51
|
Geoffray MM, Nicolas A, Speranza M, Georgieff N. Are circadian rhythms new pathways to understand Autism Spectrum Disorder? ACTA ACUST UNITED AC 2017. [PMID: 28625682 DOI: 10.1016/j.jphysparis.2017.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes.
Collapse
Affiliation(s)
- M-M Geoffray
- Department of Child and Adolescent Psychiatry, Centre Hospitalier le Vinatier, Lyon, France.
| | - A Nicolas
- Unité d'exploration Hypnologique, Service Hospitalo-Universitaire de Psychiatrie, Centre Hospitalier spécialisé Le Vinatier, Lyon, France
| | - M Speranza
- Department of Child and Adolescent Psychiatry, Hospital of Versailles, France
| | - N Georgieff
- Department of Child and Adolescent Psychiatry, Centre Hospitalier le Vinatier, Lyon, France
| |
Collapse
|
52
|
Papadatou-Pastou M, Haliou E, Vlachos F. Brain Knowledge and the Prevalence of Neuromyths among Prospective Teachers in Greece. Front Psychol 2017; 8:804. [PMID: 28611700 PMCID: PMC5447089 DOI: 10.3389/fpsyg.2017.00804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/02/2017] [Indexed: 12/02/2022] Open
Abstract
Although very often teachers show a great interest in introducing findings from the field of neuroscience in their classrooms, there is growing concern about the lack of academic instruction on neuroscience on teachers' curricula because this has led to a proliferation of neuromyths. We surveyed 479 undergraduate (mean age = 19.60 years, SD = 2.29) and 94 postgraduate students (mean age = 28.52 years, SD = 7.16) enrolled in Departments of Education at the University of Thessaly and the National and Kapodistrian University of Athens. We used a 70-item questionnaire aiming to explore general knowledge on the brain, neuromyths, the participants' attitude toward neuroeducation as well as their reading habits. Prospective teachers were found to believe that neuroscience knowledge is useful for teachers (90.3% agreement), to be somewhat knowledgeable when it comes to the brain (47.33% of the assertions were answered correctly), but to be less well informed when it comes to neuroscientific issues related to special education (36.86% correct responses). Findings further indicate that general knowledge about the brain was found to be the best safeguard against believing in neuromyths. Based on our results we suggest that prospective teachers can benefit from academic instruction on neuroscience. We propose that such instruction takes place in undergraduate courses of Departments of Education and that emphasis is given in debunking neuromyths, enhancing critical reading skills, and dealing with topics relevant to special education.
Collapse
Affiliation(s)
- Marietta Papadatou-Pastou
- Faculty of Primary Education, Research Center for Psychophysiology and Education, School of Education, National and Kapodistrian University of AthensAthens, Greece.,Cognition and Health Research Group, Department of Experimental Psychology, University of OxfordOxford, United Kingdom
| | - Eleni Haliou
- Faculty of Primary Education, Research Center for Psychophysiology and Education, School of Education, National and Kapodistrian University of AthensAthens, Greece
| | - Filippos Vlachos
- Department of Special Education, University of ThessalyVolos, Greece
| |
Collapse
|
53
|
Raven F, Van der Zee EA, Meerlo P, Havekes R. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Med Rev 2017. [PMID: 28641933 DOI: 10.1016/j.smrv.2017.05.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendritic spines are the major sites of synaptic transmission in the central nervous system. Alterations in the strength of synaptic connections directly affect the neuronal communication, which is crucial for brain function as well as the processing and storage of information. Sleep and sleep loss bidirectionally alter structural plasticity, by affecting spine numbers and morphology, which ultimately can affect the functional output of the brain in terms of alertness, cognition, and mood. Experimental data from studies in rodents suggest that sleep deprivation may impact structural plasticity in different ways. One of the current views, referred to as the synaptic homeostasis hypothesis, suggests that wake promotes synaptic potentiation whereas sleep facilitates synaptic downscaling. On the other hand, several studies have now shown that sleep deprivation can reduce spine density and attenuate synaptic efficacy in the hippocampus. These data are the basis for the view that sleep promotes hippocampal structural plasticity critical for memory formation. Altogether, the impact of sleep and sleep loss may vary between regions of the brain. A better understanding of the role that sleep plays in regulating structural plasticity may ultimately lead to novel therapeutic approaches for brain disorders that are accompanied by sleep disturbances and sleep loss.
Collapse
Affiliation(s)
- Frank Raven
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Eddy A Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
54
|
Cuomo BM, Vaz S, Lee EAL, Thompson C, Rogerson JM, Falkmer T. Effectiveness of Sleep-Based Interventions for Children with Autism Spectrum Disorder: A Meta-Synthesis. Pharmacotherapy 2017; 37:555-578. [DOI: 10.1002/phar.1920] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Belinda M. Cuomo
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
| | - Sharmila Vaz
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
| | - Elinda Ai Lim Lee
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
- Cooperative Research Centre for Living with Autism Spectrum Disorders (Autism CRC); Brisbane Queensland Australia
| | - Craig Thompson
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
- Cooperative Research Centre for Living with Autism Spectrum Disorders (Autism CRC); Brisbane Queensland Australia
| | - Jessica M. Rogerson
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
| | - Torbjorn Falkmer
- School of Occupational Therapy & Social Work; Curtin University; Perth Western Australia Australia
- Cooperative Research Centre for Living with Autism Spectrum Disorders (Autism CRC); Brisbane Queensland Australia
- Rehabilitation Medicine, Department of Medicine and Health Sciences (IMH), Faculty of Health Sciences; Linköping University & Pain and Rehabilitation Centre; Linköping Sweden
- Department for Rehabilitation, School of Health Sciences; Jönköping University; Jönköping Sweden
| |
Collapse
|
55
|
Verkooijen S, Stevelink R, Abramovic L, Vinkers CH, Ophoff RA, Kahn RS, Boks MPM, van Haren NEM. The association of sleep and physical activity with integrity of white matter microstructure in bipolar disorder patients and healthy controls. Psychiatry Res 2017; 262:71-80. [PMID: 28236715 PMCID: PMC5381646 DOI: 10.1016/j.pscychresns.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
We investigate how the sleep disruptions and irregular physical activity levels that are prominent features of bipolar disorder (BD) relate to white matter microstructure in patients and controls. Diffusion tension imaging (DTI) and 14-day actigraphy recordings were obtained in 51 BD I patients and 55 age-and-gender-matched healthy controls. Tract-based spatial statistics (TBSS) was used for voxelwise analysis of the association between fractional anisotropy (FA) and sleep and activity characteristics in the overall sample. Next, we investigated whether the relation between sleep and activity and DTI measures differed for patients and controls. Physical activity was related to increased integrity of white matter microstructure regardless of bipolar diagnosis. The relationship between sleep and white matter microstructure was more equivocal; we found an expected association between higher FA and effective sleep in controls but opposite patterns in bipolar patients. Confounding factors such as antipsychotic medication use are a likely explanation for these contrasting findings and highlight the need for further study of medication-related effects on white matter integrity.
