51
|
Chen J, Wang J, Zhang J, Ly H. Advances in Development and Application of Influenza Vaccines. Front Immunol 2021; 12:711997. [PMID: 34326849 PMCID: PMC8313855 DOI: 10.3389/fimmu.2021.711997] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus is one of the most important zoonotic pathogens that can cause severe symptoms and has the potential to cause high number of deaths and great economic loss. Vaccination is still the best option to prevent influenza virus infection. Different types of influenza vaccines, including live attenuated virus vaccines, inactivated whole virus vaccines, virosome vaccines, split-virion vaccines and subunit vaccines have been developed. However, they have several limitations, such as the relatively high manufacturing cost and long production time, moderate efficacy of some of the vaccines in certain populations, and lack of cross-reactivity. These are some of the problems that need to be solved. Here, we summarized recent advances in the development and application of different types of influenza vaccines, including the recent development of viral vectored influenza vaccines. We also described the construction of other vaccines that are based on recombinant influenza viruses as viral vectors. Information provided in this review article might lead to the development of safe and highly effective novel influenza vaccines.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
52
|
Biswas A, Mandal RS, Chakraborty S, Maiti G. Tapping the immunological imprints to design chimeric SARS-CoV-2 vaccine for elderly population. Int Rev Immunol 2021; 41:448-463. [PMID: 33978550 PMCID: PMC8127164 DOI: 10.1080/08830185.2021.1925267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023]
Abstract
The impact of SARS-CoV-2 and COVID-19 disease susceptibility varies depending on the age and health status of an individual. Currently, there are more than 140 COVID-19 vaccines under development. However, the challenge will be to induce an effective immune response in the elderly population. Analysis of B cell epitopes indicates the minor role of the stalk domain of spike protein in viral neutralization due to low surface accessibility. Nevertheless, the accumulation of mutations in the receptor-binding domain (RBD) might reduce the vaccine efficacy in all age groups. We also propose the concept of chimeric vaccines based on the co-expression of SARS-CoV-2 spike and influenza hemagglutinin (HA) and matrix protein 1 (M1) proteins to generate chimeric virus-like particles (VLP). This review discusses the possible approaches by which influenza-specific memory repertoire developed during the lifetime of the elderly populations can converge to mount an effective immune response against the SARS-CoV-2 spike protein with the possibilities of designing single vaccines for COVID-19 and influenza. HighlightsImmunosenescence aggravates COVID-19 symptoms in elderly individuals.Low immunogenicity of SARS-CoV-2 vaccines in elderly population.Tapping the memory T and B cell repertoire in elderly can enhance vaccine efficiency.Chimeric vaccines can mount effective immune response against COVID-19 in elderly.Chimeric vaccines co-express SARS-CoV-2 spike and influenza HA and M1 proteins.
Collapse
Affiliation(s)
- Asim Biswas
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rahul Subhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suparna Chakraborty
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
53
|
Vu MN, Kelly HG, Tan H, Juno JA, Esterbauer R, Davis TP, Truong NP, Wheatley AK, Kent SJ. Hemagglutinin Functionalized Liposomal Vaccines Enhance Germinal Center and Follicular Helper T Cell Immunity. Adv Healthc Mater 2021; 10:e2002142. [PMID: 33690985 PMCID: PMC8206650 DOI: 10.1002/adhm.202002142] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Despite remarkable successes of immunization in protecting public health, safe and effective vaccines against a number of life-threatening pathogens such as HIV, ebola, influenza, and SARS-CoV-2 remain urgently needed. Subunit vaccines can avoid potential toxicity associated with traditional whole virion-inactivated and live-attenuated vaccines; however, the immunogenicity of subunit vaccines is often poor. A facile method is here reported to produce lipid nanoparticle subunit vaccines that exhibit high immunogenicity and elicit protection against influenza virus. Influenza hemagglutinin (HA) immunogens are functionalized on the surface of liposomes via stable metal chelation chemistry, using a scalable advanced microfluidic mixing technology (NanoAssemblr). Immunization of mice with HA-liposomes elicits increased serum antibody titers and superior protection against highly pathogenic virus challenge compared with free HA protein. HA-liposomal vaccines display enhanced antigen deposition into germinal centers within the draining lymph nodes, driving increased HA-specific B cell, and follicular helper T cell responses. This work provides mechanistic insights into highly protective HA-liposome vaccines and informs the rational design and rapid production of next generation nanoparticle subunit vaccines.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Hyon‐Xhi Tan
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Jennifer A. Juno
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Robyn Esterbauer
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| |
Collapse
|
54
|
Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000041. [PMID: 33681864 PMCID: PMC7917382 DOI: 10.1002/anbr.202000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Vaccines have advanced human health for centuries. To improve upon the efficacy of subunit vaccines they have been formulated into nano/microparticles for infectious diseases. Much progress in the field of polymeric particles for vaccine formulation has been made since the push for a tetanus vaccine in the 1990s. Modulation of particle properties such as size, surface charge, degradation rate, and the co-delivery of antigen and adjuvant has been used. This review focuses on advances in the understanding of how these properties influence immune responses to injectable polymeric particle vaccines. Consideration is also given to how endotoxin, route of administration, and other factors influence conclusions that can be made. Current manufacturing techniques involved in preserving vaccine efficacy and scale-up are discussed, as well as those for progressing polymeric particle vaccines toward commercialization. Consideration of all these factors should aid the continued development of efficacious and marketable polymeric particle vaccines.
