51
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
52
|
Song S, Shon J, Yang WR, Kang HB, Kim KH, Park JY, Lee S, Baik SY, Lee KR, Park YJ. Short-Term Effects of Weight-Loss Meal Replacement Programs with Various Macronutrient Distributions on Gut Microbiome and Metabolic Parameters: A Pilot Study. Nutrients 2023; 15:4744. [PMID: 38004139 PMCID: PMC10675061 DOI: 10.3390/nu15224744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
It has emerged the gut microbiome is crucially linked to metabolic health and obesity. Macronutrient distribution has been discussed as a key parameter in weight-loss programs, but little is known about its impact on the gut microbiome. We investigated the effects of weight-loss meal replacement programs with different macronutrient ratios on the gut microbiota and metabolic parameters in subjects with overweight and obesity. Three low-calorie meal replacement programs with different ratios of carbohydrates, proteins, and lipids were designed: a balanced diet (Group B, 60:15:30), a high-lipid-low-carbohydrate diet (Group F, 35:20:55), and a protein-enriched diet (Group P, 40:25:35). Sixty overweight or obese participants were provided with the meals twice daily for 3 weeks. In all groups, diet intervention resulted in reduced body weight and BMI. The relative abundance of Bacteroidetes and Firmicutes phyla decreased and increased, respectively, which increased the Firmicutes/Bacteroidetes (F/B) ratio in all subjects, particularly in Groups B and P. Alpha- and beta-diversity were augmented at the phylum level in Group P. In conclusion, short-term interventions with weight-loss meal replacement programs increased butyrate-producing bacteria and the F/B ratio. Moreover, the protein-enriched diet significantly increased alpha- and beta-diversity compared to the balanced diet and the high-lipid-low-carbohydrate diet.
Collapse
Affiliation(s)
- Seungmin Song
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinyoung Shon
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Woo-ri Yang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Han-Bit Kang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Keun-Ha Kim
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Ju-Yeon Park
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Sanghoo Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
| | - Sae Yun Baik
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Kyoung-Ryul Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Yoon Jung Park
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
53
|
Huang Y, Tang J, Cai Z, Qi Y, Jiang S, Ma T, Yue Y, Huang F, Yang H, Ma Y. Alterations in the intestinal microbiota associated with active tuberculosis and latent tuberculosis infection. Heliyon 2023; 9:e22124. [PMID: 38045157 PMCID: PMC10692819 DOI: 10.1016/j.heliyon.2023.e22124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Objectives To study the characteristics of intestinal microbiota at different stages of Mycobacterium tuberculosis infection. Methods Fecal samples of 19 active tuberculosis (ATB) patients, 21 latent tuberculosis infection (LTBI) individuals, and 20 healthy controls (HC) were collected. Gut microbiota of all the participants were analyzed by 16S rDNA sequencing. Clinical information of ATB patients was also collected and analyzed. Results Both ATB and LTBI groups showed significant decreases in microbial diversity and decline of Clostridia. For ATB patients, bacteria within phylum Proteobacteria increased. While for LTBI individuals, genera Prevotella and Rosburia enriched. The abundance of Faecalibacterium, Clostridia and Gammaproteobacteria has the potential to diagnose ATB, with the area under the curve (AUC) of 0.808, 0.784 and 0.717. And Prevotella and Rosburia has the potential to diagnose LTBI, with the AUC of 0.689 and 0.689. Notably, in ATB patients, the relative abundance of Blautia was negatively correlated with the proportions of peripheral T cells and CD8+T cells. And serum direct bilirubin was positively correlated with Bacteroidales, while negatively correlated with Clostridiales in ATB patients. Conclusions The specifically changed bacteria are promising markers for ATB and LTBI diagnosis. Some gut bacteria contribute to anti-MTB immunity through interactions with T cells and bilirubin.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jinhua Tang
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Zheng Cai
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| | - Yun Qi
- Department of Gynecology & Pediatrics, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Shen Jiang
- Department of Gynecology & Pediatrics, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Tingting Ma
- Department of Gynecology & Pediatrics, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Ying Yue
- Department of Gynecology & Pediatrics, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Fang Huang
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Han Yang
- Department of Clinical Laboratory, Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710100, China
| | - Yueyun Ma
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, 100142, China
| |
Collapse
|
54
|
Chu Z, Hu Z, Luo Y, Zhou Y, Yang F, Luo F. Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 65:243-264. [PMID: 37870876 DOI: 10.1080/10408398.2023.2272269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
55
|
Li D, Xia W, Cui X, Zhao M, Huang K, Wang X, Shen J, Chen H, Zhu L. The putatively high-altitude adaptation of macaque monkeys: Evidence from the fecal metabolome and gut microbiome. Evol Appl 2023; 16:1708-1720. [PMID: 38020871 PMCID: PMC10660799 DOI: 10.1111/eva.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Animals living in high-altitude environments, such as the Tibetan Plateau, must face harsh environmental conditions (e.g., hypoxia, cold, and strong UV radiation). These animals' physiological adaptations (e.g., increased red cell production and turnover rate) might also be associated with the gut microbial response. Bilirubin is a component of red blood cell turnover or destruction and is excreted into the intestine and reduced to urobilinoids and/or urobilinogen by gut bacteria. Here, we found that the feces of macaques living in high-altitude regions look significantly browner (with a high concentration of stercobilin, a component from urobilinoids) than those living in low-altitude regions. We also found that gut microbes involved in urobilinogen reduction (e.g., beta-glucuronidase) were enriched in the high-altitude mammal population compared to the low-altitude population. Moreover, the spatial-temporal change in gut microbial function was more profound in the low-altitude macaques than in the high-altitude population, which might be attributed to profound changes in food resources in the low-altitude regions. Therefore, we conclude that a high-altitude environment's stress influences living animals and their symbiotic microbiota.
Collapse
Affiliation(s)
- Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Mei Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Kai Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | | | - Hua Chen
- Mingke BiotechnologyHangzhouChina
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
56
|
Zhang H, Ma X, Xu J, Jin P, Yang L, Pan Y, Yin F, Zhang J, Wang J, Yu D, Wang X, Zhang M, Wang X, Wang D, Sheng J. Serum metabolomics of hyperbilirubinemia and hyperuricemia in the Tibetan plateau has unique characteristics. Sci Rep 2023; 13:12772. [PMID: 37550384 PMCID: PMC10406831 DOI: 10.1038/s41598-023-40027-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Few studies have provided data on the metabolomics characteristics of metabolic diseases such as hyperuricemia and hyperbilirubinemia in the Tibetan plateau. In the current study, we sought to investigate the serum metabolomics characteristics of hyperbilirubinemia and hyperuricemia in the Tibetan plateau, with the aim to provide a basis for further research on their pathogenesis, prevention, and treatment. The study participants were born in low-altitude areas below 1000 m and had no prior experience living in a high-altitude area before entering Golmud, Tibet (average elevation: 3000 m) and Yushu, Qinghai (average elevation: 4200 m). Thirty-four participants with hyperbilirubinemia (18 in Golmud and 16 in Yushu), 24 participants with hyperuricemia, and 22 healthy controls were enrolled. The serum samples of subjects were separated and then sent to a local tertiary hospital for biochemical examination. Serum widely targeted technology, based on the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) platform, was used to detect serum metabolites and differential metabolites. Compared to the healthy controls, hyperbilirubinemia patients from Golmud showed 19 differential metabolites, hyperbilirubinemia patients from Yushu showed 12 differential metabolites, and hyperuricemia patients from Yushu showed 23 differential metabolites. Compared to the hyperbilirubinemia patients from Golmud that is at a low altitude, the Yushu groups had 33 different metabolites. Differential metabolites are primarily classified into amino acids and their derivatives, nucleotides and their derivatives, organic acids and their derivatives, and lipids/fatty acids. These are related to metabolic pathways such as caffeine metabolism, arachidonic acid metabolism, and tyrosine metabolism. Hyperbilirubinemia and hyperuricemia in the Tibetan plateau have unique serum metabolomics characteristics. Glycine derivatives and arachidonic acid and its derivatives were associated with plateau hyperbilirubinemia, and vanillic acid and pentadecafluorooctanoic acid were associated with plateau hyperuricemia.