Collapse
Affiliation(s)
- Sanne Verkooijen
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Remi Stevelink
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Lucija Abramovic
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Marco P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
56
|
Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders. Int J Mol Sci 2017; 18:ijms18050938. [PMID: 28468274 PMCID: PMC5454851 DOI: 10.3390/ijms18050938] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.
Collapse
|
57
|
Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017; 44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
What are the molecular and cellular mechanisms that link neurological disorders and sleep disturbances? The transparent zebrafish model could bridge this gap in knowledge due to its unique genetic and imaging toolbox, and amenability to high-throughput screening. Sleep is well-characterized in zebrafish and key regulators of the sleep/wake cycle are conserved, including melatonin and hypocretin/orexin (Hcrt), whereas novel sleep regulating proteins are continually being identified, such as Kcnh4a, Neuromedin U, and QRFP. Sleep deficiencies have been observed in various zebrafish models for genetic neuropsychiatric disorders, ranging from psychomotor retardation and autism to anxiety disorders. Understanding the link between neuropsychiatric disorders and sleep phenotypes in zebrafish may ultimately provide a platform for identifying therapeutic targets for clinical trials in humans.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
58
|
Koren V, Denève S. Computational Account of Spontaneous Activity as a Signature of Predictive Coding. PLoS Comput Biol 2017; 13:e1005355. [PMID: 28114353 PMCID: PMC5293286 DOI: 10.1371/journal.pcbi.1005355] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 02/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Spontaneous activity is commonly observed in a variety of cortical states. Experimental evidence suggested that neural assemblies undergo slow oscillations with Up ad Down states even when the network is isolated from the rest of the brain. Here we show that these spontaneous events can be generated by the recurrent connections within the network and understood as signatures of neural circuits that are correcting their internal representation. A noiseless spiking neural network can represent its input signals most accurately when excitatory and inhibitory currents are as strong and as tightly balanced as possible. However, in the presence of realistic neural noise and synaptic delays, this may result in prohibitively large spike counts. An optimal working regime can be found by considering terms that control firing rates in the objective function from which the network is derived and then minimizing simultaneously the coding error and the cost of neural activity. In biological terms, this is equivalent to tuning neural thresholds and after-spike hyperpolarization. In suboptimal working regimes, we observe spontaneous activity even in the absence of feed-forward inputs. In an all-to-all randomly connected network, the entire population is involved in Up states. In spatially organized networks with local connectivity, Up states spread through local connections between neurons of similar selectivity and take the form of a traveling wave. Up states are observed for a wide range of parameters and have similar statistical properties in both active and quiescent state. In the optimal working regime, Up states are vanishing, leaving place to asynchronous activity, suggesting that this working regime is a signature of maximally efficient coding. Although they result in a massive increase in the firing activity, the read-out of spontaneous Up states is in fact orthogonal to the stimulus representation, therefore interfering minimally with the network function. Spontaneous bursts of activity, commonly observed in the brain, can be understood in terms of error-correcting computation within a neural network. Bursts arise automatically in a network that is inefficiently correcting its internal representation.
Collapse
Affiliation(s)
- Veronika Koren
- Group for Neural Theory, Département d’Études Cognitives, École Normale Supérieure, Paris, France
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- * E-mail: (VK); (SD)
| | - Sophie Denève
- Group for Neural Theory, Département d’Études Cognitives, École Normale Supérieure, Paris, France
- * E-mail: (VK); (SD)
| |
Collapse
|
59
|
Elbaz I, Levitas-Djerbi T, Appelbaum L. The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Top Behav Neurosci 2017; 33:75-92. [PMID: 28012092 DOI: 10.1007/7854_2016_59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Talia Levitas-Djerbi
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
60
|
New Attempts to Overcome the Urinary Tract Disorders. Int Neurourol J 2016; 20:S68-69. [PMID: 27915471 PMCID: PMC5169093 DOI: 10.5213/inj.1620edi008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
61
|
Hill CM, Carroll A, Dimitriou D, Gavlak J, Heathcote K, L'Esperance V, Baya A, Webster R, Pushpanathan M, Bucks RS. Polysomnography in Bolivian Children Native to High Altitude Compared to Children Native to Low Altitude. Sleep 2016; 39:2149-2155. [PMID: 27634793 PMCID: PMC5103803 DOI: 10.5665/sleep.6316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To compare polysomnographic parameters in high altitude (HA) native Andean children with low altitude (LA) native peers in order to explain the nocturnal oxyhemoglobin saturation (SpO2) instability reported in HA native children and to study the effect on sleep quality. METHODS Ninety-eight healthy children aged 7-10 y and 13-16 y were recruited at LA (500 m) or HA (3,650 m) above sea level. Physical examination was undertaken and genetic ancestry determined from salivary DNA to determine proportion of European ancestry, a risk factor for poor HA adaptation. Attended polysomnography was carried out over 1 night for 58 children at their resident location. RESULTS Of 98 children recruited, 85 met inclusion criteria, 58 of 85 (68.2%) completed polysomnography, of which 56 were adequate for analysis: 30 at LA (17 male) and 26 at HA (16 male). There were no altitude differences in genetic ancestry, but a high proportion of European admixture (median 50.6% LA; 44.0% HA). SpO2 was less stable at HA with mean 3% and 4% oxygen desaturation indices greater (both P < 0.001) than at LA. This was not explained by periodic breathing. However, more obstructive hypopnea was observed at HA (P < 0.001), along with a trend toward more central apnea (P = 0.053); neither was explained by clinical findings. There was no difference in sleep quality between altitudes. CONCLUSIONS HA native Andean children have more respiratory events when scoring relies on SpO2 desaturation due to inherent SpO2 instability. Use of American Academy of Sleep Medicine scoring criteria may yield false-positive results for obstructive sleep-disordered breathing at HA.
