51
|
Kuroda K, Itten R, Kovalova L, Ort C, Weissbrodt DG, McArdell CS. Hospital-Use Pharmaceuticals in Swiss Waters Modeled at High Spatial Resolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4742-51. [PMID: 27009776 DOI: 10.1021/acs.est.6b00653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A model to predict the mass flows and concentrations of pharmaceuticals predominantly used in hospitals across a large number of sewage treatment plant (STP) effluents and river waters was developed at high spatial resolution. It comprised 427 geo-referenced hospitals and 742 STPs serving 98% of the general population in Switzerland. In the modeled base scenario, domestic, pharmaceutical use was geographically distributed according to the population size served by the respective STPs. Distinct hospital scenarios were set up to evaluate how the predicted results were modified when pharmaceutical use in hospitals was allocated differently; for example, in proportion to number of beds or number of treatments in hospitals. The hospital scenarios predicted the mass flows and concentrations up to 3.9 times greater than in the domestic scenario for iodinated X-ray contrast media (ICM) used in computed tomography (CT), and up to 6.7 times greater for gadolinium, a contrast medium used in magnetic resonance imaging (MRI). Field measurements showed that ICM and gadolinium were predicted best by the scenarios using number of beds or treatments in hospitals with the specific facilities (i.e., CT and/or MRI). Pharmaceuticals used both in hospitals and by the general population (e.g., cyclophosphamide, sulfamethoxazole, carbamazepine, diclofenac) were predicted best by the scenario using the number of beds in all hospitals, but the deviation from the domestic scenario values was only small. Our study demonstrated that the bed number-based hospital scenarios were effective in predicting the geographical distribution of a diverse range of pharmaceuticals in STP effluents and rivers, while the domestic scenario was similarly effective on the scale of large river-catchments.
Collapse
Affiliation(s)
- Keisuke Kuroda
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
- Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- NIES, National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - René Itten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Lubomira Kovalova
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - David G Weissbrodt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
52
|
Watanabe Y, Bach LT, Van Dinh P, Prudente M, Aguja S, Phay N, Nakata H. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:671-681. [PMID: 26304512 DOI: 10.1007/s00244-015-0220-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.
Collapse
Affiliation(s)
- Yuta Watanabe
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leu Tho Bach
- Institute of Environmental Science and Engineering, National University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi, Vietnam
| | - Pham Van Dinh
- Institute of Environmental Science and Engineering, National University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi, Vietnam
| | - Maricar Prudente
- Science Education Department, De La Salle University, 2401 Taft Ave, Malate, Manila, 1004, Metro Manila, The Philippines
| | - Socorro Aguja
- De La Salle-Araneta University, Victoneta Compound, Malabon, Metro Manila, The Philippines
| | - Nyunt Phay
- Pathein University, Ayeyarwady Region, Pathein, Myanmar
| | - Haruhiko Nakata
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
53
|
Azuma T, Arima N, Tsukada A, Hirami S, Matsuoka R, Moriwake R, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Mino Y, Hayashi T, Fujita Y, Masada M. Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:189-197. [PMID: 26802347 DOI: 10.1016/j.scitotenv.2015.12.157] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 05/25/2023]
Abstract
The occurrence of 41 pharmaceuticals and phytochemicals (PPs) including their metabolites was surveyed in hospital effluent in an urban area of Japan. A detailed survey of sewage treatment plant (STP) influent and effluent, and river water was also conducted. Finally, mass balances with mass fluxes of the target PPs through the water flow were evaluated and the degree of contribution of hospital effluent to the environmental discharge was estimated. The results indicate that 38 compounds were detectable in hospital effluent over a wide concentration range from ng/L to μg/L, with a maximum of 92μg/L. The contributions of PPs in the hospital effluent to STP influent varied widely from <0.1% to 14.8%. Although almost all of the remaining components could be removed below 1.0ng/L at STPs by the addition of ozone treatment, a number of PPs still remained above 10ng/L in STP effluent. These findings suggest the importance of applying highly developed treatments to hospital effluents and at STPs in the future to reduce the environmental risks posed by PPs. To our knowledge, this is the first demonstration of the presence of two conjugated metabolites of acetaminophen, acetaminophen glucuronide and acetaminophen sulfate, as well as of loxoprofen and loxoprofen alcohol, in hospital effluent, STP, and river waters.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Natsumi Arima
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ai Tsukada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Satoru Hirami
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Rie Matsuoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ryogo Moriwake
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hirotaka Ishiuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomomi Inoyama
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yusuke Teranishi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Misato Yamaoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshikazu Fujita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mikio Masada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
54
|
Helwig K, Hunter C, McNaughtan M, Roberts J, Pahl O. Ranking prescribed pharmaceuticals in terms of environmental risk: Inclusion of hospital data and the importance of regular review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1043-50. [PMID: 26553383 DOI: 10.1002/etc.3302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/15/2015] [Accepted: 11/07/2015] [Indexed: 05/13/2023]
Abstract
A newly available dataset on pharmaceuticals used in Scottish hospitals enabled an environmental risk assessment that includes hospital consumption of pharmaceuticals, as previous United Kingdom rankings have been based on community prescriptions only. Although health and the environment are devolved issues for the Scottish government, it is merited to consider a Scottish ranking separately; regional differentiation is particularly relevant in the spatial context of the European Commission's Water Framework Directive. Nine pharmaceuticals are identified as having a risk quotient greater than 1. Four of these, the antibacterials piperacillin, tazobactam, flucloxacillin, and ciprofloxacin, had high hospital contributions and had not been highlighted previously in rankings based on community prescriptions. Some drugs with a risk quotient < 0.1 are used almost exclusively in hospitals and could be more concentrated near effluents carrying hospital wastewater, where they may be of local concern. Although treating hospital effluents separately is a policy option, specifically including hospital consumption is important. Continually increasing the availability of ecotoxicological data and trends in consumption further contributes to a substantially different prioritization than in previous rankings. This leads the authors to conclude that regular review of risk is necessary.
Collapse
Affiliation(s)
- Karin Helwig
- Department of Civil Engineering & Environmental Technology, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Colin Hunter
- Department of Civil Engineering & Environmental Technology, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Moyra McNaughtan
- Department of Civil Engineering & Environmental Technology, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Joanne Roberts
- Department of Civil Engineering & Environmental Technology, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ole Pahl
- Department of Civil Engineering & Environmental Technology, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
55
|
Daouk S, Chèvre N, Vernaz N, Widmer C, Daali Y, Fleury-Souverain S. Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:244-253. [PMID: 26789362 DOI: 10.1016/j.scitotenv.2015.12.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
The wastewater contamination of a Swiss university hospital by active pharmaceutical ingredient (API) residues was evaluated with a three months monitoring campaign at the outlet of the main building. Flow-proportional samples were collected with an automatic refrigerated sampler and analyzed for 15 API, including antibiotics, analgesics, antiepileptic and anti-inflammatory drugs, by using a validated LC-MS/MS method. The metals Gd and Pt were also analyzed using ICP-MS. Measured concentrations were compared to the predicted ones calculated after the drug average consumption data obtained from the hospital pharmacy. The hospital contribution to the total urban load was calculated according to the consumption data obtained from city pharmacies. Lastly, the environmental hazard and risk quotients (RQ) related to the hospital fraction and the total urban consumption were calculated. Median concentrations of the 15 selected compounds were ranging from 0.04 to 675 μg/L, with a mean detection frequency of 84%. The ratio between predicted and measured environmental concentrations (PEC/MEC) has shown a good accuracy for 5 out of 15 compounds, revealing over- and under-estimations of the PEC model. Mean daily loads were ranging between 0.01 and 14.2g/d, with the exception of paracetamol (109.7 g/d). The hospital contribution to the total urban loads varied from 2.1 to 100% according to the compound. While taking into account dilution and removal efficiencies in wastewater treatment plant, only the hospital fraction of the antibiotics ciprofloxacin and sulfamethoxazole showed, respectively, a high (RQ>1) and moderate (RQ>0.1) risk for the aquatic ecosystems. Nevertheless, when considering the total urban consumption, 7 compounds showed potential deleterious effects on aquatic organisms (RQ>1): gabapentin, sulfamethoxazole, ciprofloxacin, piperacillin, ibuprofen, diclofenac and mefenamic acid. In order to reduce inputs of API residues originating from hospitals various solutions can be envisioned. With results of the present study, hospital managers can start handling this important issue.