Collapse
Affiliation(s)
- Christopher J. Genito
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Cole J. Batty
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Eric M. Bachelder
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Kristy M. Ainslie
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| |
Collapse
|
55
|
ElBagoury M, Tolba MM, Nasser HA, Jabbar A, Elagouz AM, Aktham Y, Hutchinson A. The find of COVID-19 vaccine: Challenges and opportunities. J Infect Public Health 2021; 14:389-416. [PMID: 33647555 PMCID: PMC7773313 DOI: 10.1016/j.jiph.2020.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel corona virus, causing COVID-19 with Flu-like symptoms is the first alarming pandemic of the third millennium. SARS-CoV-2 belongs to beta coronavirus as Middle East respiratory syndrome coronavirus (MERS-CoV). Pandemic COVID-19 owes devastating mortality and destructively exceptional consequences on Socio-Economics life around the world. Therefore, the current review is redirected to the scientific community to owe comprehensive visualization about SARS-CoV-2 to tackle the current pandemic. As systematically shown through the current review, it indexes unmet medical problem of COVID-19 in view of public health and vaccination discovery for the infectious SARS-CoV-2; it is currently under-investigational therapeutic protocols, and next possible vaccines. Furthermore, the review extensively reports the precautionary measures to achieve" COVID-19/Flatten the curve". It is concluded that vaccines formulation within exceptional no time in this pandemic is highly recommended, via following the same protocols of previous pandemics; MERS-CoV and SARS-CoV, and excluding some initial steps of vaccination development process.
Collapse
Affiliation(s)
- Marwan ElBagoury
- University of South Wales, Pontypridd, Wales, United Kingdom; The Student Science and Technology Online Research Coop, Ontario, Canada.
| | - Mahmoud M Tolba
- Pharmaceutical division, ministry of health and population, Cairo, Egypt
| | - Hebatallah A Nasser
- Microbiology and Public Health Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Abdul Jabbar
- Department of Clinical Medicine, University of Veterinary and Animal Sciences, Lahore Punjab Pakistan
| | - Ahmed M Elagouz
- University of South Wales, Pontypridd, Wales, United Kingdom
| | - Yahia Aktham
- University of South Wales, Pontypridd, Wales, United Kingdom
| | - Amy Hutchinson
- The Student Science and Technology Online Research Coop, Ontario, Canada; McMaster University, Hamilton, Canada
| |
Collapse
|
56
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
57
|
Upadhyay SK, Dan S, Girdhar M, Rastogi K. Recent Advancement in SARS-CoV-2 Diagnosis, Treatment, and Vaccine Formulation: a New Paradigm of Nanotechnology in Strategic Combating of COVID-19 Pandemic. CURRENT PHARMACOLOGY REPORTS 2021; 7:1-14. [PMID: 33552875 PMCID: PMC7854874 DOI: 10.1007/s40495-021-00250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review The coronavirus disease-2019 (COVID-19) is a global pandemic which has not been seen in recent history, leaving behind deep socioeconomic damages and huge human losses with the disturbance in the healthcare sector. Despite the tremendous international effort and the launch of various clinical trials for the containment of this pandemic, no effective therapy has been proven yet. Recent Findings This review has highlighted the different traditional therapeutic techniques, along with the potential contribution of nanomedicine against the severe acute respiratory syndrome corovirus-2 (SARS-CoV-2). Repositioning of the drugs, such as remdesivir and chloroquine, is a rapid process for the reach of safe therapeutics, and the related clinical trials have determined effects against COVID-19. Various protein-based SARS-CoV-2 vaccine candidates have successfully entered clinical phases, determining positive results. The self-assembled and metallic nanovaccines mostly based on the antigenic properties of spike (S) protein are also approachable, feasible, and promising techniques for lowering the viral burden. Summary There are number of NP-based diagnostic systems have been reported for coronaviruses (CoVs) and specifically for SARS-CoV-2. However, extensive studies are still necessary and required for the nanoparticle (NP)-based therapy.
Collapse
Affiliation(s)
- Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, HR 133207 India
| | - Siddhartha Dan
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Jalandhar, Punjab India
| | - Mansi Girdhar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, HR 133207 India
| | - Kartikey Rastogi
- Department of Pharmacology, KIET Group of Institutions, Ghaziabad, Delhi-NCR 201206 India
| |
Collapse
|
58
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
59
|
Abstract
Influenza viruses cause seasonal epidemics and represent a pandemic risk. With current vaccine methods struggling to protect populations against emerging strains, there is a demand for a next-generation flu vaccine capable of providing broad protection. Recombinant biotechnology, combined with nanomedicine techniques, could address this demand by increasing immunogenicity and directing immune responses toward conserved antigenic targets on the virus. Various nanoparticle candidates have been tested for use in vaccines, including virus-like particles, protein and carbohydrate nanoconstructs, antigen-carrying lipid particles, and synthetic and inorganic particles modified for antigen presentation. These methods have yielded some promising results, including protection in animal models against antigenically distinct influenza strains, production of antibodies with broad reactivity, and activation of potent T cell responses. Based on the evidence of current research, it is feasible that the next generation of influenza vaccines will combine recombinant antigens with nanoparticle carriers.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Drug Carriers/chemistry
- Humans
- Immunogenicity, Vaccine
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacokinetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Nanoparticles/chemistry
- Protein Engineering
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacokinetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/pharmacokinetics
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
60
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
61
|
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines (Basel) 2021; 9:75. [PMID: 33494477 PMCID: PMC7911902 DOI: 10.3390/vaccines9020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
62
|
Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for Vaccines. Curr Top Microbiol Immunol 2021; 433:1-28. [PMID: 33165871 DOI: 10.1007/82_2020_227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of liposome-based formulations as vaccine adjuvants has been intimately associated with, and dependent on, and informed by, a fundamental understanding of biochemical and biophysical properties of liposomes themselves. The Walter Reed Army Institute of Research (WRAIR) has a fifty-year history of experience of basic research on liposomes; and development of liposomes as drug carriers; and development of liposomes as adjuvant formulations for vaccines. Uptake of liposomes by phagocytic cells in vitro has served as an excellent model for studying the intracellular trafficking patterns of liposomal antigen. Differential fluorescent labeling of proteins and liposomal lipids, together with the use of inhibitors, has enabled the visualization of physical locations of antigens, peptides, and lipids to elucidate mechanisms underlying the MHC class I and class II pathways in phagocytic APCs. Army Liposome Formulation (ALF) family of vaccine adjuvants, which have been developed and improved since 1986, and which range from nanosize to microsize, are currently being employed in phase 1 studies with different types of candidate vaccines.