Collapse
Affiliation(s)
- Catherine Mary Hill
- Division of Clinical Experimental Sciences, Faculty of Medicine, University of Southampton, UK
- Southampton Children's Hospital, Southampton, UK
| | | | - Dagmara Dimitriou
- Lifespan Learning and Sleep Laboratory, UCL Institute of Education, UK
| | - Johanna Gavlak
- Southampton Children's Hospital, Southampton, UK
- Neurosciences Unit, UCL Institute of Child Health, UK
| | - Kate Heathcote
- Department of Otolaryngology, Poole General Hospital, UK
| | - Veline L'Esperance
- Department of Primary Care and Population Health, Kings College London, UK
| | - Ana Baya
- Department of Psychology, Universidad Privada de Santa Cruz de la Sierra, Santa Cruz, Bolivia
| | - Rebecca Webster
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Perth, Australia
| | | | | |
Collapse
|
62
|
Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice. Int Neurourol J 2016; 20:S141-149. [PMID: 27915477 PMCID: PMC5169096 DOI: 10.5213/inj.1632738.369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. Results Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. Conclusions Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.
Collapse
|
63
|
Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2016; 54:6581-6597. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022]
Abstract
Sleep is tightly regulated by the circadian clock and homeostatic mechanisms. Although the sleep/wake cycle is known to be associated with structural and physiological synaptic changes that benefit the brain, the function of sleep is still debated. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate various functions including feeding, reward, sleep, and wake. Continuous imaging of single neuronal circuits in live animals is vital to understanding the role of sleep in regulating synaptic dynamics, and the transparency of the zebrafish model enables time-lapse imaging of single synapses during both day and night. Here, we use the gephyrin (Gphnb) protein, a central inhibitory synapse organizer, as a fluorescent post-synaptic marker of inhibitory synapses. Double labeling showed that Gphnb-tagRFP and collybistin-EGFP clusters co-localized in dendritic inhibitory synapses. Using a transgenic hcrt:Gphnb-EGFP zebrafish, we showed that the number of inhibitory synapses in the dendrites of Hcrt neurons was increased during development. To determine the effect of sleep on the inhibitory synapses, we performed two-photon live imaging of Gphnb-EGFP in Hcrt neurons during day and night, under light/dark and constant light and dark conditions, and following sleep deprivation (SD). We found that synapse number increased during the night under light/dark conditions but that these changes were eliminated under constant light or dark conditions. SD reduced synapse number during the night, and the number increased during post-deprivation daytime sleep rebound. These results suggest that rhythmic structural plasticity of inhibitory synapses in Hcrt dendrites is independent of the circadian clock and is modulated by consolidated wake and sleep.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - David Zada
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Adi Tovin
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Tslil Braun
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Tali Lerer-Goldshtein
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Gordon Wang
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Philippe Mourrain
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94305, USA
- INSERM 1024, Ecole Normale Supérieure, 75005, Paris, France
| | - Lior Appelbaum
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
64
|
Ladenbauer J, Külzow N, Passmann S, Antonenko D, Grittner U, Tamm S, Flöel A. Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage 2016; 142:311-323. [PMID: 27381076 DOI: 10.1016/j.neuroimage.2016.06.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022] Open
Abstract
Sleep-related consolidation of declarative memories, as well as associated neurophysiological events such as slow oscillatory and spindle activity, deteriorate in the course of aging. This process is accelerated in neurodegenerative disease. Transcranial slow oscillatory stimulation (so-tDCS) during sleep has been shown to enhance slow oscillatory brain activity and thereby improve memory consolidation in young subjects. Here, we investigated whether so-tDCS applied to older adults during an afternoon nap exerts similar effects. Eighteen older human subjects were assessed using visuo-spatial (picture memory, primary, and location memory) and verbal memory tasks before and after a 90-min nap either comprising weak so-tDCS at 0.75Hz over fronto-central location or sham (no) stimulation in a within-subject design. Electroencephalographic activity was recorded throughout the naps and immediate effects of stimulation on brain activity were evaluated. Here, spectral power within three frequency bands of interest were computed, i.e., slow oscillatory activity, slow spindle and fast spindle activity; in 1-min stimulation-free intervals following 5 stimulation blocks. So-tDCS significantly increased frontal slow oscillatory activity as well as fast spindle activity, and significantly improved picture memory retention after sleep. Retention in the location memory subtask and in the verbal memory task was not affected. These findings may indicate a novel strategy to counteract cognitive decline in aging in a convenient manner during brief daytime naps.
Collapse
Affiliation(s)
- Julia Ladenbauer
- Department of Neurology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Nadine Külzow
- Department of Neurology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sven Passmann
- Department of Neurology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Daria Antonenko
- Department of Neurology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Ulrike Grittner
- Biostatistics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sascha Tamm
- Department of Psychology, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Agnes Flöel
- Department of Neurology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
65
|
Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake. Cell 2016; 165:180-191. [PMID: 26997481 DOI: 10.1016/j.cell.2016.01.046] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/20/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Homeostatic mechanisms stabilize neural circuit function by keeping firing rates within a set-point range, but whether this process is gated by brain state is unknown. Here, we monitored firing rate homeostasis in individual visual cortical neurons in freely behaving rats as they cycled between sleep and wake states. When neuronal firing rates were perturbed by visual deprivation, they gradually returned to a precise, cell-autonomous set point during periods of active wake, with lengthening of the wake period enhancing firing rate rebound. Unexpectedly, this resetting of neuronal firing was suppressed during sleep. This raises the possibility that memory consolidation or other sleep-dependent processes are vulnerable to interference from homeostatic plasticity mechanisms. PAPERCLIP.