Collapse
Affiliation(s)
- Silwan Daouk
- Geneva University Hospitals (HUG), Pharmacy, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Nathalie Chèvre
- University of Lausanne (UNIL), Institute of Earth Surface Dynamics, Geopolis, CH-1015 Lausanne, Switzerland
| | - Nathalie Vernaz
- Geneva University Hospitals (HUG), Medical Direction and Quality, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Christèle Widmer
- Geneva University, University Center of Legal Medicine (CUMRL), Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Youssef Daali
- Geneva University Hospitals (HUG), Clinical Pharmacology and Toxicology, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland
| | - Sandrine Fleury-Souverain
- Geneva University Hospitals (HUG), Pharmacy, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland
| |
Collapse
|
56
|
Lutterbeck CA, Wilde ML, Baginska E, Leder C, Machado ÊL, Kümmerer K. Degradation of cyclophosphamide and 5-fluorouracil by UV and simulated sunlight treatments: Assessment of the enhancement of the biodegradability and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:467-476. [PMID: 26566018 DOI: 10.1016/j.envpol.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
The presence of pharmaceuticals in the environment has triggered concern among the general population and received considerable attention from the scientific community in recent years. However, only a few publications have focused on anticancer drugs, a class of pharmaceuticals that can exhibit cytotoxic, genotoxic, mutagenic, carcinogenic and teratogenic effects. The present study investigated the photodegradation, biodegradation, bacterial toxicity, mutagenicity and genotoxicity of cyclophosphamide (CP) and 5-fluorouracil (5-FU). The photodegradation experiments were performed at a neutral to slight pH range (7-7.8) using two different lamps (medium-pressure mercury lamp and a xenon lamp). The primary elimination of the parent compounds was monitored by means of liquid chromatography tandem mass spectrometry (LC-IT-MS/MS). NPOC (non-purgeable organic carbon) analyses were carried out in order to assess mineralization rates. The Closed Bottle Test (CBT) was used to assess ready biodegradability. A new method using Vibrio fischeri was adopted to evaluate toxicity. CP was not degraded by any lamp, whereas 5-FU was completely eliminated by irradiation with the mercury lamp but only partially by the Xe lamp. No mineralization was observed for the experiments performed with the Xe lamp, and a NPOC removal of only 18% was registered for 5-FU after 256 min using the UV lamp. Not one of the parent compounds was readily biodegradable in the CBT. Photo transformation products (PTPs) resulting from photolysis were neither better biodegradable nor less toxic than the parent compound 5-FU. In contrast, the results of the tests carried out with the UV lamp indicated that more biodegradable and non-toxic PTPs of 5-FU were generated. Three PTPs were formed during the photodegradation experiments and were identified. The results of the in silico QSAR predictions showed positive mutagenic and genotoxic alerts for 5-FU, whereas only one of the formed PTPs presented positive alerts for the genotoxicity endpoint.
Collapse
Affiliation(s)
- Carlos Alexandre Lutterbeck
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany; Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Marcelo Luís Wilde
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Ewelina Baginska
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Ênio Leandro Machado
- Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
57
|
Mendoza A, Zonja B, Mastroianni N, Negreira N, López de Alda M, Pérez S, Barceló D, Gil A, Valcárcel Y. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain):A case study to analyse their occurrence and human health risk characterization. ENVIRONMENT INTERNATIONAL 2016; 86:107-118. [PMID: 26571428 DOI: 10.1016/j.envint.2015.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
This work analyses the presence of forty-eight emerging pollutants, including twenty-five drugs of abuse and metabolites, seventeen cytostatic drugs and six iodinated contrast media, in tap water from the Madrid Region. Analysis of the target compounds in the tap water was performed by means of (on-line or off-line) solid-phase extraction followed by analysis by liquid chromatography-tandem mass spectrometry. A preliminary human health risk characterization was undertaken for each individual compound and for different groups of compounds with a common mechanism of action found in tap water. The results of the study showed the presence of eight out of the twenty-five drugs of abuse and metabolites analysed, namely, the cocainics cocaine and benzoylecgonine, the amphetamine-type stimulants ephedrine, 3,4-methylenedioxymethamphetamine and methamphetamine, the opioid methadone and its metabolite 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine and, finally caffeine at concentrations ranging from 0.11 to 502 ng L(-1). Four out of the six analysed iodinated contrast media, namely, diatrizoate, iohexol, iomeprol and iopromide, were detected in at least one sample, with concentration values varying between 0.4 and 5 ng L(-1). Cytostatic compounds were not detected in any sample. Caffeine was the substance showing the highest concentrations, up to 502 ng L(-1), mainly in the drinking water sampling point located in Madrid city. Among the other drugs of abuse, the most abundant compounds were cocaine and benzoylecgonine, detected at concentrations ranging from 0.11 to 86 ng L(-1) and from 0.11 to 53 ng L(-1), respectively. Regarding iodinated contrast media, iohexol was the most ubiquitous and abundant compound, with a frequency of detection of 100% and concentrations from 0.5 to 5.0 ng L(-1) in basically the same range in all sampling points. Taking into account the results and types of treatment applied, ozonisation plus granular activated carbon filtration appears to be efficient in the removal of cocaine and benzoylecgonine. For the amphetamine-type stimulants, opioids and caffeine, ozonisation plus granular activated carbon filtration and ultrafiltration plus reverse osmosis showed higher removal efficiency than sand filtration. The human health risk characterization performed indicates that the lifetime consumption of the tap waters analysed has associated a negligible human health concern.
Collapse
Affiliation(s)
- A Mendoza
- Research Group in Environmental Health and Ecotoxicology (ToxAmb), Rey Juan Carlos University, Avda. Tulipán, s/n, 28933 Móstoles, Madrid, Spain; Department of Occupational Health and Safety, University Hospital of Fuenlabrada, Camino del Molino, s/n, 28942 Fuenlabrada, Madrid, Spain.
| | - B Zonja
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Mastroianni
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Pérez
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H(2)O Building, Emili Grahit 101, 17003 Girona, Spain
| | - A Gil
- Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas, s/n, 28922 Alcorcón, Madrid, Spain
| | - Y Valcárcel
- Research Group in Environmental Health and Ecotoxicology (ToxAmb), Rey Juan Carlos University, Avda. Tulipán, s/n, 28933 Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas, s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
58
|
Herrmann M, Olsson O, Fiehn R, Herrel M, Kümmerer K. The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater. ENVIRONMENT INTERNATIONAL 2015; 85:61-76. [PMID: 26340755 DOI: 10.1016/j.envint.2015.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 06/05/2023]
Abstract
Active pharmaceutical ingredients (APIs) have been frequently found in the environment. It is, however, still not quite clear who is mainly responsible for API emissions. Hospitals have been considered to be the main contributing point sources for wastewater (WW) discharge of APIs. However, recent studies have shown that the contribution of hospitals to the input of APIs into the aquatic environment is quite low. Due to demographic change and the increase of psychiatric diseases, health institutions (HIs) such as psychiatric hospitals and nursing homes are likely to be important sources as well, but no data is available in this respect. This study aims to assess the impact of HIs and to provide a methodology to measure their respective contributions. Drawing on pharmaceutical consumption data for the years 2010, 2011, and 2012, this study identified API usage patterns for a psychiatric hospital (146 beds), a nursing home (286 inhabitants), and a general hospital (741 beds), the latter of which comprises three separate locations. All the HIs are located in two sub-regions of a county district with about 400,000 citizens in southwestern Germany. A selection of neurological drugs was quantified in the sewer of these facilities to evaluate the correlation between consumption and emission. The API contribution of HIs was assessed by comparing the specific consumption in the facilities with the consumption in households, expressed as the emission potential (IEP). The study shows that the usage patterns of APIs in the psychiatric hospital and the nursing home were different from the general hospital. Neurological drugs such as anticonvulsants, psycholeptics, and psychoanaleptics were mainly consumed in the psychiatric hospital and the nursing home (74% and 65%, respectively). Predicted and average measured concentrations in the effluent of the investigated HIs differed mostly by less than one order of magnitude. Therefore, the consumption-based approach is a useful method to assess usage patterns of APIs in HIs and to predict their respective contributions to WW. The national contribution of HIs on total WW discharge of APIs compared to households was very low. Only the results for the sedative clomethiazole in general hospitals as well as the antidepressant moclobemide and the antipsychotic quetiapine for the nursing homes were found to deserve some attention. The regional comparison showed that in sub-regions with a comparably higher density of HIs, the allocated facilities could be seen as point sources emitting particular APIs. However, in general, the bulk of the consumed pharmaceuticals to WW discharge has to be attributed to households.
Collapse
Affiliation(s)
- Manuel Herrmann
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, C13, Scharnhorstrasse 1, DE-21335 Lüneburg, Germany; Hospital Pharmacy, Ortenau Klinikum Offenburg-Gengenbach, Ebertplatz 12, DE-77654 Offenburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, C13, Scharnhorstrasse 1, DE-21335 Lüneburg, Germany.
| | - Rainer Fiehn
- Hospital Pharmacy, Ortenau Klinikum Offenburg-Gengenbach, Ebertplatz 12, DE-77654 Offenburg, Germany.
| | - Markus Herrel
- Department of Occupational Safety and Environmental Protection, Ortenau Klinikum Offenburg-Gengenbach, Ebertplatz 12, DE-77654 Offenburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, C13, Scharnhorstrasse 1, DE-21335 Lüneburg, Germany.
| |
Collapse
|
59
|
Lutterbeck CA, Wilde ML, Baginska E, Leder C, Machado ÊL, Kümmerer K. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:232-245. [PMID: 25965036 DOI: 10.1016/j.scitotenv.2015.04.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable.
