. Exosomes are a specific type of nanosystem based on nanometre-sized extracellular vesicles released by different cells which exhibit important healing features. Exosomes contain an array of anti-inflammatory and neuroprotective agents which may contribute to modulation of the immune system as well as promoting remyelination and tissue repair. In this review, opportunities to use nanosystems against progression of MS will be discussed in context of cell-specific pathologies associated with MS.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
85
|
Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun 2021; 12:5091. [PMID: 34429415 PMCID: PMC8385008 DOI: 10.1038/s41467-021-25353-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC). Ablation of Tet1 results in stage-dependent defects in oligodendrocyte (OL) development and myelination in the mouse brain. The mice lacking Tet1 in the oligodendrocyte lineage develop behavioral deficiency. We also show that TET1 is required for remyelination in adulthood. Transcriptomic, genomic occupancy, and 5-hydroxymethylcytosine (5hmC) profiling reveal a critical TET1-regulated epigenetic program for oligodendrocyte differentiation that includes genes associated with myelination, cell division, and calcium transport. Tet1-deficient OPCs exhibit reduced calcium activity, increasing calcium activity rescues the differentiation defects in vitro. Deletion of a TET1-5hmC target gene, Itpr2, impairs the onset of OPC differentiation. Together, our results suggest that stage-specific TET1-mediated epigenetic programming and intracellular signaling are important for proper myelination and remyelination in mice.
Collapse
|
86
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
87
|
Pusic KM, Kraig RP, Pusic AD. IFNγ-stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes. PLoS One 2021; 16:e0255778. [PMID: 34388189 PMCID: PMC8363003 DOI: 10.1371/journal.pone.0255778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles secreted from IFNγ-stimulated rat dendritic cells (referred to here as IFNγ-DC-EVs) contain miRNAs which promote myelination (including but not limited to miR-219), and preferentially enter oligodendrocytes in brain slice cultures. IFNγ-DC-EVs also increase myelination when nasally administered to naïve rats. While we can infer that these extracellular vesicles enter the CNS from functional studies, here we demonstrate biodistribution throughout the brain after nasal delivery by way of imaging studies. After nasal administration, Xenolight DiR-labelled IFNγ-DC-EVs were detected 30 minutes later throughout the brain and the cervical spinal cord. We next examined cellular uptake of IFNγ-DC-EVs by transfecting IFNγ-DC-EVs with mCherry mRNA prior to nasal administration. mCherry-positive cells were found along the rostrocaudal axis of the brain to the brainstem. These cells morphologically resembled oligodendrocytes, and indeed cell-specific co-staining for neurons, astrocytes, microglia and oligodendrocytes showed that mcherry positive cells were predominantly oligodendrocytes. This is in keeping with our prior in vitro results showing that IFNγ-DC-EVs are preferentially taken up by oligodendrocytes, and to a lesser extent, microglia. To confirm that IFNγ-DC-EVs delivered cargo to oligodendrocytes, we quantified protein levels of miR-219 mRNA targets expressed in oligodendrocyte lineage cells, and found significantly reduced expression. Finally, we compared intranasal versus intravenous delivery of Xenolight DiR-labelled IFNγ-DC-EVs. Though labelled IFNγ-DC-EVs entered the CNS via both routes, we found that nasal delivery more specifically targeted the CNS with less accumulation in the liver. Taken together, these data show that intranasal administration is an effective route for delivery of IFNγ-DC-EVs to the CNS, and provides additional support for their development as an EV-based neurotherapeutic that, for the first time, targets oligodendrocytes.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
88
|
