51
|
Kyriacou C, Forrester-Jones R, Triantafyllopoulou P. Clothes, Sensory Experiences and Autism: Is Wearing the Right Fabric Important? J Autism Dev Disord 2023. [PMID: 34287735 DOI: 10.1007/s10803-021-05140-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Tactile defensiveness in autistic individuals is the least investigated sensory modality. The current multi-component, explorative study aimed to understand the experiences of ten autistic adults regarding tactile defensiveness and fabrics, using semi-structured, one-to-one interviews. Participants were asked to discuss the effects of seven provided samples of fabrics and were also asked to bring their 'favourite' fabric (s) and express their thoughts about their choices. Using Interpretative Phenomenological Analysis and Content Analysis, the findings showed that some fabrics can impact individuals' reported wellbeing. Participants' experiences with several stimuli appeared to have helped them implement coping strategies. By understanding tactile defensiveness, society could move towards increasing autism-friendly approaches with appropriate fabrics. Recommendations for future research, policy and practice are also discussed.
Collapse
Affiliation(s)
- Chrysovalanto Kyriacou
- Tizard Centre, School of Social Policy, Sociology and Social Research, University of Kent, Canterbury, Kent, UK
| | - Rachel Forrester-Jones
- Department of Social and Policy Sciences, Centre of Analysis of Social Policy, University of Bath, Bath, UK
| | - Paraskevi Triantafyllopoulou
- Tizard Centre, School of Social Policy, Sociology and Social Research, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
52
|
Knight EJ, Freedman EG, Myers EJ, Berruti AS, Oakes LA, Cao CZ, Molholm S, Foxe JJ. Severely Attenuated Visual Feedback Processing in Children on the Autism Spectrum. J Neurosci 2023; 43:2424-2438. [PMID: 36859306 PMCID: PMC10072299 DOI: 10.1523/jneurosci.1192-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.
Collapse
Affiliation(s)
- Emily J Knight
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Development and Behavioral Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, New York 14642
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Evan J Myers
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Alaina S Berruti
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leona A Oakes
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Cody Zhewei Cao
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sophie Molholm
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
53
|
Soda T, Ahmadi A, Tani J, Honda M, Hanakawa T, Yamashita Y. Simulating developmental diversity: Impact of neural stochasticity on atypical flexibility and hierarchy. Front Psychiatry 2023; 14:1080668. [PMID: 37009124 PMCID: PMC10050443 DOI: 10.3389/fpsyt.2023.1080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction Investigating the pathological mechanisms of developmental disorders is a challenge because the symptoms are a result of complex and dynamic factors such as neural networks, cognitive behavior, environment, and developmental learning. Recently, computational methods have started to provide a unified framework for understanding developmental disorders, enabling us to describe the interactions among those multiple factors underlying symptoms. However, this approach is still limited because most studies to date have focused on cross-sectional task performance and lacked the perspectives of developmental learning. Here, we proposed a new research method for understanding the mechanisms of the acquisition and its failures in hierarchical Bayesian representations using a state-of-the-art computational model, referred to as in silico neurodevelopment framework for atypical representation learning. Methods Simple simulation experiments were conducted using the proposed framework to examine whether manipulating the neural stochasticity and noise levels in external environments during the learning process can lead to the altered acquisition of hierarchical Bayesian representation and reduced flexibility. Results Networks with normal neural stochasticity acquired hierarchical representations that reflected the underlying probabilistic structures in the environment, including higher-order representation, and exhibited good behavioral and cognitive flexibility. When the neural stochasticity was high during learning, top-down generation using higher-order representation became atypical, although the flexibility did not differ from that of the normal stochasticity settings. However, when the neural stochasticity was low in the learning process, the networks demonstrated reduced flexibility and altered hierarchical representation. Notably, this altered acquisition of higher-order representation and flexibility was ameliorated by increasing the level of noises in external stimuli. Discussion These results demonstrated that the proposed method assists in modeling developmental disorders by bridging between multiple factors, such as the inherent characteristics of neural dynamics, acquisitions of hierarchical representation, flexible behavior, and external environment.
Collapse
Affiliation(s)
- Takafumi Soda
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Jun Tani
- Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Manabu Honda
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Hanakawa
- Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
54
|
Zhu SI, McCullough MH, Pujic Z, Sibberas J, Sun B, Darveniza T, Bucknall B, Avitan L, Goodhill GJ. fmr1 Mutation Alters the Early Development of Sensory Coding and Hunting and Social Behaviors in Larval Zebrafish. J Neurosci 2023; 43:1211-1224. [PMID: 36596699 PMCID: PMC9962781 DOI: 10.1523/jneurosci.1721-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorders (ASDs) are developmental in origin; however, little is known about how they affect the early development of behavior and sensory coding. The most common inherited form of autism is Fragile X syndrome (FXS), caused by a mutation in FMR1 Mutation of fmr1 in zebrafish causes anxiety-like behavior, hyperactivity, and hypersensitivity in auditory and visual processing. Here, we show that zebrafish fmr1-/- mutant larvae of either sex also display changes in hunting behavior, tectal coding, and social interaction. During hunting, they were less successful at catching prey and displayed altered behavioral sequences. In the tectum, representations of prey-like stimuli were more diffuse and had higher dimensionality. In a social behavioral assay, they spent more time observing a conspecific but responded more slowly to social cues. However, when given a choice of rearing environment fmr1-/- larvae preferred one with reduced visual stimulation, and rearing them in this environment reduced genotype-specific effects on tectal excitability. Together, these results shed new light on how fmr1-/- changes the early development of neural systems and behavior in a vertebrate.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are caused by changes in early neural development. Animal models of ASDs offer the opportunity to study these developmental processes in greater detail than in humans. Here, we found that a zebrafish mutant for a gene which in humans causes one type of ASD showed early alterations in hunting behavior, social behavior, and how visual stimuli are represented in the brain. However, we also found that mutant fish preferred reduced visual stimulation, and rearing them in this environment reduced alterations in neural activity patterns. These results suggest interesting new directions for using zebrafish as a model to study the development of brain and behavior in ASDs, and how the impact of ASDs could potentially be reduced.
Collapse
Affiliation(s)
- Shuyu I Zhu
- Queensland Brain Institute
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | | | | | - Thomas Darveniza
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | - Geoffrey J Goodhill
- Queensland Brain Institute
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
55
|
Abstract
Color is a pervasive feature of our psychological experience, having a role in many aspects of human mind and behavior such as basic vision, scene perception, object recognition, aesthetics, and communication. Understanding how humans encode, perceive, talk about, and use color has been a major interdisciplinary effort. Here, we present the current state of knowledge on how color perception and cognition develop. We cover the development of various aspects of the psychological experience of color, ranging from low-level color vision to perceptual mechanisms such as color constancy to phenomena such as color naming and color preference. We also identify neurodiversity in the development of color perception and cognition and implications for clinical and educational contexts. We discuss the theoretical implications of the research for understanding mature color perception and cognition, for identifying the principles of perceptual and cognitive development, and for fostering a broader debate in the psychological sciences.
Collapse
Affiliation(s)
- John Maule
- The Sussex Colour Group & Baby Lab, School of Psychology, University of Sussex, Falmer, United Kingdom;
| | - Alice E Skelton
- The Sussex Colour Group & Baby Lab, School of Psychology, University of Sussex, Falmer, United Kingdom;
| | - Anna Franklin
- The Sussex Colour Group & Baby Lab, School of Psychology, University of Sussex, Falmer, United Kingdom;
| |
Collapse
|
56
|
Williams ZJ, Schaaf R, Ausderau KK, Baranek GT, Barrett DJ, Cascio CJ, Dumont RL, Eyoh EE, Failla MD, Feldman JI, Foss-Feig JH, Green HL, Green SA, He JL, Kaplan-Kahn EA, Keçeli-Kaysılı B, MacLennan K, Mailloux Z, Marco EJ, Mash LE, McKernan EP, Molholm S, Mostofsky SH, Puts NAJ, Robertson CE, Russo N, Shea N, Sideris J, Sutcliffe JS, Tavassoli T, Wallace MT, Wodka EL, Woynaroski TG. Examining the Latent Structure and Correlates of Sensory Reactivity in Autism: A Multi-site Integrative Data Analysis by the Autism Sensory Research Consortium. RESEARCH SQUARE 2023:rs.3.rs-2447849. [PMID: 36712092 PMCID: PMC9882639 DOI: 10.21203/rs.3.rs-2447849/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. Methods Leveraging a combined sample of 3,868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO and SEEK (sub)constructs. Results All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses unambiguously supported the validity of a supra-modal HYPER construct (ω H = .800), whereas a coherent supra-modal HYPO construct was not supported (ω H = .611), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ω H = .799; 4/7 modalities). Within each sensory construct, modality-specific subscales demonstrated substantial added value beyond the supra-modal score. Meta-analytic correlations varied by construct, although sensory features tended to correlate most strongly with other domains of core autism features and co-occurring psychiatric symptoms. Certain subconstructs within the HYPO and SEEK domains were also associated with lower adaptive behavior scores. Limitations: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to parent-report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. Conclusion Psychometric issues may limit the degree to which some measures of supra-modal HYPO/SEEK can be interpreted. Depending on the research question at hand, modality-specific response pattern scores may represent a valid alternative method of characterizing sensory reactivity in autism.