Collapse
Affiliation(s)
- Heng Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Jin
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lang Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuanming Pan
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Fumei Yin
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Jie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Jiheng Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Dongliang Yu
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xiaoying Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
| | - Dezhi Wang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
57
|
Lee WH, Najjar SM, Kahn CR, Hinds TD. Hepatic insulin receptor: new views on the mechanisms of liver disease. Metabolism 2023; 145:155607. [PMID: 37271372 PMCID: PMC10330768 DOI: 10.1016/j.metabol.2023.155607] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
58
|
Badmus OO, Kipp ZA, Bates EA, da Silva AA, Taylor LC, Martinez GJ, Lee WH, Creeden JF, Hinds TD, Stec DE. Loss of hepatic PPARα in mice causes hypertension and cardiovascular disease. Am J Physiol Regul Integr Comp Physiol 2023; 325:R81-R95. [PMID: 37212551 PMCID: PMC10292975 DOI: 10.1152/ajpregu.00057.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lucy C Taylor
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
59
|
Dziwenka M, Coppock R, Davidson MH, Weder MA. Toxicological safety assessment of HempChoice® hemp oil extract; a proprietary extract consisting of a high concentration of cannabidiol (CBD) in addition to other phytocannabinoids and terpenes derived from CannabissativaL. Heliyon 2023; 9:e16913. [PMID: 37313165 PMCID: PMC10258502 DOI: 10.1016/j.heliyon.2023.e16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
HempChoice® Hemp Oil Extract (Geocann, LLC) is an extract of the aerial parts of hemp (Cannabis sativa L.) primarily comprised of 55-75% cannabidiol (CBD), 1-15% other phytocannabinoids and 1-15% terpenes. The results of multiple safety studies demonstrated that it was non-mutagenic in an Ames and mammalian cell micronucleus. test and was well tolerated in a 14-day range-finding study at dose levels up to 96.03. mg/kg BW/day. In the 90-day study, no HempChoice® Hemp Oil Extract-related significant changes were noted in weekly BW, daily BW gain, food consumption, functional observational battery or motor activity assessment. In addition, no HempChoice® Hemp Oil Extract related mortalities, abnormal clinical observations and ophthalmological changes were reported. Some HempChoice® Hemp Oil Extract-related changes were reported in the hematology and clinical chemistry parameters evaluated. These changes were not outside the normal range and were considered reversible during the 28-day recovery period. No macroscopic findings were reported, and histopathological changes related to HempChoice® Hemp Oil Extract exposure were limited to adaptive changes in the liver which were not observed in the recovery group animals. The no observed adverse effect level (NOAEL) for HempChoice® Hemp Oil Extract was determined to be 185.90 mg/kg BW/day in male and female Sprague-Dawley rats.
Collapse
Affiliation(s)
- Margitta Dziwenka
- GRAS Associates Nutrasource Pharmaceutical and Nutraceutical Services, 120 Research Lane, Suite 101, Guelph, Ontario, Canada, N1G 0B4
| | - Robert Coppock
- Toxicologist and Associates Ltd., PO Box 2031, Vegreville, AB T9C 1T2, Canada
| | - Michael H. Davidson
- Geocann, Innovation, Technology, & Clinical Research Dept., 320 E Vine Drive, Suite 207, Fort Collins, CO, 80524, USA
| | | |
Collapse
|
60
|
Nilsen DWT, Myhre PL, Solheim S, Tveit SH, Kalstad AA, Laake K, Tveit A, Seljeflot I. Total Bilirubin Yields Prognostic Information Following a Myocardial Infarction in the Elderly. Antioxidants (Basel) 2023; 12:1157. [PMID: 37371887 DOI: 10.3390/antiox12061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Total bilirubin consists of an unconjugated form, solubilized by its binding to albumin, and a conjugated form representing a minor part of the circulating bilirubin. As total bilirubin in physiological concentrations is a powerful antioxidant, its concentration gradient may reflect the health status of an individual, and serve as a prognostic indicator of outcome in primary and secondary cardiovascular disease prevention. The aim of this study was to assess the association between total bilirubin and incident cardiovascular events following a myocardial infarction. Total bilirubin in serum was measured at baseline 2-8 weeks after hospitalization for an MI in 881 patients, aged 70 to 82 years, included in the OMEMI (Omega-3 Fatty acids in Elderly with Myocardial Infarction) study, where patients were followed-up for up to 2 years. The first major adverse clinical event (MACE) was the primary endpoint and consisted of nonfatal MI, unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-cause death. As total bilirubin was non-normally distributed, log-transformed values and quartiles of bilirubin were analyzed using Cox regression models. The median (Q1, and Q3) baseline concentration of bilirubin was 11 (9, and 14) µmol/L, and higher log-transformed concentrations were associated with male sex, lower New York Heart Association (NYHA) class and non-smoking. MACE occurred in 177 (20.1%) patients during the follow-up. Higher concentrations of bilirubin were associated with a lower risk of MACE: HR 0.67 (95%CI 0.47-0.97) per log-unit increase, p = 0.032. Patients in the lowest quartile of bilirubin (<9 µmol/L) had the highest risk with HR 1.61 (95%CI 1.19-2.18), p = 0.002, compared to quartiles 2-4. This association remained significant even after adjusting for age, sex, body mass index (BMI), smoking status, NYHA class and treatment allocation: HR 1.52 (1.21-2.09), p = 0.009. Low concentrations of bilirubin (<9 µmol/L) are associated with increased nonfatal cardiovascular events or death in elderly patients with a recent myocardial infarction.
Collapse
Affiliation(s)
- Dennis Winston T Nilsen
- Department of Cardiology, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Peder Langeland Myhre
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Svein Solheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Sjur Hansen Tveit
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Are Annesønn Kalstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Kristian Laake
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Arnljot Tveit
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| |
Collapse
|
61
|
Folz J, Culver RN, Morales JM, Grembi J, Triadafilopoulos G, Relman DA, Huang KC, Shalon D, Fiehn O. Human metabolome variation along the upper intestinal tract. Nat Metab 2023; 5:777-788. [PMID: 37165176 PMCID: PMC10229427 DOI: 10.1038/s42255-023-00777-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023]
Abstract
Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.
Collapse
Affiliation(s)
- Jacob Folz
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jessica Grembi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA, USA.
| |
Collapse
|
62
|
Chang Z, Qiu J, Wang K, Liu X, Fan L, Liu X, Zhao Y, Zhang Y. The relationship between co-exposure to multiple heavy metals and liver damage. J Trace Elem Med Biol 2023; 77:127128. [PMID: 36630760 DOI: 10.1016/j.jtemb.2023.127128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND The impact of heavy metal exposure on human health has attracted widespread attention of researchers, and the impact of heavy metal exposure on liver function has also been confirmed, however, more attention is paid to the impact of single or two heavy metal exposures, and most epidemiological studies focus on heavy metal pollution areas. In this study, rural residents in non-heavy metal-contaminated areas in Northwest China were selected as the research objects to explore the comprehensive effects of co-exposure to multiple heavy metals on the liver, which can provide certain reference and support for related research. OBJECTIVES This study used a Bayesian nuclear machine model (BKMR) to evaluate the relationship between exposure to heavy metal mixtures and indicators of liver function in a population in rural Northwest China. RESULTS Exposure to higher concentrations of metal mixtures was positively correlated with total bilirubin, direct bilirubin, and aspartate aminotransferase, and negatively correlated with alanine aminotransferase, with Pb contributing the most to indicators of liver function. We also observed a possible interaction of Cd with other heavy metals in the effect of heavy metal mixtures on DB levels. CONCLUSIONS Concurrent exposure to higher concentrations of heavy metal mixtures (Cr, Co, Cd, and Pb) in rural China was associated with indicators representing poor liver function, of which the effect of lead on liver function should be focused. More prospective epidemiological studies and animal experiments need to be carried out to determine this relationship and possible mechanism.
Collapse
Affiliation(s)
- Zhenqi Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Xiaowei Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Ling Fan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Xiuying Liu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China
| | - Yi Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China.