Collapse
Affiliation(s)
- Mangala Rao
- Chief, Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Kristina K Peachman
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
63
|
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020; 5:924-937. [PMID: 32637755 PMCID: PMC7330434 DOI: 10.1016/j.bioactmat.2020.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023] Open
Abstract
A variety of engineered nanoparticles, including lipid nanoparticles, polymer nanoparticles, gold nanoparticles, and biomimetic nanoparticles, have been studied as delivery vehicles for biomedical applications. When assessing the efficacy of a nanoparticle-based delivery system, in vitro testing with a model delivery system is crucial because it allows for real-time, in situ quantitative transport analysis, which is often difficult with in vivo animal models. The advent of tissue engineering has offered methods to create experimental models that can closely mimic the 3D microenvironment in the human body. This review paper overviews the types of nanoparticle vehicles, their application areas, and the design strategies to improve delivery efficiency, followed by the uses of engineered microtissues and methods of analysis. In particular, this review highlights studies on multicellular spheroids and other 3D tissue engineering approaches for cancer drug development. The use of bio-engineered tissues can potentially provide low-cost, high-throughput, and quantitative experimental platforms for the development of nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| |
Collapse
|
64
|
Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. EMERGENT MATERIALS 2020; 4:265-277. [PMID: 33225219 PMCID: PMC7670111 DOI: 10.1007/s42247-020-00136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.
Collapse
Affiliation(s)
- Sherif M. Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Mahmoud A. El-Ghiaty
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
65
|
Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020; 15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Vaccination is successfully advanced to control several fatal diseases and improve human life expectancy. However, additional innovations are required in this field because there are no effective vaccines to prevent some infectious diseases. The shift from the attenuated or inactivated pathogens to safer but less immunogenic protein or peptide antigens has led to a search for effective antigen delivery carriers that can function as both antigen vehicles and intrinsic adjuvants. Among these carriers, self-assembled nanoparticles (SANPs) have shown great potential to be the best representative. For the nanoscale and multiple presentation of antigens, with accurate control over size, geometry, and functionality, these nanoparticles are assembled spontaneously and mimic pathogens, resulting in enhanced antigen presentation and increased cellular and humoral immunity responses. In addition, they may be applied through needle-free routes due to their adhesive ability, which gives them a great future in vaccination applications. This review provides an overview of various SANPs and their applications in prophylactic vaccines.
Collapse
Affiliation(s)
- Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
66
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
67
|
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, Wirth DM, Chen A, Sack M, Pokorski JK, Steinmetz NF. COVID-19 vaccine development and a potential nanomaterial path forward. NATURE NANOTECHNOLOGY 2020; 15:646-655. [PMID: 32669664 DOI: 10.1038/s41565-020-0737-y] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.
Collapse
Affiliation(s)
- Matthew D Shin
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - David M Wirth
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Angela Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | | | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
68
|
Kuznetsova TA, Persiyanova EV, Zaporozhets TS, Besednova NN. [Adjuvants of influenza vaccines: new possibilities of using sulphated polysaccharides from marine brown algae.]. Vopr Virusol 2020; 64:5-11. [PMID: 30893523 DOI: 10.18821/0507-4088-2019-64-1-5-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The review article presents the characteristics of the main adjuvant groups (mineral salts of aluminum, synthetic squalenebased adjuvants - MF59 and AS03, CpG-oligodeoxynucleotides, virosomes, polyoxidonium, sovidone) included in the licensed influenza vaccine. The main mechanisms of adjuvant action, advantages and disadvantages of these adjuvants are shown. The vaccines adjuvants in the phase of experimental studies and clinical trials (ISCOMs, Advax™, chitosan) are described too. Particular attention is paid to sulfated polysaccharides (fucoidans) from marine brown algae as vaccine adjuvants. Numerous results of their application in compositions of experimental vaccines are presented. The prospects of sulfated polysaccharides using in the design of influenza vaccines are estimated. These prospects are determined by high biocompatibility, low toxicity and good tolerance of the human body to fucoidans, as well as mechanisms of their adjuvant activity. Sulfated polysaccharides are agonists of toll-like receptors of innate immunity cells and powerful inducers of the cellular and humoral immune response, which is important for the development of influenza vaccines. The review is based on the information presented in the bibliographic and abstract databases of scientific publications, search engines and publishers: RSCI, Web of Science, Scopus, MEDLINE, Google Scholar, PubMed, Springer Nature, Elsevier and others.
