51
|
Rao D, O'Donnell KL, Carmody A, Weissman IL, Hasenkrug KJ, Marzi A. CD47 expression attenuates Ebola virus-induced immunopathology in mice. Antiviral Res 2022; 197:105226. [PMID: 34923028 PMCID: PMC8748401 DOI: 10.1016/j.antiviral.2021.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
It has been shown that a very early cell-intrinsic response to infection is the upregulation of CD47 cell surface expression, a molecule known for delivering a "don't eat me signal" that inhibits macrophage-mediated phagocytosis and antigen presentation. Thus, blockade of CD47 signaling during lymphocytic choriomenigitis virus infections of mice has been shown to enhance the kinetics and potency of immune responses, thereby producing faster recovery. It seems counterintuitive that one of the earliest responses to infection would be immunoinhibitory, but it has been hypothesized that CD47 induction acts as an innate immune system checkpoint to prevent immune overactivation and immunopathogenic responses during certain infections. In the current study we examined the effect of CD47 blockade on lethal Ebola virus infection of mice. At 6 days post-infection, CD47 blockade was associated with significantly increased activation of B cells along with increases in recently cytolytic CD8+ T cells. However, the anti-CD47-treated mice exhibited increased weight loss, higher virus titers, and succumbed more rapidly. The anti-CD47-treated mice also had increased inflammatory cytokines in the plasma indicative of a "cytokine storm". Thus, in the context of this rapid hemorrhagic disease, CD47 blockade indeed exacerbated immunopathology and disease severity.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle L O'Donnell
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
52
|
Pasharawipas T. Perspectives Concerning Various Symptoms of SARS-CoV-2 Detected Individuals. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After exposure to SARS-CoV-2, varying symptoms of COVID-19 ranging from asymptomatic symptoms to morbidity and mortality have been exhibited in each individual. SARS-CoV-2 requires various cellular molecules for penetration into a target host cell. Angiotensin-converting enzyme2 (ACE2) acts as the viral receptor molecule. After attachment, SARS-CoV-2 also requires the transmembrane protease serine-2 (TMPRSS-2) and furin molecules, which serve as co-receptors for penetration into the target cell and for subsequent replication. In the meantime, a major histocompatibility complex (MHC) is required for the induction of adaptive immune cells, especially cytotoxic T cells and helper T cells, to clear the virally infected cells. This perspective review article proposes different aspects to explain the varying symptoms of the individuals who have been exposed to SARS-CoV-2, which relates to the polymorphisms of these involved molecules.
Collapse
|
53
|
Locke M, Lythe G, López-García M, Muñoz-Fontela C, Carroll M, Molina-París C. Quantification of Type I Interferon Inhibition by Viral Proteins: Ebola Virus as a Case Study. Viruses 2021; 13:v13122441. [PMID: 34960709 PMCID: PMC8705787 DOI: 10.3390/v13122441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Type I interferons (IFNs) are cytokines with both antiviral properties and protective roles in innate immune responses to viral infection. They induce an antiviral cellular state and link innate and adaptive immune responses. Yet, viruses have evolved different strategies to inhibit such host responses. One of them is the existence of viral proteins which subvert type I IFN responses to allow quick and successful viral replication, thus, sustaining the infection within a host. We propose mathematical models to characterise the intra-cellular mechanisms involved in viral protein antagonism of type I IFN responses, and compare three different molecular inhibition strategies. We study the Ebola viral protein, VP35, with this mathematical approach. Approximate Bayesian computation sequential Monte Carlo, together with experimental data and the mathematical models proposed, are used to perform model calibration, as well as model selection of the different hypotheses considered. Finally, we assess if model parameters are identifiable and discuss how such identifiability can be improved with new experimental data.
Collapse
Affiliation(s)
- Macauley Locke
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (M.L.); (G.L.); (M.L.-G.)
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (M.L.); (G.L.); (M.L.-G.)
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (M.L.); (G.L.); (M.L.-G.)
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Straße 74, 20359 Hamburg, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg, Bernhard Nocht Straße 74, 20359 Hamburg, Germany
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (M.L.); (G.L.); (M.L.-G.)
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Correspondence:
| |
Collapse
|
54
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
55
|
Dose-Dependent Response to Infection with Ebola Virus in the Ferret Model and Evidence of Viral Evolution in the Eye. J Virol 2021; 95:e0083321. [PMID: 34586862 PMCID: PMC8610581 DOI: 10.1128/jvi.00833-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Filoviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years. We report the characterization of the ferret as a model for Ebola virus infection, reproducing disease and lethality observed in humans. The onset of clinical signs is rapid, and EBOV is detected in the blood, oral, and rectal swabs and all tissues studied. We identify viral RNA in the eye (a site of immune privilege) and report on specific genomic changes in EBOV present in this structure. Thus, the ferret model has utility in testing MCMs that prevent or treat long-term EBOV persistence in immune-privileged sites. IMPORTANCE Recent reemergence of Ebola in Guinea that caused over 28,000 cases between 2013 and 2016 has been linked to the original virus from that region. It appears the virus has remained in the region for at least 5 years and is likely to have been maintained in humans. Persistence of Ebola in areas of the body for extended periods of time has been observed, such as in the eye and semen. Despite the importance of reintroduction of Ebola from this route, such events are rare in the population, which makes studying medical interventions to clear persistent virus difficult. We studied various doses of Ebola in ferrets and detected virus in the eyes of most ferrets. We believe this model will enable the study of medical interventions that promote clearance of Ebola virus from sites that promote persistence.
Collapse
|
56
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
57
|
Pinski AN, Messaoudi I. Therapeutic vaccination strategies against EBOV by rVSV-EBOV-GP: the role of innate immunity. Curr Opin Virol 2021; 51:179-189. [PMID: 34749265 DOI: 10.1016/j.coviro.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family. Infection with EBOV causes Ebola virus disease (EVD) characterized by excessive inflammation, lymphocyte death, coagulopathy, and multi-organ failure. In 2019, the FDA-approved the first anti-EBOV vaccine, rVSV-EBOV-GP (Ervebo® by Merck). This live-recombinant vaccine confers both prophylactic and therapeutic protection to nonhuman primates and humans. While mechanisms conferring prophylactic protection are well-investigated, those underlying protection conferred shortly before and after exposure to EBOV remain poorly understood. In this review, we review data from in vitro and in vivo studies analyzing early immune responses to rVSV-EBOV-GP and discuss the role of innate immune activation in therapeutic protection.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
58
|
Remdesivir is efficacious in rhesus monkeys exposed to aerosolized Ebola virus. Sci Rep 2021; 11:19458. [PMID: 34593911 PMCID: PMC8484580 DOI: 10.1038/s41598-021-98971-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.