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, PR China.
| |
Collapse
|
63
|
Mahsoub HM, Heffron CL, Hassebroek AM, Sooryanarain H, Wang B, LeRoith T, Rodríguez GR, Tian D, Meng XJ. Fetal Loss in Pregnant Rabbits Infected with Genotype 3 Hepatitis E Virus Is Associated with Altered Inflammatory Responses, Enhanced Virus Replication, and Extrahepatic Virus Dissemination with Positive Correlations with Increased Estradiol Level. mBio 2023; 14:e0041823. [PMID: 36939322 PMCID: PMC10128027 DOI: 10.1128/mbio.00418-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/21/2023] Open
Abstract
Hepatitis E virus (HEV) causes adverse clinical outcomes in pregnant women, but the underlying mechanisms remain poorly understood. To delineate the mechanisms of pregnancy-associated adverse effects during HEV infection, we utilized a genotype 3 HEV from rabbit (HEV-3ra) and its cognate host (rabbits) to systematically investigate the clinical consequences, viral replication dynamics, and host immune and hormonal responses of HEV infection during pregnancy. We found a significant fetal loss of 23% in HEV-infected pregnant rabbits, indicating an early-stage miscarriage. HEV infection in pregnant rabbits was characterized by higher viral loads in feces, intestinal contents, liver, and spleen tissues, as well as a longer and earlier onset of viremia than in infected nonpregnant rabbits. HEV infection altered the pattern of cytokine gene expressions in the liver of pregnant rabbits and caused a transient increase of serum interferon gamma (IFN-γ) shortly after a notable increase in viral replication, which may contribute to early fetal loss. Histological lesions in the spleen were more pronounced in infected pregnant rabbits, although moderate liver lesions were seen in both infected pregnant and nonpregnant rabbits. Total bilirubin was elevated in infected pregnant rabbits. The serum levels of estradiol (E2) in HEV-infected pregnant rabbits were significantly higher than those in mock-infected pregnant rabbits at 14 days postinoculation (dpi) and correlated positively with higher viral loads in feces, liver, and spleen tissues at 28 dpi, suggesting that it may play a role in extrahepatic virus dissemination. The results have important implications for understanding the severe diseases associated with HEV infection during pregnancy. IMPORTANCE HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. We found that infected pregnant rabbits had a fetal loss of 23%, which coincided with enhanced viral replication and an elevated systemic IFN-γ response, followed by longer viremia duration and extrahepatic viral dissemination. Estradiol levels were increased in infected pregnant rabbits and correlated positively with higher fecal viral shedding and higher viral loads in liver and spleen tissues. Infected pregnant rabbits had more pronounced splenic lesions, higher serum total bilirubin, and an altered cytokine gene expression profile in the liver. The results will contribute to our understanding of the mechanisms of HEV-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guillermo Raimundi Rodríguez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
64
|
Chang W, Cai L, Chen T, Ni W, Xie Z, Yang C, Liao J. Current Helicobacter pylori Infection Is Associated with Early Liver Injury: A Cross-Sectional Study in the General Population. Am J Trop Med Hyg 2023; 108:684-692. [PMID: 36878209 PMCID: PMC10076991 DOI: 10.4269/ajtmh.22-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/05/2022] [Indexed: 03/08/2023] Open
Abstract
Early prevention of liver injury by controlling risk factors deserves concern because of the heavy liver disease burden. Helicobacter pylori (HP) infection affects half of the world's population and the relationship between it and early liver damage is unclear. This study focuses on assessing the correlation between them in the general population to provide clues to prevent liver disease. A total of 12,931 individuals underwent liver function and imaging tests as well as 13C/14C-urea breath tests. Results showed that the detection rate of HP was 35.9%, and the HP-positive group had a higher rate of liver injury (47.0% versus 44.5%, P = 0.007). Specifically, Fibrosis-4 (FIB-4) and alpha-fetoprotein levels in the HP-positive group were higher whereas the serum albumin level was lower. HP infection would raise the percentage of elevated aspartate aminotransferase (AST; 2.5% versus 1.7%, P = 0.006), elevated FIB-4 (20.2% versus 17.9%, P = 0.002), and abnormal liver imaging (31.0% versus 29.3%, P = 0.048). Most of these results remained stable after covariate adjustment but, for liver injury and liver imaging, the conclusions only held in young people (ORliver injury, odds ratio of liver injury, 1.127, P = 0.040; ORAST, 1.33, P = 0.034; ORFIB-4, 1.145, P = 0.032; ORimaging, 1.149, P = 0.043). Overall, HP infection might be associated with early liver injury, particularly in youth, suggesting that people with early liver injury should pay more attention to HP infection to prevent the occurrence of severe liver diseases.
Collapse
Affiliation(s)
- Wenling Chang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Non-Communicable Diseases Research Center, West China-Peking Union Medical College C. C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Tingting Chen
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weigui Ni
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Non-Communicable Diseases Research Center, West China-Peking Union Medical College C. C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Juan Liao
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Non-Communicable Diseases Research Center, West China-Peking Union Medical College C. C. Chen Institute of Health, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Osadchiy V, Bal R, Mayer EA, Kunapuli R, Dong T, Vora P, Petrasek D, Liu C, Stains J, Gupta A. Machine learning model to predict obesity using gut metabolite and brain microstructure data. Sci Rep 2023; 13:5488. [PMID: 37016129 PMCID: PMC10073225 DOI: 10.1038/s41598-023-32713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
A growing body of preclinical and clinical literature suggests that brain-gut-microbiota interactions may contribute to obesity pathogenesis. In this study, we use a machine learning approach to leverage the enormous amount of microstructural neuroimaging and fecal metabolomic data to better understand key drivers of the obese compared to overweight phenotype. Our findings reveal that although gut-derived factors play a role in this distinction, it is primarily brain-directed changes that differentiate obese from overweight individuals. Of the key gut metabolites that emerged from our model, many are likely at least in part derived or influenced by the gut-microbiota, including some amino-acid derivatives. Remarkably, key regions outside of the central nervous system extended reward network emerged as important differentiators, suggesting a role for previously unexplored neural pathways in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Vadim Osadchiy
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- UCLA Microbiome Center, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
- Department of Urology, David Geffen School of Medicine, Los Angeles, USA
| | - Roshan Bal
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- UCLA Microbiome Center, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
| | - Rama Kunapuli
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
| | - Tien Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- UCLA Microbiome Center, Los Angeles, USA
| | - Priten Vora
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Danny Petrasek
- Department of Mathematics, California Institute of Technology, Pasadena, USA
| | - Cathy Liu
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
| | - Jean Stains
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA.
- UCLA Microbiome Center, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, USA.
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, CHS 42-210 MC737818, 10833 Le Conte Avenue, Los Angeles, CA, USA.
| |
Collapse
|
66
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
67
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
68
|
Hall B, Levy S, Dufault-Thompson K, Ndjite GM, Weiss A, Braccia D, Jenkins C, Yang Y, Arp G, Abeysinghe S, Jermain M, Wu CH, Jiang X. Discovery of the gut microbial enzyme responsible for bilirubin reduction to urobilinogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527579. [PMID: 36798240 PMCID: PMC9934709 DOI: 10.1101/2023.02.07.527579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The degradation of heme and the interplay of its catabolic derivative, bilirubin, between humans and their gut microbiota is an essential facet of human health. However, the hypothesized bacterial enzyme that reduces bilirubin to urobilinogen, a key step that produces the excretable waste products of this pathway, has remained unidentified. In this study, we used a combination of biochemical analyses and comparative genomics to identify a novel enzyme, BilR, that can reduce bilirubin to urobilinogen. We delineated the BilR sequences from other members of the Old Yellow Enzyme family through the identification of key residues in the active site that are critical for bilirubin reduction and found that BilR is predominantly encoded by Firmicutes in the gut microbiome. Our analysis of human gut metagenomes showed that BilR is a common feature of a healthy adult human microbiome but has a decreased prevalence in neonates and IBD patients. This discovery sheds new light on the role of the gut microbiome in bilirubin metabolism and highlights the significance of the gut-liver axis in maintaining bilirubin homeostasis.
Collapse
Affiliation(s)
- Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD 20742, United States
| | - Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Glory Minabou Ndjite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Ashley Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Domenick Braccia
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD 20742, United States
| | - Conor Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Gabi Arp
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Stephenie Abeysinghe
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Madison Jermain
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, United States
| | - Chih Hao Wu
- Program of Computational Biology, Bioinformatics, and Genomics, University of Maryland, College Park, MD 20742, United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| |
Collapse
|
69
|
Wang Y, Wang S, He X, Li Y, Xu T, Xu L, Yang B, Fan X, Zhao W, Zhao C. A breakthrough trial of an artificial liver without systemic heparinization in hyperbilirubinemia beagle models. Bioact Mater 2023; 20:651-662. [PMID: 35846839 PMCID: PMC9263408 DOI: 10.1016/j.bioactmat.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
The development of wearable artificial livers was restricted to device miniaturization and bleeding risk with water-soluble anticoagulants. Herein, a double-deck column filled with solid anticoagulant microspheres and Kevlar porous microspheres (KPMs, bilirubin adsorbents) was connected with the principle machine of wearable artificial liver (approximately 9 kg) to treat hyperbilirubinemia beagles for the first time. With the initial normal dose of heparin, the double-deck column could afford 3 h hemoperfusion in whole blood without thrombus formation. The removal efficiency of the double-deck column for total bilirubin (TBIL) was 31.4%. Interestingly, the excessive amounts of hepatocyte metabolites were also decreased by approximately 25%. The "anticoagulant + column" realized safe and effective whole blood hemoperfusion without the plasma separation system and heparin pump; however, the proposed principle machine of wearable artificial liver and "anticoagulant + column" cannot completely replace the bio-liver now. The intelligence of the device and the versatility of the adsorbent need to be improved; moreover, advanced experimental techniques need to be developed to validate the survival rates in animals. Overall, this study is a meaningful trial for the development of wearable artificial livers in the future.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Shanshan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Xueqin He
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Xinnian Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
70
|
Kipp ZA, Martinez GJ, Bates EA, Maharramov AB, Flight RM, Moseley HNB, Morris AJ, Stec DE, Hinds TD. Bilirubin Nanoparticle Treatment in Obese Mice Inhibits Hepatic Ceramide Production and Remodels Liver Fat Content. Metabolites 2023; 13:215. [PMID: 36837834 PMCID: PMC9965094 DOI: 10.3390/metabo13020215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.