Collapse
Affiliation(s)
- T A Kuznetsova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - E V Persiyanova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
- Medical Association of Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
| | - T S Zaporozhets
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - N N Besednova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| |
Collapse
|
69
|
Wang Z, Liu X, Peng Y, Su M, Zhu S, Pan J, Shen B, Duan Y, Huang Y. Platensimycin-Encapsulated Liposomes or Micelles as Biosafe Nanoantibiotics Exhibited Strong Antibacterial Activities against Methicillin-Resistant Staphylococcus aureus Infection in Mice. Mol Pharm 2020; 17:2451-2462. [DOI: 10.1021/acs.molpharmaceut.0c00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China
| | - Meng Su
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Saibin Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | | | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW We will discuss recent advances in the development of nanoparticle vaccines presenting HIV-1 envelope trimer vaccines and the immunological mechanisms by which they act. RECENT FINDINGS The multivalent presentation of Env trimers on nanoparticles is a promising strategy to increase Env immunogenicity. Recent studies have shed light on how Env nanoparticles increase lymph node trafficking and germinal center formation by using the lectin-mediated complement pathway and enhancing the interaction with naïve B cells. Meanwhile, research on different nanoparticle platforms has resulted in improved designs, such as liposomes with improved stability, and the emergence of novel platforms such as protein nanoparticles that self-assemble in vitro. Immmunogenicity studies with these nanoparticles delineate the advantages and expose the limitations of the different nanoparticle platforms. SUMMARY It is becoming increasingly clear that HIV-1 vaccine research might benefit greatly from using nanoparticles presenting Env trimers, particularly during the priming stage of immunization. Among the different nanoparticles that are being pursued, in vitro-assembling nanoparticles allow for greater control of Env quality making them a promising nanoparticle platform.
Collapse
|
71
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
72
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
73
|
Abstract
Infectious diseases are the tip of the iceberg in the economic burden of the developing countries, due to the resistance of the pathogens to antibiotics and the lack of vaccines. The vaccines have become a big challenge in the last decades, where the attention has been focused on scientific challenges such as new vaccine development and adjuvants or delivery systems. The classical vaccines were developed from live-attenuated or killed organisms, such as influenza, smallpox, and BCG, as well as subunits such as Hepatitis B. The attenuated vaccines carry the risk of regaining their pathogenicity under immunosuppression conditions. The development of subunit vaccines without risk are considered as an essential need in combination with adequate delivery systems to obtain desired cell and humoral immune responses against infectious diseases. In the last decades, the use of nanoparticles as a delivery system in vaccines has received special attention to improve vaccine efficacy. These nanoparticles could be composed of lipids, metal and nonmetal inorganics, several polymers, and virus-like particles, which have been tested in research; some of them have already been approved for human and animal use. The characteristics of the nanoparticles have allowed targeting desired antigen-presenting cells to improve immunization strategies to induce protection. The main characteristics of the nanoparticles are to protect the antigens from early proteolytic degradation, control antigen release, and help antigen uptake and processing by antigen-presenting cells, and they should be safe for human and veterinary use. In addition, the nanoparticles could be modified in their physicochemical properties to target specific cells and improve vaccine efficacy. This chapter focuses on the nanoparticle-based vaccine formulations and the approaches used to realize efficient delivery of vaccines in order to induce host protective immunity against infectious diseases.
Collapse
Affiliation(s)
- Diana Diaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia-FIDIC, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, DC, Colombia
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
74
|
Khalaj‐Hedayati A, Chua CLL, Smooker P, Lee KW. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza Other Respir Viruses 2020; 14:92-101. [PMID: 31774251 PMCID: PMC6928032 DOI: 10.1111/irv.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
Collapse
Affiliation(s)
- Atin Khalaj‐Hedayati
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Caroline Lin Lin Chua
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Peter Smooker
- Department of Biosciences and Food TechnologySchool of ScienceRMIT UniversityBundooraVictoriaAustralia
| | - Khai Wooi Lee
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| |
Collapse
|
75
|
Short KK, Miller SM, Walsh L, Cybulski V, Bazin H, Evans JT, Burkhart D. Co-encapsulation of synthetic lipidated TLR4 and TLR7/8 agonists in the liposomal bilayer results in a rapid, synergistic enhancement of vaccine-mediated humoral immunity. J Control Release 2019; 315:186-196. [PMID: 31654684 PMCID: PMC6980726 DOI: 10.1016/j.jconrel.2019.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
To increase vaccine immunogenicity, modern vaccines incorporate adjuvants, which serve to enhance immune cross-protection, improve humoral and cell-mediated immunity, and promote antigen dose sparing. Pattern recognition receptors (PRRs), including the Toll-like receptor (TLR) family are promising targets for development of agonist formulations for use as vaccine adjuvants. Combinations of co-delivered TLR4 and TLR7/8 ligands have been demonstrated to have synergistic effects on innate and adaptive immune response. Here, we create liposomes that stably co-encapsulate CRX-601, a synthetic TLR4 agonist, and UM-3004, a lipidated TLR7/8 agonist, within the liposomal bilayer in order to achieve co-delivery, allow tunable physical properties, and induce in vitro and in vivo immune synergy. Co-encapsulation demonstrates a synergistic increase in IL-12p70 cytokine output in vitro from treated human peripheral blood mononuclear cells (hPBMCs). Further, co-encapsulated formulations give significant improvement of early IgG2a antibody titers in BALB/c mice following primary vaccination when compared to single agonist or dual agonists delivered in separate liposomes. This work demonstrates that co-encapsulation of TLR4 and lipidated TLR7/8 agonists within the liposomal bilayer leads to innate and adaptive immune synergy which biases a Th1 immune response. Thus, liposomal co-encapsulation may be a useful and flexible tool for vaccine adjuvant formulation containing multiple TLR agonists.