Collapse
|
59
|
Furuyama W, Shifflett K, Feldmann H, Marzi A. The Ebola virus soluble glycoprotein contributes to viral pathogenesis by activating the MAP kinase signaling pathway. PLoS Pathog 2021; 17:e1009937. [PMID: 34529738 PMCID: PMC8478236 DOI: 10.1371/journal.ppat.1009937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/28/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target. Since its discovery in 1976, Ebola virus (EBOV) has caused infrequent outbreaks of hemorrhagic disease in Africa. The virus’ replication cycle has been well-characterized in cell culture using natural isolates and reverse genetics systems. For many EBOV proteins the key functions have been defined, however, the role the primary products of the glycoprotein (GP) gene, soluble GP (sGP), is not well understood. Our studies focused on sGP’s impact on different stages in the viral life cycle. While sGP increased the uptake of EBOV particles into late endosomes in a human kidney-derived cell line, it activated the mitogen-activated protein kinase signaling pathway leading to increased viral replication in a human liver-derived cell line. Analysis of sGP treatment in the well-established mouse model for EBOV infection demonstrated that sGP treatment indeed increases virus replication in key target tissues like liver and spleen. This data suggests a contribution of sGP to EBOV pathogenicity and identifies it as a new target for therapeutic approaches.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
60
|
Johnston SC, Wilhelmsen CL, Shamblin J, Kimmel A, Zelko J, Wollen S, Goff AJ. Delayed Disease in Cynomolgus Macaques Exposed to Ebola Virus by an Intranasal Route. Front Immunol 2021; 12:709772. [PMID: 34484210 PMCID: PMC8415412 DOI: 10.3389/fimmu.2021.709772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Ebola virus remains a significant public health concern due to high morbidity and mortality rates during recurrent outbreaks in endemic areas. Therefore, the development of countermeasures against Ebola virus remains a high priority, and requires the availability of appropriate animal models for efficacy evaluations. The most commonly used nonhuman primate models for efficacy evaluations against Ebola virus utilize the intramuscular or aerosol route of exposure. Although clinical disease signs are similar to human cases, disease progression in these models is much more rapid, and this can pose significant hurdles for countermeasure evaluations. The objective of the present study was to evaluate the Ebola virus disease course that arises after cynomolgus macaques are exposed to Ebola virus by a mucosal route (the intranasal route). Two different doses (10 pfu and 100 pfu) and delivery methodologies (drop-wise and mucosal atomization device) were evaluated on this study. Differences in clinical disease between dose and delivery groups were not noted. However, a delayed disease course was identified for approximately half of the animals on study, and this delayed disease was dose and administration method independent. Therefore, it appears that mucosal exposure with Ebola virus results in a disease course in cynomolgus macaques that more accurately replicates that which is documented for human cases. In summary, the data presented support the need for further development of this model as a possible alternative to parenteral and small-particle aerosol models for the study of human Ebola virus disease and for countermeasure evaluations.
Collapse
Affiliation(s)
- Sara C Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Catherine L Wilhelmsen
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Joshua Shamblin
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Adrienne Kimmel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Justine Zelko
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Suzanne Wollen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Arthur J Goff
- Research Program Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| |
Collapse
|
61
|
Maroney KJ, Pinski AN, Marzi A, Messaoudi I. Transcriptional Analysis of Infection With Early or Late Isolates From the 2013-2016 West Africa Ebola Virus Epidemic Does Not Suggest Attenuated Pathogenicity as a Result of Genetic Variation. Front Microbiol 2021; 12:714817. [PMID: 34484156 PMCID: PMC8415004 DOI: 10.3389/fmicb.2021.714817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The 2013-2016 West Africa Ebola virus (EBOV) epidemic caused by the EBOV-Makona isolate is the largest and longest recorded to date. It incurred over 28,000 infections and ∼11,000 deaths. Early in this epidemic, several mutations in viral glycoprotein (A82V), nucleoprotein (R111C), and polymerase L (D759G) emerged and stabilized. In vitro studies of these new EBOV-Makona isolates showed enhanced fitness and viral replication capacity. However, in vivo studies in mice and rhesus macaques did not provide any evidence of enhanced viral fitness or shedding. Infection with late isolates carrying or early isolates lacking (early) these mutations resulted in uniformly lethal disease in nonhuman primates (NHPs), albeit with slightly delayed kinetics with late isolates. The recent report of a possible reemergence of EBOV from a persistent infection in a survivor of the epidemic highlights the urgency for understanding the impact of genetic variation on EBOV pathogenesis. However, potential molecular differences in host responses remain unknown. To address this gap in knowledge, we conducted the first comparative analysis of the host responses to lethal infection with EBOV-Mayinga and EBOV-Makona isolates using bivariate, longitudinal, regression, and discrimination transcriptomic analyses. Our analysis shows a conserved core of differentially expressed genes (DEGs) involved in antiviral defense, immune cell activation, and inflammatory processes in response to EBOV-Makona and EBOV-Mayinga infections. Additionally, EBOV-Makona and EBOV-Mayinga infections could be discriminated based on the expression pattern of a small subset of genes. Transcriptional responses to EBOV-Makona isolates that emerged later during the epidemic, specifically those from Mali and Liberia, lacked signatures of profound lymphopenia and excessive inflammation seen following infection with EBOV-Mayinga and early EBOV-Makona isolate C07. Overall, these findings provide novel insight into the mechanisms underlying the lower case fatality rate (CFR) observed with EBOV-Makona compared to EBOV-Mayinga.
Collapse
Affiliation(s)
- Kevin J Maroney
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Center for Virus Research, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
62
|
Plant-based vaccine research development against viral diseases with emphasis on Ebola virus disease: A review study. Curr Opin Pharmacol 2021; 60:261-267. [PMID: 34481336 DOI: 10.1016/j.coph.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Ebola virus infection results in the fast onset of severe acute haemorrhagic fever with high mortality. The Ebola virus is labelled as a category A pathogen. Vaccines against the Ebola virus (EBOV) are essential for everyone, and an expansion in the arena of vaccine synthesis; especially, plant-based vaccine development has drawn attention. To express the heterologous protein for plant-based vectors, both RNA and DNA viruses have been adapted. Among the different approaches of plant-based vaccine technologies, the agroinfiltration method, which was initially established to investigate plant-virus interactions, has been considered an effective method to produce monoclonal antibodies against EBOV. The effectiveness of plants as bioreactors of vaccine/monoclonal antibodies development could be well-thought-out to attend the obligatory mandate. The review confers recent progress in the production of plant-based vaccines and antibody treatments against the Ebola virus disease, thereby alleviating public health alarms associated with EBOV.
Collapse
|
63
|
Banerjee G, Shokeen K, Chakraborty N, Agarwal S, Mitra A, Kumar S, Banerjee P. Modulation of immune response in Ebola virus disease. Curr Opin Pharmacol 2021; 60:158-167. [PMID: 34425392 DOI: 10.1016/j.coph.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus disease targets and destroys immune cells, including macrophages and dendritic cells, leading to impairment of host response. After infection, a combination of strategies including alteration and evasion of immune response culminating in a strong inflammatory response can lead to multi-organ failure and death in most infected patients. This review discusses immune response dynamics, mainly focusing on how Ebola manipulates innate and adaptive immune responses and strategizes to thwart host immune responses. We also discuss the challenges and prospects of developing therapeutics and vaccines against Ebola.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilanjan Chakraborty
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Saumya Agarwal
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arindam Mitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
64
|
Lehrer AT, Chuang E, Namekar M, Williams CA, Wong TAS, Lieberman MM, Granados A, Misamore J, Yalley-Ogunro J, Andersen H, Geisbert JB, Agans KN, Cross RW, Geisbert TW. Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses. Front Immunol 2021; 12:703986. [PMID: 34484200 PMCID: PMC8416446 DOI: 10.3389/fimmu.2021.703986] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Ebola (EBOV), Marburg (MARV) and Sudan (SUDV) viruses are the three filoviruses which have caused the most fatalities in humans. Transmission from animals into the human population typically causes outbreaks of limited scale in endemic regions. In contrast, the 2013-16 outbreak in several West African countries claimed more than 11,000 lives revealing the true epidemic potential of filoviruses. This is further emphasized by the difficulty seen with controlling the 2018-2020 outbreak of EBOV in the Democratic Republic of Congo (DRC), despite the availability of two emergency use-approved vaccines and several experimental therapeutics targeting EBOV. Moreover, there are currently no vaccine options to protect against the other epidemic filoviruses. Protection of a monovalent EBOV vaccine against other filoviruses has never been demonstrated in primate challenge studies substantiating a significant void in capability should a MARV or SUDV outbreak of similar magnitude occur. Herein we show progress on developing vaccines based on recombinant filovirus glycoproteins (GP) from EBOV, MARV and SUDV produced using the Drosophila S2 platform. The highly purified recombinant subunit vaccines formulated with CoVaccine HT™ adjuvant have not caused any safety concerns (no adverse reactions or clinical chemistry abnormalities) in preclinical testing. Candidate formulations elicit potent immune responses in mice, guinea pigs and non-human primates (NHPs) and consistently produce high antigen-specific IgG titers. Three doses of an EBOV candidate vaccine elicit full protection against lethal EBOV infection in the cynomolgus challenge model while one of four animals infected after only two doses showed delayed onset of Ebola Virus Disease (EVD) and eventually succumbed to infection while the other three animals survived challenge. The monovalent MARV or SUDV vaccine candidates completely protected cynomolgus macaques from infection with lethal doses of MARV or SUDV. It was further demonstrated that combinations of MARV or SUDV with the EBOV vaccine can be formulated yielding bivalent vaccines retaining full efficacy. The recombinant subunit vaccine platform should therefore allow the development of a safe and efficacious multivalent vaccine candidate for protection against Ebola, Marburg and Sudan Virus Disease.