Collapse
|
57
|
Skerswetat J, Bex PJ. InFoRM (Indicate-Follow-Replay-Me): A novel method to measure perceptual multistability dynamics using continuous data tracking and validated estimates of visual introspection. Conscious Cogn 2023; 107:103437. [PMID: 36450218 PMCID: PMC9840704 DOI: 10.1016/j.concog.2022.103437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Perceptual multistability, e.g. Binocular Rivalry, has been intensively used as a tool to study visual consciousness. Current methods to assess multistability do not capture all potentially occurring perceptual states, provide no estimate of introspection, and lack continuous, high-temporal resolution to resolve perceptual changes between states and within mixed perceptual states. We introduce InFoRM (Indicate-Follow-Replay-Me), a four-phase method that (1) trains a participant to self-generate estimates of perceptual introspection-maps that are (2) validated during a physical mimic task, (3) gathers perceptual multistability data, and (4) confirms their validity during a physical replay. 28 condition-blinded adults performed InFoRM while experiencing binocular rivalry evoked with orthogonal sinusoidal gratings. A 60 Hz joystick (3600 data samples/minute) was used to indicate continuously changes across six perceptual states within each 1 min trial. A polarized monitor system was used to present the stimuli dichoptically. Three contrast conditions were investigated: low vs low, high vs high, and low vs high. InFoRM replicates standard outcome measures, i.e. alternation rate, mean and relative proportions of perception, and distribution of exclusive percepts that are well fitted with gamma functions. Furthermore, InFoRM generates novel outcomes that deliver new insights in visual cognition via estimates of introspection maps, in ocular dominance via perceptual-state-specific dominance scores, in transitory dynamics between and within perceptual states, via techniques adopted from eye-tracking, and in rivalry-zone-size estimates utilizing InFoRM's ability to simulate piecemeal perception. The replay phase (physical replay of perceptual rivalry) confirmed good overall agreement (73% ±5 standard deviation). InFoRM can be applied to other multistable paradigms and can be used to study visual consciousness in typical and neuro-atypical populations.
Collapse
Affiliation(s)
- Jan Skerswetat
- Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States.
| | - Peter J Bex
- Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| |
Collapse
|
58
|
Raul P, McNally K, Ward LM, van Boxtel JJA. Does stochastic resonance improve performance for individuals with higher autism-spectrum quotient? Front Neurosci 2023; 17:1110714. [PMID: 37123379 PMCID: PMC10140507 DOI: 10.3389/fnins.2023.1110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
While noise is generally believed to impair performance, the detection of weak stimuli can sometimes be enhanced by introducing optimum noise levels. This phenomenon is termed 'Stochastic Resonance' (SR). Past evidence suggests that autistic individuals exhibit higher neural noise than neurotypical individuals. It has been proposed that the enhanced performance in Autism Spectrum Disorder (ASD) on some tasks could be due to SR. Here we present a computational model, lab-based, and online visual identification experiments to find corroborating evidence for this hypothesis in individuals without a formal ASD diagnosis. Our modeling predicts that artificially increasing noise results in SR for individuals with low internal noise (e.g., neurotypical), however not for those with higher internal noise (e.g., autistic, or neurotypical individuals with higher autistic traits). It also predicts that at low stimulus noise, individuals with higher internal noise outperform those with lower internal noise. We tested these predictions using visual identification tasks among participants from the general population with autistic traits measured by the Autism-Spectrum Quotient (AQ). While all participants showed SR in the lab-based experiment, this did not support our model strongly. In the online experiment, significant SR was not found, however participants with higher AQ scores outperformed those with lower AQ scores at low stimulus noise levels, which is consistent with our modeling. In conclusion, our study is the first to investigate the link between SR and superior performance by those with ASD-related traits, and reports limited evidence to support the high neural noise/SR hypothesis.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- *Correspondence: Pratik Raul,
| | - Kate McNally
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Lawrence M. Ward
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen J. A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Jeroen J. A. van Boxtel,
| |
Collapse
|
59
|
Hirsch J, Zhang X, Noah JA, Dravida S, Naples A, Tiede M, Wolf JM, McPartland JC. Neural correlates of eye contact and social function in autism spectrum disorder. PLoS One 2022; 17:e0265798. [PMID: 36350848 PMCID: PMC9645655 DOI: 10.1371/journal.pone.0265798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Reluctance to make eye contact during natural interactions is a central diagnostic criterion for autism spectrum disorder (ASD). However, the underlying neural correlates for eye contacts in ASD are unknown, and diagnostic biomarkers are active areas of investigation. Here, neuroimaging, eye-tracking, and pupillometry data were acquired simultaneously using two-person functional near-infrared spectroscopy (fNIRS) during live "in-person" eye-to-eye contact and eye-gaze at a video face for typically-developed (TD) and participants with ASD to identify the neural correlates of live eye-to-eye contact in both groups. Comparisons between ASD and TD showed decreased right dorsal-parietal activity and increased right ventral temporal-parietal activity for ASD during live eye-to-eye contact (p≤0.05, FDR-corrected) and reduced cross-brain coherence consistent with atypical neural systems for live eye contact. Hypoactivity of right dorsal-parietal regions during eye contact in ASD was further associated with gold standard measures of social performance by the correlation of neural responses and individual measures of: ADOS-2, Autism Diagnostic Observation Schedule, 2nd Edition (r = -0.76, -0.92 and -0.77); and SRS-2, Social Responsiveness Scale, Second Edition (r = -0.58). The findings indicate that as categorized social ability decreases, neural responses to real eye-contact in the right dorsal parietal region also decrease consistent with a neural correlate for social characteristics in ASD.
Collapse
Affiliation(s)
- Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States of America
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States of America
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Haskins Laboratories, New Haven, CT, United States of America
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - J. Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - Swethasri Dravida
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States of America
| | - Adam Naples
- Yale Child Study Center, New Haven, CT, United States of America
| | - Mark Tiede
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
- Haskins Laboratories, New Haven, CT, United States of America
| | - Julie M. Wolf
- Yale Child Study Center, New Haven, CT, United States of America
| | | |
Collapse
|
60
|
Friedel EBN, Schäfer M, Endres D, Maier S, Runge K, Bach M, Heinrich SP, Ebert D, Domschke K, Tebartz van Elst L, Nickel K. Electroretinography in adults with high-functioning autism spectrum disorder. Autism Res 2022; 15:2026-2037. [PMID: 36217563 DOI: 10.1002/aur.2823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
The electroretinogram (ERG) allows the investigation of retinal signaling pathways and has increasingly been applied in individuals with mental disorders in search for potential biomarkers of neurodevelopmental disorders. Preceding ERG examinations in individuals with autism spectrum disorders (ASD) showed inconsistent results, which might be due to the small number of participants, heterogeneity of the ASD population, differences in age ranges, and stimulation methods. The aim of this study was to investigate functional retinal responses in adults with ASD by means of the light-adapted (photopic) ERG. Light-adapted ERG measurements were obtained with the RETeval® system applying three different stimulation protocols. In the final analysis, the ERG parameters a-wave, b-wave, the photopic negative response (PhNR), the photopic hill parameters as well as additional amplitude ratios were compared between 32 adults with high-functioning ASD and 31 non-autistic controls. Both groups were matched with regard to sex and age. No significant functional retinal differences in amplitude or peak time of the a- or b-wave, PhNR, the photopic hill parameters or the ERG-amplitude ratios could be detected in individuals with ASD compared to non-autistic participants. The absence of electrophysiological functional retinal alterations in ASD, suggests that changes in visual perception, such as increased attention to detail or visual hypersensitivity in ASD, are not due to impairments at early levels of retinal signal processing.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Mirjam Schäfer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
61
|
Visser TAW, English MCW, Maybery MT. No evidence for superior distractor filtering amongst individuals high in autistic-like traits. Atten Percept Psychophys 2022; 84:2715-2724. [PMID: 36207668 PMCID: PMC9630187 DOI: 10.3758/s13414-022-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Autistic individuals and individuals with high levels of autistic-like traits often show better visual search performance than their neurotypical peers. The present work investigates whether this advantage stems from increased ability to filter out distractors. Participants with high or low levels of autistic-like traits completed an attentional blink task in which trials varied in target-distractor similarity. The results showed no evidence that high levels of autistic-like traits were associated with superior distractor filtering (indexed by the difference in the size of the attentional blink across the high- and low-similarity distractors). This suggests that search advantages seen in previous studies are likely linked to other mechanisms such as enhanced pre-attentive scene processing, better decision making, or more efficient response selection.
Collapse
Affiliation(s)
- Troy A W Visser
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| | - Michael C W English
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
62
|
Lin LY, Chi IJ, Sung YS. Mediating effect of sequential memory on the relationship between visual-motor integration and self-care performance in young children with autism spectrum disorder. Front Psychol 2022; 13:988493. [PMID: 36275205 PMCID: PMC9583898 DOI: 10.3389/fpsyg.2022.988493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveVisual perception is a skill that contributes to the performance of self-care and important development tasks in early childhood. The relationship between self-care and visual perception is especially significant for young children with autism spectrum disorder (ASD), who have been described as visual learners. However, this relationship is not clearly understood among young children with ASD. We investigated the role of motor-free visual perception on the relationship between self-care and visual-motor integration in young children with ASD.MethodsA sample of 66 children with ASD aged 48 to 83 months were recruited. Measurements included the Assessment of Motor and Process Skills, the Developmental Test of Visual Perception—Third Edition, and Test of Visual-Perceptual Skills—Third Edition.ResultsThe results indicated that self-care performance had significant positive correlations with visual-motor integration, visual discrimination, visual memory, visual spatial relationships, and visual sequential memory. Of these, visual sequential memory and visual spatial relationships were the main factors related to self-care performance. Sequential memory was a mediator of the relationship between visual-motor integration and self-care performance.ConclusionThis study establishes a deeper understanding of self-care and motor-free visual perception among young children with ASD. Understanding the relationship between visual perception and self-care in young children with ASD may aid professionals in providing self-care interventions for this population.
Collapse
Affiliation(s)
- Ling-Yi Lin
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ling-Yi Lin,
| | - I-Jou Chi
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Shan Sung
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
63
|
Jassim N, Owen AM, Smith P, Suckling J, Lawson RP, Baron-Cohen S, Parsons O. Perceptual decision-making in autism as assessed by "spot the difference" visual cognition tasks. Sci Rep 2022; 12:15458. [PMID: 36104435 PMCID: PMC9474452 DOI: 10.1038/s41598-022-19640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
Discriminating between similar figures proves to be a remarkably demanding task due to the limited capacity of our visual cognitive processes. Here we examine how perceptual inference and decision-making are modulated by differences arising from neurodiversity. A large sample of autistic (n = 140) and typical (n = 147) participants completed two forced choice similarity judgement tasks online. Each task consisted of "match" (identical figures) and "mismatch" (subtle differences between figures) conditions. Signal detection theory analyses indicated a response bias by the autism group during conditions of uncertainty. More specifically, autistic participants were more likely to choose the "mismatch" option, thus leading to more hits on the "mismatch" condition, but also more false alarms on the "match" condition. These results suggest differences in response strategies during perceptual decision-making in autism.