Collapse
Affiliation(s)
- Carlos Alexandre Lutterbeck
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany; Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Marcelo Luís Wilde
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Ewelina Baginska
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| | - Ênio Leandro Machado
- Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul - UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
60
|
Daouk S, Chèvre N, Vernaz N, Bonnabry P, Dayer P, Daali Y, Fleury-Souverain S. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 160:324-332. [PMID: 26144564 DOI: 10.1016/j.jenvman.2015.06.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/24/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
The important number of active pharmaceutical ingredients (API) available on the market along with their potential adverse effects in the aquatic ecosystems, lead to the development of prioritization methods, which allow choosing priority molecules to monitor based on a set of selected criteria. Due to the large volumes of API used in hospitals, an increasing attention has been recently paid to their effluents as a source of environmental pollution. Based on the consumption data of a Swiss university hospital, about hundred of API has been prioritized following an OPBT approach (Occurrence, Persistence, Bioaccumulation and Toxicity). In addition, an Environmental Risk Assessment (ERA) allowed prioritizing API based on predicted concentrations and environmental toxicity data found in the literature for 71 compounds. Both prioritization approaches were compared. OPBT prioritization results highlight the high concern of some non steroidal anti-inflammatory drugs and antiviral drugs, whereas antibiotics are revealed by ERA as potentially problematic to the aquatic ecosystems. Nevertheless, according to the predicted risk quotient, only the hospital fraction of ciprofloxacin represents a risk to the aquatic organisms. Some compounds were highlighted as high-priority with both methods: ibuprofen, trimethoprim, sulfamethoxazole, ritonavir, gabapentin, amoxicillin, ciprofloxacin, raltegravir, propofol, etc. Analyzing consumption data and building prioritization lists helped choosing about 15 API to be monitored in hospital wastewaters. The API ranking approach adopted in this study can be easily transposed to any other hospitals, which have the will to look at the contamination of their effluents.
Collapse
Affiliation(s)
- Silwan Daouk
- Geneva University Hospitals (HUG), Pharmacy, Geneva, Switzerland.
| | - Nathalie Chèvre
- University of Lausanne (UNIL), Institute of Earth Surface Dynamics, Lausanne, Switzerland
| | - Nathalie Vernaz
- Geneva University Hospitals (HUG), Pharmacy, Geneva, Switzerland
| | - Pascal Bonnabry
- Geneva University Hospitals (HUG), Pharmacy, Geneva, Switzerland; University of Geneva, University of Lausanne, School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Pierre Dayer
- Geneva University Hospitals (HUG), Clinical Pharmacology and Toxicology, Geneva, Switzerland
| | - Youssef Daali
- Geneva University Hospitals (HUG), Clinical Pharmacology and Toxicology, Geneva, Switzerland
| | | |
Collapse
|
61
|
Mendoza A, Aceña J, Pérez S, López de Alda M, Barceló D, Gil A, Valcárcel Y. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard. ENVIRONMENTAL RESEARCH 2015; 140:225-41. [PMID: 25880605 DOI: 10.1016/j.envres.2015.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
This work analyses the presence of twenty-five pharmaceutical compounds belonging to seven different therapeutic groups and one iodinated contrast media (ICM) in a Spanish medium-size hospital located in the Valencia Region. Analysis of the target compounds in the hospital wastewater was performed by means of solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (HPLC-MS/MS). A screening level risk assessment combining the measured environmental concentrations (MECs) with dose-response data based on Predicted No Effect Concentration (PNEC) was also applied to estimate Hazard Quotients (HQs) for the compounds investigated. Additionally, the environmental hazard associated to the various compounds measured was assessed through the calculation of the Persistence, Bioaccumulation and Toxicity (PBT) Index, which categorizes compounds according to their environmentally damaging characteristics. The results of the study showed the presence of twenty-four out of the twenty-six compounds analysed at individual concentrations ranging from 5 ng L(-1) to 2 mg L(-1). The highest concentrations corresponded to the ICM iomeprol, found at levels between 424 and 2093 μg L(-1), the analgesic acetaminophen (15-44 μg L(-1)), the diuretic (DIU) furosemide (6-15 μg L(-1)), and the antibiotics (ABIs) ofloxacin and trimethoprim (2-5 μg L(-1)). The lowest levels corresponded to the anti-inflammatory propyphenazone, found at concentrations between 5 and 44 ng L(-1). Differences in terms of concentrations of the analysed compounds have been observed in all the therapeutic groups when comparing the results obtained in this and other recent studies carried out in hospitals with different characteristics from different geographical areas and in different seasons. The screening level risk assessment performed in raw water from the hospital effluent showed that the analgesics and anti-inflammatories (AAFs) acetaminophen, diclofenac, ibuprofen and naproxen, the antibiotics (ABIs) clarithromycin, ofloxacin and trimethoprim, and the β-blocker (BBL) propranolol were present at concentrations leading to HQ values higher than 10, thus indicating high risk. When applying a factor to take into account potential dilution and degradation processes, only the compound ibuprofen showed a HQ higher than 1. Likewise, the cumulative HQ or Toxic Units (TUs) calculated in the raw water for each of the therapeutic groups studied showed that these three classes of drugs were at concentrations high enough to potentially generate high risk to aquatic organisms while taking into account possible dilution and degradation processes only one of them, the AAFs can be considered to represent high risk. Finally, the environmental hazard assessment performed showed that the AAFs diclofenac and ibuprofen and the ABI clarithromycin have the highest, maximum value of 9 of PBT Index due to their inherent environmentally damaging characteristics of persistence, bioaccumulation and toxicity. The methodology followed in the present case study can be taken as a novel approach to classify and categorize pharmaceuticals on the basis of their occurrence in hospital effluents, their derived environmental risks, and their associated environmental hazard. This classification becomes important because it can be used as a model or orientation for hospitals in the process of developing environmentally sustainable policies and as an argument to justify the adoption of advanced, specific treatments for hospital effluents before being discharged into the public sewage system.
Collapse
Affiliation(s)
- A Mendoza
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Occupational Health and Safety. University Hospital of Fuenlabrada. Camino del Molino, s/n. 28942 Fuenlabrada (Madrid), Spain.
| | - J Aceña
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - S Pérez
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - M López de Alda
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group. Department of Environmental Chemistry. Institute of Environmental Assessment and Water Research (IDAEA-CSIC). Jordi Girona 18-26. 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - A Gil
- Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain
| | - Y Valcárcel
- Research Group in Environmental Health and Ecotoxicology (ToxAmb). Rey Juan Carlos University. Avda. Tulipán, s/n. 28933 Móstoles (Madrid), Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology. Faculty of Health Sciences, Rey Juan Carlos University. Avda. Atenas, s/n. 28922 Alcorcón (Madrid), Spain.
| |
Collapse
|
62
|
Jekel M, Dott W, Bergmann A, Dünnbier U, Gnirß R, Haist-Gulde B, Hamscher G, Letzel M, Licha T, Lyko S, Miehe U, Sacher F, Scheurer M, Schmidt CK, Reemtsma T, Ruhl AS. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle. CHEMOSPHERE 2015; 125:155-67. [PMID: 25563167 DOI: 10.1016/j.chemosphere.2014.12.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 05/11/2023]
Abstract
An increasing number of organic micropollutants (OMP) is detected in anthropogenically influenced water cycles. Source control and effective natural and technical barriers are essential to maintain a high quality of drinking water resources under these circumstances. Based on the literature and our own research this study proposes a limited number of OMP that can serve as indicator substances for the major sources of OMP, such as wastewater treatment plants, agriculture and surface runoff. Furthermore functional indicators are proposed that allow assessment of the proper function of natural and technical barriers in the aquatic environment, namely conventional municipal wastewater treatment, advanced treatment (ozonation, activated carbon), bank filtration and soil aquifer treatment as well as self-purification in surface water. These indicator substances include the artificial sweetener acesulfame, the anti-inflammatory drug ibuprofen, the anticonvulsant carbamazepine, the corrosion inhibitor benzotriazole and the herbicide mecoprop among others. The chemical indicator substances are intended to support comparisons between watersheds and technical and natural processes independent of specific water cycles and to reduce efforts and costs of chemical analyses without losing essential information.