Collapse
Affiliation(s)
- Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Eleanore Chuang
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | | | | | | | - Joan B. Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Krystle N. Agans
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert W. Cross
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas W. Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
65
|
Fontes CM, Lipes BD, Liu J, Agans KN, Yan A, Shi P, Cruz DF, Kelly G, Luginbuhl KM, Joh DY, Foster SL, Heggestad J, Hucknall A, Mikkelsen MH, Pieper CF, Horstmeyer RW, Geisbert TW, Gunn MD, Chilkoti A. Ultrasensitive point-of-care immunoassay for secreted glycoprotein detects Ebola infection earlier than PCR. Sci Transl Med 2021; 13:13/588/eabd9696. [PMID: 33827978 DOI: 10.1126/scitranslmed.abd9696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
Ebola virus (EBOV) hemorrhagic fever outbreaks have been challenging to deter due to the lack of health care infrastructure in disease-endemic countries and a corresponding inability to diagnose and contain the disease at an early stage. EBOV vaccines and therapies have improved disease outcomes, but the advent of an affordable, easily accessed, mass-produced rapid diagnostic test (RDT) that matches the performance of more resource-intensive polymerase chain reaction (PCR) assays would be invaluable in containing future outbreaks. Here, we developed and demonstrated the performance of a new ultrasensitive point-of-care immunoassay, the EBOV D4 assay, which targets the secreted glycoprotein of EBOV. The EBOV D4 assay is 1000-fold more sensitive than the U.S. Food and Drug Administration-approved RDTs and detected EBOV infection earlier than PCR in a standard nonhuman primate model. The EBOV D4 assay is suitable for low-resource settings and may facilitate earlier detection, containment, and treatment during outbreaks of the disease.
Collapse
Affiliation(s)
- Cassio M Fontes
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Barbara D Lipes
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason Liu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Aiwei Yan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Patricia Shi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniela F Cruz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kelli M Luginbuhl
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stephanie L Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Jacob Heggestad
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Angus Hucknall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Carl F Pieper
- Departments of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Roarke W Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
66
|
Pinski AN, Maroney KJ, Marzi A, Messaoudi I. Distinct transcriptional responses to fatal Ebola virus infection in cynomolgus and rhesus macaques suggest species-specific immune responses. Emerg Microbes Infect 2021; 10:1320-1330. [PMID: 34112056 PMCID: PMC8253202 DOI: 10.1080/22221751.2021.1942229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA
| | - Kevin J Maroney
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine CA, USA.,Center for Virus Research, University of California Irvine, Irvine, CA, USA.,Institute for Immunology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
67
|
Niemuth NA, Fallacara D, Triplett CA, Tamrakar SM, Rajbhandari A, Florence C, Ward L, Griffiths A, Carrion R, Goez-Gazi Y, Alfson KJ, Staples HM, Brasel T, Comer JE, Massey S, Smith J, Kocsis A, Lowry J, Johnston SC, Nalca A, Goff AJ, Shurtleff AC, Pitt ML, Trefry J, Fay MP. Natural history of disease in cynomolgus monkeys exposed to Ebola virus Kikwit strain demonstrates the reliability of this non-human primate model for Ebola virus disease. PLoS One 2021; 16:e0252874. [PMID: 34214118 PMCID: PMC8253449 DOI: 10.1371/journal.pone.0252874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain. To the best of our knowledge, however, animal model development data supporting the use of CM in vaccine research have not been submitted to the FDA. This study describes a large CM database (122 CM, 62 female and 60 male, age 2 to 9 years) and demonstrates the consistency of the CM model through time to death models and descriptive statistics. CMs were exposed to EBOV doses of 0.1 to 100,000 PFU in 33 studies conducted at three Animal Biosafety Level 4 facilities, by three exposure routes. Time to death was modeled using Cox proportional hazards models with a frailty term that incorporated study-to-study variability. Despite significant differences attributed to exposure variables, all CMs exposed to the 100 to 1,000 pfu doses commonly used in vaccine studies died or met euthanasia criteria within 21 days of exposure, median 7 days, 93% between 5 and 12 days of exposure. Moderate clinical signs were observed 4 to 5 days after exposure and preceded death or euthanasia by approximately one day. Viremia was detected within a few days of infection. Hematology indices were indicative of viremia and the propensity for hemorrhage with progression of Ebola viremia. Changes associated with coagulation parameters and platelets were consistent with coagulation disruption. Changes in leukocyte profiles were indicative of an acute inflammatory response. Increased liver enzymes were observed shortly after exposure. Taken together, these factors suggest that the cynomolgus monkey is a reliable animal model for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Clint Florence
- Non-Clinical Advisor for Joint Program Manager Chemical, Biological, Radiological and Nuclear Medical (JPM CBRN Medical) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO CBRND), Fort Detrick, MD, United States of America
| | - Lucy Ward
- Advanced Vaccines & Immunologics, JPM CBRN Medical, JPEO CBRND, Fort Detrick, MD, United States of America
| | - Anthony Griffiths
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States of America
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Hilary M. Staples
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Trevor Brasel
- Department of Microbiology and Immunology/Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch (UTMB), Galveston, TX, United States of America
| | - Jason E. Comer
- Department of Microbiology and Immunology/Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch (UTMB), Galveston, TX, United States of America
| | - Shane Massey
- Institutional Office of Regulated Nonclinical Studies, UTMB, Galveston, TX, United States of America
| | - Jeanon Smith
- Institutional Office of Regulated Nonclinical Studies, UTMB, Galveston, TX, United States of America
| | - Andrew Kocsis
- Animal Resources Center, UTMB. Galveston, TX, United States of America
| | - Jake Lowry
- Animal Resources Center, UTMB. Galveston, TX, United States of America
| | - Sara C. Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Aysegul Nalca
- Core Support Directorate, USAMRIID, Fort Detrick, MD, United States of America
| | - Arthur J. Goff
- Commander’s Special Staff, Deputy Director Research Program Office, USAMRIID, Fort Detrick, MD, United States of America
| | - Amy C. Shurtleff
- Molecular Biology Division, USAMRIID, Fort Detrick, MD, United States of America
| | | | - John Trefry
- Vaccines/Therapeutics Division (CBM), Defense Threat Reduction Agency, Fort Belvoir, Virginia, United States of America
| | - Michael P. Fay
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
68
|
Wawina-Bokalanga T, Vanmechelen B, Lhermitte V, Martí-Carreras J, Vergote V, Koundouno FR, Akoi-Boré J, Thom R, Tipton T, Steeds K, Moussa KB, Amento A, Laenen L, Duraffour S, Gabriel M, Ruibal P, Hall Y, Kader-Kondé M, Günther S, Baele G, Muñoz-Fontela C, Van Weyenbergh J, Carroll MW, Maes P. Human Diversity of Killer Cell Immunoglobulin-Like Receptors and Human Leukocyte Antigen Class I Alleles and Ebola Virus Disease Outcomes. Emerg Infect Dis 2021; 27:76-84. [PMID: 33350932 PMCID: PMC7774578 DOI: 10.3201/eid2701.202177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the genetic profiles of killer cell immunoglobulin-like receptors (KIRs) in Ebola virus–infected patients. We studied the relationship between KIR–human leukocyte antigen (HLA) combinations and the clinical outcomes of patients with Ebola virus disease (EVD). We genotyped KIRs and HLA class I alleles using DNA from uninfected controls, EVD survivors, and persons who died of EVD. The activating 2DS4–003 and inhibitory 2DL5 genes were significantly more common among persons who died of EVD; 2DL2 was more common among survivors. We used logistic regression analysis and Bayesian modeling to identify 2DL2, 2DL5, 2DS4–003, HLA-B-Bw4-Thr, and HLA-B-Bw4-Ile as probably having a significant relationship with disease outcome. Our findings highlight the importance of innate immune response against Ebola virus and show the association between KIRs and the clinical outcome of EVD.