Collapse
Affiliation(s)
- Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Adrian M Owen
- Department of Physiology and Pharmacology, The Western Institute for Neuroscience, London, Canada
- Department of Psychology, University of Western Ontario, London, Canada
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rebecca P Lawson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Owen Parsons
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
64
|
Orchard ER, Dakin SC, van Boxtel JJA. Internal noise measures in coarse and fine motion direction discrimination tasks and the correlation with autism traits. J Vis 2022; 22:19. [PMID: 36149675 PMCID: PMC9520516 DOI: 10.1167/jov.22.10.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Motion perception is essential for visual guidance of behavior and is known to be limited by both internal additive noise (i.e., a constant level of random fluctuations in neural activity independent of the stimulus) and motion pooling (global integration of local motion signals across space). People with autism spectrum disorder (ASD) display abnormalities in motion processing, which have been linked to both elevated noise and abnormal pooling. However, to date, the impact of a third limit-induced internal noise (internal noise that scales up with increases in external stimulus noise)-has not been investigated in motion perception of any group. Here, we describe an extension on the double-pass paradigm to quantify additive noise and induced noise in a motion paradigm. We also introduce a new way to experimentally estimate motion pooling. We measured the impact of induced noise on direction discrimination, which we ascribe to fluctuations in decision-related variables. Our results are suggestive of higher internal noise in individuals with high ASD traits only on coarse but not fine motion direction discrimination tasks. However, we report no significant correlations between autism traits and additive noise, induced noise, or motion pooling in either task. We conclude that, under some conditions, the internal noise may be higher in individuals with pronounced ASD traits and that the assessment of induced internal noise is a useful way of exploring decision-related limits on motion perception, irrespective of ASD traits.
Collapse
Affiliation(s)
- Edwina R Orchard
- Department of Psychology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
| | - Steven C Dakin
- School of Optometry & Vision Science, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jeroen J A van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, ACT, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
65
|
Du Y, He X, Kochunov P, Pearlson G, Hong LE, van Erp TGM, Belger A, Calhoun VD. A new multimodality fusion classification approach to explore the uniqueness of schizophrenia and autism spectrum disorder. Hum Brain Mapp 2022; 43:3887-3903. [PMID: 35484969 PMCID: PMC9294304 DOI: 10.1002/hbm.25890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Xingyu He
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
| | - Peter Kochunov
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | | | - L. Elliot Hong
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | - Theo G. M. van Erp
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Aysenil Belger
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
66
|
Abassi Abu Rukab S, Khayat N, Hochstein S. High-level visual search in children with autism. J Vis 2022; 22:6. [PMID: 35994261 PMCID: PMC9419456 DOI: 10.1167/jov.22.9.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
Visual search has been classified as easy feature search, with rapid target detection and little set size dependence, versus slower difficult search with focused attention, with set size-dependent speed. Reverse hierarchy theory attributes these classes to rapid high cortical-level vision at a glance versus low-level vision with scrutiny, attributing easy search to high-level representations. Accordingly, faces "pop out" of heterogeneous object photographs. Individuals with autism have difficulties recognizing faces, and we now asked if this disability disturbs their search for faces. We compare search times and set size slopes for children with autism spectrum disorders (ASDs) and those with neurotypical development (NT) when searching for faces. Human face targets were found rapidly, with shallow set size slopes. The between-group difference between slopes (18.8 vs. 11.3 ms/item) is significant, suggesting that faces may not "pop out" as easily, but in our view does not warrant classifying ASD face search as categorically different from that of NT children. We also tested search for different target categories, dog and lion faces, and nonface basic categories, cars and houses. The ASD group was generally a bit slower than the NT group, and their slopes were somewhat steeper. Nevertheless, the overall dependencies on target category were similar: human face search fastest, nonface categories slowest, and dog and lion faces in between. We conclude that autism may spare vision at a glance, including face detection, despite its reported effects on face recognition, which may require vision with scrutiny. This dichotomy is consistent with the two perceptual modes suggested by reverse hierarchy theory.
Collapse
Affiliation(s)
- Safa'a Abassi Abu Rukab
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Noam Khayat
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| | - Shaul Hochstein
- ELSC Edmond & Lily Safra Center for Brain Research and Silberman Institute for Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
67
|
Altered EEG variability on different time scales in participants with autism spectrum disorder: an exploratory study. Sci Rep 2022; 12:13068. [PMID: 35906301 PMCID: PMC9338240 DOI: 10.1038/s41598-022-17304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
One of the great challenges in psychiatry is finding reliable biomarkers that may allow for more accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent years as a potential biomarker. In the present explorative study we investigated temporal variability in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 19 neurotypical (NT) controls. Participants performed a visual oddball task using fine and coarse checkerboard stimuli. We investigated various measures of neural variability and found effects on multiple time scales. (1) As opposed to the previous studies, we found reduced inter-trial variability in the AS group compared to NT. (2) This effect builds up over the entire course of a 5-min experiment and (3) seems to be based on smaller variability of neural background activity in AS compared to NTs. The here reported variability effects come with considerably large effect sizes, making them promising candidates for potentially reliable biomarkers in psychiatric diagnostics. The observed pattern of universality across different time scales and stimulation conditions indicates trait-like effects. Further research with a new and larger set of participants are thus needed to verify or falsify our findings.
Collapse
|
68
|
Abassi E, Papeo L. Behavioral and neural markers of visual configural processing in social scene perception. Neuroimage 2022; 260:119506. [PMID: 35878724 DOI: 10.1016/j.neuroimage.2022.119506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Research on face perception has revealed highly specialized visual mechanisms such as configural processing, and provided markers of interindividual differences -including disease risks and alterations- in visuo-perceptual abilities that traffic in social cognition. Is face perception unique in degree or kind of mechanisms, and in its relevance for social cognition? Combining functional MRI and behavioral methods, we address the processing of an uncharted class of socially relevant stimuli: minimal social scenes involving configurations of two bodies spatially close and face-to-face as if interacting (hereafter, facing dyads). We report category-specific activity for facing (vs. non-facing) dyads in visual cortex. That activity shows face-like signatures of configural processing -i.e., stronger response to facing (vs. non-facing) dyads, and greater susceptibility to stimulus inversion for facing (vs. non-facing) dyads-, and is predicted by performance-based measures of configural processing in visual perception of body dyads. Moreover, we observe that the individual performance in body-dyad perception is reliable, stable-over-time and correlated with the individual social sensitivity, coarsely captured by the Autism-Spectrum Quotient. Further analyses clarify the relationship between single-body and body-dyad perception. We propose that facing dyads are processed through highly specialized mechanisms -and brain areas-, analogously to other biologically and socially relevant stimuli such as faces. Like face perception, facing-dyad perception can reveal basic (visual) processes that lay the foundations for understanding others, their relationships and interactions.
Collapse
Affiliation(s)
- Etienne Abassi
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) and Université Claude Bernard Lyon 1, 67 Bd. Pinel, 69675 Bron France.
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) and Université Claude Bernard Lyon 1, 67 Bd. Pinel, 69675 Bron France
| |
Collapse
|
69
|
Clark K, Birch-Hurst K, Pennington CR, Petrie ACP, Lee JT, Hedge C. Test-retest reliability for common tasks in vision science. J Vis 2022; 22:18. [PMID: 35904797 PMCID: PMC9344221 DOI: 10.1167/jov.22.8.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Research in perception and attention has typically sought to evaluate cognitive mechanisms according to the average response to a manipulation. Recently, there has been a shift toward appreciating the value of individual differences and the insight gained by exploring the impacts of between-participant variation on human cognition. However, a recent study suggests that many robust, well-established cognitive control tasks suffer from surprisingly low levels of test-retest reliability (Hedge, Powell, & Sumner, 2018b). We tested a large sample of undergraduate students (n = 160) in two sessions (separated by 1-3 weeks) on four commonly used tasks in vision science. We implemented measures that spanned a range of perceptual and attentional processes, including motion coherence (MoCo), useful field of view (UFOV), multiple-object tracking (MOT), and visual working memory (VWM). Intraclass correlations ranged from good to poor, suggesting that some task measures are more suitable for assessing individual differences than others. VWM capacity (intraclass correlation coefficient [ICC] = 0.77), MoCo threshold (ICC = 0.60), UFOV middle accuracy (ICC = 0.60), and UFOV outer accuracy (ICC = 0.74) showed good-to-excellent reliability. Other measures, namely the maximum number of items tracked in MOT (ICC = 0.41) and UFOV number accuracy (ICC = 0.48), showed moderate reliability; the MOT threshold (ICC = 0.36) and UFOV inner accuracy (ICC = 0.30) showed poor reliability. In this paper, we present these results alongside a summary of reliabilities estimated previously for other vision science tasks. We then offer useful recommendations for evaluating test-retest reliability when considering a task for use in evaluating individual differences.
Collapse
Affiliation(s)
- Kait Clark
- University of the West of England, Department of Social Sciences, Bristol, UK
- https://go.uwe.ac.uk/kaitclark
| | - Kayley Birch-Hurst
- University of the West of England, Department of Social Sciences, Bristol, UK
- https://go.uwe.ac.uk/kayleybirchhurst
| | - Charlotte R Pennington
- University of the West of England, Department of Social Sciences, Bristol, UK
- Aston University, School of Psychology, College of Health & Life Sciences, Birmingham, UK
- https://research.aston.ac.uk/en/persons/charlotte-rebecca-pennington
| | - Austin C P Petrie
- University of the West of England, Department of Social Sciences, Bristol, UK
- University of Sussex, School of Psychology, Sussex, UK
| | - Joshua T Lee
- University of the West of England, Department of Social Sciences, Bristol, UK
| | - Craig Hedge
- Aston University, School of Psychology, College of Health & Life Sciences, Birmingham, UK
- Cardiff University, School of Psychology, Cardiff, UK
- https://research.aston.ac.uk/en/persons/craig-hedge
| |
Collapse
|
70
|
Identification of Young High-Functioning Autism Individuals Based on Functional Connectome Using Graph Isomorphism Network: A Pilot Study. Brain Sci 2022; 12:brainsci12070883. [PMID: 35884690 PMCID: PMC9315722 DOI: 10.3390/brainsci12070883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulated studies have determined the changes in functional connectivity in autism spectrum disorder (ASD) and spurred the application of machine learning for classifying ASD. Graph Neural Network provides a new method for network analysis in brain disorders to identify the underlying network features associated with functional deficits. Here, we proposed an improved model of Graph Isomorphism Network (GIN) that implements the Weisfeiler-Lehman (WL) graph isomorphism test to learn the graph features while taking into account the importance of each node in the classification to improve the interpretability of the algorithm. We applied the proposed method on multisite datasets of resting-state functional connectome from Autism Brain Imaging Data Exchange (ABIDE) after stringent quality control. The proposed method outperformed other commonly used classification methods on five different evaluation metrics. We also identified salient ROIs in visual and frontoparietal control networks, which could provide potential neuroimaging biomarkers for ASD identification.