Collapse
Affiliation(s)
- Martin Jekel
- Centre for Water in Urban Areas, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Wolfgang Dott
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Axel Bergmann
- IWW Water Centre, Water Resources Management, 45476 Mühlheim/Ruhr, Germany
| | - Uwe Dünnbier
- Berliner Wasserbetriebe, Neue Jüdenstraße 1, 10179 Berlin, Germany
| | - Regina Gnirß
- Berliner Wasserbetriebe, Neue Jüdenstraße 1, 10179 Berlin, Germany
| | - Brigitte Haist-Gulde
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Gerd Hamscher
- Institute for Food Chemistry and Food Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Marion Letzel
- Bavarian Environmental Agency, Demollstraße 31, 82407 Wielenbach, Germany
| | - Tobias Licha
- Geoscience Centre, Department of Applied Geology, University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Sven Lyko
- Emschergenossenschaft, Kronprinzenstraße 24, 45128 Essen, Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water, Cicerostraße 24, 10709 Berlin, Germany
| | - Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Marco Scheurer
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | | | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research (UFZ), Department of Analytical Chemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Aki Sebastian Ruhl
- Centre for Water in Urban Areas, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
63
|
Khan U, Nicell J. Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water. AAPS JOURNAL 2015; 17:558-85. [PMID: 25739816 DOI: 10.1208/s12248-015-9729-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
In Canada, as many as 20 pharmaceutically active compounds (PhACs) have been detected in samples of treated drinking water. The presence of these PhACs in drinking water raises important questions as to the human health risk posed by their potential appearance in drinking water supplies and the extent to which they indicate that other PhACs are present but have not been detected using current analytical methods. Therefore, the goal of the current investigation was to conduct a screening-level assessment of the human health risks posed by the aquatic release of an evaluation set of 335 selected PhACs. Predicted and measured concentrations were used to estimate the exposure of Canadians to each PhAC in the evaluation set. Risk evaluations based on measurements could only be performed for 17 PhACs and, of these, all were found to pose a negligible risk to human health when considered individually. The same approach to risk evaluation, but based on predicted rather than measured environmental concentrations, suggested that 322 PhACs of the evaluation set, when considered individually, are expected to pose a negligible risk to human health due to their potential presence in drinking waters. However, the following 14 PhACs should be prioritized for further study: triiodothyronine, thyroxine, ramipril and its metabolite ramiprilat, candesartan, lisinopril, atorvastatin, lorazepam, fentanyl, atenolol, metformin, enalaprilat, morphine, and irbesartan. Finally, the currently available monitoring data for PhACs in Canadian surface and drinking waters was found to be lacking, irrespective of whether their suitability was assessed based on risk posed, predicted exposure concentrations, or potency.
Collapse
Affiliation(s)
- Usman Khan
- Department of Civil Engineering & Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
64
|
Zemann M, Wolf L, Grimmeisen F, Tiehm A, Klinger J, Hötzl H, Goldscheider N. Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 198:133-43. [PMID: 25594842 DOI: 10.1016/j.envpol.2014.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 05/19/2023]
Abstract
Sewage input into a karst aquifer via leaking sewers and cesspits was investigated over five years in an urbanized catchment. Of 66 samples, analyzed for 25 pharmaceuticals, 91% indicated detectable concentrations. The former standard iodinated X-ray contrast medium (ICM) diatrizoic acid was detected most frequently. Remarkably, it was found more frequently in groundwater (79%, median: 54 ng/l) than in wastewater (21%, 120 ng/l), which is supposed to be the only source in this area. In contrast, iopamidol, a possible substitute, spread over the aquifer during the investigation period whereas concentrations were two orders of magnitude higher in wastewater than in groundwater. Knowledge about changing application of pharmaceuticals thus is essential to assess urban impacts on aquifers, especially when applying mass balances. Since correlated concentrations provide conclusive evidence that, for this catchment, nitrate in groundwater rather comes from urban than from rural sources, ICM are considered useful tracers.
Collapse
Affiliation(s)
- Moritz Zemann
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany.
| | - Leif Wolf
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany
| | - Felix Grimmeisen
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany
| | - Andreas Tiehm
- Water Technology Center (TZW), 76139, Karlsruhe, Germany
| | - Jochen Klinger
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany
| | - Heinz Hötzl
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany
| | - Nico Goldscheider
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Kaiserstraße 12, 76133, Karlsruhe, Germany
| |
Collapse
|
65
|
Del Moro G, Pastore C, Di Iaconi C, Mascolo G. Iodinated contrast media electro-degradation: process performance and degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:631-643. [PMID: 25433384 DOI: 10.1016/j.scitotenv.2014.10.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/25/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams.
Collapse
Affiliation(s)
- Guido Del Moro
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque, Viale F. De Blasio 5, Bari 70132, Italy
| | - Carlo Pastore
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque, Viale F. De Blasio 5, Bari 70132, Italy
| | - Claudio Di Iaconi
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque, Viale F. De Blasio 5, Bari 70132, Italy
| | - Giuseppe Mascolo
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque, Viale F. De Blasio 5, Bari 70132, Italy.
| |
Collapse
|
66
|
Evgenidou EN, Konstantinou IK, Lambropoulou DA. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:905-26. [PMID: 25461093 DOI: 10.1016/j.scitotenv.2014.10.021] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) along with illicit drugs (IDs) are newly recognized classes of environmental pollutants and are receiving considerable attention because of their environmental impacts: frequent occurrence, persistence and risk to aquatic life and humans. However, relatively little information is often available with regard to their possible biotic and abiotic transformation products (TPs). This lack of knowledge has resulted in a substantial amount of ongoing effort to develop methods and approaches that would assess their occurrence, degradability potential elimination mechanisms and efficiencies in sewage treatment plants as well as environmental and human health risks. In this article, an extensive literature survey was performed in order to present the current stage of knowledge and progress made in the occurrence of TPs of PPCPs and IDs in raw and treated wastewaters. Apart from the TPs resulting from structural transformations of the parent compound in the aquatic environment or in technological treatment facilities (e.g. sewage and drinking water treatment plants), free metabolites and drug conjugates formed during human metabolism have also been included in this review as they are also released into the aquatic environment through wastewaters. Their concentration levels were reported in influents and effluents of WWTPs, hospital effluents and their removals in the treatment plants were discussed. Finally, information on the toxicity of TPs has been compiled when available.
Collapse
Affiliation(s)
- Eleni N Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis K Konstantinou
- Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, GR 30100 Agrinio, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
67
|
Jelic A, Rodriguez-Mozaz S, Barceló D, Gutierrez O. Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions. WATER RESEARCH 2015; 68:98-108. [PMID: 25462720 DOI: 10.1016/j.watres.2014.09.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/31/2014] [Accepted: 09/20/2014] [Indexed: 05/06/2023]
Abstract
The occurrence of 43 pharmaceuticals and 2 metabolites of ibuprofen was evaluated at the inlet and the outlet of a pressure sewer pipe in order to asses if in-sewer processes affect the pharmaceutical concentrations during their pass through the pipe. The target compounds were detected at concentrations ranging from low ng/L to a few μg/L, which are in the range commonly found in municipal wastewater of the studied area. The changes in concentrations between two sampling points were negligible for most compounds, i.e. from -10 to 10%. A higher decrease in concentrations (25-60 %) during the pass through the pipe was observed for diltiazem, citalopram, clarithromycin, bezafibrate and amlodipine. Negative removal was calculated for sulfamethoxazole (-66 ± 15%) and irbesartan (-58 ± 25%), which may be due to the conversion of conjugates back to their parent compounds in the sewer. The results show that microbial transformation of pharmaceuticals begins in sewer, albeit to different extents for different compounds. Therefore, the in-sewer transformation of pharmaceuticals should be assessed especially when their concentrations are used to estimate and refine the estimation of their per capita consumption in a catchment of interest in the sewage epidemiology approach.
Collapse
Affiliation(s)
- Aleksandra Jelic
- Catalan Institute for Water Research (ICRA), Scientific and Technologic Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | | | | | | |
Collapse
|
68
|
Frédéric O, Yves P. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. CHEMOSPHERE 2014; 115:31-9. [PMID: 24502927 DOI: 10.1016/j.chemosphere.2014.01.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Nowadays, pharmaceuticals are found in every compartment of the environment. Hospitals are one of the main sources of these pollutant emissions sent to wastewater treatment plants (WWTP) that are poorly equipped to treat these types of compounds efficiently. In this work, for each pharmaceutical compound found in hospital wastewater (HWW), we have calculated a hazard quotient (HQ) corresponding to the highest concentration measured in HWW divided by its predicted no effect concentration (PNEC). Thus we have assessed the contribution of each compound to the ecotoxicological threat of HWW taken as a whole. Fifteen compounds are identified as particularly hazardous in HWW. In future more attention should be given to their analysis and replacement in hospitals, and to their elimination in WWTPs. This work also highlights the lack of knowledge of the ecotoxicity of certain pharmaceutical compounds found in HWW at high concentrations (mgL(-1)). In order to extend this study, it is now necessary to investigate ecotoxic risks linked to various emission scenarios, focusing in particular on dilution in the aquatic environment and the production of metabolites, especially during transit inside WWTPs.