Collapse
Affiliation(s)
- Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Agil B Maharramov
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Robert M Flight
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Hunter N B Moseley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40508, USA
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
71
|
Fritsche K, Ziková-Kloas A, Marx-Stoelting P, Braeuning A. Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification. Int J Mol Sci 2023; 24:ijms24032686. [PMID: 36769005 PMCID: PMC9916672 DOI: 10.3390/ijms24032686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Collapse
Affiliation(s)
- Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andrea Ziková-Kloas
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-18412-25100
| |
Collapse
|
72
|
Bates EA, Kipp ZA, Martinez GJ, Badmus OO, Soundarapandian MM, Foster D, Xu M, Creeden JF, Greer JR, Morris AJ, Stec DE, Hinds TD. Suppressing Hepatic UGT1A1 Increases Plasma Bilirubin, Lowers Plasma Urobilin, Reorganizes Kinase Signaling Pathways and Lipid Species and Improves Fatty Liver Disease. Biomolecules 2023; 13:252. [PMID: 36830621 PMCID: PMC9953728 DOI: 10.3390/biom13020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Collapse
Affiliation(s)
- Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew J. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
73
|
Loshkova EV, Doroshenko IV, Yankina GN, Rafikova YS, Terentyeva AA, Zhelev VA, Anfinogenova OB, Khavkin AI, Odinaeva ND, Kondratieva EI, Lyulka TS, Bozhenko EA, Prudnikova VK, Rebrienko M.. Gilbert’s syndrome as a model for studying the effects of bilirubin. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:126-141. [DOI: 10.31146/1682-8658-ecg-206-10-126-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Numerous scientific studies conducted over the past years expand our understanding of the physiological and pathophysiological effects of bilirubin. In this review of the literature, the authors, using the example of Gilbert’s syndrome, as a classic condition occurring with hyperbilirubinemia, discuss the results of clinical and experimental studies demonstrating the protective mechanisms and the protective role of elevated bilirubin concentration in relation to diseases accompanied by metabolic inflammation, oncological diseases, and a number of others. The authors focus on the hormonal function of bilirubin and its potential therapeutic effect discussed in recent scientific works. The purpose of this review of the literature is to expand the understanding of bilirubin from the clinician’s usual in the context of the end product of heme and antioxidant metabolism to a signaling molecule involved in the pathophysiology of many diseases.
Collapse
Affiliation(s)
- E. V. Loshkova
- Siberian state medical University; Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
| | | | | | | | | | | | - O. B. Anfinogenova
- Federal state budgetary educational institutions higher Education “Kemerovo state medical University” Ministries health care Russian Federation
| | - A. I. Khavkin
- Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region; Russian National Research Medical University named after N. I. Pirogov
| | - N. D. Odinaeva
- Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
| | - E. I. Kondratieva
- Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region; Federal state budgetary Scientific institution Medical Genetic Research Center named after Academican N. P. Bochkov
| | | | | | | | | |
Collapse
|
74
|
Flack KD, Vítek L, Fry CS, Stec DE, Hinds TD. Cutting edge concepts: Does bilirubin enhance exercise performance? Front Sports Act Living 2023; 4:1040687. [PMID: 36713945 PMCID: PMC9874874 DOI: 10.3389/fspor.2022.1040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States
| | - Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Christopher S. Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky College of Medicine, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
75
|
Kipp ZA, Xu M, Bates EA, Lee WH, Kern PA, Hinds TD. Bilirubin Levels Are Negatively Correlated with Adiposity in Obese Men and Women, and Its Catabolized Product, Urobilin, Is Positively Associated with Insulin Resistance. Antioxidants (Basel) 2023; 12:170. [PMID: 36671031 PMCID: PMC9854555 DOI: 10.3390/antiox12010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Bilirubin levels in obese humans and rodents have been shown to be lower than in their lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased, the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR, as compared to lean women. The urobilin levels were positively associated with HOMA IR in both groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin levels are associated with obesity and its comorbidities, such as insulin resistance.
Collapse
Affiliation(s)
- Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY 40508, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
76
|
Laparoscopic versus open hepatectomy for intrahepatic cholangiocarcinoma in patients aged 60 and older: a retrospective cohort study. World J Surg Oncol 2022; 20:396. [PMID: 36510298 PMCID: PMC9746004 DOI: 10.1186/s12957-022-02870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022] Open
Abstract
Objective laparoscopic surgical excision is the recommended treatment for liver cancers, yet its benefits in patients aged 60 and older remain poorly understood. Thus, this study evaluated the feasibility, safety, and clinical outcomes of laparoscopic hepatectomy for patients aged 60 and older with intrahepatic cholangiocarcinoma (ICC).MethodsAfter screening, 107 patients who underwent hepatectomy for ICC were enrolled and grouped into either laparoscopic (LH) or open hepatectomy (OH) groups. Baseline characteristics, pathological findings, and long-term outcomes were compared between the two groups. Independent prognostic factors for overall survival (OS) and disease-free survival (DFS) were identified using univariate and multivariate analyses.ResultsAmong baseline characteristics and pathological findings, only pre-operative albumin was higher in the LH group. The LH group had more favorable short-term outcomes such as incision length, level of postoperative total bilirubin, and length of postoperative stays than the OH group. The postoperative complication, lymph node dissection and R0 resection rate, and long-term outcomes including OS and DFS were not significantly different between the two groups. Cancer Antigen-19-9(CA-19-9) and pathological differentiation were independent prognostic factors for OS, whereas CA-19-9 and neutrophil count were independent prognostic factors for DFS.ConclusionLH is safe, reliable, and feasible for treatment of ICC patients aged 60 and older as it had better short-term clinical outcomes than OH and achieved long-term prognoses that were comparable to those of OH.
Collapse
|
77
|
Lund PJ, Gates LA, Leboeuf M, Smith SA, Chau L, Lopes M, Friedman ES, Saiman Y, Kim MS, Shoffler CA, Petucci C, Allis CD, Wu GD, Garcia BA. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep 2022; 41:111809. [PMID: 36516747 PMCID: PMC9994635 DOI: 10.1016/j.celrep.2022.111809] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/09/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Collapse
Affiliation(s)
- Peder J Lund
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leah A Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Marylene Leboeuf
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Sarah A Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian Chau
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elliot S Friedman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yedidya Saiman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Soo Kim
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarissa A Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Gary D Wu
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
78
|
Wei Y, Cai J, Mo X, Xu M, Liu Q, Zhang J, Liu S, Lin Y, Huang S, Qin J, Zhang Z. Associations of Dietary and Plasma Copper Levels with Liver Function in a Chinese Population. Biol Trace Elem Res 2022; 201:3268-3278. [PMID: 36369451 DOI: 10.1007/s12011-022-03445-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
The potential mechanisms underlying the association between copper (Cu) exposure and impaired liver function are unclear. This study aimed to investigate the potential associations of dietary Cu intake and plasma Cu levels with liver function biomarkers. A cross-sectional study was performed to assess liver function biomarkers-namely, levels of total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), alanine transaminase (ALT), and aspartate transaminase (AST)-in 2376 subjects in Guangxi, China. Dietary Cu intake was determined from a food frequency questionnaire containing 109 common foods. Plasma Cu concentrations were determined by inductively coupled plasma‒mass spectrometry. Multiple linear regression and multivariate restricted cubic splines (RCS) were used to evaluate the correlations of plasma Cu levels and dietary Cu levels with liver function biomarkers. The covariate-adjusted results of the linear regression analysis showed that plasma Cu levels were significantly negatively correlated with serum IBIL (β = - 0.37), DBIL (β = - 0.22), and TBIL levels (β = - 0.32) (all p < 0.05), and dietary Cu was negatively correlated with serum AST levels (β = - 0.12, p < 0.05). The RCS analysis further indicated a negative linear relationship between dietary Cu levels and AST levels. In summary, our results suggested that the plasma Cu level is associated with serum bilirubin levels and that dietary Cu intake is associated with serum AST levels. Further studies are needed to validate these associations and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin541004, China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Min Xu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junling Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shuzhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yinxia Lin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shenxiang Huang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
79
|
Ilott NE, Neyazi M, Oxford Translational Gastroenterology Unit Investigators, Arancibia-Cárcamo CV, Powrie F, Geremia A. Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease. Wellcome Open Res 2022; 6:199. [PMID: 36447600 PMCID: PMC9664024 DOI: 10.12688/wellcomeopenres.16901.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 06/30/2024] Open
Abstract
Background: Patients with primary sclerosing cholangitis (PSC) frequently have co-ocurring ulcerative colitis (UC) and develop colorectal cancer. Colorectal cancer risk in patients with PSC-associated ulcerative colitis (PSC/UC) is elevated relative to patients with ulcerative colitis (UC) alone, reasons for which remain obscure. Understanding the molecular and microbial basis for differences between these two patient groups and how these vary across intestinal sites is important for the development of therapies to prevent colorectal cancer development in at-risk individuals. Methods: We employed ribonucleic acid sequencing (RNA-seq) analysis of biopsy samples across three intestinal tissue locations (ileum, caecum and rectum) in patients with PSC/UC (ileum n = 7, caecum n = 7, rectum n = 7), UC (ileum n = 9, caecum n = 10, rectum n = 10) and healthy controls (ileum n = 11, caecum n = 9, rectum n = 12) to determine tissue-dependent transcriptional alterations in PSC/UC. We also performed 16S ribosomal RNA (rRNA) amplicon sequencing to determine bacterial associations with PSC/UC. Results: Tissue-defining transcriptional signatures revealed that the ileum was enriched for genes involved in lipid and drug metabolism, the caecum for activated immune cells and the rectum for enteric neurogenesis. Transcriptional alterations relative to healthy control samples were largely shared between patients with PSC/UC or UC although were distinct across tissue locations. Nevertheless, we observed reduced expression of gamma-glutamyl transferase 1 ( GGT1) specifically in the ileum and caecum of patients with PSC/UC. Analysis of the bacterial component of the microbiome revealed high inter-individual variability of microbiome composition and little evidence for tissue-dependency. We observed a reduction in Parabacteroides relative abundance in the rectum of patients with PSC/UC. Conclusions: The role of gamma-glutamyl transferase in maintaining the redox environment through the glutathione salvage pathway makes our observed alterations a potential pathway to PSC-associated colorectal cancer.