Collapse
|
69
|
Thépaut M, Luczkowiak J, Vivès C, Labiod N, Bally I, Lasala F, Grimoire Y, Fenel D, Sattin S, Thielens N, Schoehn G, Bernardi A, Delgado R, Fieschi F. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathog 2021; 17:e1009576. [PMID: 34015061 PMCID: PMC8136665 DOI: 10.1371/journal.ppat.1009576] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.
Collapse
Affiliation(s)
- Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Isabelle Bally
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Yasmina Grimoire
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sara Sattin
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Nicole Thielens
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Anna Bernardi
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
70
|
Hansen F, Feldmann H, Jarvis MA. Targeting Ebola virus replication through pharmaceutical intervention. Expert Opin Investig Drugs 2021; 30:201-226. [PMID: 33593215 DOI: 10.1080/13543784.2021.1881061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction. The consistent emergence/reemergence of filoviruses into a world that previously lacked an approved pharmaceutical intervention parallels an experience repeatedly played-out for most other emerging pathogenic zoonotic viruses. Investment to preemptively develop effective and low-cost prophylactic and therapeutic interventions against viruses that have high potential for emergence and societal impact should be a priority.Areas covered. Candidate drugs can be characterized into those that interfere with cellular processes required for Ebola virus (EBOV) replication (host-directed), and those that directly target virally encoded functions (direct-acting). We discuss strategies to identify pharmaceutical interventions for EBOV infections. PubMed/Web of Science databases were searched to establish a detailed catalog of these interventions.Expert opinion. Many drug candidates show promising in vitro inhibitory activity, but experience with EBOV shows the general lack of translation to in vivo efficacy for host-directed repurposed drugs. Better translation is seen for direct-acting antivirals, in particular monoclonal antibodies. The FDA-approved monoclonal antibody treatment, Inmazeb™ is a success story that could be improved in terms of impact on EBOV-associated disease and mortality, possibly by combination with other direct-acting agents targeting distinct aspects of the viral replication cycle. Costs need to be addressed given EBOV emergence primarily in under-resourced countries.
Collapse
Affiliation(s)
- Frederick Hansen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael A Jarvis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.,School of Biomedical Sciences, University of Plymouth, Plymouth, Devon, UK.,The Vaccine Group, Ltd, Plymouth, Devon, UK
| |
Collapse
|
71
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
72
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
73
|
Reynard S, Gloaguen E, Baillet N, Madelain V, Guedj J, Raoul H, de Lamballerie X, Mullaert J, Baize S. Early control of viral load by favipiravir promotes survival to Ebola virus challenge and prevents cytokine storm in non-human primates. PLoS Negl Trop Dis 2021; 15:e0009300. [PMID: 33780452 PMCID: PMC8031739 DOI: 10.1371/journal.pntd.0009300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 04/08/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Ebola virus has been responsible for two major epidemics over the last several years and there has been a strong effort to find potential treatments that can improve the disease outcome. Antiviral favipiravir was thus tested on non-human primates infected with Ebola virus. Half of the treated animals survived the Ebola virus challenge, whereas the infection was fully lethal for the untreated ones. Moreover, the treated animals that did not survive died later than the controls. We evaluated the hematological, virological, biochemical, and immunological parameters of the animals and performed proteomic analysis at various timepoints of the disease. The viral load strongly correlated with dysregulation of the biological functions involved in pathogenesis, notably the inflammatory response, hemostatic functions, and response to stress. Thus, the management of viral replication in Ebola virus disease is of crucial importance in preventing the immunopathogenic disorders and septic-like shock syndrome generally observed in Ebola virus-infected patients. Ebola virus was responsible for several epidemics in the recent years and is now considered as a major public health concern in Central and West African countries. We and others demonstrated that pathogenic events observed during Ebola virus disease are linked to a deleterious immune response. However, the mechanisms implicated are not fully understood. Here, we studied immune responses depending on the viral loads observed in infected cynomolgus monkeys. An antiviral treatment allowed the reduction of viral load in some animals and we observed that these animals did not experience deleterious immune response and the loss of hemostasis. The release of pathogen-associated molecular patterns may thus be limited by the inhibition of viral replication, avoiding the overstimulation of the immune system and consequently the pathogenic events observed in Ebola virus disease.
Collapse
Affiliation(s)
- Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | | | - Hervé Raoul
- Laboratoire P4 Jean Mérieux–INSERM, INSERM US003, Lyon, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | | | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
74
|
Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms 2021; 9:microorganisms9030665. [PMID: 33806942 PMCID: PMC8005181 DOI: 10.3390/microorganisms9030665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.
Collapse
|
75
|
Liu DX, Perry DL, Cooper TK, Huzella LM, Hart RJ, Hischak AMW, Bernbaum JG, Hensley LE, Bennett RS. Peripheral Neuronopathy Associated With Ebola Virus Infection in Rhesus Macaques: A Possible Cause of Neurological Signs and Symptoms in Human Ebola Patients. J Infect Dis 2021; 222:1745-1755. [PMID: 32498080 DOI: 10.1093/infdis/jiaa304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 01/26/2023] Open
Abstract
Neurological signs and symptoms are the most common complications of Ebola virus disease. However, the mechanisms underlying the neurologic manifestations in Ebola patients are not known. In this study, peripheral ganglia were collected from 12 rhesus macaques that succumbed to Ebola virus (EBOV) disease from 5 to 8 days post exposure. Ganglionitis, characterized by neuronal degeneration, necrosis, and mononuclear leukocyte infiltrates, was observed in the dorsal root, autonomic, and enteric ganglia. By immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy, we confirmed that CD68+ macrophages are the target cells for EBOV in affected ganglia. Further, we demonstrated that EBOV can induce satellite cell and neuronal apoptosis and microglial activation in infected ganglia. Our results demonstrate that EBOV can infect peripheral ganglia and results in ganglionopathy in rhesus macaques, which may contribute to the neurological signs and symptoms observed in acute and convalescent Ebola virus disease in human patients.