Collapse
Affiliation(s)
- Orias Frédéric
- University of Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | - Perrodin Yves
- University of Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| |
Collapse
|
69
|
Lee Y, Kovalova L, McArdell CS, von Gunten U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. WATER RESEARCH 2014; 64:134-148. [PMID: 25046377 DOI: 10.1016/j.watres.2014.06.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Determining optimal ozone doses for organic micropollutant elimination during wastewater ozonation is challenged by the presence of a large number of structurally diverse micropollutants for varying wastewater matrice compositions. A chemical kinetics approach based on ozone and hydroxyl radical (·OH) rate constant and measurements of ozone and ·OH exposures is proposed to predict the micropollutant elimination efficiency. To further test and validate the chemical kinetics approach, the elimination efficiency of 25 micropollutants present in a hospital wastewater effluent from a pilot-scale membrane bioreactor (MBR) were determined at pH 7.0 and 8.5 in bench-scale experiments with ozone alone and ozone combined with H2O2 as a function of DOC-normalized specific ozone doses (gO3/gDOC). Furthermore, ozone and ·OH exposures, ·OH yields, and ·OH consumption rates were determined. Consistent eliminations as a function of gO3/gDOC were observed for micropollutants with similar ozone and ·OH rate constants. They could be classified into five groups having characteristic elimination patterns. By increasing the pH from 7.0 to 8.5, the elimination levels increased for the amine-containing micropollutants due to the increased apparent second-order ozone rate constants while decreased for most micropollutants due to the diminished ozone or ·OH exposures. Increased ·OH quenching by effluent organic matter and carbonate with increasing pH was responsible for the lower ·OH exposures. Upon H2O2 addition, the elimination levels of the micropollutants slightly increased at pH 7 (<8%) while decreased considerably at pH 8.5 (up to 31%). The elimination efficiencies of the selected micropollutants could be predicted based on their ozone and ·OH rate constants (predicted or taken from literature) and the determined ozone and ·OH exposures. Reasonable agreements between the measured and predicted elimination levels were found, demonstrating that the proposed chemical kinetics method can be used for a generalized prediction of micropollutant elimination during wastewater ozonation. Out of 67 analyzed micropollutants, 56 were present in the tested hospital wastewater effluent. Two-thirds of the present micropollutants were found to be ozone-reactive and efficiently eliminated at low ozone doses (e.g., >80% for gO3/gDOC = 0.5).
Collapse
Affiliation(s)
- Yunho Lee
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland; Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Lubomira Kovalova
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
70
|
Pal A, He Y, Jekel M, Reinhard M, Gin KYH. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. ENVIRONMENT INTERNATIONAL 2014; 71:46-62. [PMID: 24972248 DOI: 10.1016/j.envint.2014.05.025] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 05/23/2023]
Abstract
The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs.
Collapse
Affiliation(s)
- Amrita Pal
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin Jekel
- Technical University of Berlin, Department of Water Quality Control, Strasse des 17. Juni, 10623 Berlin, Germany
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| |
Collapse
|
71
|
Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 2014; 406:3801-14. [DOI: 10.1007/s00216-014-7805-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
72
|
Lin AYC, Lin YC, Lee WN. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 187:170-181. [PMID: 24508644 DOI: 10.1016/j.envpol.2014.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L(-1) level in the hospital effluents and the ng L(-1) level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment.
Collapse
Affiliation(s)
- Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan.
| | - Yen-Ching Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Wan-Ning Lee
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| |
Collapse
|
73
|
Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8493-8524. [PMID: 24965093 DOI: 10.1007/s11356-014-2770-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.
Collapse
Affiliation(s)
- Oleksandra Ganzenko
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, UPEMLV 77454, Marne-la-Vallée, EA 4508, France
| | | | | | | | | |
Collapse
|
74
|
Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:302-16. [PMID: 23732224 DOI: 10.1016/j.scitotenv.2013.04.077] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/01/2013] [Accepted: 04/24/2013] [Indexed: 05/22/2023]
Abstract
The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae.
Collapse
Affiliation(s)
- Lúcia H M L M Santos
- REQUIMTE, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
75
|
Kovalova L, Siegrist H, von Gunten U, Eugster J, Hagenbuch M, Wittmer A, Moser R, McArdell CS. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7899-908. [PMID: 23758546 DOI: 10.1021/es400708w] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A pilot-scale hospital wastewater treatment plant consisting of a primary clarifier, membrane bioreactor, and five post-treatment technologies including ozone (O3), O3/H2O2, powdered activated carbon (PAC), and low pressure UV light with and without TiO2 was operated to test the elimination efficiencies for 56 micropollutants. The extent of the elimination of the selected micropollutants (pharmaceuticals, metabolites and industrial chemicals) was successfully correlated to physical-chemical properties or molecular structure. By mass loading, 95% of all measured micropollutants in the biologically treated hospital wastewater feeding the post-treatments consisted of iodinated contrast media (ICM). The elimination of ICM by the tested post-treatment technologies was 50-65% when using 1.08 g O3/gDOC, 23 mg/L PAC, or a UV dose of 2400 J/m(2) (254 nm). For the total load of analyzed pharmaceuticals and metabolites excluding ICM the elimination by ozonation, PAC, and UV at the same conditions was 90%, 86%, and 33%, respectively. Thus, the majority of analyzed substances can be efficiently eliminated by ozonation (which also provides disinfection) or PAC (which provides micropollutants removal, not only transformation). Some micropollutants recalcitrant to those two post-treatments, such as the ICM diatrizoate, can be substantially removed only by high doses of UV (96% at 7200 J/m(2)). The tested combined treatments (O3/H2O2 and UV/TiO2) did not improve the elimination compared to the single treatments (O3 and UV).
Collapse
Affiliation(s)
- Lubomira Kovalova
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Kovalova L, Knappe DRU, Lehnberg K, Kazner C, Hollender J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3607-3615. [PMID: 23299971 DOI: 10.1007/s11356-012-1432-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Due to concerns about ecotoxicological effects of pharmaceuticals and other micropollutants released from wastewater treatment plants, activated carbon adsorption is one of the few processes to effectively reduce the concentrations of micropollutants in wastewater. Although aimed mainly at apolar compounds, polar compounds are also simultaneously removed to a certain extent, which has rarely been studied before. In this study, adsorption isotherm and batch kinetic data were collected with two powdered activated carbons (PACs) to assess the removal of the polar pharmaceuticals 5-fluorouracil (5-Fu) and cytarabine (CytR) from ultrapure water and wastewater treatment plant effluent. At pH 7.8, single-solute adsorption isotherm data for the weak acid 5-Fu and the weak base CytR showed that their adsorption capacities were about 1 order of magnitude lower than those of the less polar endocrine disrupting chemicals bisphenol A (BPA) and 17-α-ethinylestradiol (EE2). To remove 90 % of the adsorbate from a single-solute solution 14, 18, 70, and 87 mg L(-1) of HOK Super is required for EE2, BPA, CytR, and 5-Fu, respectively. Effects of solution pH, ionic strength, temperature, and effluent organic matter (EfOM) on 5-Fu and CytR adsorption were evaluated for one PAC. Among the studied factors, the presence of EfOM had the highest effect, due to a strong competition on 5-Fu and CytR adsorption. Adsorption isotherm and kinetic data and their modeling with a homogeneous surface diffusion model showed that removal percentage in the presence of EfOM was independent on the initial concentration of the ionizable compounds 5-Fu and CytR. These results are similar to neutral organic compounds in the presence of natural organic matter. Overall, results showed that PAC doses sufficient to remove >90 % of apolar adsorbates were able to remove no more than 50 % of the polar adsorbates 5-Fu and CytR and that the contact time is a critical parameter.
Collapse
Affiliation(s)
- Lubomira Kovalova
- Institute of Hygiene and Environmental Medicine, RWTH Aachen University, Pauwelstr. 50, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
77
|
Orias F, Perrodin Y. Characterisation of the ecotoxicity of hospital effluents: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:250-76. [PMID: 23545489 DOI: 10.1016/j.scitotenv.2013.02.064] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 05/12/2023]
Abstract
The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.).
Collapse
Affiliation(s)
- Frédéric Orias
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | | |
Collapse
|
78
|
Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 2013; 405:5937-52. [DOI: 10.1007/s00216-013-6794-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 12/18/2022]
|
79
|
Zhang J, Chang VWC, Giannis A, Wang JY. Removal of cytostatic drugs from aquatic environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:281-98. [PMID: 23337605 DOI: 10.1016/j.scitotenv.2012.12.061] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 05/21/2023]
Abstract
Cytostatic drugs have been widely used for chemotherapy for decades. However, many of them have been categorized as carcinogenic, mutagenic and teratogenic compounds, triggering widespread concerns about their occupational exposure and ecotoxicological risks to the environment. This review focuses on trace presence, fate and ecotoxicity of various cytostatic compounds in the environment, with an emphasis on the major sources contributing to their environmental concentrations. Past records have documented findings mainly on hospital effluents though little effort has been directed to household discharges. There is also a lack in physico-chemical data for forecasting the chemodynamics of cytostatics in natural waters along with its human metabolites and environmental transformation products. In this light, obtaining comprehensive ecotoxicity data is becoming pressingly crucial to determine their actual impacts on the ecosystem. Literature review also reveals urinary excretion as a major contributor to various cytostatic residues appeared in the water cycle. As such, engaging urine source-separation as a part of control strategy holds a rosy prospect of addressing the "emerging" contamination issue. State-of-the-art treatment technologies should be incorporated to further remove cytostatic residues from the source-separating urine stream. The benefits, limitations and trends of development in this domain are covered for membrane bio-reactor, reverse/forward osmosis and advanced oxidation processes. Despite the respective seeming advantages of source separation and treatment technology, a combined strategy may cost-effectively prevent the cytostatic residues from seeping into the environment. However, the combination calls for further evaluation on the associated technological, social-economic and administrative issues at hand.