Collapse
Affiliation(s)
- Kristopher K Short
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lois Walsh
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hélène Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - David Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
76
|
Ruprecht RM, Marasini B, Thippeshappa R. Mucosal Antibodies: Defending Epithelial Barriers against HIV-1 Invasion. Vaccines (Basel) 2019; 7:vaccines7040194. [PMID: 31771162 PMCID: PMC6963197 DOI: 10.3390/vaccines7040194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023] Open
Abstract
The power of mucosal anti-HIV-1 envelope immunoglobulins (Igs) to block virus transmission is underappreciated. We used passive immunization, a classical tool to unequivocally prove whether antibodies are protective. We mucosally instilled recombinant neutralizing monoclonal antibodies (nmAbs) of different Ig classes in rhesus macaques (RMs) followed by mucosal simian–human immunodeficiency virus (SHIV) challenge. We gave anti-HIV-1 IgM, IgG, and dimeric IgA (dIgA) versions of the same human nmAb, HGN194 that targets the conserved V3 loop crown. Surprisingly, dIgA1 with its wide-open, flat hinge protected 83% of the RMs against intrarectal R5-tropic SHIV-1157ipEL-p challenge, whereas dIgA2, with its narrow hinge, only protected 17% of the animals—despite identical epitope specificities and in vitro neutralization curves of the two dIgA isotypes (Watkins et al., AIDS 2013 27(9):F13-20). These data imply that factors in addition to neutralization determine in vivo protection. We propose that this underlying protective mechanism is immune exclusion, which involves large nmAb/virion aggregates that prevent virus penetration of mucosal barriers. Future studies need to find biomarkers that predict effective immune exclusion in vivo. Vaccine development strategies against HIV-1 and/or other mucosally transmissible pathogens should include induction of strong mucosal Abs of different Ig classes to defend epithelial barriers against pathogen invasion.
Collapse
Affiliation(s)
- Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
- Correspondence:
| | - Bishal Marasini
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | | |
Collapse
|
77
|
Dugan HL, Henry C, Wilson PC. Aging and influenza vaccine-induced immunity. Cell Immunol 2019; 348:103998. [PMID: 31733824 DOI: 10.1016/j.cellimm.2019.103998] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Immunosenescence is defined as the progressive deterioration of the immune system with aging. Immunosenescence stifles the generation of protective B and T cell-mediated adaptive immunity in response to various pathogens, resulting in increased disease susceptibility and severity in the elderly population. In particular, immunosenescence has major impacts on the phenotype, function, and receptor repertoire of B and T cells in the elderly, hindering protective responses induced by seasonal influenza virus vaccination. In order to overcome the detrimental impacts of immunosenescence on protective immunity to influenza viruses, we review our current understanding of the effects of aging on adaptive immune responses to influenza and discuss current and future avenues of vaccine research for eliciting more potent anti-influenza immunity in the elderly.
Collapse
Affiliation(s)
- Haley L Dugan
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carole Henry
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA.
| | - Patrick C Wilson
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
78
|
Evans JT, Bess LS, Mwakwari SC, Livesay MT, Li Y, Cybulski V, Johnson DA, Bazin HG. Synthetic Toll-like Receptors 7 and 8 Agonists: Structure-Activity Relationship in the Oxoadenine Series. ACS OMEGA 2019; 4:15665-15677. [PMID: 31572869 PMCID: PMC6761749 DOI: 10.1021/acsomega.9b02138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/27/2019] [Indexed: 05/08/2023]
Abstract
Toll-like receptors 7 and 8 (TLR7/8) are broadly expressed on antigen-presenting cells, making TLR7/8 agonists likely candidates for the development of new vaccine adjuvants. We previously reported the synthesis of a new series of 8-oxoadenines substituted at the 9-position with a 4-piperidinylalkyl moiety and demonstrated that TLR7/8 selectivity and potency could be modulated by varying the length of the alkyl linker. In the present study, we broadened our initial structure-activity relationship study to further evaluate the effects of N-heterocycle ring size, chirality, and substitution on TLR7/8 potency, receptor selectivity, and cytokine (IFNα and TNFα) induction from human peripheral blood mononuclear cells (PBMCs). TLR7/8 activity correlated primarily to linker length and to a lesser extent to ring size, while ring chirality had little effect on TLR7/8 potency or selectivity. Substitution of the heterocyclic ring with an aminoalkyl or hydroxyalkyl group for subsequent conjugation to phospholipids or antigens was well tolerated with the retention of both TLR7/8 activity and cytokine induction from human PBMCs.
Collapse
Affiliation(s)
- Jay T. Evans
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Laura S. Bess
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Sandra C. Mwakwari
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Mark T. Livesay
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - Yufeng Li
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Van Cybulski
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| | - David A. Johnson
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
| | - Hélène G. Bazin
- GSK
Vaccines, 553 Old Corvallis
Road, Hamilton, Montana 59840, United States
- Division of Biological Sciences and Department of Biomedical and Pharmaceutical
Sciences, University of Montana, Missoula, Montana 59802, United States
| |
Collapse
|
79
|
Karaulov AV, Bykov AS, Volkova NV. Review of Grippol Family Vaccine Studies and Modern Adjuvant Development. ACTA ACUST UNITED AC 2019. [DOI: 10.31631/2073-3046-2019-18-4-101-119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A. V. Karaulov
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Bykov
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
80
|
Kapoor B, Gupta R, Gulati M, Singh SK, Khursheed R, Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv Colloid Interface Sci 2019; 271:101985. [PMID: 31351415 DOI: 10.1016/j.cis.2019.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022]
Abstract
Though vesicular delivery systems have been widely explored and reviewed, no comprehensive review exists that covers their development from the inception of the concept to its culmination in the form of regulated marketed formulations. With the advancement of scientific research in the field of nanomedicine, certain category of vesicular delivery systems have successfully reached the global market. Despite extensive research and highly encouraging results in a plethora of pathological conditions in the preclinical studies, translation of these nanomedicines from laboratory to market has been very limited. Aim of this review is to describe comprehensively the various colloidal delivery systems, focusing mainly on their conventional and advanced methods of preparation, different characterization techniques and main success stories of their journey from bench to bedside of the patient. The review also touches the finer nuances of the use of modern formulation approach of DoE (Design of Experiments) in their formulation and the status of regulatory guidelines for the approval of these nanomedicines.