Collapse
Affiliation(s)
- David X Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Donna L Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Timothy K Cooper
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Randy J Hart
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Amanda M W Hischak
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
76
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
77
|
Development of a Well-Characterized Rhesus Macaque Model of Ebola Virus Disease for Support of Product Development. Microorganisms 2021; 9:microorganisms9030489. [PMID: 33652589 PMCID: PMC7996724 DOI: 10.3390/microorganisms9030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV) is a negative-sense RNA virus that can infect humans and nonhuman primates with severe health consequences. Development of countermeasures requires a thorough understanding of the interaction between host and pathogen, and the course of disease. The goal of this study was to further characterize EBOV disease in a uniformly lethal rhesus macaque model, in order to support development of a well-characterized model following rigorous quality standards. Rhesus macaques were intramuscularly exposed to EBOV and one group was euthanized at predetermined time points to characterize progression of disease. A second group was not scheduled for euthanasia in order to analyze survival, changes in physiology, clinical pathology, terminal pathology, and telemetry kinetics. On day 3, sporadic viremia was observed and pathological evidence was noted in lymph nodes. By day 5, viremia was detected in all EBOV exposed animals and pathological evidence was noted in the liver, spleen, and gastrointestinal tissues. These data support the notion that EBOV infection in rhesus macaques is a rapid systemic disease similar to infection in humans, under a compressed time scale. Biomarkers that correlated with disease progression at the earliest stages of infection were observed thereby identifying potential "trigger-to-treat" for use in therapeutic studies.
Collapse
|
78
|
Transcriptional Analysis of Lymphoid Tissues from Infected Nonhuman Primates Reveals the Basis for Attenuation and Immunogenicity of an Ebola Virus Encoding a Mutant VP35 Protein. J Virol 2021; 95:JVI.01995-20. [PMID: 33408171 DOI: 10.1128/jvi.01995-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Infection with Zaire ebolavirus (EBOV), a member of the Filoviridae family, causes a disease characterized by high levels of viremia, aberrant inflammation, coagulopathy, and lymphopenia. EBOV initially replicates in lymphoid tissues and disseminates via dendritic cells (DCs) and monocytes to liver, spleen, adrenal gland, and other secondary organs. EBOV protein VP35 is a critical immune evasion factor that inhibits type I interferon signaling and DC maturation. Nonhuman primates (NHPs) immunized with a high dose (5 × 105 PFU) of recombinant EBOV containing a mutated VP35 (VP35m) are protected from challenge with wild-type EBOV (wtEBOV). This protection is accompanied by a transcriptional response in the peripheral blood reflecting a regulated innate immune response and a robust induction of adaptive immune genes. However, the host transcriptional response to VP35m in lymphoid tissues has not been evaluated. Therefore, we conducted a transcriptional analysis of axillary and inguinal lymph nodes and spleen tissues of NHPs infected with a low dose (2 × 104 PFU) of VP35m and then back-challenged with a lethal dose of wtEBOV. VP35m induced early transcriptional responses in lymphoid tissues that are distinct from those observed in wtEBOV challenge. Specifically, we detected robust antiviral innate and adaptive responses and fewer transcriptional changes in genes with roles in angiogenesis, apoptosis, and inflammation. Two of three macaques survived wtEBOV back-challenge, with only the nonsurvivor displaying a transcriptional response reflecting Ebola virus disease. These data suggest that VP35 is a key modulator of early host responses in lymphoid tissues, thereby regulating disease progression and severity following EBOV challenge.IMPORTANCE Zaire Ebola virus (EBOV) infection causes a severe and often fatal disease characterized by inflammation, coagulation defects, and organ failure driven by a defective host immune response. Lymphoid tissues are key sites of EBOV pathogenesis and the generation of an effective immune response to infection. A recent study demonstrated that infection with an EBOV encoding a mutant VP35, a viral protein that antagonizes host immunity, can protect nonhuman primates (NHPs) against lethal EBOV challenge. However, no studies have examined the response to this mutant EBOV in lymphoid tissues. Here, we characterize gene expression in lymphoid tissues from NHPs challenged with the mutant EBOV and subsequently with wild-type EBOV to identify signatures of a protective host response. Our findings are critical for elucidating viral pathogenesis, mechanisms of host antagonism, and the role of lymphoid organs in protective responses to EBOV to improve the development of antivirals and vaccines against EBOV.
Collapse
|
79
|
Longet S, Mellors J, Carroll MW, Tipton T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front Immunol 2021; 11:599568. [PMID: 33679690 PMCID: PMC7935512 DOI: 10.3389/fimmu.2020.599568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
Ebola viruses are enveloped, single-stranded RNA viruses belonging to the Filoviridae family and can cause Ebola virus disease (EVD), a serious haemorrhagic illness with up to 90% mortality. The disease was first detected in Zaire (currently the Democratic Republic of Congo) in 1976. Since its discovery, Ebola virus has caused sporadic outbreaks in Africa and was responsible for the largest 2013-2016 EVD epidemic in West Africa, which resulted in more than 28,600 cases and over 11,300 deaths. This epidemic strengthened international scientific efforts to contain the virus and develop therapeutics and vaccines. Immunology studies in animal models and survivors, as well as clinical trials have been crucial to understand Ebola virus pathogenesis and host immune responses, which has supported vaccine development. This review discusses the major findings that have emerged from animal models, studies in survivors and vaccine clinical trials and explains how these investigations have helped in the search for a correlate of protection.
Collapse
Affiliation(s)
- Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles W. Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
80
|
Rogers KJ, Shtanko O, Stunz LL, Mallinger LN, Arkee T, Schmidt ME, Bohan D, Brunton B, White JM, Varga SM, Butler NS, Bishop GA, Maury W. Frontline Science: CD40 signaling restricts RNA virus replication in Mϕs, leading to rapid innate immune control of acute virus infection. J Leukoc Biol 2021; 109:309-325. [PMID: 32441445 PMCID: PMC7774454 DOI: 10.1002/jlb.4hi0420-285rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023] Open
Abstract
Many acute viral infections target tissue Mϕs, yet the mechanisms of Mϕ-mediated control of viruses are poorly understood. Here, we report that CD40 expressed by peritoneal Mϕs restricts early infection of a broad range of RNA viruses. Loss of CD40 expression enhanced virus replication as early as 12-24 h of infection and, conversely, stimulation of CD40 signaling with an agonistic Ab blocked infection. With peritoneal cell populations infected with the filovirus, wild-type (WT) Ebola virus (EBOV), or a BSL2 model virus, recombinant vesicular stomatitis virus encoding Ebola virus glycoprotein (rVSV/EBOV GP), we examined the mechanism conferring protection. Here, we demonstrate that restricted virus replication in Mϕs required CD154/CD40 interactions that stimulated IL-12 production through TRAF6-dependent signaling. In turn, IL-12 production resulted in IFN-γ production, which induced proinflammatory polarization of Mϕs, protecting the cells from infection. These CD40-dependent events protected mice against virus challenge. CD40-/- mice were exquisitely sensitive to intraperitoneal challenge with a dose of rVSV/EBOV GP that was sublethal to CD40+/+ mice, exhibiting viremia within 12 h of infection and rapidly succumbing to infection. This study identifies a previously unappreciated role for Mϕ-intrinsic CD40 signaling in controlling acute virus infection.