Collapse
|
71
|
Parmar KR, Porter CS, Dickinson CM, Baimbridge P, Pelham J, Gowen E. Autism-friendly eyecare: Developing recommendations for service providers based on the experiences of autistic adults. Ophthalmic Physiol Opt 2022; 42:675-693. [PMID: 35315935 PMCID: PMC9313607 DOI: 10.1111/opo.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE People with autism face significant barriers when accessing healthcare services. Eye examinations present unique challenges. Accessibility of this healthcare sector for people with autism has not been investigated previously. The aim of this research was to investigate eye examination accessibility for autistic adults and produce recommendations for autism-friendly eyecare. METHODS Two qualitative studies were conducted. In Study 1, 18 autistic adults took part in focus groups to elicit their eye examination experiences. Transcripts of the recorded discussions were thematically analysed. Study 1 findings were used to design autism-friendly eye examinations for autistic adults. These were conducted in Study 2. Twenty-four autistic adults participated in these examinations, during which they were interviewed about their experience and how it might be improved by reasonable modifications. Audio recordings of the interviews were content analysed. RESULTS Knowledge of what to expect, in advance of the eye examination, could greatly reduce anxiety. Participants liked the logical structure of the examination, and the interesting instrumentation used. However, the examination and practice environment did include sensory challenges, due to lights, sound and touch. Changes in practice layout, and interacting with multiple staff members, was anxiety provoking. Participants expressed a need for thorough explanations from the optometrist that outlined the significance of each test, and what the patient was expected to do. CONCLUSION A number of accessiblity barriers were identified. These suggested that UK eye examinations are not very accessible for autistic adults. Barriers began at the point of booking the appointment and continued through to the dispensing of spectacles. These caused anxiety and stress for this population, but could be reduced with easy-to-implement adaptations. Based on the findings, recommendations are presented here for the whole eyecare team which suggest how more autism-friendly eye examinations can be provided.
Collapse
Affiliation(s)
- Ketan R. Parmar
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Catherine S. Porter
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Christine M. Dickinson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Peter Baimbridge
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | | | - Emma Gowen
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| |
Collapse
|
72
|
Lipina T, Men X, Blundell M, Salahpour A, Ramsey AJ. Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12825. [PMID: 35705513 PMCID: PMC9744498 DOI: 10.1111/gbb.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.
Collapse
Affiliation(s)
- Tatiana Lipina
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Xiaoyu Men
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Matisse Blundell
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Ali Salahpour
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Amy J. Ramsey
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
73
|
Parmar KR, Porter CS, Dickinson CM, Gowen E. Investigating eye examination-related anxiety in autistic adults. Clin Exp Optom 2022:1-7. [PMID: 35654474 DOI: 10.1080/08164622.2022.2065189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
CLINICAL RELEVANCE It is important to investigate whether anxiety is a barrier to accessing eye examinations for autistic adults, because existing research suggests this population are more likely to develop ophthalmic abnormalities. BACKGROUND Anxiety influences healthcare accessibility for autistic people without learning disabilities. Previous qualitative studies by the research team, with a small sample of autistic adults, have indicated several aspects of eyecare services which cause anxiety. Considering the limited existing research suggesting autistic individuals are more likely to develop ophthalmic abnormalities, this study explored whether this population more widely experiences anxiety when accessing eye examinations. METHODS A total of 322 UK-based autistic adults completed the Optometric Patient Anxiety Scale (OPAS) online, between July and December 2020. Rasch analysis was used to validate this questionnaire for an autistic adult population, and compare optometric anxiety levels to the general population. RESULTS Item infit (0.77 to 1.39) and outfit (0.78 to 1.33) values, the person separation index (2.64), and item (0.99) and person (0.97) reliability coefficients suggested that all 10 items in the OPAS are useful to assess optometric anxiety in an autistic adult population. Item probability curves confirmed the response scale to be appropriate. A comparison of optometric anxiety between the autistic population in the current study and a general population in previous work found no statistically significant difference. CONCLUSION The OPAS is a statistically valid tool for use in the autistic adult population. It appears to suggest no significant difference in optometric anxiety between the autistic adult and general population. However, it is possible that it underestimates the true optometric anxiety of autistic adults since the items do not include some of the anxiety provoking factors for this population which have been indicated in previous studies by the research team.
Collapse
Affiliation(s)
- Ketan R Parmar
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Catherine S Porter
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Christine M Dickinson
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Emma Gowen
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| |
Collapse
|
74
|
Heller Murray ES, Segawa J, Karahanoglu FI, Tocci C, Tourville JA, Nieto-Castanon A, Tager-Flusberg H, Manoach DS, Guenther FH. Increased Intra-Subject Variability of Neural Activity During Speech Production in People with Autism Spectrum Disorder. RESEARCH IN AUTISM SPECTRUM DISORDERS 2022; 94:101955. [PMID: 35601992 PMCID: PMC9119427 DOI: 10.1016/j.rasd.2022.101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Background Communication difficulties are a core deficit in many people with autism spectrum disorder (ASD). The current study evaluated neural activation in participants with ASD and neurotypical (NT) controls during a speech production task. Methods Neural activities of participants with ASD (N = 15, M = 16.7 years, language abilities ranged from low verbal abilities to verbally fluent) and NT controls (N = 12, M = 17.1 years) was examined using functional magnetic resonance imaging with a sparse-sampling paradigm. Results There were no differences between the ASD and NT groups in average speech activation or inter-subject run-to-run variability in speech activation. Intra-subject run-to-run neural variability was greater in the ASD group and was positively correlated with autism severity in cortical areas associated with speech. Conclusions These findings highlight the importance of understanding intra-subject neural variability in participants with ASD.
Collapse
Affiliation(s)
- Elizabeth S. Heller Murray
- Boston University, Department of Speech, Language, & Hearing Sciences, 635 Commonwealth Avenue, Boston, MA, 02215
| | - Jennifer Segawa
- Boston University, Department of Speech, Language, & Hearing Sciences, 635 Commonwealth Avenue, Boston, MA, 02215
| | - F. Isik Karahanoglu
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, 55 Fruit Street, Boston, MA, 02215
| | - Catherine Tocci
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, 55 Fruit Street, Boston, MA, 02215
| | - Jason A. Tourville
- Boston University, Department of Speech, Language, & Hearing Sciences, 635 Commonwealth Avenue, Boston, MA, 02215
| | - Alfonso Nieto-Castanon
- Boston University, Department of Speech, Language, & Hearing Sciences, 635 Commonwealth Avenue, Boston, MA, 02215
| | - Helen Tager-Flusberg
- Boston University, Department of Psychological and Brain Sciences, 64 Cummington Mall Boston, MA, 02115
| | - Dara S. Manoach
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, 55 Fruit Street, Boston, MA, 02215
- Athinoula A. Martinos Center for Biomedical Imaging, 149 13th Street, Room 2618, Charlestown, MA 02129
| | - Frank H. Guenther
- Boston University, Department of Speech, Language, & Hearing Sciences, 635 Commonwealth Avenue, Boston, MA, 02215
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall Boston, MA, 02115
| |
Collapse
|
75
|
Time perception of individuals with subthreshold autistic traits: the regulation of interpersonal information associations. BMC Psychiatry 2022; 22:362. [PMID: 35624494 PMCID: PMC9137154 DOI: 10.1186/s12888-022-03995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND People with high subthreshold autistic traits usually share behavioral patterns similar to those of individuals on the autism spectrum, but with fewer social and cognitive changes. The effect of autistic traits on time perception and the role of interpersonal information in this effect remain unexplored. METHODS This study used a temporal bisection task between 400 and 1600 ms to compare the time perception of individuals with higher and lower autistic traits, and to explore the regulation of interpersonal information on their time perception by establishing associations between identities and geometric shapes. Thirty-two participants with high autistic traits and thirty-one participants with low autistic traits participated in this study. RESULTS In the absence of identity information, people with high autistic traits tended to judge short durations as longer. Their subjective bisection point was lower, and the Weber ratio was higher than for those with low autistic traits, suggesting that their overestimation of short duration was due to decreased temporal sensitivity. With the involvement of interpersonal information, the proportion of long responses for no identity was significantly lower than for self, friends, and strangers, which seemed more obvious in individuals with low autistic traits although there was no significant interaction between identity and group. The Weber ratio of no identity was lower than that for other identities. CONCLUSION The results suggest that individuals with high autistic traits have more conservative responses that are relatively shorter in duration, and this change is related to a decline in perceptual sensitivity. Compared to individuals with high autistic traits, the time perception of individuals with low autistic traits seemed more susceptible to interpersonal information.