Collapse
Affiliation(s)
- Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | - James N McGregor
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
66
|
Fifel K, Piggins H, Deboer T. Modeling sleep alterations in Parkinson's disease: How close are we to valid translational animal models? Sleep Med Rev 2016; 25:95-111. [DOI: 10.1016/j.smrv.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
67
|
Gonzales ED, Tanenhaus AK, Zhang J, Chaffee RP, Yin JCP. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling. Hum Mol Genet 2015; 25:837-52. [PMID: 26604145 DOI: 10.1093/hmg/ddv482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Ryan P Chaffee
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, USA and
| | - Jerry C P Yin
- Department of Medical Genetics, Department of Neurology, University of Wisconsin-Madison, 1685 Highland Ave., Madison, WI 53705-2281, USA
| |
Collapse
|
68
|
Buckley AW, Scott R, Tyler A, Mahoney JM, Thurm A, Farmer C, Swedo S, Burroughs SA, Holmes GL. State-Dependent Differences in Functional Connectivity in Young Children With Autism Spectrum Disorder. EBioMedicine 2015; 2:1905-15. [PMID: 26844269 PMCID: PMC4703709 DOI: 10.1016/j.ebiom.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022] Open
Abstract
Background While there is increasing evidence of altered brain connectivity in autism, the degree and direction of these alterations in connectivity and their uniqueness to autism has not been established. The aim of the present study was to compare connectivity in children with autism to that of typically developing controls and children with developmental delay without autism. Methods We assessed EEG spectral power, coherence, phase lag, Pearson and partial correlations, and epileptiform activity during the awake, slow wave sleep, and REM sleep states in 137 children aged 2 to 6 years with autism (n = 87), developmental delay without autism (n = 21), or typical development (n = 29). Findings We found that brain connectivity, as measured by coherence, phase lag, and Pearson and partial correlations distinguished children with autism from both neurotypical and developmentally delayed children. In general, children with autism had increased coherence which was most prominent during slow wave sleep. Interpretation Functional connectivity is distinctly different in children with autism compared to samples with typical development and developmental delay without autism. Differences in connectivity in autism are state and region related. In this study, children with autism were characterized by a dynamically evolving pattern of altered connectivity. We used EEG to examine the connectivity in young children in awake, rapid eye movement, and slow wave sleep (SWS) states. Differences in coherence between the autism group and the other groups were maximal during SWS. Sleep may be the most sensitive time to measure differences in neuro-development before they are observable in behavior.
Shared mechanisms underlie normal healthy sleep and normal brain development. Therefore, we suspect that differences in the way that the brain is behaving during sleep have the potential to tell us about what might be developing incorrectly in people with neurodevelopmental disorders. In addition, sleep evaluations of children allow us to filter out waking distractions, so that we are truly measuring the brain working offline. For instance, the differences in the way the brain was connected that we observed between our three study groups were by far the most notable during slow wave sleep. This finding highlights the importance of taking the state of the brain into account when commenting on the ‘connectedness’ of the brain as a potential biomarker for neurodevelopmental disorders. Future attempts to classify developmental disorders by using differences in connectivity must take into account brain state, whether awake or asleep as well as developmental stage.
Collapse
Affiliation(s)
- Ashura W Buckley
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Rod Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Anna Tyler
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Audrey Thurm
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Cristan Farmer
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Susan Swedo
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Scott A Burroughs
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gregory L Holmes
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| |
Collapse
|
69
|
Bai L, Sehgal A. Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep. PLoS Genet 2015; 11:e1005611. [PMID: 26536237 PMCID: PMC4633181 DOI: 10.1371/journal.pgen.1005611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk), the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1) to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.
Collapse
Affiliation(s)
- Lei Bai
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
70
|
Wanger T, Wetzel W, Scheich H, Ohl FW, Goldschmidt J. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep. Brain Struct Funct 2015; 220:3469-84. [PMID: 25113606 PMCID: PMC4575691 DOI: 10.1007/s00429-014-0867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.
Collapse
Affiliation(s)
- Tim Wanger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Wolfram Wetzel
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
71
|
Sadeh A, De Marcas G, Guri Y, Berger A, Tikotzky L, Bar-Haim Y. Infant Sleep Predicts Attention Regulation and Behavior Problems at 3–4 Years of Age. Dev Neuropsychol 2015; 40:122-37. [DOI: 10.1080/87565641.2014.973498] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Bosler O, Girardet C, Franc JL, Becquet D, François-Bellan AM. Structural plasticity of the circadian timing system. An overview from flies to mammals. Front Neuroendocrinol 2015; 38:50-64. [PMID: 25703789 DOI: 10.1016/j.yfrne.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.
Collapse
Affiliation(s)
- Olivier Bosler
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Clémence Girardet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France.
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Denis Becquet
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| | - Anne-Marie François-Bellan
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, Faculté de médecine, secteur nord, Boulevard Pierre Dramard, CS 80011, F-13344 Marseille cedex 15, France
| |
Collapse
|
73
|
Colas D, Chuluun B, Warrier D, Blank M, Wetmore DZ, Buckmaster P, Garner CC, Heller HC. Short-term treatment with the GABAA receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome. Br J Pharmacol 2015; 169:963-73. [PMID: 23489250 DOI: 10.1111/bph.12169] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/25/2013] [Accepted: 02/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Down's syndrome is a common genetic cause of intellectual disability, for which there are no drug therapies. Mechanistic studies in a model of Down's syndrome [Ts65Dn (TS) mice] demonstrated that impaired cognitive function was due to excessive neuronal inhibitory tone. These deficits were normalized by low doses of GABAA receptor antagonists in adult animals. In this study, we explore the therapeutic potential of pentylenetetrazole, a GABAA receptor antagonist with a history of safe use in humans. EXPERIMENTAL APPROACH Long-term memory was assessed by the novel object recognition test in different cohorts of TS mice after a delay following a short-term chronic treatment with pentylenetetrazole. Seizure susceptibility, an index of treatment safety, was studied by means of EEG, behaviour and hippocampus morphology. EEG spectral analysis was used as a bio-marker of the treatment. KEY RESULTS PTZ has a wide therapeutic window (0.03-3 mg·kg(-1)) that is >10-1000-fold below its seizure threshold and chronic pentylenetetrazole treatment did not lower the seizure threshold. Short-term, low, chronic dose regimens of pentylenetetrazole elicited long-lasting (>1 week) normalization of cognitive function in young and aged mice. Pentylenetetrazole effectiveness was dependent on the time of treatment; cognitive performance improved after treatment during the light (inactive) phase, but not during the dark (active) phase. Chronic pentylenetetrazole treatment normalized EEG power spectra in TS mice. CONCLUSIONS AND IMPLICATIONS Low doses of pentylenetetrazole were safe, produced long-lasting cognitive improvements and have the potential of fulfilling an unmet therapeutic need in Down's syndrome.
Collapse
Affiliation(s)
- D Colas
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Karunanithi S, Brown IR. Heat shock response and homeostatic plasticity. Front Cell Neurosci 2015; 9:68. [PMID: 25814928 PMCID: PMC4357293 DOI: 10.3389/fncel.2015.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/17/2015] [Indexed: 11/13/2022] Open
Abstract
Heat shock response and homeostatic plasticity are mechanisms that afford functional stability to cells in the face of stress. Each mechanism has been investigated independently, but the link between the two has not been extensively explored. We explore this link. The heat shock response enables cells to adapt to stresses such as high temperature, metabolic stress and reduced oxygen levels. This mechanism results from the production of heat shock proteins (HSPs) which maintain normal cellular functions by counteracting the misfolding of cellular proteins. Homeostatic plasticity enables neurons and their target cells to maintain their activity levels around their respective set points in the face of stress or disturbances. This mechanism results from the recruitment of adaptations at synaptic inputs, or at voltage-gated ion channels. In this perspective, we argue that heat shock triggers homeostatic plasticity through the production of HSPs. We also suggest that homeostatic plasticity is a form of neuroprotection.