Collapse
Affiliation(s)
- Nicholas E. Ilott
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Mastura Neyazi
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Oxford Translational Gastroenterology Unit Investigators
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
80
|
Creeden JF, Kipp ZA, Xu M, Flight RM, Moseley HNB, Martinez GJ, Lee W, Alganem K, Imami AS, McMullen MR, Roychowdhury S, Nawabi AM, Hipp JA, Softic S, Weinman SA, McCullumsmith R, Nagy LE, Hinds TD. Hepatic kinome atlas: An in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 2022; 76:1376-1388. [PMID: 35313030 PMCID: PMC9489820 DOI: 10.1002/hep.32467] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Mei Xu
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Robert M. Flight
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
| | - Hunter N. B. Moseley
- Department of Molecular & Cellular BiochemistryUniversity of KentuckyLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Resource Center for Stable Isotope Resolved MetabolomicsUniversity of KentuckyLexingtonKentuckyUSA
- Institute for Biomedical InformaticsUniversity of KentuckyLexingtonKentuckyUSA
- Center for Clinical and Translational ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Wang‐Hsin Lee
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Khaled Alganem
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Ali S. Imami
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Megan R. McMullen
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
| | | | - Atta M. Nawabi
- Division of Transplant and HepatobiliaryDepartment of SurgeryThe University of Kansas Medical CenterKansas CityKansasUSA
| | | | - Samir Softic
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Department of PediatricsUniversity of KentuckyLexingtonKentuckyUSA
| | - Steven A. Weinman
- Department of Internal Medicine and Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Robert McCullumsmith
- Department of NeurosciencesUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
- Neurosciences InstituteProMedicaToledoOhioUSA
| | - Laura E. Nagy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
- Department of Gastroenterology and HepatologyCenter for Liver Disease ResearchCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes CenterUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
81
|
Yang Z, Fu H, Su H, Cai X, Wang Y, Hong Y, Hu J, Xie Z, Wang X. Multi-omics analyses reveal the specific changes in gut metagenome and serum metabolome of patients with polycystic ovary syndrome. Front Microbiol 2022; 13:1017147. [PMCID: PMC9627625 DOI: 10.3389/fmicb.2022.1017147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of this study was to investigate the specific alterations in gut microbiome and serum metabolome and their interactions in patients with polycystic ovary syndrome (PCOS). Methods The stool samples from 32 PCOS patients and 18 healthy controls underwent the intestinal microbiome analysis using shotgun metagenomics sequencing approach. Serum metabolome was analyzed by ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry. An integrative network by combining metagenomics and metabolomics datasets was constructed to explore the possible interactions between gut microbiota and circulating metabolites in PCOS, which was further assessed by fecal microbiota transplantation (FMT) in a rat trial. Results Fecal metagenomics identified 64 microbial strains significantly differing between PCOS and healthy subjects, half of which were enriched in patients. These changed species showed an ability to perturb host metabolic homeostasis (including insulin resistance and fatty acid metabolism) and inflammatory levels (such as PI3K/Akt/mTOR signaling pathways) by expressing sterol regulatory element-binding transcription factor-1, serine/threonine-protein kinase mTOR, and 3-oxoacyl-[acyl-cattier-protein] synthase III, possibly suggesting the potential mechanisms of gut microbiota underlying PCOS. By integrating multi-omics datasets, the panel comprising seven strains (Achromobacter xylosoxidans, Pseudomonas sp. M1, Aquitalea pelogenes, Porphyrobacter sp. HL-46, Vibrio fortis, Leisingera sp. ANG-Vp, and Sinorhizobium meliloti) and three metabolites [ganglioside GM3 (d18:0/16:0), ceramide (d16:2/22:0), and 3Z,6Z,9Z-pentacosatriene] showed the highest predictivity of PCOS (AUC: 1.0) with sensitivity of 0.97 and specificity of 1.0. Moreover, the intestinal microbiome modifications by FMT were demonstrated to regulate PCOS phenotypes including metabolic variables and reproductive hormones. Conclusion Our findings revealed key microbial and metabolite features and their interactions underlying PCOS by integrating multi-omics approaches, which may provide novel insights into discovering clinical diagnostic biomarkers and developing efficient therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Zhandong Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huijiao Fu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huihui Su
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Engineering Research Center for Sugar Technology, Guangzhou, China
| | - Xuzi Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jing Hu
- Department of Obstetrics and Gynecology, Jianli Fourth People’s Hospital, Jingzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhiyong Xie,
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Xuefeng Wang,
| |
Collapse
|
82
|
Ke C, Gao J, Tu J, Wang Y, Xiao Y, Wu Y, Liu Y, Zhou Z. Ganfule capsule alleviates bile duct ligation-induced liver fibrosis in mice by inhibiting glutamine metabolism. Front Pharmacol 2022; 13:930785. [PMID: 36278176 PMCID: PMC9585157 DOI: 10.3389/fphar.2022.930785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liver fibrosis is a pathological outcome of a variety of liver diseases, and it can also progress into liver cirrhosis and liver cancer. Specific liver antifibrotic drugs have not been clinically approved yet. Studies have demonstrated the protective effects of Ganfule capsule (GFL) on the liver and its therapeutic potential in hepatic cancer. However, the mechanism of GFL is not clear in the treatment of liver fibrosis. Objective: This article aims to study the protective effect of GFL on liver fibrosis and its possible mechanism. Methods: The cholestatic liver fibrosis model was prepared by subjecting C57BL/6 mice to bile duct ligation (BDL). The GFL groups were treated with different concentrations of GFL for 14 days. Pathological analysis, serum biochemical index detection, metabonomic analysis, immunohistochemistry, Western blot, and real-time PCR were carried out. Results: GFL could alleviate liver injury and liver fibrosis caused by BDL in mice. Metabonomic analysis of mice serum showed postoperative metabolic disorder, which could be alleviated by GFL through glutamine metabolism; valine, leucine, and isoleucine biosynthesis; aminoacyl-tRNA biosynthesis; and other metabolic pathways. GFL affected glutamine metabolism by inhibiting the activity of glutaminase 1 (GLS1). The activation of GLS1 is regulated by the NF-κB pathway, and experiments showed that GFL could inhibit IκB-α and NF-κB p65 phosphorylation. Conclusion: This study confirms the protective effect of GFL on liver injury and shows that GFL inhibits glutamine metabolism, which was correlated with the NF-κB pathway, and eventually alleviates liver fibrosis. These results are conducive to the development of new therapeutic drugs for liver fibrosis.