Collapse
|
76
|
Bosch E, Fritsche M, Utzerath C, Buitelaar JK, de Lange FP. Adaptation and serial choice bias for low-level visual features are unaltered in autistic adolescents. J Vis 2022; 22:1. [PMID: 35503507 PMCID: PMC9078051 DOI: 10.1167/jov.22.6.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD), or autism, is characterized by social and non-social symptoms, including sensory hyper- and hyposensitivities. A suggestion has been put forward that some of these symptoms could be explained by differences in how sensory information is integrated with its context, including a lower tendency to leverage the past in the processing of new perceptual input. At least two history-dependent effects of opposite directions have been described in the visual perception literature: a repulsive adaptation effect, where perception of a stimulus is biased away from an adaptor stimulus, and an attractive serial choice bias, where perceptual choices are biased toward the previous choice. In this study, we investigated whether autistic participants differed in either bias from typically developing controls (TDs). Sixty-four adolescent participants (31 with ASD, 33 TDs) were asked to categorize oriented line stimuli in two tasks that were designed so that we would induce either adaptation or serial choice bias. Although our tasks successfully induced both biases, in comparing the two groups we found no differences in the magnitude of adaptation nor in the modulation of perceptual choices by the previous choice. In conclusion, we find no evidence of a decreased integration of the past in visual perception of low-level stimulus features in autistic adolescents.
Collapse
Affiliation(s)
- Ella Bosch
- Department of Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,
| | - Matthias Fritsche
- Department of Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,
| | - Christian Utzerath
- Department of Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands.,
| | - Floris P de Lange
- Department of Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,
| |
Collapse
|
77
|
Gehdu BK, Gray KLH, Cook R. Impaired grouping of ambient facial images in autism. Sci Rep 2022; 12:6665. [PMID: 35461345 PMCID: PMC9035147 DOI: 10.1038/s41598-022-10630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022] Open
Abstract
Ambient facial images depict individuals from a variety of viewing angles, with a range of poses and expressions, under different lighting conditions. Exposure to ambient images is thought to help observers form robust representations of the individuals depicted. Previous results suggest that autistic people may derive less benefit from exposure to this exemplar variation than non-autistic people. To date, however, it remains unclear why. One possibility is that autistic individuals possess atypical perceptual learning mechanisms. Alternatively, however, the learning mechanisms may be intact, but receive low-quality perceptual input from face encoding processes. To examine this second possibility, we investigated whether autistic people are less able to group ambient images of unfamiliar individuals based on their identity. Participants were asked to identify which of four ambient images depicted an oddball identity. Each trial assessed the grouping of different facial identities, thereby preventing face learning across trials. As such, the task assessed participants’ ability to group ambient images of unfamiliar people. In two experiments we found that matched non-autistic controls correctly identified the oddball identities more often than our autistic participants. These results imply that poor face learning from variation by autistic individuals may well be attributable to low-quality perceptual input, not aberrant learning mechanisms.
Collapse
Affiliation(s)
- Bayparvah Kaur Gehdu
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Katie L H Gray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK. .,Department of Psychology, University of York, York, UK.
| |
Collapse
|
78
|
Freitas C, Hunt BAE, Wong SM, Ristic L, Fragiadakis S, Chow S, Iaboni A, Brian J, Soorya L, Chen JL, Schachar R, Dunkley BT, Taylor MJ, Lerch JP, Anagnostou E. Atypical Functional Connectivity During Unfamiliar Music Listening in Children With Autism. Front Neurosci 2022; 16:829415. [PMID: 35516796 PMCID: PMC9063167 DOI: 10.3389/fnins.2022.829415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.
Collapse
Affiliation(s)
- Carina Freitas
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Benjamin A. E. Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Leanne Ristic
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Susan Fragiadakis
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephanie Chow
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Alana Iaboni
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Joyce L. Chen
- Faculty of Kinesiology and Physical Education and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Margot J. Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Psychology and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P. Lerch
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
79
|
Bocheva N, Hristov I, Stefanov S, Totev T, Staykova SN, Mihaylova MS. How the External Visual Noise Affects Motion Direction Discrimination in Autism Spectrum Disorder. Behav Sci (Basel) 2022; 12:bs12040113. [PMID: 35447685 PMCID: PMC9031710 DOI: 10.3390/bs12040113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Along with social, cognitive, and behavior deficiencies, peculiarities in sensory processing, including an atypical global motion processing, have been reported in Autism Spectrum Disorder (ASD). The question about the enhanced motion pooling in ASD is still debatable. The aim of the present study was to compare global motion integration in ASD using a low-density display and the equivalent noise (EN) approach. Fifty-seven children and adolescents with ASD or with typical development (TD) had to determine the average direction of movement of 30 Laplacian-of-Gaussian micro-patterns. They moved in directions determined by a normal distribution with a standard deviation of 2°, 5°, 10°, 15°, 25°, and 35°, corresponding to the added external noise. The data obtained showed that the ASD group has much larger individual differences in motion direction thresholds on external noise effect than the TD group. Applying the equivalent noise paradigm, we found that the global motion direction discrimination thresholds were more elevated in ASD than in controls at all noise levels. These results suggest that ASD individuals have a poor ability to integrate the local motion information in low-density displays.
Collapse
Affiliation(s)
- Nadejda Bocheva
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
- Correspondence:
| | - Ivan Hristov
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | - Simeon Stefanov
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | - Tsvetalin Totev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| | | | - Milena Slavcheva Mihaylova
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.H.); (S.S.); (T.T.); (M.S.M.)
| |
Collapse
|
80
|
Manning C, Hassall CD, Hunt LT, Norcia AM, Wagenmakers EJ, Evans NJ, Scerif G. Behavioural and neural indices of perceptual decision-making in autistic children during visual motion tasks. Sci Rep 2022; 12:6072. [PMID: 35414064 PMCID: PMC9005733 DOI: 10.1038/s41598-022-09885-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Many studies report atypical responses to sensory information in autistic individuals, yet it is not clear which stages of processing are affected, with little consideration given to decision-making processes. We combined diffusion modelling with high-density EEG to identify which processing stages differ between 50 autistic and 50 typically developing children aged 6-14 years during two visual motion tasks. Our pre-registered hypotheses were that autistic children would show task-dependent differences in sensory evidence accumulation, alongside a more cautious decision-making style and longer non-decision time across tasks. We tested these hypotheses using hierarchical Bayesian diffusion models with a rigorous blind modelling approach, finding no conclusive evidence for our hypotheses. Using a data-driven method, we identified a response-locked centro-parietal component previously linked to the decision-making process. The build-up in this component did not consistently relate to evidence accumulation in autistic children. This suggests that the relationship between the EEG measure and diffusion-modelling is not straightforward in autistic children. Compared to a related study of children with dyslexia, motion processing differences appear less pronounced in autistic children. Exploratory analyses also suggest weak evidence that ADHD symptoms moderate perceptual decision-making in autistic children.
Collapse
Affiliation(s)
- Catherine Manning
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | | | | | | | - Eric-Jan Wagenmakers
- Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathan J Evans
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
81
|
Tortelli C, Pomè A, Turi M, Igliozzi R, Burr DC, Binda P. Contextual Information Modulates Pupil Size in Autistic Children. Front Neurosci 2022; 16:752871. [PMID: 35431787 PMCID: PMC9011183 DOI: 10.3389/fnins.2022.752871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent Bayesian models suggest that perception is more “data-driven” and less dependent on contextual information in autistic individuals than others. However, experimental tests of this hypothesis have given mixed results, possibly due to the lack of objectivity of the self-report methods typically employed. Here we introduce an objective no-report paradigm based on pupillometry to assess the processing of contextual information in autistic children, together with a comparison clinical group. After validating in neurotypical adults a child-friendly pupillometric paradigm, in which we embedded test images within an animation movie that participants watched passively, we compared pupillary response to images of the sun and meaningless control images in children with autism vs. age- and IQ-matched children presenting developmental disorders unrelated to the autistic spectrum. Both clinical groups showed stronger pupillary constriction for the sun images compared with control images, like the neurotypical adults. However, there was no detectable difference between autistic children and the comparison group, despite a significant difference in pupillary light responses, which were enhanced in the autistic group. Our report introduces an objective technique for studying perception in clinical samples and children. The lack of statistically significant group differences in our tests suggests that autistic children and the comparison group do not show large differences in perception of these stimuli. This opens the way to further studies testing contextual processing at other levels of perception.
Collapse
Affiliation(s)
- Chiara Tortelli
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Antonella Pomè
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Firenze, Firenze, Italy
| | - Marco Turi
- Fondazione Stella Maris Mediterraneo, Matera, Italy
| | | | - David C. Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Firenze, Firenze, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- *Correspondence: Paola Binda,
| |
Collapse
|
82
|
Binur N, Hel-Or H, Hadad BS. Individuals with autism show non-adaptive relative weighting of perceptual prior and sensory reliability. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:2052-2065. [PMID: 35317640 DOI: 10.1177/13623613221074416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT Unique perceptual skills and abnormalities in perception have been extensively demonstrated in those with autism for many perceptual domains, accounting, at least in part, for some of the main symptoms. Several new hypotheses suggest that perceptual representations in autism are unrefined, appear less constrained by exposure and regularities of the environment, and rely more on actual concrete input. Consistent with these emerging views, a bottom-up, data-driven fashion of processing has been suggested to account for the atypical perception in autism. It is yet unclear, however, whether reduced effects of prior knowledge and top-down information, or rather reduced noise in the sensory input, account for the often-reported bottom-up mode of processing in autism. We show that neither is sufficiently supported. Instead, we demonstrate clear differences between autistics and neurotypicals in how incoming input is weighted against prior knowledge and experience in determining the final percept. Importantly, the findings tap central differences in perception between those with and without autism that are consistent across identified sub-clusters within each group.
Collapse
Affiliation(s)
| | | | - Bat-Sheva Hadad
- University of Haifa, Israel.,Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, Israel
| |
Collapse
|
83
|
Visual consciousness dynamics in adults with and without autism. Sci Rep 2022; 12:4376. [PMID: 35288609 PMCID: PMC8921201 DOI: 10.1038/s41598-022-08108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Sensory differences between autism and neuro-typical populations are well-documented and have often been explained by either weak-central-coherence or excitation/inhibition-imbalance cortical theories. We tested these theories with perceptual multi-stability paradigms in which dissimilar images presented to each eye generate dynamic cyclopean percepts based on ongoing cortical grouping and suppression processes. We studied perceptual multi-stability with Interocular Grouping (IOG), which requires the simultaneous integration and suppression of image fragments from both eyes, and Conventional Binocular Rivalry (CBR), which only requires global suppression of either eye, in 17 autistic adults and 18 neurotypical participants. We used a Hidden-Markov-Model as tool to analyze the multistable dynamics of these processes. Overall, the dynamics of multi-stable perception were slower (i.e. there were longer durations and fewer transitions among perceptual states) in the autistic group compared to the neurotypical group for both IOG and CBR. The weighted Markovian transition distributions revealed key differences between both groups and paradigms. The results indicate overall lower levels of suppression and decreased levels of grouping in autistic than neurotypical participants, consistent with elements of excitation/inhibition imbalance and weak-central-coherence theories.