Collapse
Affiliation(s)
- Jiefeng Zhang
- Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | |
Collapse
|
80
|
Daughton CG. Pharmaceuticals in the Environment. ANALYSIS, REMOVAL, EFFECTS AND RISK OF PHARMACEUTICALS IN THE WATER CYCLE - OCCURRENCE AND TRANSFORMATION IN THE ENVIRONMENT 2013. [DOI: 10.1016/b978-0-444-62657-8.00002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
81
|
Le Corre KS, Ort C, Kateley D, Allen B, Escher BI, Keller J. Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. ENVIRONMENT INTERNATIONAL 2012; 45:99-111. [PMID: 22580296 DOI: 10.1016/j.envint.2012.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/27/2012] [Accepted: 03/17/2012] [Indexed: 05/06/2023]
Abstract
Hospitals are considered as major sources of pharmaceutical residues discharged to municipal wastewater, but recent experimental studies showed that the contribution of hospitals to the loads of selected, quantifiable pharmaceuticals in sewage treatment plant (STP) influents was limited. However such conclusions are made based on the experimental analysis of pharmaceuticals in hospital wastewater which is hindered by a number of factors such as access to suitable sampling sites, difficulties in obtaining representative samples and availability of analytical methods. Therefore, this study explores a refined and extended consumption-based approach to predict the contribution of six selected Australian hospitals to the loads of 589 pharmaceuticals in municipal wastewater. In addition, the possibility that hospital-specific substances are present at levels that may pose a risk for human health was evaluated. For 63 to 84% of the pharmaceuticals investigated, the selected hospitals are not a major point source with individual contributions likely to be less than 15% which is in line with previous experimental studies. In contrast, between 10 and 20% of the pharmaceuticals consumed in the selected hospitals are exclusively used in these hospitals. For these hospital-specific substances, 57 distinct pharmaceuticals may cause concerns for human health as concentrations predicted in hospital effluents are less than 100-fold lower than effect thresholds. However, when concentrations were predicted in the influent of the corresponding STP, only 12 compounds (including the antineoplastic vincristine, the antibiotics tazobactam and piperacillin) remain in concentration close to effect thresholds, but further decrease is expected after removal in STP, dilution in the receiving stream and drinking water treatment. The results of this study suggest that risks of human exposure to the pharmaceuticals exclusively administered in the investigated hospitals are limited and decentralised wastewater treatment at these sites would not have a substantial impact on pharmaceutical loads entering STPs, and finally the environment. Overall, our approach demonstrates a unique opportunity to screen for pharmaceuticals used in hospitals and identifying priority pollutants in hospital wastewater explicitly accounting for site-specific conditions. Being based on consumption and loads discharged by hospitals into municipal wastewater, it is not limited by 1) the big effort to obtain representative samples from sewers, 2) the availability of sensitive chemical analysis or 3) a pre-selection of consumption data (e.g. consumption volume).
Collapse
Affiliation(s)
- Kristell S Le Corre
- The University of Queensland, Advanced Water Management Centre (AWMC), Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
82
|
Gómez-Canela C, Cortés-Francisco N, Oliva X, Pujol C, Ventura F, Lacorte S, Caixach J. Occurrence of cyclophosphamide and epirubicin in wastewaters by direct injection analysis-liquid chromatography-high-resolution mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3210-3218. [PMID: 22382696 DOI: 10.1007/s11356-012-0826-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND, AIM, AND SCOPE According to the high incidence of cancer worldwide, the amount of cytostatic drugs administered to patients has increased. These compounds are excreted to wastewaters, and therefore become potential water contaminants. At this stage, very little is known on the presence and elimination of cytostatic compounds in wastewater treatment plants (WWTP). The aim of this study was to develop a liquid chromatography-high-resolution mass spectrometry (LC-Orbitrap-MS) method for the determination of cyclophosphamide and epirubicin in wastewaters. These compounds represent two outmost used cytostatic agents. MATERIALS AND METHODS Extraction and analytical conditions were optimized for cyclophosphamide and epirubicin in wastewater. Both solid-phase extraction using Oasis 200 mg hydrophilic-lipophilic balanced (HLB) cartridges and direct injection analysis were evaluated. Mass spectral characterization and fragmentation conditions were optimized at 50,000 resolving power (full width at half maximum, m/z 200) to obtain maximum sensitivity and identification performance. Quality parameters (recoveries, limits of detection, and repetitivity) of the methods developed were determined, and best performance was obtained with direct water analysis of the centrifuged wastewater. Finally, this method was applied to determine the presence of cyclophosphamide and epirubicin in wastewaters from a hospital effluent, an urban effluent, and influents and effluents from three WWTP. RESULTS AND DISCUSSION Cyclophosphamide and epirubicin were recovered after 50 mL preconcentration on solid-phase extraction 200 mg Oasis HLB cartridges (87% and 37%, respectively), and no breakthrough was observed by extracting 500 mL of water. Limits of detection were of 0.35 and 2.77 ng/L for cyclophosphamide and epirubicin, respectively. On the other hand, direct injection of water spiked at 1 μg/L provided recoveries of 107% for cyclophosphamide and 44% for epirubicin and limits of detection from 3.1 to 85 ng L(-1), respectively. The analysis of wastewaters using direct injection analysis revealed the presence of cyclophosphamide and epirubicin in WWTP influents and hospital and urban effluents at levels ranging from 5.73 to 24.8 μg L(-1). CONCLUSIONS The results obtained in this study demonstrate the capability of LC-Orbitrap-MS for accurate trace analysis of these very polar contaminants. This method permitted to identify cyclophosphamide and epirubicin in wastewaters and influents of WWTP, but no traces were detected in WWTP effluents. The methodology herein developed is sensitive and robust and applicable for screening of a large number of samples since no preconcentration is needed.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
83
|
Heeb F, Singer H, Pernet-Coudrier B, Qi W, Liu H, Longrée P, Müller B, Berg M. Organic micropollutants in rivers downstream of the megacity Beijing: sources and mass fluxes in a large-scale wastewater irrigation system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8680-8. [PMID: 22845779 DOI: 10.1021/es301912q] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Haihe River System (HRS) drains the Chinese megacities Beijing and Tianjin, forming a large-scale irrigation system severely impacted by wastewater-borne pollution. The origin, temporal magnitudes, and annual mass fluxes of a wide range of pharmaceuticals, household chemicals, and pesticides were investigated in the HRS, which drains 70% of the wastewater discharged by 20 million people living in Beijing. Based on Chinese consumption statistics and our initial screening for 268 micropollutants using high-resolution mass spectrometry, 62 compounds were examined in space and time (2009-2010). The median concentrations ranged from 3 ng/L for metolachlor to 1100 ng/L for benzotriazole and sucralose. Concentrations of carbendazim, clarithromycin, diclofenac, and diuron exceed levels of ecotoxicological concern. Mass-flux analyses revealed that pharmaceuticals (5930 kg/year) and most household chemicals (5660 kg/year) originated from urban wastewaters, while the corrosion inhibitor benzotriazole entered the rivers through other pathways. Total pesticide residues amounted to 1550 kg/year. Per capita loads of pharmaceuticals in wastewater were lower than those in Europe, but are expected to increase in the near future. As 95% of the river water is diverted to irrigate agricultural soil, the loads of polar organic micropollutants transported with the water might pose a serious threat to food safety and groundwater quality.
Collapse
Affiliation(s)
- Florian Heeb
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Wolf L, Zwiener C, Zemann M. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 430:8-19. [PMID: 22609959 DOI: 10.1016/j.scitotenv.2012.04.059] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 05/11/2023]
Abstract
There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes.
Collapse
Affiliation(s)
- Leif Wolf
- CSIRO Land & Water, 41 Boggo Road, Dutton Park, QLD, Australia.
| | | | | |
Collapse
|
85
|
Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1536-45. [PMID: 22280472 DOI: 10.1021/es203495d] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A pilot-scale membrane bioreactor (MBR) was installed and operated for one year at a Swiss hospital. It was fed an influent directly from the hospital's sanitary collection system. To study the efficiency of micropollutant elimination in raw hospital wastewater that comprises a complex matrix with micropollutant concentrations ranging from low ng/L to low mg/L, an automated online SPE-HPLC-MS/MS analytical method was developed. Among the 68 target analytes were the following: 56 pharmaceuticals (antibiotics, antimycotics, antivirals, iodinated X-ray contrast media, antiinflamatory, cytostatics, diuretics, beta blockers, anesthetics, analgesics, antiepileptics, antidepressants, and others), 10 metabolites, and 2 corrosion inhibitors. The MBR influent contained the majority of those target analytes. The micropollutant elimination efficiency was assessed through continuous flow-proportional sampling of the MBR influent and continuous time-proportional sampling of the MBR effluent. An overall load elimination of all pharmaceuticals and metabolites in the MBR was 22%, as over 80% of the load was due to persistent iodinated contrast media. No inhibition by antibacterial agents or disinfectants from the hospital was observed in the MBR. The hospital wastewater was found to be a dynamic system in which conjugates of pharmaceuticals deconjugate and biological transformation products are formed, which in some cases are pharmaceuticals themselves.