Collapse
Affiliation(s)
- Shanker Karunanithi
- School of Medical Science, Griffith University QLD, Australia ; Menzies Health Institute of Queensland, Griffith University QLD, Australia
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough Toronto, ON, Canada
| |
Collapse
|
75
|
A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J Neurosci 2015; 34:12547-59. [PMID: 25209292 DOI: 10.1523/jneurosci.0324-14.2014] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter.
Collapse
|
76
|
Abad VC, Guilleminault C. Pharmacological treatment of sleep disorders and its relationship with neuroplasticity. Curr Top Behav Neurosci 2015; 25:503-53. [PMID: 25585962 DOI: 10.1007/7854_2014_365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Collapse
Affiliation(s)
- Vivien C Abad
- Psychiatry and Behavioral Science-Division of Sleep Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
77
|
Ramos AR, Tarraf W, Rundek T, Redline S, Wohlgemuth WK, Loredo JS, Sacco RL, Lee DJ, Arens R, Lazalde P, Choca JP, Mosley T, González HM. Obstructive sleep apnea and neurocognitive function in a Hispanic/Latino population. Neurology 2014; 84:391-8. [PMID: 25540308 DOI: 10.1212/wnl.0000000000001181] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We evaluated the association between obstructive sleep apnea (OSA) and neurocognitive function among community-dwelling Hispanic/Latino individuals in the United States. METHODS Cross-sectional analysis of the Hispanic Community Health Study/Study of Latinos middle-aged and older adults, aged 45 to 74 years, with neurocognitive test scores at baseline measurements from 2008 to 2011. Neurocognitive scores were measured using the Word Fluency (WF) Test, the Brief-Spanish English Verbal Learning Test (SEVLT), and the Digit Symbol Substitution (DSS) Test. OSA was defined by the apnea-hypopnea index (AHI). Multivariable linear regression models were fit to evaluate relations between OSA and neurocognitive scores. RESULTS The analysis consisted of 8,059 participants, mean age of 56 years, 55% women, and 41% with less than high school education. The mean AHI was 9.0 (range 0-142; normal AHI <5/h). There was an association between the AHI and all 4 neurocognitive test scores: Brief-SEVLT-sum (β = -0.022) and -recall (β = -0.010), WF (β = -0.023), and DSS (β = -0.050) at p < 0.01 that was fully attenuated by age. In the fully adjusted regression model, female sex was a moderating factor between the AHI and WF (β = -0.027, p < 0.10), SVELT-sum (β = -0.37), SVELT-recall (β = -0.010), and DSS (β = -0.061) at p < 0.01. CONCLUSION OSA was associated with worse neurocognitive function in a representative sample of Hispanic/Latino women in the United States.
Collapse
Affiliation(s)
- Alberto R Ramos
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Wassim Tarraf
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Tatjana Rundek
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Susan Redline
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - William K Wohlgemuth
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Jose S Loredo
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Ralph L Sacco
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - David J Lee
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Raanan Arens
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Patricia Lazalde
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - James P Choca
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Thomas Mosley
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing
| | - Hector M González
- From the Departments of Neurology (A.R.R., T.R., R.L.S.) and Epidemiology and Public Health (T.R., R.L.S., D.J.L.), University of Miami, Miller School of Medicine, FL; Institute of Gerontology (W.T.), Wayne State University, Detroit, MI; Brigham and Women's Hospital and Beth Israel Deaconess Medical Center (S.R.), Harvard Medical School, Boston, MA; Bruce W. Carter Department of Veterans Affairs Medical Center (W.K.W.), Miami, FL; Department of Medicine (J.S.L.), University of California San Diego; The Children's Hospital at Montefiore (R.A.), Albert Einstein College of Medicine, Bronx, NY; HCHS/SOL Field Center (P.L.), San Diego State University, CA; Department of Psychology (J.P.C.), Roosevelt University, Chicago, IL; Department of Neurology (T.M.), University of Mississippi, Jackson; and Department of Epidemiology and Biostatistics (H.M.G.), Michigan State University, East Lansing.
| |
Collapse
|
78
|
Nagy S, Tramm N, Sanders J, Iwanir S, Shirley IA, Levine E, Biron D. Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. eLife 2014; 3:e04380. [PMID: 25474127 PMCID: PMC4273442 DOI: 10.7554/elife.04380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
Biological homeostasis invokes modulatory responses aimed at stabilizing internal conditions. Using tunable photo- and mechano-stimulation, we identified two distinct categories of homeostatic responses during the sleep-like state of Caenorhabditis elegans (lethargus). In the presence of weak or no stimuli, extended motion caused a subsequent extension of quiescence. The neuropeptide Y receptor homolog, NPR-1, and an inhibitory neuropeptide known to activate it, FLP-18, were required for this process. In the presence of strong stimuli, the correlations between motion and quiescence were disrupted for several minutes but homeostasis manifested as an overall elevation of the time spent in quiescence. This response to strong stimuli required the function of the DAF-16/FOXO transcription factor in neurons, but not that of NPR-1. Conversely, response to weak stimuli did not require the function of DAF-16/FOXO. These findings suggest that routine homeostatic stabilization of sleep may be distinct from homeostatic compensation following a strong disturbance. DOI:http://dx.doi.org/10.7554/eLife.04380.001 The regenerative properties of sleep are required by all animals, with even the simplest animal, the nematode Caenorhabditis elegans, displaying a sleep-like state called lethargus. During development, nematodes must pass through four larval stages en route to adulthood, and the end of each stage is preceded by a period of lethargus lasting 2 to 3 hr. Human sleep is divided into distinct stages that recur in a prescribed order throughout the night. Nematodes, on the other hand, simply experience alternating periods of activity and stillness as they sleep. Nevertheless, in both species, any disruptions to sleep automatically lead to adjustments of the rest of the sleep cycle to compensate for the disturbance and to ensure that the organism gets an adequate amount of sleep overall. To date, it has been assumed that a single mechanism is responsible for adjusting the sleep cycle after any disturbance, regardless of its severity. However, Nagy, Tramm, Sanders et al. now show that this is not the case in C. elegans. Sleeping nematodes that were lightly disturbed by exposing them to light or to vibrations—causing them to briefly increase their activity levels—compensated for the disturbance by lengthening their next inactive period. By contrast, worms that were vigorously agitated by stronger vibrations showed a different response: the alternating pattern of stillness and activity was disrupted for several minutes, followed by an overall increase in the length of time spent in the stillness phase. Experiments using genetically modified worms revealed that these two responses involve distinct molecular pathways. A signaling molecule called neuropeptide Y affects the response to minor sleep disruptions, whereas a transcription factor called DAF-16/FOXO is involved in the corresponding role after major disruptions. Given that neuropeptide Y has already been implicated in sleep regulation in humans and flies, it is not implausible that similar mechanisms may occur in response to disturbances of our own sleep. DOI:http://dx.doi.org/10.7554/eLife.04380.002
Collapse
Affiliation(s)
- Stanislav Nagy
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Nora Tramm
- Department of Physics, University of Chicago, Chicago, United States
| | - Jarred Sanders
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
| | - Shachar Iwanir
- Department of Physics, University of Chicago, Chicago, United States
| | - Ian A Shirley
- Department of Physics, University of Chicago, Chicago, United States
| | - Erel Levine
- Department of Physics, Harvard University, Cambridge, United States
| | - David Biron
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| |
Collapse
|
79
|
Alberini CM, Kandel ER. The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 2014; 7:a021741. [PMID: 25475090 DOI: 10.1101/cshperspect.a021741] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation.