Collapse
Affiliation(s)
- Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Laura L. Stunz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Laura N. Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Tina Arkee
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Megan E. Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Dana Bohan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, United States
| | - Steve M. Varga
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Noah S. Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Gail A. Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
81
|
Stewart CM, Phan A, Bo Y, LeBlond ND, Smith TKT, Laroche G, Giguère PM, Fullerton MD, Pelchat M, Kobasa D, Côté M. Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog 2021; 17:e1009275. [PMID: 33513206 PMCID: PMC7875390 DOI: 10.1371/journal.ppat.1009275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps. Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic pathogens that can cause severe hemorrhagic fevers in humans and non-human primates. They are members of the growing Filoviridae family that also includes three other species of Ebolaviruses known to be highly pathogenic in humans. While vaccines for EBOV are being deployed and showed high efficacy, pan-filoviral treatment is still lacking. To infect cells, EBOV requires the endosomal/lysosomal resident protein Niemann-Pick C1 (NPC1). Accordingly, viral particles require extensive trafficking within endosomal pathways for entry and delivery of the viral genome into the host cell cytoplasm. Here, we used chemical biology to reveal that EBOV triggers receptor tyrosine kinase (RTK)-dependent signaling to traffic to intracellular vesicles that contain the receptor and are conducive to entry. The characterization of host trafficking factors and signaling pathways that are potentially triggered by the virus are important as these could be targeted for antiviral therapies. In our study, we identified several RTK inhibitors, some of which are FDA-approved drugs, that potently block EBOV infection. Since all filoviruses known to date, even Měnglà virus that was recently discovered in bats in China, use NPC1 as their entry receptor, these inhibitors have the potential to be effective pan-filovirus antivirals.
Collapse
Affiliation(s)
- Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Nicholas D. LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler K. T. Smith
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
82
|
Choi MJ, Cossaboom CM, Whitesell AN, Dyal JW, Joyce A, Morgan RL, Campos-Outcalt D, Person M, Ervin E, Yu YC, Rollin PE, Harcourt BH, Atmar RL, Bell BP, Helfand R, Damon IK, Frey SE. Use of Ebola Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2021; 70:1-12. [PMID: 33417593 PMCID: PMC7802368 DOI: 10.15585/mmwr.rr7001a1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future.
Collapse
|
83
|
Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB, Mukherjee N, Sellers BA, Tran N, Bauer MR, Adams GC, Adams R, Rinn JL, Melé M, Schaffner SF, Nolan GP, Barnes KG, Hensley LE, McIlwain DR, Shalek AK, Sabeti PC, Bennett RS. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics. Cell 2020; 183:1383-1401.e19. [PMID: 33159858 PMCID: PMC7707107 DOI: 10.1016/j.cell.2020.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nadine M Khoury
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siddharth S Raju
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc H Wadsworth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan R Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Zach B Bjornson
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew R Bauer
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia 08034, Spain
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - David R McIlwain
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
84
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
85
|
Bruchez A, Sha K, Johnson J, Chen L, Stefani C, McConnell H, Gaucherand L, Prins R, Matreyek KA, Hume AJ, Mühlberger E, Schmidt EV, Olinger GG, Stuart LM, Lacy-Hulbert A. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science 2020; 370:241-247. [PMID: 32855215 PMCID: PMC7665841 DOI: 10.1126/science.abb3753] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Abstract
Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.
Collapse
MESH Headings
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Betacoronavirus/physiology
- COVID-19
- Cell Line, Tumor
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- DNA Transposable Elements
- Ebolavirus/physiology
- Endosomes/virology
- Genetic Testing
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Virus Internalization
Collapse
Affiliation(s)
- Anna Bruchez
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Ky Sha
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Joshua Johnson
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Frederick, MD 21702, USA
| | - Li Chen
- Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | - Rachel Prins
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Adam J Hume
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Gene G Olinger
- National Institute of Allergy and Infectious Diseases (NIAID) Integrated Research Facility, Frederick, MD 21702, USA
- Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- MRIGlobal, Gaithersburg, MD 20878, USA
| | - Lynda M Stuart
- Benaroya Research Institute, Seattle, WA 98101, USA
- Bill and Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute, Seattle, WA 98101, USA.
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
86
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
87
|
Woolsey C, Menicucci AR, Cross RW, Luthra P, Agans KN, Borisevich V, Geisbert JB, Mire CE, Fenton KA, Jankeel A, Anand S, Ebihara H, Geisbert TW, Messaoudi I, Basler CF. A VP35 Mutant Ebola Virus Lacks Virulence but Can Elicit Protective Immunity to Wild-Type Virus Challenge. Cell Rep 2020; 28:3032-3046.e6. [PMID: 31533029 DOI: 10.1016/j.celrep.2019.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Zaire ebolavirus (EBOV) VP35 protein is a suppressor of type I interferon (IFN) production, an inhibitor of dendritic cell maturation, and a putative virulence determinant. Here, a recombinant EBOV encoding a mutant VP35 virus (VP35m) is demonstrated to activate RIG-I-like receptor signaling and innate antiviral pathways. When inoculated into cynomolgus macaques, VP35m exhibits dramatic attenuation as compared to wild-type EBOV (wtEBOV), with 20 or 300 times the standard 100% lethal challenge dose not causing EBOV disease (EVD). Further, VP35m infection, despite limited replication in vivo, activates antigen presentation and innate immunity pathways and elicits increased frequencies of proliferating memory T cells and B cells and production of anti-EBOV antibodies. Upon wtEBOV challenge, VP35m-immunized animals survive, exhibiting host responses consistent with an orderly immune response and the absence of excessive inflammation. These data demonstrate that VP35 is a critical EBOV immune evasion factor and provide insights into immune mechanisms of EBOV control.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrea R Menicucci
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Sneha Anand
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
88
|
Ericson AD, Claude KM, Vicky KM, Lukaba T, Richard KO, Hawkes MT. Detection of Ebola virus from skin ulcers after clearance of viremia. J Clin Virol 2020; 131:104595. [PMID: 32829139 DOI: 10.1016/j.jcv.2020.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Kambale Malengera Vicky
- Department of Medicine, Université Catholique du Graben, Butembo, Democratic Republic of the Congo.
| | - Tumba Lukaba
- Direction de la Maladie, Ministry of Health, Butembo, Democratic Republic of the Congo.