Collapse
Affiliation(s)
- Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jianlong Gao
- Department of Minimally Invasive Interventional Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, Hubei, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, Hubei, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan, Hubei, China
| |
Collapse
|
83
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
84
|
Impact of Clarified Apple Juices with Different Processing Methods on Gut Microbiota and Metabolomics of Rats. Nutrients 2022; 14:nu14173488. [PMID: 36079746 PMCID: PMC9460580 DOI: 10.3390/nu14173488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The consumption of processed foods has increased compared to that of fresh foods in recent years, especially due to the coronavirus disease 2019 pandemic. Here, we evaluated the health effects of clarified apple juices (CAJs, devoid of pectin and additives) processed to different degrees, including not-from-concentrate (NFC) and from-concentrate (FC) CAJs. A 56-day experiment including a juice-switch after 28 days was designed. An integrated analysis of 16S rRNA sequencing and untargeted metabolomics of cecal content were performed. In addition, differences in the CAJs tested with respect to nutritional indices and composition of small-molecule compounds were analyzed. The NFC CAJ, which showed a higher phenolic content resulting from the lower processing degree, could improve microbiota diversity and influence its structure. It also reduced bile acid and bilirubin contents, as well as inhibited the microbial metabolism of tryptophan in the gut. However, we found that these effects diminished with time by performing experiment extension and undertaking juice-switching. Our study provides evidence regarding the health effects of processed foods that can potentially be applied to public health policy decision making. We believe that NFC juices with a lower processing degree could potentially be healthier than FC juice.
Collapse
|
85
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
86
|
TAK-242 Ameliorates Hepatic Fibrosis by Regulating the Liver-Gut Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4949148. [PMID: 36017390 PMCID: PMC9398794 DOI: 10.1155/2022/4949148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Objective. The aims of this study were to investigate the impact of TAK-242 on the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-κB (NF-κB) signal transduction pathway in rats with hepatic fibrosis (HF) using the liver gut axis and to investigate the molecular mechanism of its intervention on HF. Methods. SPF grade SD male rats were randomly allocated to the control, model, and TAK-242 groups. For 8 weeks, the model and TAK-242 groups received 3 mL·kg-1 (the initial dose 5 mL·kg-1) intraperitoneal injections of 40% CCL4 olive oil solution. TAK-242 (5 mg·kg-1) was administered once a day for 5 days after modeling. The pathological alterations of liver and small intestine tissues in each group were observed using H&E and Masson staining. ELISA was used to measure serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBIL), total bilirubin (TBIL), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). RT-qPCR was utilized to identify the mRNA expression level of IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB in rat liver and small intestine tissues. The protein level of IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB protein in rat liver and small intestine tissues was determined utilizing Western blot and IHC. Results. TAK-242 significantly reduced AST, ALT, TBIL, and DBIL expression in HF rats’ serum (
) and alleviated liver tissue injury. Hematoxylin-eosin (H&E) and Masson staining revealed inflammatory cell infiltration and fibrous proliferation in the liver and small intestine tissue in the model group and partial cell swelling in the TAK-242 group, which indicated a considerable improvement compared to the model group. RT-qPCR, Western blot, and IHC data indicated that TAK-242 reduced the IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB expression in the liver and small intestine tissues of HF rats. Conclusion. TAK-242 might downregulate the TLR4/MyD88/NF-κB signal pathway through the liver-gut axis, suppress the inflammatory response, and eventually alleviate HF in rats.
Collapse
|
87
|
Jang S, Choi GH, Chang W, Jang ES, Kim JW, Jeong SH. Elevated alpha-fetoprotein in asymptomatic adults: Clinical features, outcome, and association with body composition. PLoS One 2022; 17:e0271407. [PMID: 35862314 PMCID: PMC9302731 DOI: 10.1371/journal.pone.0271407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aim Apparently healthy individuals with elevated serum alpha-fetoprotein (AFP) levels (>7 ng/mL) for unknown causes visit clinics. We investigated their clinical characteristics, outcomes, and relationship with body fat deposition and muscle mass. Methods The case group included asymptomatic 137 individuals with “elevated AFP level” (R772) diagnostic code from 2009 to 2018 in a tertiary hospital. The control group enrolled 274 age- and sex-matched patients with <5 cm hepatic hemangiomas. Hepatic, visceral, and psoas muscle adiposity and psoas muscle index (PMI) were measured in the subgroups of 45 cases and 90 controls with pre-contrast computed tomography (CT) images. Results The case group (mean age 47.5 years, male 35.8%) showed higher AFP levels (10.3 vs 2.5 ng/mL, p<0.001) and total bilirubin (0.8 vs 0.7 mg/dL, p<0.001), but a lower body mass index (22.2 vs 23.3 kg/m2, p = 0.011) and alanine aminotransferase levels (17.0 vs 19.0 IU/L, p = 0.047) than the controls. During 13 months of median follow-up, there was no cancer or liver disease development. The AFP levels were stable. In the subgroups with CT images, cases showed a lower proportion of hepatic steatosis (4.4% vs 18.9%, p = 0.023), higher psoas muscle attenuation (48.2 vs 43.8 Hounsfield units, p<0.001) and higher PMI (5.7 vs 4.2 cm2/m2, p<0.001) than the controls. Conclusion Elevated AFP levels in asymptomatic individuals may play a role in expressing a protective phenotype against hepatic steatosis, myosteatosis, and sarcopenia. AFP levels in patients with elevated AFP were stable during follow-up without liver injury or cancer development. Interaction between AFP expression and steatosis warrants further study.
Collapse
Affiliation(s)
- Sangmi Jang
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Gwang Hyeon Choi
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Won Chang
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Sun Jang
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin-Wook Kim
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- * E-mail:
| |
Collapse
|
88
|
Role of Heme Oxygenase in Gastrointestinal Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11071323. [PMID: 35883814 PMCID: PMC9311893 DOI: 10.3390/antiox11071323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal tract is a unique organ containing both vascular and luminal routes lined by epithelial cells forming the mucosa, which play an important role in the entry of nutrients and act as a selective barrier, excluding potentially harmful agents. Mucosal surfaces establish a selective barrier between hostile external environments and the internal milieu. Heme is a major nutritional source of iron and is a pro-oxidant that causes oxidative stress. Heme oxygenases (HOs) catalyze the rate-limiting step in heme degradation, resulting in the formation of iron, carbon monoxide, and biliverdin, which are subsequently converted to bilirubin by biliverdin reductase. In gastrointestinal pathogenesis, HO-1, an inducible isoform of HO, is markedly induced in epithelial cells and plays an important role in protecting mucosal cells. Recent studies have focused on the biological effects of the products of this enzymatic reaction, which have antioxidant, anti-inflammatory, and cytoprotective functions. In this review, the essential roles of HO in the gastrointestinal tract are summarized, focusing on nutrient absorption, protection against cellular stresses, and the maintenance and regulation of tight junction proteins, emphasizing the potential therapeutic implications. The biochemical basis of the potential therapeutic implications of glutamine for HO-1 induction in gastrointestinal injury is also discussed.
Collapse
|
89
|
Dawkins JJ, Allegretti JR, Gibson TE, McClure E, Delaney M, Bry L, Gerber GK. Gut metabolites predict Clostridioides difficile recurrence. MICROBIOME 2022; 10:87. [PMID: 35681218 PMCID: PMC9178838 DOI: 10.1186/s40168-022-01284-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the USA, with recurrence rates > 15%. Although primary CDI has been extensively linked to gut microbial dysbiosis, less is known about the factors that promote or mitigate recurrence. Moreover, previous studies have not shown that microbial abundances in the gut measured by 16S rRNA amplicon sequencing alone can accurately predict CDI recurrence. RESULTS We conducted a prospective, longitudinal study of 53 non-immunocompromised participants with primary CDI. Stool sample collection began pre-CDI antibiotic treatment at the time of diagnosis, and continued up to 8 weeks post-antibiotic treatment, with weekly or twice weekly collections. Samples were analyzed using (1) 16S rRNA amplicon sequencing, (2) liquid chromatography/mass-spectrometry metabolomics measuring 1387 annotated metabolites, and (3) short-chain fatty acid profiling. The amplicon sequencing data showed significantly delayed recovery of microbial diversity in recurrent participants, and depletion of key anaerobic taxa at multiple time-points, including Clostridium cluster XIVa and IV taxa. The metabolomic data also showed delayed recovery in recurrent participants, and moreover mapped to pathways suggesting distinct functional abnormalities in the microbiome or host, such as decreased microbial deconjugation activity, lowered levels of endocannabinoids, and elevated markers of host cell damage. Further, using predictive statistical/machine learning models, we demonstrated that the metabolomic data, but not the other data sources, can accurately predict future recurrence at 1 week (AUC 0.77 [0.71, 0.86; 95% interval]) and 2 weeks (AUC 0.77 [0.69, 0.85; 95% interval]) post-treatment for primary CDI. CONCLUSIONS The prospective, longitudinal, and multi-omic nature of our CDI recurrence study allowed us to uncover previously unrecognized dynamics in the microbiome and host presaging recurrence, and, in particular, to elucidate changes in the understudied gut metabolome. Moreover, we demonstrated that a small set of metabolites can accurately predict future recurrence. Our findings have implications for development of diagnostic tests and treatments that could ultimately short-circuit the cycle of CDI recurrence, by providing candidate metabolic biomarkers for diagnostics development, as well as offering insights into the complex microbial and metabolic alterations that are protective or permissive for recurrence. Video Abstract.