Collapse
Affiliation(s)
| | - Eric R Kandel
- Zuckerman Mind Brain Behavior Institute, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Kavli Institute for Brain Science, New York State Psychiatric Institute, New York, New York 10032 Howard Hughes Medical Institute, New York State Psychiatric Institute, New York, New York 10032 College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
80
|
GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice. Neuroscience 2014; 284:217-224. [PMID: 25286384 DOI: 10.1016/j.neuroscience.2014.09.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 11/21/2022]
Abstract
Orexins are bioactive peptides, which have been shown to play a pivotal role in vigilance state transitions: the loss of orexin-producing neurons (orexin neurons) leads to narcolepsy with cataplexy in the human. However, the effect of the need for sleep (i.e., sleep pressure) on orexin neurons remains largely unknown. Here, we found that immunostaining intensities of the α1 subunit of the GABAA receptor and neuroligin 2, which is involved in inhibitory synapse specialization, on orexin neurons of mouse brain were significantly increased by 6-h sleep deprivation. In contrast, we noted that immunostaining intensities of the α2, γ2, and β2/3 subunits of the GABAA receptor and Huntingtin-associated protein 1, which is involved in GABAAR trafficking, were not changed by 6-h sleep deprivation. Using a slice patch recording, orexin neurons demonstrated increased sensitivity to a GABAA receptor agonist together with synaptic plasticity changes after sleep deprivation when compared with an ad lib sleep condition. In summary, the GABAergic input property of orexin neurons responds rapidly to sleep deprivation. This molecular response of orexin neurons may thus play a role in the changes that accompany the need for sleep following prolonged wakefulness, in particular the decreased probability of a transition to wakefulness once recovery sleep has begun.
Collapse
|
81
|
Frank MG, Cantera R. Sleep, clocks, and synaptic plasticity. Trends Neurosci 2014; 37:491-501. [PMID: 25087980 PMCID: PMC4152403 DOI: 10.1016/j.tins.2014.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023]
Abstract
Sleep is widely believed to play an essential role in synaptic plasticity. However, the precise mechanisms governing this presumptive function are largely unknown. There is also evidence for independent circadian oscillations in synaptic strength and morphology. Therefore, synaptic changes observed after sleep reflect interactions between state-dependent (e.g., wake versus sleep) and state-independent (circadian) processes. In this review we consider how sleep and biological clocks influence synaptic plasticity. We discuss these findings in the context of current plasticity-based theories of sleep function and propose a new model that integrates circadian and brain-state influences on synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G. Frank
- Department of Neuroscience Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104
| | - Rafael Cantera
- Zoology Department Stockholm University Stockholm, Sweden Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
82
|
Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. Sleep 2014; 37:1501-12. [PMID: 25142558 DOI: 10.5665/sleep.4000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. DESIGN Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). MEASUREMENTS AND RESULTS Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). CONCLUSIONS Slow sleep spindles (11-13 Hz) in children age 8-11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency.
Collapse
|
83
|
Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science 2014; 344:1173-8. [PMID: 24904169 DOI: 10.1126/science.1249098] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage.
Collapse
Affiliation(s)
- Guang Yang
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA. Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Cora Sau Wan Lai
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph Cichon
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Lei Ma
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA. Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wen-Biao Gan
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
84
|
Watanabe T, Kan S, Koike T, Misaki M, Konishi S, Miyauchi S, Miyahsita Y, Masuda N. Network-dependent modulation of brain activity during sleep. Neuroimage 2014; 98:1-10. [PMID: 24814208 DOI: 10.1016/j.neuroimage.2014.04.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022] Open
Abstract
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- Department of Physiology, The University of Tokyo, School of Medicine, Tokyo, 113-0033, Japan; Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK.
| | - Shigeyuki Kan
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Hyogo, 651-2492, Japan
| | - Takahiko Koike
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Hyogo, 651-2492, Japan
| | - Masaya Misaki
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Hyogo, 651-2492, Japan
| | - Seiki Konishi
- Department of Physiology, The University of Tokyo, School of Medicine, Tokyo, 113-0033, Japan
| | - Satoru Miyauchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Hyogo, 651-2492, Japan
| | - Yasushi Miyahsita
- Department of Physiology, The University of Tokyo, School of Medicine, Tokyo, 113-0033, Japan
| | - Naoki Masuda
- Department of Mathematical Informatics, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
85
|
Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014; 39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA; Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, New York, NY, 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | | |
Collapse
|
86
|
Nadeau SE, Davis SE, Wu SS, Dai Y, Richards LG. A pilot randomized controlled trial of D-cycloserine and distributed practice as adjuvants to constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 2014; 28:885-95. [PMID: 24769437 DOI: 10.1177/1545968314532032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Phase III trials of rehabilitation of paresis after stroke have proven the effectiveness of intensive and extended task practice, but they have also shown that many patients do not qualify, because of severity of impairment, and that many of those who are treated are left with clinically significant deficits. Objective. To test the value of 2 potential adjuvants to normal learning processes engaged in constraint-induced movement therapy (CIMT): greater distribution of treatment over time and the coadministration of d-cycloserine, a competitive agonist at the glycine site of the N-methyl-D-aspartate glutamate receptor. Methods. A prospective randomized single-blind parallel-group trial of more versus less condensed therapy (2 vs 10 weeks) and d-cycloserine (50 mg) each treatment day versus placebo (in a 2 × 2 design), as potential adjuvants to 60 hours of CIMT. Results. Twenty-four participants entered the study, and 22 completed it and were assessed at the completion of treatment and 3 months later. Neither greater distribution of treatment nor treatment with d-cycloserine significantly augmented retention of gains achieved with CIMT. Conclusions. Greater distribution of practice and treatment with d-cycloserine do not appear to augment retention of gains achieved with CIMT. However, concentration of CIMT over 2 weeks ("massed practice") appears to confer no advantage either.