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Public Health, University of Alberta, Edmonton, AB, Canada; Distinguished Researcher, Stollery Science Lab, University of Alberta, Edmonton, AB, Canada; Women and Children's Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
89
|
Abdallah M, Müllertz OO, Styles IK, Mörsdorf A, Quinn JF, Whittaker MR, Trevaskis NL. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020; 327:117-128. [PMID: 32771478 DOI: 10.1016/j.jconrel.2020.07.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
The lymphatic system plays an integral role in the development and progression of a range of disease conditions, which has impelled medical researchers and clinicians to design, develop and utilize advanced lymphatic drug delivery systems. Following interstitial administration, most therapeutics and molecules are cleared from tissues via the draining blood capillaries. Macromolecules and delivery systems >20 kDa in size or 10-100 nm in diameter are, however, transported from the interstitium via draining lymphatic vessels as they are too large to cross the blood capillary endothelium. Lymphatic uptake of small molecules can be promoted by two general approaches: administration in association with synthetic macromolecular constructs, or through hitchhiking on endogenous cells or macromolecular carriers that are transported from tissues via the lymphatics. In this paper we review the latter approach where molecules are targeted to lymph by hitchhiking on endogenous albumin transport pathways after subcutaneous, intramuscular or intradermal injection. We describe the properties of the lymphatic system and albumin that are relevant to lymphatic targeting, the characteristics of drugs and delivery systems designed to hitchhike on albumin trafficking pathways and how to further optimise these properties, and finally the current applications and potential future directions for albumin-hitchhiking approaches to target the lymphatics.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Olivia O Müllertz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
90
|
Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis 2020; 14:e0008637. [PMID: 32790668 PMCID: PMC7447009 DOI: 10.1371/journal.pntd.0008637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/25/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Development of vaccines and therapies against Crimean-Congo hemorrhagic fever virus (CCHFV) have been hindered by the lack of immunocompetent animal models. Recently, a lethal nonhuman primate model based on the CCHFV Hoti strain was reported. CCHFV Hoti caused severe disease in cynomolgus monkeys with 75% lethality when given by the intravenous (i.v.) route. METHODOLOGY/PRINCIPAL FINDINGS In a series of experiments, eleven cynomologus monkeys were exposed i.v. to CCHFV Hoti and four macaques were exposed i.v. to CCHFV Afghanistan. Despite transient viremia and changes in clinical pathology such as leukopenia and thrombocytopenia developing in all 15 animals, all macaques survived to the study endpoint without developing severe disease. CONCLUSIONS/SIGNIFICANCE We were unable to attribute differences in the results of our study versus the previous report to differences in the CCHFV Hoti stock, challenge dose, origin, or age of the macaques. The observed differences are most likely the result of the outbred nature of macaques and low animal numbers often used by necessity and for ethical considerations in BSL-4 studies. Nonetheless, while we were unable to achieve severe disease or lethality, the CCHFV Hoti and Afghanistan macaque models are useful for screening medical countermeasures using biomarkers including viremia and clinical pathology to assess efficacy.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
91
|
Cross RW, Bornholdt ZA, Prasad AN, Geisbert JB, Borisevich V, Agans KN, Deer DJ, Melody K, Fenton KA, Feldmann H, Sprecher A, Zeitlin L, Geisbert TW. Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nat Commun 2020; 11:3736. [PMID: 32719371 PMCID: PMC7385100 DOI: 10.1038/s41467-020-17446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
A replication-competent vesicular stomatitis virus vaccine expressing the Ebola virus (EBOV) glycoprotein (GP) (rVSV-ZEBOV) was successfully used during the 2013-16 EBOV epidemic. Additionally, chimeric and human monoclonal antibodies (mAb) against the EBOV GP have shown promise in animals and humans when administered therapeutically. Uncertainty exists regarding the efficacy of postexposure antibody treatments in the event of a known exposure of a recent rVSV-ZEBOV vaccinee. Here, we model a worst-case scenario using rhesus monkeys vaccinated or unvaccinated with the rVSV-ZEBOV vaccine. We demonstrate that animals challenged with a uniformly lethal dose of EBOV one day following vaccination, and then treated with the anti-EBOV GP mAb MIL77 starting 3 days postexposure show no evidence of clinical illness and survive challenge. In contrast, animals receiving only vaccination or only mAb-based therapy become ill, with decreased survival compared to animals vaccinated and subsequently treated with MIL77. These results suggest that rVSV-ZEBOV augments immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Ebola Vaccines/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/pathology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Kaplan-Meier Estimate
- Macaca mulatta
- Post-Exposure Prophylaxis
- Treatment Outcome
- Vaccination
- Vesicular stomatitis Indiana virus/immunology
- Viral Load/immunology
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Zachary A Bornholdt
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, 92121, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Kevin Melody
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID/NIH, Hamilton, MT, 59840, USA
| | - Armand Sprecher
- Médecins Sans Frontières, Rue Arbre Benit 46, 1050, Brussels, Belgium
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, 92121, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0610, USA.
| |
Collapse
|
92
|
Kikwit Ebola Virus Disease Progression in the Rhesus Monkey Animal Model. Viruses 2020; 12:v12070753. [PMID: 32674252 PMCID: PMC7411891 DOI: 10.3390/v12070753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Ongoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013–2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock. Until reaching predetermined clinical disease endpoint criteria, six animals underwent anesthesia for repeated clinical sampling and were compared to six that did not. Groups of three animals were euthanized and necropsied on days 3, 4, 5, and 6 post-exposure, respectively. In addition, three uninfected animals served as controls. Here, we present detailed characterization of clinical and laboratory disease kinetics and complete blood counts, serum chemistries, Ebola virus titers, and disease kinetics for future medical countermeasure (MCM) study design and control data. We measured no statistical difference in hematology, chemistry values, or time to clinical endpoint in animals that were anesthetized for clinical sampling during the acute disease compared to those that were not.
Collapse
|
93
|
Abstract
Since its discovery in 1976, Ebola virus (EBOV) has caused numerous outbreaks of fatal hemorrhagic disease in Africa. The biggest outbreak on record is the 2013-2016 epidemic in west Africa with almost 30,000 cases and over 11,000 fatalities, devastatingly affecting Guinea, Liberia, and Sierra Leone. The epidemic highlighted the need for licensed drugs or vaccines to quickly combat the disease. While at the beginning of the epidemic no licensed countermeasures were available, several experimental drugs with preclinical efficacy were accelerated into human clinical trials and used to treat patients with Ebola virus disease (EVD) toward the end of the epidemic. In the same manner, vaccines with preclinical efficacy were administered primarily to known contacts of EVD patients on clinical trial protocols using a ring-vaccination strategy. In this review, we describe the pathogenesis of EBOV and summarize the current status of EBOV vaccine development and treatment of EVD.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA;
| |
Collapse
|
94
|
Greenberg A, Huber BR, Liu DX, Logue JP, Hischak AMW, Hart RJ, Abbott M, Isic N, Hisada YM, Mackman N, Bennett RS, Hensley LE, Connor JH, Crossland NA. Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques: A Longitudinal Study of Zaire Ebolavirus Strain Kikwit (EBOV/Kik). THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1449-1460. [PMID: 32275904 PMCID: PMC7322367 DOI: 10.1016/j.ajpath.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.