Mizera J, Kazek G, Niedzielska-Andres E, Pomierny-Chamiolo L. Maternal high-sugar diet results in NMDA receptors abnormalities and cognitive impairment in rat offspring. FASEB J 2021; 35:e21547. [PMID: 33855764 DOI: 10.1096/fj.202002691r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Cognitive impairment affects patients suffering from various neuropsychiatric diseases, which are often accompanied by changes in the glutamatergic system. Epidemiological studies indicate that predispositions to the development of neuropsychiatric diseases may be programmed prenatally. Mother's improper diet during pregnancy and lactation may cause fetal abnormalities and, consequently, predispose to diseases in childhood and even adulthood. Considering the prevalence of obesity in developed countries, it seems important to examine the effects of diet on the behavior and physiology of future generations. We hypothesized that exposure to sugar excess in a maternal diet during pregnancy and lactation would affect memory as the NMDA receptor-related processes. Through the manipulation of the sugar amount in the maternal diet in rats, we assessed its effect on offspring's memory. Then, we evaluated if memory alterations were paralleled by molecular changes in NMDA receptors and related modulatory pathways in the prefrontal cortex and the hippocampus of adolescent and young adult female and male offspring. Behavioral studies have shown sex-related changes like impaired recognition memory in adolescent males and spatial memory in females. Molecular results confirmed an NMDA receptor hypofunction along with subunit composition abnormalities in the medial prefrontal cortex of adolescent offspring. In young adults, GluN2A-containing receptors were dominant in the medial prefrontal cortex, while in the hippocampus the GluN2B subunit contribution was elevated. In conclusion, we demonstrated that a maternal high-sugar diet can affect the memory processes in the offspring by disrupting the NMDA receptor composition and regulation in the medial prefrontal cortex and the hippocampus.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | | | | |
Collapse
|
89
|
Zhang A, Bai Z, Yi W, Hu Z, Hao J. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci Lett 2021; 761:136124. [PMID: 34302891 DOI: 10.1016/j.neulet.2021.136124] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/18/2023]
Abstract
Growing evidence has shown that microRNAs (miRNAs) play crucial roles in the physiopathology of spinal cord injury (SCI). Recent studies have confirmed that miR-338-5p regulates myelination, suggesting a potential role in the treatment of SCI. However, the molecular mechanism of miR-338-5p on SCI is still unknown. Recently, exosomes have emerged as an ideal vector to deliver therapeutic molecules such as miRNAs. Here, we explored the effects of miR-338-5p-overexpressing exosomes derived from bone marrow-derived mesenchymal stromal cells (BMSCs) on SCI. In vivo, a model of contusion SCI in rats was established, and we observed that overexpression of miR-338-5p in exosomes profoundly increased the expression levels of neurofilament protein-M and growth-associated protein-43 and decreased those of myelin-associated glycoprotein and glial fibrillary acidic protein, which provided neuroprotective effects after acute SCI. In an in vitro study, we found that overexpression of miR-338-5p in exosomes repressed cell apoptosis following H2O2-induced oxidative stress injury in PC12 cells. Additionally, we confirmed that cannabinoid receptor 1 (Cnr1) was the target gene of miR-338-5p by dual-luciferase reporter assays and that Rap1 was the downstream gene by the KEGG pathway analysis. We found that miR-338-5p increased cAMP accumulation as a consequence of downregulated expression of the target gene Cnr1, and then, Rap1 was activated by cAMP. Eventually, the activation of the PI3K/Akt pathway attenuated cell apoptosis and promoted neuronal survival by cAMP-mediated Rap1 activation. In brief, these findings showed that exosomes overexpressing miR-338-5p were a promising treatment strategy for SCI.