Collapse
Affiliation(s)
- Stephen E Nadeau
- Research Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra E Davis
- University of St Augustine for Health Sciences, St Augustine, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Lorie G Richards
- Division of Occupational Therapy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
87
|
Abstract
Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.
Collapse
Affiliation(s)
- Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen Tübingen, Germany
| |
Collapse
|
88
|
Salas RE, Galea JM, Gamaldo AA, Gamaldo CE, Allen RP, Smith MT, Cantarero G, Lam BD, Celnik PA. Increased use-dependent plasticity in chronic insomnia. Sleep 2014; 37:535-44. [PMID: 24587576 DOI: 10.5665/sleep.3492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES During normal sleep several neuroplasticity changes occur, some of which are considered to be fundamental to strengthen memories. Given the evidence linking sleep to neuroplasticity, it is conceivable that individuals with chronic sleep disruption, such as patients with chronic insomnia (CI), would experience abnormalities in neuroplastic processes during daytime. Protocols testing use-dependent plasticity (UDP), one of the mechanisms underlying formation of motor memories traces, provide a sensitive measure to assess neuroplasticity in the context of motor training. DESIGN AND PARTICIPANTS A well-established transcranial magnetic stimulation (TMS) paradigm was used to evaluate the ability of patients with CI and age-matched good sleeper controls to undergo UDP. We also investigated the effect of insomnia on intracortical motor excitability measures reflecting GABAergic and glutamatergic mechanisms. SETTING Human Brain Physiology Laboratory, Johns Hopkins Medical Institutions. MEASUREMENTS AND RESULTS We found that patients with CI experienced increased UDP changes relative to controls. This effect was not due to differences in motor training. In addition, patients with CI showed enhanced intracortical facilitation relative to controls, in the absence of changes in intracortical inhibitory measures. CONCLUSION This study provides the first evidence that patients with chronic insomnia have an increased plasticity response to physical exercise, possibly due to larger activation of glutamatergic mechanisms. This suggests a heightened state of neuroplasticity, which may reflect a form of maladaptive plasticity, similar to what has been described in dystonia patients and chronic phantom pain after amputation. These results could lead to development of novel treatments for chronic insomnia.
Collapse
Affiliation(s)
- Rachel E Salas
- Department of Neurology, Johns Hopkins Medical Institution, Baltimore, MD
| | - Joseph M Galea
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD
| | - Alyssa A Gamaldo
- School of Aging Studies, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL
| | - Charlene E Gamaldo
- Department of Neurology, Johns Hopkins Medical Institution, Baltimore, MD
| | - Richard P Allen
- Department of Neurology, Johns Hopkins Medical Institution, Baltimore, MD
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institution, Baltimore, MD
| | - Gabriela Cantarero
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD
| | - Barbara D Lam
- Department of Neurology, Johns Hopkins Medical Institution, Baltimore, MD
| | - Pablo A Celnik
- Department of Neurology, Johns Hopkins Medical Institution, Baltimore, MD ; Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD
| |
Collapse
|
89
|
Tinarelli F, Garcia-Garcia C, Nicassio F, Tucci V. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120471. [PMID: 24446504 DOI: 10.1098/rstb.2012.0471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects.
Collapse
Affiliation(s)
- Federico Tinarelli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, , via Morego, 30, 16163 Genova, Italy
| | | | | | | |
Collapse
|
90
|
Zappaterra M, Jim L, Pangarkar S. Chronic pain resolution after a lucid dream: a case for neural plasticity? Med Hypotheses 2014; 82:286-90. [PMID: 24398162 DOI: 10.1016/j.mehy.2013.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/01/2013] [Accepted: 12/15/2013] [Indexed: 11/25/2022]
Abstract
Chronic pain is often managed using a multidisciplinary, biopsychosocial approach. Interventions targeting the biological, psychological, and social aspects of both the patient and the pain have been demonstrated to provide objective and subjective improvement in chronic pain symptoms. The mechanism by which pain attenuation occurs after these interventions remains to be elucidated. While there is a relatively large body of empirical literature suggesting that functional and structural changes in the peripheral and central nervous systems are key in the development and maintenance of chronic pain states, less is known about changes that take place in the nervous system as a whole after biopsychosocial interventions. Using as a model the unique case of Mr. S, a patient suffering with chronic pain for 22 years who experienced a complete resolution of pain after a lucid dream following 2 years of biopsychosocial treatments, we postulate that central nervous system (CNS) reorganization (i.e., neural plasticity) serves as a possible mechanism for the therapeutic benefit of multidisciplinary treatments, and may set a neural framework for healing, in this case via a lucid dream.