Collapse
Affiliation(s)
- Jennifer J. Dawkins
- Department of Pathology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
- Harvard-MIT Health Sciences & Technology, Harvard Medical School, MIT, Cambridge, MA USA
| | - Jessica R. Allegretti
- Massachusetts Host-Microbiome Center, Boston, MA USA
- Division of Gastroenterology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
| | - Travis E. Gibson
- Department of Pathology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
| | - Emma McClure
- Division of Gastroenterology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
| | - Mary Delaney
- Massachusetts Host-Microbiome Center, Boston, MA USA
| | - Lynn Bry
- Department of Pathology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
- Massachusetts Host-Microbiome Center, Boston, MA USA
| | - Georg K. Gerber
- Department of Pathology, Brigham & Woman’s Hospital, Harvard Medical School, Boston, MA USA
- Harvard-MIT Health Sciences & Technology, Harvard Medical School, MIT, Cambridge, MA USA
- Massachusetts Host-Microbiome Center, Boston, MA USA
| |
Collapse
|
90
|
Fang S, Wade KH, Hughes DA, Fitzgibbon S, Yip V, Timpson NJ, Corbin LJ. A multivariant recall-by-genotype study of the metabolomic signature of BMI. Obesity (Silver Spring) 2022; 30:1298-1310. [PMID: 35598895 PMCID: PMC9324973 DOI: 10.1002/oby.23441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study estimated the effect of BMI on circulating metabolites in young adults using a recall-by-genotype study design. METHODS A recall-by-genotype study was implemented in the Avon Longitudinal Study of Parents and Children. Samples from 756 participants were selected for untargeted metabolomics analysis based on low versus high genetic liability for higher BMI defined by a genetic risk score (GRS). Regression analyses were performed to investigate associations between BMI GRS group and relative abundance of 973 metabolites. RESULTS After correction for multiple testing, 29 metabolites were associated with BMI GRS group. Bilirubin was among the most strongly associated metabolites, with reduced levels measured in individuals in the high-BMI GRS group (β = -0.32, 95% CI: -0.46 to -0.18, Benjamini-Hochberg adjusted p = 0.005). This study observed associations between BMI GRS group and the levels of several potentially diet-related metabolites, including hippurate, which had lower mean abundance in individuals in the high-BMI GRS group (β = -0.29, 95% CI: -0.44 to -0.15, Benjamini-Hochberg adjusted p = 0.008). CONCLUSIONS Together with existing literature, these results suggest that a genetic predisposition to higher BMI captures differences in metabolism leading to adiposity gain. In the absence of prospective data, separating these effects from the downstream consequences of weight gain is challenging.
Collapse
Affiliation(s)
- Si Fang
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Kaitlin H. Wade
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - David A. Hughes
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Sophie Fitzgibbon
- Bristol Bioresource LaboratoriesPopulation Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Vikki Yip
- Bristol Bioresource LaboratoriesPopulation Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Laura J. Corbin
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
91
|
Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, Simpson JB, Yang TY, Kumar P, Mehta S, Nair A, Breen-Lyles M, Chikkamenahalli L, Graham RP, De Winter B, Patel R, Dasari S, Kashyap P, Griffin T, Chen J, Farrugia G, Redinbo MR, Grover M. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol 2022; 7:680-694. [PMID: 35484230 PMCID: PMC9081267 DOI: 10.1038/s41564-022-01103-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Intestinal proteases mediate digestion and immune signalling, while increased gut proteolytic activity disrupts the intestinal barrier and generates visceral hypersensitivity, which is common in irritable bowel syndrome (IBS). However, the mechanisms controlling protease function are unclear. Here we show that members of the gut microbiota suppress intestinal proteolytic activity through production of unconjugated bilirubin. This occurs via microbial β-glucuronidase-mediated conversion of bilirubin conjugates. Metagenomic analysis of faecal samples from patients with post-infection IBS (n = 52) revealed an altered gut microbiota composition, in particular a reduction in Alistipes taxa, and high gut proteolytic activity driven by specific host serine proteases compared with controls. Germ-free mice showed 10-fold higher proteolytic activity compared with conventional mice. Colonization with microbiota samples from high proteolytic activity IBS patients failed to suppress proteolytic activity in germ-free mice, but suppression of proteolytic activity was achieved with colonization using microbiota from healthy donors. High proteolytic activity mice had higher intestinal permeability, a higher relative abundance of Bacteroides and a reduction in Alistipes taxa compared with low proteolytic activity mice. High proteolytic activity IBS patients had lower fecal β-glucuronidase activity and end-products of bilirubin deconjugation. Mice treated with unconjugated bilirubin and β-glucuronidase-overexpressing E. coli significantly reduced proteolytic activity, while inhibitors of microbial β-glucuronidases increased proteolytic activity. Together, these data define a disease-relevant mechanism of host-microbial interaction that maintains protease homoeostasis in the gut.
Collapse
Affiliation(s)
- Adam L Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lu Yang
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Stephanie Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nikita Hanning
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Asha Nair
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium
- Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Purna Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Timothy Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jun Chen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biochemistry and Biophysics, and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
92
|
Fornasaro S, Esposito A, Florian F, Pallavicini A, De Leo L, Not T, Lagatolla C, Mezzarobba M, Di Silvestre A, Sergo V, Bonifacio A. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet. Anal Bioanal Chem 2022; 414:3517-3527. [PMID: 35258650 PMCID: PMC9018641 DOI: 10.1007/s00216-022-03975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alessandro Esposito
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Luigina De Leo
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Tarcisio Not
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Marica Mezzarobba
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alessia Di Silvestre
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Valter Sergo
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alois Bonifacio
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy.
| |
Collapse
|
93
|
Yang Z, Dong S, Zheng Y, Kong F, Lv J, Sun X, Wang Y, Cao Z, Wang W, Li S. Effects of Concentrate Levels in Prepartum Diet on Milk Performance, Energy Balance and Rumen Fermentation of Transition Montbéliarde-Holstein Crossbred Cows. Animals (Basel) 2022; 12:ani12091051. [PMID: 35565478 PMCID: PMC9101529 DOI: 10.3390/ani12091051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the effect of three rates of prepartum dietary concentrate feeding on the milk performance, energy balance, and rumen fermentation of Montbéliarde−Holstein crossbred cows. Eighteen transition Montbéliarde−Holstein crossbred cows with similar days of gestation (258 ± 12 day) and body weights (622 ± 44 kg) were selected and randomly divided into three groups. In the prepartum period, the addition of concentrates accounted for 0.3% (low concentrate, LC), 0.6% (medium concentrate, MC), and 0.9% (high concentrate, HC) of the cow’s body weight. The forage was corn stover, which was fed to the cows ad libitum with free access to water. Postpartum, all of the cows were fed a common lactation total mixed ration. The experimental period lasted from 21 days prepartum to 28 days postpartum. The energy balance (EB), net energy intake (NEI), and dry matter intake (DMI) of the HC group were greater than those of the other groups (p < 0.05). Likewise, the non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), and total bilirubin (TBIL) in the blood of the LC group had significantly higher concentrations than they did in the other groups (p < 0.05). Moreover, the increase in the level of dietary concentrate had no significant effect on the rumen fermentation parameters (p > 0.05), and the total intestinal digestibility of dry matter (DM), crude protein (CP), and ether extract (EE) in the HC group was significantly higher (p < 0.05) than it was in the other groups during the prepartum period. In conclusion, the administration of the MC diet in the prepartum period had no negative effect on the performance and rumen fermentation of postpartum dairy cows and can satisfy the energy needs of prepartum dairy cows. Therefore, under our experimental conditions, the 0.6% prenatal concentrate feeding amount was the most appropriate for Montbéliarde−Holstein crossbred cows.