Collapse
|
84
|
Savickaite S, McNaughton K, Gaillard E, Amaya J, McDonnell N, Millington E, Simmons DR. Exploratory study on the use of HMD virtual reality to investigate individual differences in visual processing styles. JOURNAL OF ENABLING TECHNOLOGIES 2022. [DOI: 10.1108/jet-06-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PurposeGlobal and local processing is part of human perceptual organisation, where global processing helps extract the “gist” of the visual information and local processing helps perceive the details. Individual differences in these two types of visual processing have been found in autism and ADHD (Attention-Deficit Hyperactivity Disorder). Virtual reality (VR) has become a more available method of research in the last few decades. No previous research has investigated perceptual differences using this technology.Design/methodology/approachThe objective of the research is to threefold: (1) identify if there is association between ADHD and autistic traits and the performance on the Rey-Osterrieth complex figure (ROCF) task, (2) investigate practical effects of using VR drawing tools for research on perceptual experiences and (3) explore any perceptual differences brought out by the three-dimensional nature of the VR. The standard ROCF test was used as a baseline task to investigate the practical utility of using VR as an experimental platform. A total of 94 participants were tested.FindingsAttention-to-detail, attention switching and imagination subscales of autism quotient (AQ) questionnaire were found to be predictors of organisational ROCF scores, whereas only the attention-to-detail subscale was predictive of perceptual ROCF scores.Originality/valueThe current study is an example of how classic psychological paradigms can be transferred into the virtual world. Further investigation of the distinct individual preferences in drawing tasks in VR could lead to a better understanding of individual differences in the processing of visuospatial information.
Collapse
|
85
|
The amplitude of fNIRS hemodynamic response in the visual cortex unmasks autistic traits in typically developing children. Transl Psychiatry 2022; 12:53. [PMID: 35136021 PMCID: PMC8826368 DOI: 10.1038/s41398-022-01820-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Autistic traits represent a continuum dimension across the population, with autism spectrum disorder (ASD) being the extreme end of the distribution. Accumulating evidence shows that neuroanatomical and neurofunctional profiles described in relatives of ASD individuals reflect an intermediate neurobiological pattern between the clinical population and healthy controls. This suggests that quantitative measures detecting autistic traits in the general population represent potential candidates for the development of biomarkers identifying early pathophysiological processes associated with ASD. Functional near-infrared spectroscopy (fNIRS) has been extensively employed to investigate neural development and function. In contrast, the potential of fNIRS to define reliable biomarkers of brain activity has been barely explored. Features of non-invasiveness, portability, ease of administration, and low-operating costs make fNIRS a suitable instrument to assess brain function for differential diagnosis, follow-up, analysis of treatment outcomes, and personalized medicine in several neurological conditions. Here, we introduce a novel standardized procedure with high entertaining value to measure hemodynamic responses (HDR) in the occipital cortex of adult subjects and children. We found that the variability of evoked HDR correlates with the autistic traits of children, assessed by the Autism-Spectrum Quotient. Interestingly, HDR amplitude was especially linked to social and communication features, representing the core symptoms of ASD. These findings establish a quick and easy strategy for measuring visually-evoked cortical activity with fNIRS that optimize the compliance of young subjects, setting the background for testing the diagnostic value of fNIRS visual measurements in the ASD clinical population.
Collapse
|
86
|
Matsuzaki J, Kagitani-Shimono K, Aoki S, Hanaie R, Kato Y, Nakanishi M, Tatsumi A, Tominaga K, Yamamoto T, Nagai Y, Mohri I, Taniike M. Abnormal cortical responses elicited by audiovisual movies in patients with autism spectrum disorder with atypical sensory behavior: A magnetoencephalographic study. Brain Dev 2022; 44:81-94. [PMID: 34563417 DOI: 10.1016/j.braindev.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atypical sensory behavior disrupts behavioral adaptation in children with autism spectrum disorder (ASD); however, neural correlates of sensory dysfunction using magnetoencephalography (MEG) remain unclear. METHOD We used MEG to measure the cortical activation elicited by visual (uni)/audiovisual (multisensory) movies in 46 children (7-14 years) were included in final analysis: 13 boys with atypical audiovisual behavior in ASD (AAV+), 10 without this condition, and 23 age-matched typically developing boys. RESULTS The AAV+ group demonstrated an increase in the cortical activation in the bilateral insula in response to unisensory movies and in the left occipital, right superior temporal sulcus (rSTS), and temporal regions to multisensory movies. These increased responses were correlated with severity of the sensory impairment. Increased theta-low gamma oscillations were observed in the rSTS in AAV+. CONCLUSION The findings suggest that AAV is attributed to atypical neural networks centered on the rSTS.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Sho Aoki
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Mariko Nakanishi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aika Tatsumi
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Ikuko Mohri
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
87
|
Zagury-Orly I, Kroeck MR, Soussand L, Li Cohen A. Face-Processing Performance is an Independent Predictor of Social Affect as Measured by the Autism Diagnostic Observation Schedule Across Large-Scale Datasets. J Autism Dev Disord 2022; 52:674-688. [PMID: 33743118 PMCID: PMC9747289 DOI: 10.1007/s10803-021-04971-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
Face-processing deficits, while not required for the diagnosis of autism spectrum disorder (ASD), have been associated with impaired social skills-a core feature of ASD; however, the strength and prevalence of this relationship remains unclear. Across 445 participants from the NIMH Data Archive, we examined the relationship between Benton Face Recognition Test (BFRT) performance and Autism Diagnostic Observation Schedule-Social Affect (ADOS-SA) scores. Lower BFRT scores (worse face-processing performance) were associated with higher ADOS-SA scores (higher ASD severity)-a relationship that held after controlling for other factors associated with face processing, i.e., age, sex, and IQ. These findings underscore the utility of face discrimination, not just recognition of facial emotion, as a key covariate for the severity of symptoms that characterize ASD.
Collapse
Affiliation(s)
- Ivry Zagury-Orly
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Faculty of Medicine, Université de Montréal, Montreal, QC, CA
| | - Mallory R. Kroeck
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Louis Soussand
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Li Cohen
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
88
|
Alternative female and male developmental trajectories in the dynamic balance of human visual perception. Sci Rep 2022; 12:1674. [PMID: 35102227 PMCID: PMC8803928 DOI: 10.1038/s41598-022-05620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
The numerous multistable phenomena in vision, hearing and touch attest that the inner workings of perception are prone to instability. We investigated a visual example-binocular rivalry-with an accurate no-report paradigm, and uncovered developmental and maturational lifespan trajectories that were specific for age and sex. To interpret these trajectories, we hypothesized that conflicting objectives of visual perception-such as stability of appearance, sensitivity to visual detail, and exploration of fundamental alternatives-change in relative importance over the lifespan. Computational modelling of our empirical results allowed us to estimate this putative development of stability, sensitivity, and exploration over the lifespan. Our results confirmed prior findings of developmental psychology and appear to quantify important aspects of neurocognitive phenotype. Additionally, we report atypical function of binocular rivalry in autism spectrum disorder and borderline personality disorder. Our computational approach offers new ways of quantifying neurocognitive phenotypes both in development and in dysfunction.
Collapse
|
89
|
Dekker L, Hooijman L, Louwerse A, Visser K, Bastiaansen D, Ten Hoopen L, De Nijs P, Dieleman G, Ester W, Van Rijen S, Truijens F, Van der Hallen R. Impact of the COVID-19 pandemic on children and adolescents with autism spectrum disorder and their families: a mixed-methods study protocol. BMJ Open 2022; 12:e049336. [PMID: 35078834 PMCID: PMC8795917 DOI: 10.1136/bmjopen-2021-049336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is a challenge for everyone, particularly for children and adolescents with autism spectrum disorder (ASD). ASD is a developmental disorder characterised by limitations in social communication, repetitive behavioural patterns, and limited interests, and activities. It is expected that many families with children with ASD will experience more problems due to the COVID-19 pandemic and the related public health restrictions. At the same time, some may experience improved functioning, due to fewer expectations and social demands. METHODS/DESIGN In a mixed-method study to identify the impact of the COVID-19 pandemic, parents of children with ASD (ages 4-21) who were in care pre-COVID-19 at one of three large mental healthcare institutions in the region of Rotterdam participated (68 for T0, 57 for T1). The aims are (1) to investigate the impact of the COVID-19 pandemic on overall functioning and autistic symptoms of the child/adolescent with ASD, as well as parental and family functioning (QUANT-QUAL), in both the short term and longer term, and (2) to investigate risk and protective factors (in light of resilience) (QUANT-qual) and (3) to investigate care and informational needs (QUAL-quant). Pre-COVID-19 baseline data will be retrieved from clinical records. Participants will fill out two surveys (one during a COVID-19 peak-January-May 2021-and one thereafter). Survey participants were invited to participate in interviews (n=27). Surveys include measures thar were included pre-COVID-19 (ie, overall functioning and autism symptoms) as well as specific measures to identify family functioning and COVID-19 impact. The semistructured interviews focus on child, parent and family functioning and care-and informational needs. ETHICS AND DISSEMINATION The Medical Ethics Committee of the Erasmus MC has approved the study. Findings will be available to families of children with ASD, their care providers, the funders, autism societies, the government and other researchers.