Collapse
Affiliation(s)
- Lubomira Kovalova
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland
| | | | | | | | | |
Collapse
|
86
|
Salgado R, Marques R, Noronha JP, Mexia JT, Carvalho G, Oehmen A, Reis MAM. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2359-2367. [PMID: 21783287 DOI: 10.1016/j.envpol.2011.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
An intensive sampling campaign has been carried out in a municipal wastewater treatment plant (WWTP) to assess the dynamics of the influent pharmaceutical active compounds (PhAC) and musks. The mass loadings of these compounds in wastewater influents displayed contrasting diurnal variations depending on the compound. The musks and some groups of PhACs tended to follow a similar diurnal trend as compared to macropollutants, while the majority of PhACs followed either the opposite trend or no repeatable trend. The total musk loading to the WWTP was 0.74 ± 0.25 g d(-1), whereas the total PhAC mass loading was 84.7 ± 63.8 g d(-1). Unlike the PhACs, the musks displayed a high repeatability from one sampling day to the next. The range of PhAC loadings in the influent to WWTPs can vary several orders of magnitude from one day or week to the next, representing a challenge in obtaining data for steady-state modelling purposes.
Collapse
Affiliation(s)
- R Salgado
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | |
Collapse
|
87
|
De Gusseme B, Hennebel T, Vanhaecke L, Soetaert M, Desloover J, Wille K, Verbeken K, Verstraete W, Boon N. Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5737-5745. [PMID: 21663047 DOI: 10.1021/es200702m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produced at the cathode of the MEC. Complete deiodination of 3.3 μM (2 mg L(-1)) diatrizoate from a synthetic medium was achieved after 24 h of recirculation at an applied voltage of -0.4 V. An equimolar amount of the deiodinated metabolite 3,5-diacetamidobenzoate (DAB) was detected. Higher cell voltages increased the dehalogenation rates, resulting in a complete removal after 2 h at -0.8 V. At this cell voltage, the MEC was also able to remove 85% of diatrizoate from hospital effluent containing 0.5 μM (292 μg L(-1)), after 24 h of recirculation. Complete removal was obtained when the effluent was continuously fed at a volumetric loading rate of 204 mg diatrizoate m(-3) total cathodic compartment (TCC) day(-1) to the MEC with a hydraulic retention time of 8 h. At -0.8 V, the MEC system could also eliminate 54% of diatrizoate from spiked urine during a 24 h recirculation experiment. The final product DAB was demonstrated to be removable by nitrifying biomass, which suggests that the combination of a MEC and bio-Pd in its cathode offers potential to dehalogenate pharmaceuticals, and to significantly lower the environmental burden of hospital waste streams.
Collapse
Affiliation(s)
- Bart De Gusseme
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Lienert J, Koller M, Konrad J, McArdell CS, Schuwirth N. Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3848-3857. [PMID: 21417333 DOI: 10.1021/es1031294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Point-source measures have been suggested to decrease pharmaceuticals in water bodies. We analyzed 68 and 50 alternatives, respectively, for a typical Swiss general and psychiatric hospital to decrease pharmaceutical discharge. Technical alternatives included reverse osmosis, ozonation, and activated carbon; organizational alternatives included urine separation. To handle this complex decision, we used Multiple-Criteria Decision Analysis (MCDA) and combined expert predictions (e.g., costs, pharmaceutical mass flows, ecotoxicological risk, pathogen removal) with subjective preference-valuations from 26 stakeholders (authorities, hospital-internal actors, experts). The general hospital contributed ca. 38% to the total pharmaceutical load at the wastewater treatment plant, the psychiatry contributed 5%. For the general hospital, alternatives removing all pharmaceuticals (especially reverse osmosis, or vacuum-toilets and incineration), performed systematically better than the status quo or urine separation, despite higher costs. They now require closer scrutiny. To remove X-ray contrast agents, introducing roadbags is promising. For the psychiatry with a lower pharmaceutical load, costs were more critical. Stakeholder feedback concerning MCDA was very positive, especially because the results were robust across different stakeholder-types. Our MCDA results provide insight into an important water protection issue: implementing measures to decrease pharmaceuticals will likely meet acceptance. Hospital point-sources merit consideration if the trade-off between costs and pharmaceutical removal is reasonable.
Collapse
Affiliation(s)
- Judit Lienert
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | | | | | | | | |
Collapse
|
89
|
Anquandah G, Ray MB, Ray AK, Al-Abduly AJ, Sharma VK. Oxidation of X-ray compound ditrizoic acid by ferrate(VI). ENVIRONMENTAL TECHNOLOGY 2011; 32:261-267. [PMID: 21780694 DOI: 10.1080/09593330.2010.496467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Iodinated X-ray contrast media (ICM) such as diatrizoic acid (DTZA) is used in large amounts in hospitals to enhance imaging of organs and blood vessels during radiography. Due to its persistence and non-biodegradability, it is found in treated water, sewage effluent, surface waters, and aquatic environments. This paper presents the kinetics of the oxidation of DTZA by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) as a function of pH (7.1-9.6) at 25 degrees C in order to determine the effectiveness of Fe(VI) to remove DTZA from water. The reaction was determined to be first-order with respect to concentrations of Fe(VI) and DTZA. The rate of the reaction was found to be pH dependent and the rate decreased nonlinearly as the pH increase from 7.1 to 9.6. The speciation of Fe(VI) (HFeO4(-) and FeO4(2-)) was used to explain the rate dependence on pH. The calculated rate constant of Fe(VI) with DTZA at pH 7.0 was compared with nitrogen-containing pollutants and is briefly discussed.
Collapse
Affiliation(s)
- George Anquandah
- Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA
| | | | | | | | | |
Collapse
|
90
|
Mu Y, Radjenovic J, Shen J, Rozendal RA, Rabaey K, Keller J. Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:782-788. [PMID: 21141818 DOI: 10.1021/es1022812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Iodinated X-ray contrast media (ICM) are only to a limited extent removed from conventional wastewater treatment plants, due to their high recalcitrance. This work reports on the cathodic dehalogenation of the ICM iopromide in a bioelectrochemical system (BES), fed with acetate at the anode and iopromide at the cathode. When the granular graphite cathode potential was decreased from -500 to -850 mV vs standard hydrogen electrode (SHE), the iopromide removal and the iodide release rates increased from 0 to 4.62 ± 0.01 mmol m(-3) TCC d(-1) and 0 to 13.4 ± 0.16 mmol m(-3) TCC d(-1) (Total Cathodic Compartment, TCC) respectively. Correspondingly, the power consumption increased from 0.4 ± 1 to 20.5 ± 3.3 W m(-3) TCC. The Coulombic efficiency of the iopromide dehalogenation at the cathode was less than 1%, while the Coulombic efficiency of the acetate oxidation at the anode was lower than 50% at various granular graphite cathode potentials. The results suggest that iopromide could be completely dehalogenated in BESs when the granular graphite cathode potential was controlled at -800 mV vs SHE or lower. This finding was further confirmed using mass spectrometry to identify the dehalogenated intermediates and products of iopromide in BESs. Kinetic analysis indicates that iopromide dehalogenation in batch experiments can be described by a first-order model at various cathode potentials. This work demonstrates that the BESs have a potential for efficient dehalogenation of ICM from wastewater or environmental streams.