Collapse
|
94
|
Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, Akyildiz M, Saglam B, Gonenli MG, Yigit B, Ulukan B, Ural D, Shoaie S, Turkez H, Nielsen J, Zhang C, Uhlén M, Borén J, Mardinoglu A. Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104373. [PMID: 35128832 PMCID: PMC9008426 DOI: 10.1002/advs.202104373] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disease involving alterations in multiple biological processes regulated by the interactions between obesity, genetic background, and environmental factors including the microbiome. To decipher hepatic steatosis (HS) pathogenesis by excluding critical confounding factors including genetic variants and diabetes, 56 heterogenous MAFLD patients are characterized by generating multiomics data including oral and gut metagenomics as well as plasma metabolomics and inflammatory proteomics data. The dysbiosis in the oral and gut microbiome is explored and the host-microbiome interactions based on global metabolic and inflammatory processes are revealed. These multiomics data are integrated using the biological network and HS's key features are identified using multiomics data. HS is finally predicted using these key features and findings are validated in a follow-up cohort, where 22 subjects with varying degree of HS are characterized.
Collapse
Affiliation(s)
- Mujdat Zeybel
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust & University of NottinghamNottinghamNG5 1PBUK
- Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamNG7 2UHUK
| | - Muhammad Arif
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Present address:
Laboratory of Cardiovascular Physiology and Tissue Injury and Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMD20852USA
| | - Xiangyu Li
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Ozlem Altay
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Hong Yang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Mengnan Shi
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Murat Akyildiz
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burcin Saglam
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Mehmet Gokhan Gonenli
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Buket Yigit
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burge Ulukan
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Dilek Ural
- School of MedicineKoç UniversityIstanbul34010Turkey
| | - Saeed Shoaie
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| | - Hasan Turkez
- Department of Medical BiologyFaculty of MedicineAtatürk UniversityErzurum25240Turkey
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐41296Sweden
| | - Cheng Zhang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenan Province450001China
| | - Mathias Uhlén
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Jan Borén
- Department of Molecular and Clinical MedicineUniversity of Gothenburg and Sahlgrenska University Hospital GothenburgGothenburgSE‐41345Sweden
| | - Adil Mardinoglu
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
95
|
Stec DE, Tiribelli C, Badmus OO, Hinds TD. Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. KIDNEY360 2022; 3:945-953. [PMID: 36128497 PMCID: PMC9438427 DOI: 10.34067/kid.0000062022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 01/30/2023]
Abstract
Bilirubin is the end product of the catabolism of heme via the heme oxygenase pathway. Heme oxygenase generates carbon monoxide (CO) and biliverdin from the breakdown of heme, and biliverdin is rapidly reduced to bilirubin by the enzyme biliverdin reductase (BVR). Bilirubin has long been thought of as a toxic product that is only relevant to health when blood levels are severely elevated, such as in clinical jaundice. The physiologic functions of bilirubin correlate with the growing body of evidence demonstrating the protective effects of serum bilirubin against cardiovascular and metabolic diseases. Although the correlative evidence suggests a protective effect of serum bilirubin against many diseases, the mechanism by which bilirubin offers protection against cardiovascular and metabolic diseases remains unanswered. We recently discovered a novel function for bilirubin as a signaling molecule capable of activating the peroxisome proliferator-activated receptor α (PPARα) transcription factor. This review summarizes the new finding of bilirubin as a signaling molecule and proposes several mechanisms by which this novel action of bilirubin may protect against cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Olufunto O. Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
96
|
Tang C, Jiang H, Zhao B, Lin Y, Lin S, Chen T, Su Y, Zhang Y, Zhou L, Li L, Lin J, Lu Z, Wang Y, Zhao Z, Liu L, Wang Y, Zhang J, Shen H. The association between bilirubin and hypertension among a Chinese ageing cohort: a prospective follow-up study. J Transl Med 2022; 20:108. [PMID: 35246141 PMCID: PMC8895624 DOI: 10.1186/s12967-022-03309-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertension is highly prevalent and associated with the elevated risks of cardiovascular diseases, dementia, and physical disabilities among adults. Although the correlation between bilirubin and hypertension has been reported, the observation in quinquagenarian population is scarce. We aimed to examine bilirubin-hypertension association in Guankou Ageing Cohort Study. METHODS Participants ≥ 55 years were recruited and their questionnaires and physical examination data were collected. Kaplan-Meier survival analysis and Cox proportional hazards regression were implemented to assess the hypertension risk. The non-liner dose-response relationships of bilirubin-hypertension were determined by restricted cubic spline (RCS) models. Receiver operating characteristic (ROC) curves and multiple factors analysis (MFA) were performed to evaluate the predictive abilities. RESULTS 1881 eligible participants (male 43.75%, female 56.25%) with the median age of 61.00 (59.00-66.00) were included. The hazard ratio (HR, 95% CI) of serum total bilirubin (STB) and unconjugated bilirubin (UCB) were 1.03 (1.01-1.05) and 1.05 (1.03-1.07), while conjugated bilirubin (CB) showed a weak protective effect with the HR of 0.96 (0.92-0.99), and the associations remained significant in all models. RCS analyses further indicated the similar bidirectional effects of STB and UCB with the cut-off of 12.17 μmol/L and 8.59 μmol/L, while CB exhibited inverse bidirectional dose-response relationship with a cut-off of 3.47 μmol/L. ROC curves and MFA showed baseline STB combined with age, BMI, and waist circumference could well discriminate the low and high of hypertension risk. CONCLUSIONS Our findings suggested the higher levels of total and unconjugated bilirubin were hazardous factors of hypertension, while an inverse effect presented when more bilirubin was conjugated.
Collapse
Affiliation(s)
- Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Hanxiang Jiang
- Xiamen Guankou Hospital, No. 270 Jingshan Road, Jimei District, Xiamen, 361023, Fujian, People's Republic of China
| | - Bin Zhao
- Clinical Medical Laboratory, Xiang'an Hospital of Xiamen University, No. 2000, East Xiang'an Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Yiqin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen, 361021, Fujian, People's Republic of China
| | - Lina Zhou
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen, 361021, Fujian, People's Republic of China
| | - Lianmeng Li
- Xiamen Guankou Hospital, No. 270 Jingshan Road, Jimei District, Xiamen, 361023, Fujian, People's Republic of China
| | - Jincheng Lin
- Xiamen Guankou Hospital, No. 270 Jingshan Road, Jimei District, Xiamen, 361023, Fujian, People's Republic of China
| | - Zhonghua Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3141 Chestnut Street, Philadelphia, PA, USA
| | - Yuxin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen, 361021, Fujian, People's Republic of China.
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China.
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
97
|
Lu K, Shi TS, Shen SY, Shi Y, Gao HL, Wu J, Lu X, Gao X, Ju HX, Wang W, Cao Y, Chen D, Li CJ, Xue B, Jiang Q. Defects in a liver-bone axis contribute to hepatic osteodystrophy disease progression. Cell Metab 2022; 34:441-457.e7. [PMID: 35235775 DOI: 10.1016/j.cmet.2022.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Hepatic osteodystrophy (HOD) is a metabolic bone disease that is often associated with chronic liver disease and is marked by bone loss. Here, we demonstrate that hepatic expression of the phosphatase PP2Acα is upregulated during HOD, leading to the downregulation of expression of the hepatokine lecithin-cholesterol acyltransferase (LCAT). Loss of LCAT function markedly exacerbates the bone loss phenotype of HOD in mice. In addition, we found that alterations in cholesterol levels are involved in the regulation of osteoblast and osteoclast activities. We also found that LCAT improves liver function and relieves liver fibrosis in the mouse HOD model by promoting reversal of cholesterol transport from the bone to the liver. In summary, defects in a liver-bone axis occur during HOD that can be targeted to ameliorate disease progression.
Collapse
Affiliation(s)
- Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing 210008, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian-Shu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing 210008, China
| | - Si-Yu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing 210008, China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing 210008, China
| | - Hong-Liang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Lu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Gao
- Model Animal Research Center of Nanjing University, Xuefu Road, Nanjing 210032, China
| | - Huang-Xian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing 210093, China; State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|
98
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW The gut microbial co-metabolism of bile-derived compounds (e.g. bile acids and bile pigments) affects colorectal cancer (CRC) risk. Here, we review recent findings with focus on selected novel aspects of bile-associated effects with interesting but unclear implications on CRC risk. RECENT FINDINGS Numerous studies demonstrated novel biotransformation of bile acids by gut bacteria (e.g. microbial conjugation of bile acids), resulting in diverse bile acid compounds that show complex interactions with host receptors (e.g. FXR, TGR5). In addition, YAP-associated signalling in intestinal epithelial cells is modulated via bile acid receptor TGR5 and contributes to colonic tumorigenesis. Finally, studies indicate that serum levels of the bile pigment bilirubin are inversely associated with CRC risk or intestinal inflammation and that bilirubin affects gut microbiota composition. SUMMARY Bile acids and bile pigments have multiple effects on intestinal microbe-host interactions, which may collectively modulate long-term CRC risk of the host.
Collapse
|
100
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|