Collapse
|
81
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
82
|
Shende P, Waghchaure M. Combined vaccines for prophylaxis of infectious conditions. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:696-705. [PMID: 30829068 DOI: 10.1080/21691401.2019.1576709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the application of vaccines shows limitations, including the high number of vaccine administrations and the fear of safety and effectiveness. In this regard, advanced vaccine products have been developed, like the combined vaccines, or are under development, such as nucleic acid vaccines (DNA and RNA), polymer-based vaccines, etc. Moreover, the possible use of traditional, like aluminium hydroxide and aluminium phosphate, or innovative adjuvants, like monophosphoryl lipid A, polysaccharides and nanoparticulate system, may further increase vaccine effectiveness. This review article focuses on the combined vaccines, which, especially when they are associated with adjuvants, reduce the dosing frequency, and prolong the duration of action, thus providing better vaccine coverage. Marketed preparations, like Typhim Vi, Peda typh and Boostrix showed better vaccine coverage for diseases like typhoid, tetanus, diphtheria and acellular pertussis. The future aspect for the development of combined vaccines will protect not only against infectious diseases but likely even against various infectious conditions, like pneumonia, meningococcal infection and respiratory syncytial virus infection.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Mansi Waghchaure
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| |
Collapse
|
83
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
84
|
Leung AWY, Amador C, Wang LC, Mody UV, Bally MB. What Drives Innovation: The Canadian Touch on Liposomal Therapeutics. Pharmaceutics 2019; 11:pharmaceutics11030124. [PMID: 30884782 PMCID: PMC6471263 DOI: 10.3390/pharmaceutics11030124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Liposomes are considered one of the most successful drug delivery systems (DDS) given their established utility and success in the clinic. In the past 40–50 years, Canadian scientists have made ground-breaking discoveries, many of which were successfully translated to the clinic, leading to the formation of biotech companies, the creation of research tools, such as the Lipex Extruder and the NanoAssemblr™, as well as contributing significantly to the development of pharmaceutical products, such as Abelcet®, MyoCet®, Marqibo®, Vyxeos®, and Onpattro™, which are making positive impacts on patients’ health. This review highlights the Canadian contribution to the development of these and other important liposomal technologies that have touched patients. In this review, we try to address the question of what drives innovation: Is it the individual, the teams, the funding, and/or an entrepreneurial spirit that leads to success? From this perspective, it is possible to define how innovation will translate to meaningful commercial ventures and products with impact in the future. We begin with a brief history followed by descriptions of drug delivery technologies influenced by Canadian researchers. We will discuss recent advances in liposomal technologies, including the Metaplex technology from the author’s lab. The latter exemplifies how a nanotechnology platform can be designed based on multidisciplinary groups with expertise in coordination chemistry, nanomedicines, disease, and business to create new therapeutics that can effect better outcomes in patient populations. We conclude that the team is central to the effort; arguing if the team is entrepreneurial and well positioned, the funds needed will be found, but likely not solely in Canada.
Collapse
Affiliation(s)
- Ada W Y Leung
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Carolyn Amador
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Lin Chuan Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Urmi V Mody
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Marcel B Bally
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z4, Canada.
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
85
|
Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines 2019; 18:269-280. [PMID: 30707635 DOI: 10.1080/14760584.2019.1578216] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Immunization has been a remarkably successful public health intervention; however, new approaches to vaccine design are essential to counter existing and emerging infectious diseases which have defied traditional vaccination efforts to date. Nanoparticles (ordered structures with dimensions in the range of 1-1000 nm) have great potential to supplement traditional vaccines based upon pathogen subunits, or killed or attenuated microorganisms, as exemplified by the successful licensure of virus-like particle vaccines for human papillomavirus and hepatitis B. However, the immunological mechanisms that underpin the potent immunity of nanoparticle vaccines are poorly defined. AREAS COVERED Here, we review the immunity of nanoparticle immunization. The display of antigen in a repetitive, ordered array mimics the surface of a pathogen, as does their nanoscale size. These properties facilitate enhanced innate immune activation, improved drainage and retention in lymph nodes, stronger engagement with B cell receptors, and augmented T cell help in driving B cell activation. EXPERT OPINION In the near future, increasingly complex nanoparticle vaccines displaying multiple antigens and/or co-delivered adjuvants will reach clinical trials. An improved mechanistic understanding of nanoparticle vaccination will ultimately facilitate the rational design of improved vaccines for human health.