Collapse
Affiliation(s)
- Linda Dekker
- Department of Psychology, Education and Child Studies, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
| | - Linde Hooijman
- Department of Psychology, Education and Child Studies, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
| | - Anneke Louwerse
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Kirsten Visser
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- SARR Expert Centre for Autism, Youz Child- and Adolescent Psychiatry, Parnassia Group, Rotterdam, The Netherlands
| | - Dennis Bastiaansen
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- Yulius Autism, Yulius, Mental Health Organisation, Barendrecht, The Netherlands
| | - Leontine Ten Hoopen
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Pieter De Nijs
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Gwen Dieleman
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Wietske Ester
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
- SARR Expert Centre for Autism, Youz Child- and Adolescent Psychiatry, Parnassia Group, Rotterdam, The Netherlands
- Child- and Adolescent Psychiatry, Curium-LUMC, Oegstgeest, The Netherlands
- Parnassia Bavo Group, Parnassia Bavo Academy, Erasmus MC, The Hague, The Netherlands
| | - Susan Van Rijen
- Department of Psychology, Education and Child Studies, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
| | - Femke Truijens
- Department of Psychology, Education and Child Studies, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
| | - Ruth Van der Hallen
- Department of Psychology, Education and Child Studies, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
- Rotterdam Autism Consortium (R.A.C.), Rotterdam, The Netherlands
| |
Collapse
|
90
|
The use of a tablet-based app for investigating the influence of autistic and ADHD traits on performance in a complex drawing task. Behav Res Methods 2022; 54:2479-2501. [PMID: 35018608 PMCID: PMC9579087 DOI: 10.3758/s13428-021-01746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
This paper describes a smart tablet-based drawing app to digitally record participants’ engagement with the Rey-Osterrieth complex figure (ROCF) task, a well-characterised perceptual memory task that assesses local and global memory. Digitisation of the tasks allows for improved ecological validity, especially in children attracted to tablet devices. Further, digital translation of the tasks affords new measures, including accuracy and computation of the fine motor control kinematics employed to carry out the drawing Here, we report a feasibility study to test the relationship between two neurodevelopmental conditions: autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). The smart tablet app was employed with 39 adult participants (18-35) characterised for autistic and ADHD traits, and scored using the ROCF perceptual and organisational scoring systems. Trait scores and conditions were predictor variables in linear regression models. Positive correlations were found between the attention-to-detail, attention-switching and communication subscales of the autistic trait questionnaire and organisational scores on the ROCF task. These findings suggest that autistic traits might be linked to differential performance on the ROCF task. Novelty and future applications of the app are discussed.
Collapse
|
91
|
Huang Q, Pereira AC, Velthuis H, Wong NML, Ellis CL, Ponteduro FM, Dimitrov M, Kowalewski L, Lythgoe DJ, Rotaru D, Edden RAE, Leonard A, Ivin G, Ahmad J, Pretzsch CM, Daly E, Murphy DGM, McAlonan GM. GABA B receptor modulation of visual sensory processing in adults with and without autism spectrum disorder. Sci Transl Med 2022; 14:eabg7859. [PMID: 34985973 DOI: 10.1126/scitranslmed.abg7859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra 3000-548, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra 3000-548, Portugal
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Diana Rotaru
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Alison Leonard
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London SE5 8AZ, UK
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London SE10 9LS, UK
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
92
|
Ren X, Duan H, Min X, Zhu Y, Shen W, Wang L, Shi F, Fan L, Yang X, Zhai G. Where are the Children with Autism Looking in Reality? ARTIF INTELL 2022. [DOI: 10.1007/978-3-031-20500-2_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
93
|
Hsieh JJ, Nagai Y, Kumagaya SI, Ayaya S, Asada M. Atypical Auditory Perception Caused by Environmental Stimuli in Autism Spectrum Disorder: A Systematic Approach to the Evaluation of Self-Reports. Front Psychiatry 2022; 13:888627. [PMID: 35770058 PMCID: PMC9236639 DOI: 10.3389/fpsyt.2022.888627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023] Open
Abstract
Recent studies have revealed that atypical sensory perception is common in individuals with autism spectrum disorder (ASD) and is considered a potential cause of social difficulties. Self-reports by individuals with ASD have provided great insights into atypical perception from the first-person point of view and indicated its dependence on the environment. This study aimed to investigate the patterns and environmental causes of atypical auditory perception in individuals with ASD. Qualitative data from subject reports are inappropriate for statistical analysis, and reporting subjective sensory experiences is not easy for every individual. To cope with such challenges, we employed audio signal processing methods to simulate the potential patterns of atypical auditory perception. The participants in our experiment were able to select and adjust the strength of the processing methods to manipulate the sounds in the videos to match their experiences. Thus, the strength of atypical perception was recorded quantitatively and then analyzed to assess its correlation with the audio-visual stimuli contained in the videos the participants observed. In total, 22 participants with ASD and 22 typically developed (TD) participants were recruited for the experiment. The results revealed several common patterns of atypical auditory perception: Louder sounds perceived in a quiet environment, noise perception induced by intense and unsteady audio-visual stimuli, and echo perception correlated with movement and variation in sound level. The ASD group reported atypical perceptions more frequently than the control group. However, similar environmental causes were shared by the ASD and TD groups. The results help us infer the potential neural and physiological mechanisms of sensory processing in ASD.
Collapse
Affiliation(s)
- Jyh-Jong Hsieh
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Satsuki Ayaya
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Minoru Asada
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,International Professional University of Technology in Osaka, Osaka, Japan.,Chubu University Academy of Emerging Sciences, Kasugai, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
94
|
Deltort N, Swendsen J, Bouvard M, Cazalets JR, Amestoy A. The enfacement illusion in autism spectrum disorder: How interpersonal multisensory stimulation influences facial recognition of the self. Front Psychiatry 2022; 13:946066. [PMID: 36405905 PMCID: PMC9669257 DOI: 10.3389/fpsyt.2022.946066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
At its most basic level, the sense of self is built upon awareness of one's body and the face holds special significance as the individual's most important and distinctive physical feature. Multimodal sensory integration is pivotal to experiencing one's own body as a coherent visual "self" representation is formed and maintained by matching felt and observed sensorimotor experiences in the mirror. While difficulties in individual facial identity recognition and in both self-referential cognition and empathy are frequently reported in individuals with autism spectrum disorder (ASD), studying the effect of multimodal sensory stimulation in this population is of relevant interest. The present study investigates for the first time the specific effect on Interpersonal Multisensory Stimulation (IMS) on face self-recognition in a sample of 30 adults with (n = 15) and without (n = 15) ASD, matched on age and sex. The results demonstrate atypical self-face recognition and absence of IMS effects (enfacement illusion) in adults with ASD compared to controls, indicating that multisensory integration failed in updating cognitive representations of one's own face among persons with this disorder. The results are discussed in the light of other findings indicating alterations in body enfacement illusion and automatic imitation in ASD as well as in the context of the theories of procedural perception and multisensory integration alterations.
Collapse
Affiliation(s)
- Nicolas Deltort
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Bordeaux, France.,Centre hospitalier Charles-Perrens, Pôle universitaire de psychiatrie de l'enfant et de l'adolescent, Bordeaux, France
| | - Joël Swendsen
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Bordeaux, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Manuel Bouvard
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Bordeaux, France.,Centre hospitalier Charles-Perrens, Pôle universitaire de psychiatrie de l'enfant et de l'adolescent, Bordeaux, France
| | - Jean-René Cazalets
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Bordeaux, France
| | - Anouck Amestoy
- University of Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Bordeaux, France.,Centre hospitalier Charles-Perrens, Pôle universitaire de psychiatrie de l'enfant et de l'adolescent, Bordeaux, France
| |
Collapse
|
95
|
Kaplan-Kahn EA, Park A, Russo N. Pathways of perceptual primacy: ERP evidence for relationships between autism traits and enhanced perceptual functioning. Neuropsychologia 2021; 163:108065. [PMID: 34673045 DOI: 10.1016/j.neuropsychologia.2021.108065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Autistic individuals show enhanced perceptual functioning on many behavioral tasks. Neurophysiological evidence also supports the conclusion that autistic individuals utilize perceptual processes to a greater extent than neurotypical comparisons to support problem solving and reasoning; however, how atypicalities in early perceptual processing influence subsequent cognitive processes remains to be elucidated. The goals of the present study were to test the relationship between early perceptual and subsequent cognitive event related potentials (ERPs) and their relationship to levels of autism traits. 62 neurotypical adults completed the Autism Spectrum Quotient (AQ) and participated in an ERP task. Path models were compared to test predictive relationships among an early perceptual ERP (the P1 component), a subsequent cognitive ERP (the N400 effect), and the Attention to Detail subscale of the AQ. The size of participants' P1 components was positively correlated with the size of their N400 effect and their Attention to Detail score. Model comparisons supported the model specifying that variation in Attention to Detail scores predicted meaningful differences in participants' ERP waveforms. The relationship between Attention to Detail scores and the size of the N400 effect was significantly mediated by the size of the P1 effect. This study revealed that neurotypical adults with higher levels of Attention to Detail show larger P1 differences, which, in turn, correspond to larger N400 effects. Findings support the Enhanced Perceptual Functioning model of autism, suggesting that early perceptual processing differences may cascade forward and result in modifications to later cognitive mechanisms.
Collapse
Affiliation(s)
| | - Aesoon Park
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Natalie Russo
- Department of Psychology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
96
|
Habata K, Cheong Y, Kamiya T, Shiotsu D, Omori IM, Okazawa H, Jung M, Kosaka H. Relationship between sensory characteristics and cortical thickness/volume in autism spectrum disorders. Transl Psychiatry 2021; 11:616. [PMID: 34873147 PMCID: PMC8648722 DOI: 10.1038/s41398-021-01743-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals with autism spectrum disorders (ASDs) exhibit atypical sensory characteristics, impaired social skills, deficits in verbal and nonverbal communication, and restricted and repetitive behaviors. The relationship between sensory characteristics and brain morphological changes in ASD remains unclear. In this study, we investigated the association between brain morphological changes and sensory characteristics in individuals with ASD using brain image analysis and a sensory profile test. Forty-three adults with ASD and 84 adults with typical development underwent brain image analysis using FreeSurfer. The brain cortex was divided into 64 regions, and the cortical thickness and volume of the limbic system were calculated. The sensory characteristics of the participants were evaluated using the Adolescent/Adult Sensory Profile (AASP). Correlation analysis was performed for cortical thickness, limbic area volume, and AASP scores. In the ASD group, there was a significant positive correlation between visual sensory sensitivity scores and the right lingual cortical thickness (r = 0.500). There were also significant negative correlations between visual sensation avoiding scores and the right lateral orbitofrontal cortical thickness (r = -0.513), taste/smell sensation avoiding scores and the right hippocampal volume (r = -0.510), and taste/smell sensation avoiding scores and the left hippocampal volume (r = -0.540). The study identified associations among the lingual cortical thickness, lateral orbitofrontal cortical thickness, and hippocampal volume and sensory characteristics. These findings suggest that brain morphological changes may trigger sensory symptoms in adults with ASD.