Collapse
Affiliation(s)
- Anwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, PR China
| | - Weiwei Yi
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China.
| |
Collapse
|
90
|
Brum CB, Paixão-Côrtes VR, Carvalho AM, Martins-Silva T, Carpena MX, Ulguim KF, Luquez KYS, Salatino-Oliveira A, Tovo-Rodrigues L. Genetic variants in miRNAs differentially expressed during brain development and their relevance to psychiatric disorders susceptibility. World J Biol Psychiatry 2021; 22:456-467. [PMID: 33040684 DOI: 10.1080/15622975.2020.1834618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) play an important regulatory role in the expression of genes involved in brain functions during development. Genetic variants in miRNA genes may impact their regulatory function and lead to psychiatric disorders. To evaluate the role of genetic variants in genes of miRNAs differentially expressed during neurodevelopment on autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD). METHODS The miRNAs were identified in the literature. Summary statistics from the most recent genome-wide association studies to date were used to evaluate the association between the selected polymorphisms and each disorder in a look-up approach. In a global analysis, we compared the standardised risk effect of variants in neurodevelopment-related miRNAs with those in the remaining miRNAs from miRBase. RESULTS The global analysis showed that variants in neurodevelopment-related miRNAs had higher risk effects compared to the other miRNAs for SCZ (p = 0.010) and ADHD (p = 0.001). MIR33B, MIR29B2, MIR29C, MIR137, and MIR135A1 were significantly associated with SCZ, while 55.9% of the miRNAs were at least nominally associated with one or more psychiatric disorders (p < 0.05). CONCLUSIONS Genetic variants in neurodevelopment-related miRNAs play an important role in the genetic susceptibility of psychiatric disorders, mainly SCZ and ADHD.
Collapse
Affiliation(s)
- Clarice Brinck Brum
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Thais Martins-Silva
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Angélica Salatino-Oliveira
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.,Human Development and Violence Research Centre, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
91
|
Suster I, Feng Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int J Mol Sci 2021; 22:ijms22136765. [PMID: 34201807 PMCID: PMC8269442 DOI: 10.3390/ijms22136765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.
Collapse
Affiliation(s)
| | - Yue Feng
- Correspondence: ; Tel.: +1-404-727-0351
| |
Collapse
|
92
|
Nazari B, Namjoo Z, Moradi F, Kazemi M, Ebrahimi-Barough S, Sadroddiny E, Ai J. miR-219 overexpressing oligodendrocyte progenitor cells for treating compression spinal cord injury. Metab Brain Dis 2021; 36:1069-1077. [PMID: 33635477 DOI: 10.1007/s11011-021-00701-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) transplantation has been considered a promising treatment for spinal cord injury, according to previous studies. Recent research shed light on the importance of microRNA 219 (miR-219) in oligodendrocyte development, so here miR-219-overexpressing OPCs (miR-219 OPCs) were transplanted in animal models of spinal cord injury to evaluate the impact of miR-219 on oligodendrocyte differentiation and functional recovery in vivo. Our findings demonstrate that transplanted cells were distributed in the tissue sections and contributed to reducing the size of cavity in the injury site. Interestingly, miR-219 promoted OPC differentiation into mature oligodendrocyte expressing MBP in vivo whereas in absence of miR-219, less number of cells differentiated into mature oligodendrocytes. An eight week evaluation using the Basso Beattie Bresnahan (BBB) locomotor test confirmed improvement in functional recovery of hind limbs. Overall, this study demonstrated that miR-219 promoted differentiation and maturation of OPCs after transplantation and can be used in cell therapy of spinal cord injury.
