51
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
52
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels-Centre NUTRISS, Université Laval, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
53
|
Bloch MH, Landeros-Weisenberger A, Johnson JA, Leckman JF. A Phase-2 Pilot Study of a Therapeutic Combination of Δ 9-Tetrahydracannabinol and Palmitoylethanolamide for Adults With Tourette's Syndrome. J Neuropsychiatry Clin Neurosci 2021; 33:328-336. [PMID: 34340527 DOI: 10.1176/appi.neuropsych.19080178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE There are few effective pharmacological treatments for Tourette's syndrome. Many patients with Tourette's syndrome experience impairing tic symptoms despite use of available evidence-based treatments. The investigators conducted a small, uncontrolled trial to examine the safety, tolerability, and dosing of THX-110, a combination of Δ9-tetrahydracannabinol (Δ9-THC) and palmitoylethanolamide (PEA), in Tourette's syndrome. METHODS A 12-week uncontrolled trial of THX-110 (maximum daily Δ9-THC dose, 10 mg, and a constant 800-mg dose of PEA) in 16 adults with Tourette's syndrome was conducted. The primary outcome was improvement on the Yale Global Tic Severity Scale (YGTSS) total tic score. Secondary outcomes included measures of comorbid conditions and the number of participants who elected to continue treatment in the 24-week extension phase. RESULTS Tic symptoms significantly improved over time with THX-110 treatment. Improvement in tic symptoms was statistically significant within 1 week of starting treatment compared with baseline. THX-110 treatment led to an average improvement in tic symptoms of more than 20%, or a 7-point decrease in the YGTSS score. Twelve of the 16 participants elected to continue to the extension phase, and only two participants dropped out early. Side effects were common but were generally managed by decreasing Δ9-THC dosing, slowing the dosing titration, and shifting dosing to nighttime. CONCLUSIONS Although the initial data from this trial in adults with refractory Tourette's syndrome are promising, future randomized double-blind placebo-controlled trials are necessary to demonstrate efficacy of THX-110 treatment. The challenges raised by the difficulty in blinding trials due to the psychoactive properties of many cannabis-derived compounds need to be further appreciated in these trial designs.
Collapse
Affiliation(s)
- Michael H Bloch
- Yale Child Study Center, New Haven, Conn. (Bloch, Landeros-Weisenberger, Johnson, Leckman); and Department of Psychiatry, Yale University, New Haven, Conn. (Bloch, Leckman)
| | - Angeli Landeros-Weisenberger
- Yale Child Study Center, New Haven, Conn. (Bloch, Landeros-Weisenberger, Johnson, Leckman); and Department of Psychiatry, Yale University, New Haven, Conn. (Bloch, Leckman)
| | - Jessica A Johnson
- Yale Child Study Center, New Haven, Conn. (Bloch, Landeros-Weisenberger, Johnson, Leckman); and Department of Psychiatry, Yale University, New Haven, Conn. (Bloch, Leckman)
| | - James F Leckman
- Yale Child Study Center, New Haven, Conn. (Bloch, Landeros-Weisenberger, Johnson, Leckman); and Department of Psychiatry, Yale University, New Haven, Conn. (Bloch, Leckman)
| |
Collapse
|
54
|
Guzzo LS, Oliveira CC, Ferreira RCM, Machado DPD, Castor MGM, Perez AC, Piscitelli F, Marzo VD, Romero TRL, Duarte IDG. Kahweol, a natural diterpene from coffee, induces peripheral antinociception by endocannabinoid system activation. Braz J Med Biol Res 2021; 54:e11071. [PMID: 34730678 PMCID: PMC8555452 DOI: 10.1590/1414-431x2021e11071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 μg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 μg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 μg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 μg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 μg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 μg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.