Collapse
Affiliation(s)
- Alexandra Greenberg
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - David X Liu
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - James P Logue
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Amanda M W Hischak
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Randy J Hart
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Maureen Abbott
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Nejra Isic
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Yohei M Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard S Bennett
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - John H Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
95
|
Ilinykh PA, Huang K, Santos RI, Gilchuk P, Gunn BM, Karim MM, Liang J, Fouch ME, Davidson E, Parekh DV, Kimble JB, Pietzsch CA, Meyer M, Kuzmina NA, Zeitlin L, Saphire EO, Alter G, Crowe JE, Bukreyev A. Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host Microbe 2020; 27:976-991.e11. [PMID: 32320678 PMCID: PMC7292764 DOI: 10.1016/j.chom.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/15/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Marcus M Karim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jenny Liang
- Integral Molecular, Philadelphia, PA 19104, USA
| | | | | | - Diptiben V Parekh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - James B Kimble
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Colette A Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | | | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; Galveston National Laboratory, Galveston, TX, USA.
| |
Collapse
|
96
|
Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, Massey S, Brasel T, Cunha-Neto E, Rosa DS, Chao WCH, Carback R, Hodge T, Wang L, Ciotlos S, Lloyd P, Rubsamen R. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors' CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine 2020; 38:4464-4475. [PMID: 32418793 PMCID: PMC7186210 DOI: 10.1016/j.vaccine.2020.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/21/2022]
Abstract
The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple Class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Disease Models, Animal
- Drug Design
- Ebola Vaccines/chemistry
- Ebola Vaccines/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Mice
- Mice, Inbred C57BL
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/immunology
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C V Herst
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Burkholz
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - A Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, United States
| | - P E Harris
- Endocrinology Division, Department of Medicine, School of Medicine, Columbia University, New York, NY, USA
| | - S Massey
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - T Brasel
- University of Texas, Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - E Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Heart Institute (Incor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - D S Rosa
- Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - W C H Chao
- University of Macau, E12 Avenida da Universidade, Taipa, Macau, China
| | - R Carback
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - T Hodge
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - L Wang
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - S Ciotlos
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - P Lloyd
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States
| | - R Rubsamen
- Flow Pharma, Inc., 3451 Vincent Road, Pleasant Hill, CA 94523, United States; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
97
|
McElroy AK, Akondy RS, Mcllwain DR, Chen H, Bjornson-Hooper Z, Mukherjee N, Mehta AK, Nolan G, Nichol ST, Spiropoulou CF. Immunologic timeline of Ebola virus disease and recovery in humans. JCI Insight 2020; 5:137260. [PMID: 32434986 PMCID: PMC7259516 DOI: 10.1172/jci.insight.137260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
A complete understanding of human immune responses to Ebola virus infection is limited by the availability of specimens and the requirement for biosafety level 4 (BSL-4) containment. In an effort to bridge this gap, we evaluated cryopreserved PBMCs from 4 patients who survived Ebola virus disease (EVD) using an established mass cytometry antibody panel to characterize various cell populations during both the acute and convalescent phases. Acute loss of nonclassical monocytes and myeloid DCs, especially CD1c+ DCs, was noted. Classical monocyte proliferation and CD38 upregulation on plasmacytoid DCs coincided with declining viral load. Unsupervised analysis of cell abundance demonstrated acute declines in monocytic, NK, and T cell populations, but some populations, many of myeloid origin, increased in abundance during the acute phase, suggesting emergency hematopoiesis. Despite cell losses during the acute phase, upregulation of Ki-67 correlated with recovery of cell populations over time. These data provide insights into the human immune response during EVD.
Collapse
Affiliation(s)
- Anita K McElroy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Pediatric Infectious Diseases and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rama S Akondy
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David R Mcllwain
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Han Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Zach Bjornson-Hooper
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Nilanjan Mukherjee
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Aneesh K Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Garry Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
98
|
Li M, Xiong Y, Li M, Zhang W, Liu J, Zhang Y, Xiong S, Zou C, Liang B, Lu M, Yang D, Peng C, Zheng X. Depletion but Activation of CD56 dimCD16 + NK Cells in Acute Infection with Severe Fever with Thrombocytopenia Syndrome Virus. Virol Sin 2020; 35:588-598. [PMID: 32430872 DOI: 10.1007/s12250-020-00224-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality (12%-30%). The mechanism by which the SFTS bunyavirus (SFTSV) causes severe illness remains unclear. To evaluate the phenotypic and functional characteristics of the NK cell subsets in SFTS patients, twenty-nine SFTS patients were sequentially sampled from admission until recovery. Phenotypic and functional characteristics of NK cell subsets in circulating blood were analysed via flow cytometry. Then, correlations between NK cell subset frequencies and the SFTS index (SFTSI) were evaluated in all SFTS patients (15 mild, 14 severe) upon admission. The frequencies of CD56dimCD16+ NK cells were greatly decreased in early SFTSV infection and were negatively correlated with disease severity. Additionally, higher Ki-67 and granzyme B expression and relatively lower NKG2A expression in CD56dimCD16+ NK cells were observed in acute infection. Moreover, the effector function of CD56dim NK cells was increased in the acute phase compared with the recovery phase in nine severe SFTS patients. Additionally, interleukin (IL)-15, interferon (IFN)-α, IL-18 and IFN-γ secretion was markedly increased during early infection. Collectively, despite depletion of CD56dimCD16+ NK cells, activation and functional enhancement of CD56dimCD16+ NK cells were still observed, suggesting their involvement in defence against early SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yan Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Mingyue Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjing Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Jia Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shue Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congcong Zou
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Peng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
99
|
Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. J Virol 2020; 94:JVI.00250-20. [PMID: 32213610 DOI: 10.1128/jvi.00250-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) continues to pose a significant threat to human health, as evidenced by the 2013-2016 epidemic in West Africa and the ongoing outbreak in the Democratic Republic of the Congo. EBOV causes hemorrhagic fever, organ damage, and shock culminating in death, with case fatality rates as high as 90%. This high lethality combined with the paucity of licensed medical countermeasures makes EBOV a critical human pathogen. Although EBOV infection results in significant damage to the liver and the adrenal glands, little is known about the molecular signatures of injury in these organs. Moreover, while changes in peripheral blood cells are becoming increasingly understood, the host responses within organs and lymphoid tissues remain poorly characterized. To address this knowledge gap, we tracked longitudinal transcriptional changes in tissues collected from EBOV-Makona-infected cynomolgus macaques. Following infection, both liver and adrenal glands exhibited significant and early downregulation of genes involved in metabolism, coagulation, hormone synthesis, and angiogenesis; upregulated genes were associated with inflammation. Analysis of lymphoid tissues showed early upregulation of genes that play a role in innate immunity and inflammation and downregulation of genes associated with cell cycle and adaptive immunity. Moreover, transient activation of innate immune responses and downregulation of humoral immune responses in lymphoid tissues were confirmed with flow cytometry. Together, these data suggest that the liver, adrenal gland, and lymphatic organs are important sites of EBOV infection and that dysregulating the function of these vital organs contributes to the development of Ebola virus disease.IMPORTANCE Ebola virus (EBOV) remains a high-priority pathogen since it continues to cause outbreaks with high case fatality rates. Although it is well established that EBOV results in severe organ damage, our understanding of tissue injury in the liver, adrenal glands, and lymphoid tissues remains limited. We begin to address this knowledge gap by conducting longitudinal gene expression studies in these tissues, which were collected from EBOV-infected cynomolgus macaques. We report robust and early gene expression changes within these tissues, indicating they are primary sites of EBOV infection. Furthermore, genes involved in metabolism, coagulation, and adaptive immunity were downregulated, while inflammation-related genes were upregulated. These results indicate significant tissue damage consistent with the development of hemorrhagic fever and lymphopenia. Our study provides novel insight into EBOV-host interactions and elucidates how host responses within the liver, adrenal glands, and lymphoid tissues contribute to EBOV pathogenesis.
Collapse
|
100
|
Rogers KJ, Shtanko O, Vijay R, Mallinger LN, Joyner CJ, Galinski MR, Butler NS, Maury W. Acute Plasmodium Infection Promotes Interferon-Gamma-Dependent Resistance to Ebola Virus Infection. Cell Rep 2020; 30:4041-4051.e4. [PMID: 32209467 PMCID: PMC7172281 DOI: 10.1016/j.celrep.2020.02.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-γ) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-γ receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-γ and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-γ. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.
Collapse
Affiliation(s)
- Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Laura N Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Chester J Joyner
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30322, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|