Collapse
Affiliation(s)
- Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansure Kazemi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Han KH, Cho H, Han KR, Mun SK, Kim YK, Park I, Chang M. Role of microRNA‑375‑3p‑mediated regulation in tinnitus development. Int J Mol Med 2021; 48:136. [PMID: 34036397 PMCID: PMC8148091 DOI: 10.3892/ijmm.2021.4969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in the dorsal cochlear nucleus (DCN) following exposure to noise play an important role in the development of tinnitus. As the development of several diseases is known to be associated with microRNAs (miRNAs/miRs), the aim of the present study was to identify the miRNAs that may be implicated in pathogenic changes in the DCN, resulting in tinnitus. A previously developed tinnitus animal model was used for this study. The study consisted of four stages, including identification of candidate miRNAs involved in tinnitus development using miRNA microarray analysis, validation of miRNA expression using reverse transcription-quantitative PCR (RT-qPCR), evaluation of the effects of candidate miRNA overexpression on tinnitus development through injection of a candidate miRNA mimic or mimic negative control, and target prediction of candidate miRNAs using mRNA microarray analysis and western blotting. The miRNA microarray and RT-qPCR analyses revealed that miR-375-3p expression was significantly reduced in the tinnitus group compared with that in the non-tinnitus group. Additionally, miR-375-3p overexpression via injection of miR-375-3p mimic reduced the proportion of animals with persistent tinnitus. Based on mRNA microarray and western blot analyses, connective tissue growth factor (CTG.) was identified as a potential target for miR-375-3p. Thus, it was inferred that CTGF downregulation by miR-375-3p may weaken with the decrease in miRNA expression, and the increased pro-apoptotic activity of CTGF may result in more severe neuronal damage, contributing to tinnitus development. These findings are expected to contribute significantly to the development of a novel therapeutic approach to tinnitus, thereby bringing about a significant breakthrough in the treatment of this potentially debilitating condition.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyeeun Cho
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kyeo-Rye Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Ilyong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, Chungcheongnam-do 16890, Republic of Korea
| | - Munyoung Chang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
94
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
95
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
96
|
Nishiyama A, Serwanski DR, Pfeiffer F. Many roles for oligodendrocyte precursor cells in physiology and pathology. Neuropathology 2021; 41:161-173. [PMID: 33913208 DOI: 10.1111/neup.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) are a fourth resident glial cell population in the mammalian central nervous system. They are evenly distributed throughout the gray and white matter and continue to proliferate and generate new oligodendrocytes (OLs) throughout life. They were understudied until a few decades ago when immunolabeling for NG2 and platelet-derived growth factor receptor alpha revealed cells that are distinct from mature OLs, astrocytes, neurons, and microglia. In this review, we provide a summary of the known properties of OPCs with some historical background, followed by highlights from recent studies that suggest new roles for OPCs in certain pathological conditions.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
97
|
Inamura N, Go S, Watanabe T, Takase H, Takakura N, Nakayama A, Takebayashi H, Matsuda J, Enokido Y. Reduction in miR-219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathol 2021; 31:e12951. [PMID: 33822434 PMCID: PMC8412087 DOI: 10.1111/bpa.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early‐onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso‐derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)‐219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR‐219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR‐219 effectively rescued their cell‐autonomous developmental defects and apoptotic death. miR‐219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR‐219 expression in KD pathogenesis and suggest that miR‐219 has therapeutic potential for treating KD OL pathologies.
Collapse
Affiliation(s)
- Naoko Inamura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurobiochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| |
Collapse
|
98
|
Lizarraga-Valderrama LR, Sheridan GK. Extracellular vesicles and intercellular communication in the central nervous system. FEBS Lett 2021; 595:1391-1410. [PMID: 33728650 DOI: 10.1002/1873-3468.14074] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Neurons and glial cells of the central nervous system (CNS) release extracellular vesicles (EVs) to the interstitial fluid of the brain and spinal cord parenchyma. EVs contain proteins, nucleic acids and lipids that can be taken up by, and modulate the behaviour of, neighbouring recipient cells. The functions of EVs have been extensively studied in the context of neurodegenerative diseases. However, mechanisms involved in EV-mediated neuron-glial communication under physiological conditions or healthy ageing remain unclear. A better understanding of the myriad roles of EVs in CNS homeostasis is essential for the development of novel therapeutics to alleviate and reverse neurological disturbances of ageing. Proteomic studies are beginning to reveal cell type-specific EV cargo signatures that may one day allow us to target specific neuronal or glial cell populations in the treatment of debilitating neurological disorders. This review aims to synthesise the current literature regarding EV-mediated cell-cell communication in the brain, predominantly under physiological conditions.
Collapse
Affiliation(s)
| | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
99
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
100
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|