Collapse
Affiliation(s)
- Mauro Zappaterra
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | - Lysander Jim
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Sanjog Pangarkar
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
91
|
Shanahan LK, Gottfried JA. Olfactory Insights into Sleep-Dependent Learning and Memory. PROGRESS IN BRAIN RESEARCH 2014; 208:309-43. [DOI: 10.1016/b978-0-444-63350-7.00012-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
92
|
Jain SV, Glauser TA. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: An evidence-based review of objective sleep metrics. Epilepsia 2013; 55:26-37. [DOI: 10.1111/epi.12478] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Sejal V. Jain
- Division of Neurology; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio U.S.A
| | - Tracy A. Glauser
- Division of Neurology; Cincinnati Children's Hospital Medical Center; Cincinnati Ohio U.S.A
| |
Collapse
|
93
|
Wondolowski J, Dickman D. Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 2013; 7:223. [PMID: 24312013 PMCID: PMC3836049 DOI: 10.3389/fncel.2013.00223] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/03/2013] [Indexed: 01/22/2023] Open
Abstract
Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Joyce Wondolowski
- Department of Biology, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
94
|
Kelley P, Whatson T. Making long-term memories in minutes: a spaced learning pattern from memory research in education. Front Hum Neurosci 2013; 7:589. [PMID: 24093012 PMCID: PMC3782739 DOI: 10.3389/fnhum.2013.00589] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/01/2013] [Indexed: 12/23/2022] Open
Abstract
Memory systems select from environmental stimuli those to encode permanently. Repeated stimuli separated by timed spaces without stimuli can initiate Long-Term Potentiation (LTP) and long-term memory (LTM) encoding. These processes occur in time scales of minutes, and have been demonstrated in many species. This study reports on using a specific timed pattern of three repeated stimuli separated by 10 min spaces drawn from both behavioral and laboratory studies of LTP and LTM encoding. A technique was developed based on this pattern to test whether encoding complex information into LTM in students was possible using the pattern within a very short time scale. In an educational context, stimuli were periods of highly compressed instruction, and spaces were created through 10 min distractor activities. Spaced Learning in this form was used as the only means of instruction for a national curriculum Biology course, and led to very rapid LTM encoding as measured by the high-stakes test for the course. Remarkably, learning at a greatly increased speed and in a pattern that included deliberate distraction produced significantly higher scores than random answers (p < 0.00001) and scores were not significantly different for experimental groups (one hour spaced learning) and control groups (four months teaching). Thus learning per hour of instruction, as measured by the test, was significantly higher for the spaced learning groups (p < 0.00001). In a third condition, spaced learning was used to replace the end of course review for one of two examinations. Results showed significantly higher outcomes for the course using spaced learning (p < 0.0005). The implications of these findings and further areas for research are briefly considered.
Collapse
Affiliation(s)
- Paul Kelley
- Science + Technology in LearningWhitley Bay, UK
| | - Terry Whatson
- Life, Health and Chemical Sciences, The Open UniversityMilton Keynes, UK
| |
Collapse
|
95
|
Garcia VA, Hirotsu C, Matos G, Alvarenga T, Pires GN, Kapczinski F, Schröder N, Tufik S, Andersen ML. Modafinil ameliorates cognitive deficits induced by maternal separation and sleep deprivation. Behav Brain Res 2013; 253:274-9. [DOI: 10.1016/j.bbr.2013.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
96
|
Abstract
The purpose of this review is to highlight existing literature on the epidemiology, pathophysiology, and novel risk factors for vascular dementia. We further examine the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular diseases to the development of vascular dementia. In the elderly, in whom cerebral perfusion is diminished by the aging process, additional reduction in cerebral blood flow stemming from exposure to potentially modifiable vascular risk factors increases the probability of developing vascular dementia. Finally, we discuss the association between obstructive sleep apnea, an underrecognized risk factor for stroke, and vascular dementia. Obstructive sleep apnea is linked to cerebrovascular disease through many intermediary vascular risk factors and may directly cause cerebrovascular damage through microvacular disease. Insight into how cardiovascular risk factors induce vascular dementia offers an enhanced understanding of the multifactorial pathophysiology by this disorder and ways of preventing and managing the cerebrovascular precursors of vascular dementia. Many vital questions about the relation of obstructive sleep apnea with stroke and vascular dementia are still unanswered and await future well-designed studies.
Collapse
|
97
|
Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D'Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. GENES BRAIN AND BEHAVIOR 2013; 12:615-25. [PMID: 23714430 DOI: 10.1111/gbb.12052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short- and long-term memory in the radial arm maze, which was accompanied by enhanced long-term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild-type controls. Changes in paired-pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia.
Collapse
Affiliation(s)
- E Iscru
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
98
|
Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, Kaisers UX, Thiery J, Hegerl U, Schönknecht P. Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer's disease. PLoS One 2013; 8:e63136. [PMID: 23667582 PMCID: PMC3646736 DOI: 10.1371/journal.pone.0063136] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
Ancillary to decline in cognitive abilities, patients with Alzheimer’s disease (AD) frequently suffer from behavioural and psychological symptoms of dementia (BPSD). Hypothalamic polypeptides such as melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) are promoters of sleep-wake regulation and energy homeostasis and are found to impact on cognitive performance. To investigate the role of MCH and HCRT-1 in AD, cerebrospinal fluid (CSF) levels were measured in 33 patients with AD and 33 healthy subjects (HS) using a fluorescence immunoassay (FIA). A significant main effect of diagnosis (F(1,62) = 8.490, p<0.01) on MCH levels was found between AD (93.76±13.47 pg/mL) and HS (84.65±11.40 pg/mL). MCH correlated with T-tau (r = 0.47; p<0.01) and P-tau (r = 0.404; p<0.05) in the AD but not in the HS. CSF-MCH correlated negatively with MMSE scores in the AD (r = −0.362, p<0.05) and was increased in more severely affected patients (MMSE≤20) compared to HS (p<0.001) and BPSD-positive patients compared to HS (p<0.05). In CSF-HCRT-1, a significant main effect of sex (F(1,31) = 4.400, p<0.05) with elevated levels in females (90.93±17.37 pg/mL vs. 82.73±15.39 pg/mL) was found whereas diagnosis and the sex*diagnosis interaction were not significant. Elevated levels of MCH in patients suffering from AD and correlation with Tau and severity of cognitive impairment point towards an impact of MCH in AD. Gender differences of CSF-HCRT-1 controversially portend a previously reported gender dependence of HCRT-1-regulation. Histochemical and actigraphic explorations are warranted to further elucidate alterations of hypothalamic transmitter regulation in AD.
Collapse
Affiliation(s)
- Frank M Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lucas-Sánchez A, Almaida-Pagán PF, Martinez-Nicolas A, Madrid JA, Mendiola P, de Costa J. Rest-activity circadian rhythms in aged Nothobranchius korthausae. The effects of melatonin. Exp Gerontol 2013; 48:507-16. [DOI: 10.1016/j.exger.2013.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
|
100
|
Leung LC, Wang GX, Mourrain P. Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circuits 2013; 7:76. [PMID: 23630470 PMCID: PMC3634052 DOI: 10.3389/fncir.2013.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022] Open
Abstract
Recent advances in imaging tools are inspiring zebrafish researchers to tackle ever more ambitious questions in the neurosciences. Behaviorally fundamental conserved neural networks can now be potentially studied using zebrafish from a brain-wide scale to molecular resolution. In this perspective, we offer a roadmap by which a zebrafish researcher can navigate the course from collecting neural activities across the brain associated with a behavior, to unraveling molecular identities and testing the functional relevance of active neurons. In doing so, important insights will be gained as to how neural networks generate behaviors and assimilate changes in synaptic connectivity.
Collapse
Affiliation(s)
- Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Beckman Center, Stanford University Palo Alto, CA, USA
| | | | | |
Collapse
|