Collapse
Affiliation(s)
- Hannah G Kelly
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia
| | - Stephen J Kent
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Hospital and Central Clinical School, Monash University , Melbourne , Australia
| | - Adam K Wheatley
- a Department of Microbiology and Immunology , University of Melbourne, at The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Parkville , Australia
| |
Collapse
|
86
|
Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P, Galons H. Composition design and medical application of liposomes. Eur J Med Chem 2019; 164:640-653. [PMID: 30640028 DOI: 10.1016/j.ejmech.2019.01.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
Abstract
Liposomes, which possess the properties of nano-scale, biofilm similar structure, excellent biocompatibility, become more and more useful in the drug development as the delivery system. Liposomes are relatively stable, their aqueous phase could contain the hydrophilic drugs and their phospholipid bilayer should localize the lipophilic drugs. Moreover, their surface-modifiable characteristics have really extended the liposomes' application to targeting and environmental sensitive delivery system. In order to make the common liposome more fit the human and animal body's complex environment, the structural variation strategy in the head, tail and bond of lipid molecules have been employed to develop the different functionalized liposomes-based drug delivery system for the localizable relieve and organ/tissue targeting relieve. In this paper, we would like to summarize the recent development on the design and optimization of liposomes, including Long-circulation liposomes, Specific active targeting liposomes, Environmental sensitive liposomes, Multifunctional liposomes, and so on. And the liposome content selection and current status of clinical application are systematically discussed.
Collapse
Affiliation(s)
- Mingyuan Li
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chunyang Du
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Na Guo
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xin Meng
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hua Sun
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuangshuang Li
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Hervé Galons
- China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
87
|
Bufan B. Application of prophylactic vaccines in the elderly. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906469b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
88
|
Momose H, Sasaki E, Kuramitsu M, Hamaguchi I, Mizukami T. Gene expression profiling toward the next generation safety control of influenza vaccines and adjuvants in Japan. Vaccine 2018; 36:6449-6455. [PMID: 30243500 DOI: 10.1016/j.vaccine.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Influenza becomes epidemic worldwide every year, and many individuals receive vaccination annually. Quality control relating to safety and potency of influenza vaccines is important to maintain public confidence. The safety of influenza vaccines has been assessed by clinical trials, and animal safety tests are performed to monitor the consistent quality between vaccines used for clinical trials and marketing; the biological responses in vaccinated animals are evaluated, including changes in body weight and white blood cell count. Animal safety tests have been contributing to the quality relating to the safety of influenza vaccines for decades, but improvements are needed. Although precise mechanisms involving biological changes in animal safety tests have not been fully elucidated, the application of cDNA microarray technology make it possible to reliably identify genes related to biological responses in vaccinated animals. From analysis of the expression profile of >10,000 genes of lung in animals treated with an inactivated whole virion influenza vaccine, we identified 17 marker genes whose expression patterns correlated well to changes in body weight and leukocyte count in vaccinated animals. In influenza HA vaccine-treated animals exhibiting subtle changes in biological responses, a robust expression pattern of marker genes was found. Furthermore, these marker genes could also be used in the evaluation of adjuvanted influenza vaccines. The expression profile of marker genes is expected to be an alternative indicator for safety control of various influenza vaccines conferring high sensitivity and short turnaround time. Thus, gene expression profiling may be a powerful tool for safety control of vaccines in the future.
Collapse
Affiliation(s)
- Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
89
|
Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018; 17:833-849. [PMID: 30173619 PMCID: PMC7103734 DOI: 10.1080/14760584.2018.1516552] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.
Collapse
Affiliation(s)
- Braeden Donaldson
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand.,b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Zabeen Lateef
- c Department of Pharmacology and Toxicology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Greg F Walker
- d School of Pharmacy , University of Otago , Dunedin , New Zealand
| | - Sarah L Young
- b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Vernon K Ward
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
90
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
91
|
Sano K, Ainai A, Suzuki T, Hasegawa H. Intranasal inactivated influenza vaccines for the prevention of seasonal influenza epidemics. Expert Rev Vaccines 2018; 17:687-696. [PMID: 30092690 DOI: 10.1080/14760584.2018.1507743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Intranasal influenza vaccines are expected to confer protection among vaccine recipients by successful induction of mucosal immune response in the upper respiratory tract. Though only live attenuated influenza virus vaccines (LAIVs) are licensed and available for intranasal use in humans today, intranasal inactivated influenza vaccines (IIVs) are currently under reconsideration as a promising intranasal influenza vaccine. AREAS COVERED This review addresses the history of intranasal IIV research and development, along with a summary of the studies done so far to address the mechanism of action of intranasal IIVs. EXPERT COMMENTARY From numerous in vitro and in vivo studies, it has been shown that intranasal IIVs can protect hosts from a broad spectrum of influenza virus strains. In-depth studies of the mucosal antibody response following intranasal IIV administration have also elucidated the detailed functions of secretory IgA (immunoglobulin A) antibodies which are responsible for the mechanism of action of intranasal vaccines. Safe and effective intranasal IIVs are expected to be an important tool to combat seasonal influenza.