Collapse
Affiliation(s)
- Kaie Habata
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Yongjeon Cheong
- grid.452628.f0000 0004 5905 0571Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Taku Kamiya
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Daichi Shiotsu
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Ichiro M. Omori
- grid.163577.10000 0001 0692 8246Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan
| | - Hidehiko Okazawa
- grid.163577.10000 0001 0692 8246Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan ,grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan ,grid.163577.10000 0001 0692 8246Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, University of Fukui, Japan, Eiheiji, Fukui, Japan
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea.
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan. .,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan. .,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, University of Fukui, Japan, Eiheiji, Fukui, Japan.
| |
Collapse
|
97
|
Papaioannou A, Kalantzi E, Papageorgiou CC, Korombili K, Bokou A, Pehlivanidis A, Papageorgiou CC, Papaioannou G. Differences in Performance of ASD and ADHD Subjects Facing Cognitive Loads in an Innovative Reasoning Experiment. Brain Sci 2021; 11:1531. [PMID: 34827530 PMCID: PMC8615740 DOI: 10.3390/brainsci11111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders) and ADHD (attention-deficit/hyperactivity disorder) compared with healthy subjects during the performance of an innovative cognitive task, Aristotle's valid and invalid syllogisms, and how these differences correlate with brain regions and behavioral data for each subject. We recorded EEGs from 14 scalp electrodes (channels) in 21 adults with ADHD, 21 with ASD, and 21 healthy, normal subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), Aristotle's two types of syllogism mentioned above. A set of 39 questions were given to participants related to valid-invalid syllogisms as well as a separate set of questionnaires, in order to collect a number of demographic and behavioral data, with the aim of detecting shared information with values of a feature extracted from EEG, the multiscale entropy (MSE), in the 14 channels ('brain regions'). MSE, a nonlinear information-theoretic measure of complexity, was computed to extract a feature that quantifies the complexity of the EEG. Behavior-Partial Least Squares Correlation, PLSC, is the method to detect the correlation between two sets of data, brain, and behavioral measures. -PLSC, a variant of PLSC, was applied to build a functional connectivity of the brain regions involved in the reasoning tasks. Graph-theoretic measures were used to quantify the complexity of the functional networks. Based on the results of the analysis described in this work, a mixed 14 × 2 × 3 ANOVA showed significant main effects of group factor and brain region* syllogism factor, as well as a significant brain region* group interaction. There are significant differences between the means of MSE (complexity) values at the 14 channels of the members of the 'pathological' groups of participants, i.e., between ASD and ADHD, while the difference in means of MSE between both ASD and ADHD and that of the control group is not significant. In conclusion, the valid-invalid type of syllogism generates significantly different complexity values, MSE, between ASD and ADHD. The complexity of activated brain regions of ASD participants increased significantly when switching from a valid to an invalid syllogism, indicating the need for more resources to 'face' the task escalating difficulty in ASD subjects. This increase is not so evident in both ADHD and control. Statistically significant differences were found also in the behavioral response of ASD and ADHD, compared with those of control subjects, based on the principal brain and behavior saliences extracted by PLSC. Specifically, two behavioral measures, the emotional state and the degree of confidence of participants in answering questions in Aristotle's valid-invalid syllogisms, and one demographic variable, age, statistically and significantly discriminate the three groups' ASD. The seed-PLC generated functional connectivity networks for ASD, ADHD, and control, were 'projected' on the regions of the Default Mode Network (DMN), the 'reference' connectivity, of which the structural changes were found significant in distinguishing the three groups. The contribution of this work lies in the examination of the relationship between brain activity and behavioral responses of healthy and 'pathological' participants in the case of cognitive reasoning of the type of Aristotle's valid and invalid syllogisms, using PLSC, a machine learning approach combined with MSE, a nonlinear method of extracting a feature based on EEGs that captures a broad spectrum of EEGs linear and nonlinear characteristics. The results seem promising in adopting this type of reasoning, in the future, after further enhancements and experimental tests, as a supplementary instrument towards examining the differences in brain activity and behavioral responses of ASD and ADHD patients. The application of the combination of these two methods, after further elaboration and testing as new and complementary to the existing ones, may be considered as a tool of analysis in helping detecting more effectively such types of disorders.
Collapse
Affiliation(s)
- Anastasia Papaioannou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - Eva Kalantzi
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | | | - Kalliopi Korombili
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Anastasia Bokou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Artemios Pehlivanidis
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Charalabos C. Papageorgiou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - George Papaioannou
- Center for Research of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, 26500 Patra, Greece;
| |
Collapse
|
98
|
Spiteri S, Crewther D. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology. Front Neurosci 2021; 15:756841. [PMID: 34790092 PMCID: PMC8591069 DOI: 10.3389/fnins.2021.756841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 21st century has seen dramatic changes in our understanding of the visual physio-perceptual anomalies of autism and also in the structure and development of the primate visual system. This review covers the past 20 years of research into motion perceptual/dorsal stream anomalies in autism, as well as new understanding of the development of primate vision. The convergence of this literature allows a novel developmental hypothesis to explain the physiological and perceptual differences of the broad autistic spectrum. Central to these observations is the development of motion areas MT+, the seat of the dorsal cortical stream, central area of pre-attentional processing as well as being an anchor of binocular vision for 3D action. Such development normally occurs via a transfer of thalamic drive from the inferior pulvinar → MT to the anatomically stronger but later-developing LGN → V1 → MT connection. We propose that autistic variation arises from a slowing in the normal developmental attenuation of the pulvinar → MT pathway. We suggest that this is caused by a hyperactive amygdala → thalamic reticular nucleus circuit increasing activity in the PIm → MT via response gain modulation of the pulvinar and hence altering synaptic competition in area MT. We explore the probable timing of transfer in dominance of human MT from pulvinar to LGN/V1 driving circuitry and discuss the implications of the main hypothesis.
Collapse
Affiliation(s)
- Samuel Spiteri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | | |
Collapse
|
99
|
Special treatment of prediction errors in autism spectrum disorder. Neuropsychologia 2021; 163:108070. [PMID: 34695420 DOI: 10.1016/j.neuropsychologia.2021.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
Abstract
For autistic individuals, sensory stimulation can be experienced as overwhelming. Models of predictive coding postulate that cortical mechanisms disamplify predictable information and amplify prediction errors that surpass a defined precision level. In autism, the neuronal processing is putting an inflexibly high precision on prediction errors according to the HIPPEA theory (High, Inflexible Precision of Prediction Errors in Autism). We used an apparent motion paradigm to test this prediction. In apparent motion paradigms, the illusory motion of an object creates a prediction about where and when an internally generated token would be moving along the apparent motion trace. This illusion facilitates the perception of a flashing stimulus (target) appearing in-time with the apparent motion token and is perceived as a predictable event (predictable target). In contrast, a flashing stimulus appearing out-of-time with the apparent motion illusion is an unpredictable target that is less often detected even though it produces a prediction error signal. If a prediction error does not surpass a given precision threshold the stimulation event is discounted and therefore less often detected than predictable tokens. In autism, the precision threshold is lower and the same prediction errors (unpredictable target) triggers a detection similar to that of a predictable flash stimulus. To test this hypothesis, we recruited 11 autistic males and 9 neurotypical matched controls. The participants were tasked to detect flashing stimuli placed on an apparent motion trace either in-time or out-of-time with the apparent motion illusion. Descriptively, 66% (6/9) of neurotypical and 64% (7/11) of autistic participants were better at detecting predictable targets. The prediction established by illusory motion appears to assist autistic and neurotypical individuals equally in the detection of predictable over unpredictable targets. Importantly, 55% (6/11) of autistic participants had faster responses for unpredictable targets, whereas only 22% (2/9) of neurotypicals had faster responses to unpredictable compared to predictable targets. Hence, these tentative results suggest that for autistic participants, unpredictable targets produce an above threshold prediction error, which leads to faster response. This difference in unpredictable target detection can be encapsulated under the HIPPEA theory, suggesting that precision setting could be aberrant in autistic individuals with respect to prediction errors. These tentative results should be considered in light of the small sample. For this reason, we provide the full set of materials necessary to replicate and extend the results.
Collapse
|
100
|
Baizer JS. Functional and Neuropathological Evidence for a Role of the Brainstem in Autism. Front Integr Neurosci 2021; 15:748977. [PMID: 34744648 PMCID: PMC8565487 DOI: 10.3389/fnint.2021.748977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The brainstem includes many nuclei and fiber tracts that mediate a wide range of functions. Data from two parallel approaches to the study of autistic spectrum disorder (ASD) implicate many brainstem structures. The first approach is to identify the functions affected in ASD and then trace the neural systems mediating those functions. While not included as core symptoms, three areas of function are frequently impaired in ASD: (1) Motor control both of the limbs and body and the control of eye movements; (2) Sensory information processing in vestibular and auditory systems; (3) Control of affect. There are critical brainstem nuclei mediating each of those functions. There are many nuclei critical for eye movement control including the superior colliculus. Vestibular information is first processed in the four nuclei of the vestibular nuclear complex. Auditory information is relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple other brainstem nuclei. Critical structures in affect regulation are the brainstem sources of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second approach is the analysis of abnormalities from direct study of ASD brains. The structure most commonly identified as abnormal in neuropathological studies is the cerebellum. It is classically a major component of the motor system, critical for coordination. It has also been implicated in cognitive and language functions, among the core symptoms of ASD. This structure works very closely with the cerebral cortex; the cortex and the cerebellum show parallel enlargement over evolution. The cerebellum receives input from cortex via relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem nuclei including the vestibular nuclear complex and the red nucleus. There are thus multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and midbrain, that participate in functions affected in ASD. There is direct evidence that the cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of these structures could add to our understanding of the neural basis of ASD.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|