Collapse
Affiliation(s)
- L S Guzzo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C C Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R C M Ferreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D P D Machado
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M G M Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A C Perez
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - T R L Romero
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
55
|
Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Prog Neurobiol 2021; 208:102179. [PMID: 34600947 DOI: 10.1016/j.pneurobio.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
In this review we focus on maladaptive brain reorganization after spinal cord injury (SCI), including the development of neuropathic pain, and its relationship with impairments in body representation and multisensory integration. We will discuss the implications of altered sensorimotor interactions after SCI with and without neuropathic pain and possible deficits in multisensory integration and body representation. Within this framework we will examine published research findings focused on the use of bodily illusions to manipulate multisensory body representation to induce analgesic effects in heterogeneous chronic pain populations and in SCI-related neuropathic pain. We propose that the development and intensification of neuropathic pain after SCI is partly dependent on brain reorganization associated with dysfunctional multisensory integration processes and distorted body representation. We conclude this review by suggesting future research avenues that may lead to a better understanding of the complex mechanisms underlying the sense of the body after SCI, with a focus on cortical changes.
Collapse
Affiliation(s)
- Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
56
|
Abstract
The endocannabinoids are lipid-derived messengers that play a diversity of regulatory roles in mammalian physiology. Dysfunctions in their activity have been implicated in various disease conditions, attracting attention to the endocannabinoid system as a possible source of therapeutic drugs. This signaling complex has three components: the endogenous ligands, anandamide and 2-arachidonoyl-sn-glycerol (2-AG); a set of enzymes and transporters that generate, eliminate, or modify such ligands; and selective cell surface receptors that mediate their biological actions. We provide an overview of endocannabinoid formation, deactivation, and biotransformation and outline the properties and therapeutic potential of pharmacological agents that interfere with those processes. We describe small-molecule inhibitors that target endocannabinoid-producing enzymes, carrier proteins that transport the endocannabinoids into cells, and intracellular endocannabinoid-metabolizing enzymes. We briefly discuss selected agents that simultaneously interfere with components of the endocannabinoid system and with other functionally related signaling pathways. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA; .,Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA;
| |
Collapse
|
57
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W, Nedamat K. The Current and Potential Application of Medicinal Cannabis Products in Dentistry. Dent J (Basel) 2021; 9:106. [PMID: 34562980 PMCID: PMC8466648 DOI: 10.3390/dj9090106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaveh Nedamat
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
- Auraleaf Innovations, Toronto, ON M9B 4H6, Canada
| |
Collapse
|
58
|
Galiazzo G, De Silva M, Giancola F, Rinnovati R, Peli A, Chiocchetti R. Cellular distribution of cannabinoid-related receptors TRPV1, PPAR-gamma, GPR55 and GPR3 in the equine cervical dorsal root ganglia. Equine Vet J 2021; 54:788-798. [PMID: 34418142 PMCID: PMC9293124 DOI: 10.1111/evj.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The activation of cannabinoid and cannabinoid-related receptors by endogenous, plant-derived or synthetic cannabinoids may exert beneficial effects on pain perception. Of the cannabinoids contained in Cannabis sativa, cannabidiol (CBD) does not produce psychotropic effects and seems to represent a molecule having great therapeutic potential. Cannabidiol acts on a great number of cannabinoid and cannabinoid-related G-protein-coupled receptors and ionotropic receptors which have, to date, been understudied in veterinary medicine particularly in equine medicine. OBJECTIVES To localise the cellular distribution of four putative cannabinoid-related receptors in the equine cervical dorsal root ganglia (DRG). STUDY DESIGN A qualitative and quantitative immunohistochemical study. METHODS The cervical (C6-C8) DRG of six slaughtered horses were obtained from a local slaughterhouse. The tissues were fixed and processed for immunohistochemistry, and the resulting cryosections were used to investigate immunoreactivity for the following putative CBD receptors: Transient receptor potential vanilloid type 1 (TRPV1), nuclear peroxisome proliferator-activated receptor gamma (PPARγ), and G protein-coupled receptors 55 (GPR55) and 3 (GPR3). RESULTS Large percentages of neuronal cell bodies showed immunoreactivity for TRPV1 (80 ± 20%), PPARγ (100%), GPR55 (64 ± 15%) and GPR3 (63 ± 11%). The satellite glial cells (SGCs) were immunoreactive for TRPV1, PPARγ and GPR55. In addition, GPR55 immunoreactivity was expressed by DRG interneuronal macrophages. In addition, microglia cells were observed surrounding the neuron-SGC complex. MAIN LIMITATIONS The limited number of horses included in the study. CONCLUSIONS Cannabinoid-related receptors were distributed in the sensory neurons (TRPV1, PPARγ, GPR55 and GPR3), SGCs (TRPV1, PPARγ and GPR55), macrophages (GPR55) and other interneuronal cells (PPARγ and GPR55) of the equine DRG. Given the key role of DRG cellular elements and cannabinoid receptors in the pathophysiology of pain, the present findings provided an anatomical basis for additional studies aimed at exploring the therapeutic uses of non-psychotropic cannabinoid agonists for the management of pain in horses.