Collapse
Affiliation(s)
- Yang Mu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
91
|
Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. WATER RESEARCH 2011; 45:75-92. [PMID: 20828784 DOI: 10.1016/j.watres.2010.08.019] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 06/21/2010] [Accepted: 08/09/2010] [Indexed: 05/24/2023]
Abstract
In this paper, we evaluated the ecotoxicological potential of the 100 pharmaceuticals expected to occur in highest quantities in the wastewater of a general hospital and a psychiatric center in Switzerland. We related the toxicity data to predicted concentrations in different wastewater streams to assess the overall risk potential for different scenarios, including conventional biological pretreatment in the hospital and urine source separation. The concentrations in wastewater were estimated with pharmaceutical usage information provided by the hospitals and literature data on human excretion into feces and urine. Environmental concentrations in the effluents of the exposure scenarios were predicted by estimating dilution in sewers and with literature data on elimination during wastewater treatment. Effect assessment was performed using quantitative structure-activity relationships because experimental ecotoxicity data were only available for less than 20% of the 100 pharmaceuticals with expected highest loads. As many pharmaceuticals are acids or bases, a correction for the speciation was implemented in the toxicity prediction model. The lists of Top-100 pharmaceuticals were distinctly different between the two hospital types with only 37 pharmaceuticals overlapping in both datasets. 31 Pharmaceuticals in the general hospital and 42 pharmaceuticals in the psychiatric center had a risk quotient above 0.01 and thus contributed to the mixture risk quotient. However, together they constituted only 14% (hospital) and 30% (psychiatry) of the load of pharmaceuticals. Hence, medical consumption data alone are insufficient predictors of environmental risk. The risk quotients were dominated by amiodarone, ritonavir, clotrimazole, and diclofenac. Only diclofenac is well researched in ecotoxicology, while amiodarone, ritonavir, and clotrimazole have no or very limited experimental fate or toxicity data available. The presented computational analysis thus helps setting priorities for further testing. Separate treatment of hospital wastewater would reduce the pharmaceutical load of wastewater treatment plants, and the risk from the newly identified priority pharmaceuticals. However, because high-risk pharmaceuticals are excreted mainly with feces, urine source separation is not a viable option for reducing the risk potential from hospital wastewater, while a sorption step could be beneficial.
Collapse
Affiliation(s)
- Beate I Escher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | | | | | | |
Collapse
|
92
|
Letzel M, Weiss K, Schüssler W, Sengl M. Occurrence and fate of the human pharmaceutical metabolite ritalinic acid in the aquatic system. CHEMOSPHERE 2010; 81:1416-1422. [PMID: 20932550 DOI: 10.1016/j.chemosphere.2010.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/13/2010] [Accepted: 09/04/2010] [Indexed: 05/30/2023]
Abstract
To investigate the occurrence and fate of ritalinic acid - the main human metabolite of the psychostimulant drug methylphenidate - in the aquatic environment, a HPLC-electrospray-MS/MS method for the quantification of ritalinic acid in wastewater, surface water and bank filtrate was developed. Carbamazepine known as very stable in the aquatic environment was analyzed as anthropogenic marker in parallel. Furthermore, the removal of ritalinic acid was studied in a sewage treatment plant using an activated sludge system during a field study and in lab-scale plants. In good agreement between lab-scale and field studies a low removal rate of 13% and 23%, respectively, was determined. As a consequence, the concentration of ritalinic acid in the wastewater effluents were in the range of <50-170 ngL(-1) which corresponds to a mean specific load per capita of 17.7 μgd(-1). Ritalinic acid has further been detected in German rivers at concentrations of 4-23 ngL(-1) and in bank filtrate samples in 100-850 m distance from the river up to 5 ngL(-1) demonstrating the widespread occurrence of this stable metabolite in the aquatic environment. A comparison to available sales data shows that a significant amount of methylphenidate applied can be found in waters as ritalinic acid.
Collapse
Affiliation(s)
- Marion Letzel
- Bavarian Environment Agency, Kaulbachstr. 37, D-80539 Munich, Germany.
| | | | | | | |
Collapse
|
93
|
Pal A, Gin KYH, Lin AYC, Reinhard M. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6062-9. [PMID: 20934204 DOI: 10.1016/j.scitotenv.2010.09.026] [Citation(s) in RCA: 528] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 05/22/2023]
Abstract
Rapid urbanization and frequent disposal of wastewater to surface water cause widespread contamination of freshwater supplies with emerging contaminants, such as pharmaceuticals, insecticides, surfactants, endocrine disruptors, including hormones. Although these organic contaminants may be present at trace levels, their adverse effects on aquatic life, animals and even humans are a growing concern. Numerous studies have been published on the occurrence and fate of emerging organic contaminants in different parts of the world, spanning a wide range of sources and aquatic environments including freshwater catchments, effluent wastewater streams, lakes, rivers, reservoirs, estuaries and marine waters. This paper reviews recent studies on the occurrence and fate of frequently detected pharmaceuticals and hormones and identifies areas that merit further research.
Collapse
Affiliation(s)
- Amrita Pal
- School of Civil and Environmental Engineering, Nanyang Technological University, Blk N1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | |
Collapse
|
94
|
Ort C, Lawrence MG, Rieckermann J, Joss A. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6024-35. [PMID: 20704196 DOI: 10.1021/es100779n] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The analysis of 87 peer-reviewed journal articles reveals that sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in sewers and sewage treatment plant influents is mostly carried out according to existing tradition or standard laboratory protocols. Less than 5% of all studies explicitly consider internationally acknowledged guidelines or methods for the experimental design of monitoring campaigns. In the absence of a proper analysis of the system under investigation, the importance of short-term pollutant variations was typically not addressed. Therefore, due to relatively long sampling intervals, potentially inadequate sampling modes, or insufficient documentation, it remains unclear for the majority of reviewed studies whether observed variations can be attributed to "real" variations or if they simply reflect sampling artifacts. Based on results from previous and current work, the present paper demonstrates that sampling errors can lead to overinterpretation of measured data and ultimately, wrong conclusions. Depending on catchment size, sewer type, sampling setup, substance of interest, and accuracy of analytical method, avoidable sampling artifacts can range from "not significant" to "100% or more" for different compounds even within the same study. However, in most situations sampling errors can be reduced greatly, and sampling biases can be eliminated completely, by choosing an appropriate sampling mode and frequency. This is crucial, because proper sampling will help to maximize the value of measured data for the experimental assessment of the fate of PPCPs as well as for the formulation and validation of mathematical models. The trend from reporting presence or absence of a compound in "clean" water samples toward the quantification of PPCPs in raw wastewater requires not only sophisticated analytical methods but also adapted sampling methods. With increasing accuracy of chemical analyses, inappropriate sampling increasingly represents the major source of inaccuracy. A condensed step-by-step Sampling Guide is proposed as a starting point for future studies.
Collapse
Affiliation(s)
- Christoph Ort
- The University of Queensland, Advanced Water Management Centre, QLD 4072, Australia.
| | | | | | | |
Collapse
|
95
|
Kormos JL, Schulz M, Kohler HPE, Ternes TA. Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4998-5007. [PMID: 20509647 DOI: 10.1021/es1007214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Iodinated X-ray contrast media (ICM) are commonly detected in the aquatic environment at concentrations up to the low microgram per liter range. In this study, the biotransformation of selected ICM (diatrizoate, iohexol, iomeprol, and iopamidol) in aerobic soil-water and river sediment-water batch systems was investigated. In addition, microbial transformation pathways were proposed. Diatrizoate, an ionic ICM, was not biotransformed, while three nonionic ICM were transformed into several biotransformation products (TPs) at neutral pH. Iohexol and iomeprol were biotransformed to eleven TPs and fifteen TPs, respectively, while eight TPs were detected for iopamidol. Since seven of the TPs detected during biotransformation had not been previously identified, mass fragmentation experiments were completed to elucidate the chemical structures. Oxidation of primary alcoholic moieties, cleavage of the N-C bonds (i.e., deacetylation and removal of hydroxylated propanoic acids), and decarboxylation are potential reactions that can explain the formation of the identified TPs. Iohexol and iomeprol had similar biotransformation rates, while iopamidol was biotransformed slower and to a lesser extent. A LC tandem MS method confirmed the presence of ICM TPs in aqueous environmental samples. Fifteen of the ICM TPs were even detected in drinking water with concentrations up to 120 ng/L.
Collapse
|
96
|
ter Laak TL, van der Aa M, Houtman CJ, Stoks PG, van Wezel AP. Relating environmental concentrations of pharmaceuticals to consumption: A mass balance approach for the river Rhine. ENVIRONMENT INTERNATIONAL 2010; 36:403-409. [PMID: 20398939 DOI: 10.1016/j.envint.2010.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/16/2010] [Accepted: 02/25/2010] [Indexed: 05/29/2023]
Abstract
In this study, pharmaceuticals were frequently monitored in the Rhine delta between the year 2002 and 2008. Average concentrations of several X-ray contrast mediums were above 0.1 microg/L, the average concentration of carbamazepine was about 0.1 microg/L, while average concentrations of the other pharmaceuticals generally fell between 0.1 and 0.01 microg/L. Concentrations were used to calculate annual loads transported by the Rhine at Lobith. These loads were compared to the annual sales upstream of Lobith. This mass balance approach shows that substantial fractions (1.1% to 70.4%) of the 20 most frequently observed pharmaceuticals sold in the Rhine catchment area are recovered in the Rhine at Lobith. The observed annual loads were compared to loads predicted from annual sales in the catchment area, excreted fractions by humans and removal by waste water treatment. Observed and predicted annual loads were rather similar. The difference of the loads obtained from monitoring data and estimated from consumption was smaller than a factor of seven and did not exceed a factor of two for 15 out of the 20 pharmaceuticals. This illustrates the potential of using sales data for the prediction of concentrations in the aqueous environment.
Collapse
Affiliation(s)
- Thomas L ter Laak
- KWR Watercycle Research Institute, 3430 BB, Nieuwegein, The Netherlands.
| | | | | | | | | |
Collapse
|