Collapse
Affiliation(s)
- Kaori Sano
- a Department of Pathology , National Institute of Infectious Diseases , Tokyo , Japan.,b Division of Infectious Diseases Pathology, Department of Global Infectious Diseases , Tohoku Graduate School of Medicine , Miyagi , Japan
| | - Akira Ainai
- a Department of Pathology , National Institute of Infectious Diseases , Tokyo , Japan
| | - Tadaki Suzuki
- a Department of Pathology , National Institute of Infectious Diseases , Tokyo , Japan
| | - Hideki Hasegawa
- a Department of Pathology , National Institute of Infectious Diseases , Tokyo , Japan.,b Division of Infectious Diseases Pathology, Department of Global Infectious Diseases , Tohoku Graduate School of Medicine , Miyagi , Japan
| |
Collapse
|
92
|
Kuznetsova TA, Persiyanova EV, Ermakova SP, Khotimchenko MY, Besednova NN. The Sulfated Polysaccharides of Brown Algae and Products of Their Enzymatic Transformation as Potential Vaccine Adjuvants. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The review is devoted to critical analysis of literature data, deal with effects and mechanisms of action of sulfated polysaccharides (PSs) – fucoidans from brown algae and products of their enzymatic transformation as potential adjuvants for enhancement of anti-infective and antitumor immune response. Numerous experimental data indicate that sulfated PSs demonstrate properties of vaccine adjuvants. Application perspectiveness of fucoidans as vaccine adjuvants is defined by their high biocompatibility, low-toxicity, safety and good tolerance by macroorganism, and also mechanisms of their immunomodulatory action. In particular, fucoidans are agonists of receptors of innate immunity and strong inducers of cellular and humoral immune response. At presenting the data of structural - functional interrelations, attention focused to the defining role of degree of sulfation, uronic acids and polyphenols contents, and also molecular mass in actions of fucoidans to innate and adaptive immunity cells. Insufficiency of literary data on studying of correlation of structure – physicochemical characteristics with adjuvanticities of the sulfated PSs, and also the problem of standardization of their active fractions are noted. Special attention is paid to the analysis of immunomodulatory and adjuvant activity of fucoidan oligosaccharides. Presented here results of experimental trial indicate that, despite the difficulties due to preparation of highly purified structurally characterized fractions and complex structure of fucoidans, these substances can be used as safe and effective adjuvants in vaccines against various pathogens including viruses, and also in antitumor vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Elena V. Persiyanova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Maxim Yu. Khotimchenko
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Natalya N. Besednova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| |
Collapse
|
93
|
Teow SY, Wong MMT, Yap HY, Peh SC, Shameli K. Bactericidal Properties of Plants-Derived Metal and Metal Oxide Nanoparticles (NPs). Molecules 2018; 23:molecules23061366. [PMID: 29882775 PMCID: PMC6100366 DOI: 10.3390/molecules23061366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles (NPs) are nano-sized particles (generally 1–100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Magdelyn Mei-Theng Wong
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Hooi-Yeen Yap
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Suat-Cheng Peh
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
- Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia.
| | - Kamyar Shameli
- Department of Environment and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| |
Collapse
|
94
|
Chen Z, Moon JJ, Cheng W. Quantitation and Stability of Protein Conjugation on Liposomes for Controlled Density of Surface Epitopes. Bioconjug Chem 2018; 29:1251-1260. [PMID: 29528624 PMCID: PMC6918458 DOI: 10.1021/acs.bioconjchem.8b00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The number and spacing of B-cell epitopes on antigens have a profound impact on the activation of B cells and elicitation of antibody responses, the quantitative aspects of which may be utilized for rational design of vaccines. Ni-chelating liposomes have been widely used as protein carriers in experimental studies of vaccine delivery, owing to the convenience and versatility of this conjugation chemistry. However, the epitope number per particle as well as the stability of protein conjugation on liposomes remain far less characterized. Here we have developed quantitative methods to measure the average spatial density of proteins on liposomes using both ensemble and single-molecule techniques and demonstrated their utility using liposomes conjugated with native proteins of two different sizes. These studies revealed that the initial density of protein conjugation on Ni-chelating liposomes can be finely controlled, but the density can decrease over time upon dilution due to the noncovalent nature of Ni-chelation chemistry. These results indicate that an alternative method other than the Ni-chelation chemistry is needed for stable conjugation of epitopes onto liposomes and also suggest a general strategy that can be used to precisely regulate the epitope density on liposomes for B-cell antigen delivery.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, 2200 Bonisteel Boulevard, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Cheng
- Department of Pharmaceutical Sciences, 428 Church Street, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
95
|
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 2018; 41:34-41. [PMID: 29677646 DOI: 10.1016/j.coph.2018.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Immunosenescence contributes to increased incidence and severity of many infections in old age and is responsible for impaired immunogenicity and efficacy of vaccines. Adjuvants are one strategy to enhance immunogenicity of vaccines. The oil-in-water emulsions MF59TM and AS03, as well as a virosomal vaccine have been licensed in seasonal or pandemic influenza vaccines and are/were used successfully in the elderly. AS01, a liposome-based adjuvant comprising two immunostimulants has recently been approved in a recombinant protein vaccine for older adults, which showed very high efficacy against herpes zoster in clinical trials. Several adjuvants for use in the older population are in clinical and preclinical development and will hopefully improve vaccines for this age group in the future.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
96
|
Bonanni P, Boccalini S, Zanobini P, Dakka N, Lorini C, Santomauro F, Bechini A. The appropriateness of the use of influenza vaccines: Recommendations from the latest seasons in Italy. Hum Vaccin Immunother 2018; 14:699-705. [PMID: 29059004 PMCID: PMC5861775 DOI: 10.1080/21645515.2017.1388480] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/08/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023] Open
Abstract
Influenza is one of the major infectious causes of excess mortality, hospitalization, and an increase in healthcare expenditure in all countries. In an increasingly ageing population, many members are exposed to flu-related complications. Vaccination coverage rates for the elderly in most European countries, such as Italy, are not satisfactory, and have been decreasing with time due to a sense of skepticism toward vaccination. Nowadays, many types of vaccines are available on the Italian market to prevent influenza illness. Many studies have proven their effectiveness in preventing influenza-related complications in specific risk groups. Any vaccine can be crucial to avoid complications, hospitalizations and death, but use of the most appropriate vaccine could optimize the result at a very modest cost. General practitioners (GPs) should encourage their patients to take the influenza vaccination to prevent complications or deaths. Health authorities should give GPs the opportunity to choose the appropriate vaccines tailored to specific patients.
Collapse
Affiliation(s)
- Paolo Bonanni
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Boccalini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Patrizio Zanobini
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Nawal Dakka
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Chiara Lorini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Angela Bechini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
97
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
98
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
99
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
100
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|