Collapse
Affiliation(s)
- Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Angelo Peli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008)University of BolognaBolognaItaly
| |
Collapse
|
59
|
Haider S, Pandey P, Reddy CR, Lambert JA, Chittiboyina AG. Novel Machaeriol Analogues as Modulators of Cannabinoid Receptors: Structure-Activity Relationships of (+)-Hexahydrocannabinoids and Their Isoform Selectivities. ACS OMEGA 2021; 6:20408-20421. [PMID: 34395989 PMCID: PMC8359128 DOI: 10.1021/acsomega.1c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Machaeriols are an important class of compounds that structurally resemble tetrahydrocannabinol (Δ9-THC), with the major differences being inverted stereochemistry at the ring junction as [6aR, 10aR] and an additional stereocenter at the C9 position of the A-ring due to saturation. A previous study reported that machaeriols did not show any cannabinoid receptor activity, even though these hexahydrodibenzopyran analogues mimic a privileged (+)-tetrahydrocannabinoid scaffold. To unravel structural requisites for modulation of cannabinoid receptors, a simple late-stage divergent approach was undertaken to functionalize the machaeriol scaffold using the Suzuki coupling reaction. Fourteen hexahydro analogues were synthesized and screened against both cannabinoid receptor isoforms, CB1 and CB2. Interestingly, many of the analogues showed a significant binding affinity for both receptors; however, two analogues, 11H and 11J, were identified as possessing CB2 receptor-selective functional activity in the GTPγS assay; they were found to be micromolar-range agonists, with EC50 values of 5.7 and 16 μM, respectively. Furthermore, molecular dynamics simulations between the CB2 receptor and two novel analogues resulted in unique interaction profiles by tightly occupying the active ligand-binding domain of the CB2 receptor and maintaining stable interactions with the critical residues Phe94, Phe281, and Ser285. For the first time, with the aid of structure-activity relationships of (+)-hexahydrocannabinoids, CB2 selective agonists were identified with late-stage diversification using palladium-mediated C-C bond formation. By simply switching to (R)-citronellal as a chiral precursor, enantiomerically pure (-)-hexahydrocannabinoids with better CB1/CB2 receptor isoform selectivity can be obtained using the current synthetic approach.
Collapse
Affiliation(s)
- Saqlain Haider
- National
Center for Natural Products Research, University
of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National
Center for Natural Products Research, University
of Mississippi, University, Mississippi 38677, United States
| | - Chada Raji Reddy
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Janet A. Lambert
- Department
of Pharmacology, School of Medicine, University
of Nevada, Reno, Nevada 89557, United States
| | - Amar G. Chittiboyina
- National
Center for Natural Products Research, University
of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
60
|
Ghidini A, Scalvini L, Palese F, Lodola A, Mor M, Piomelli D. Different roles for the acyl chain and the amine leaving group in the substrate selectivity of N-Acylethanolamine acid amidase. J Enzyme Inhib Med Chem 2021; 36:1411-1423. [PMID: 34256657 PMCID: PMC8279155 DOI: 10.1080/14756366.2021.1912035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations.
Collapse
Affiliation(s)
- Andrea Ghidini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, CA, USA
| |
Collapse
|
61
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
62
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
63
|
New Disulfiram Derivatives as MAGL-Selective Inhibitors. Molecules 2021; 26:molecules26113296. [PMID: 34070869 PMCID: PMC8199291 DOI: 10.3390/molecules26113296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/05/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.
Collapse
|
64
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
65
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
66
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
67
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
68
|
Chatterjee S, Zhou J, Dasgupta R, Cramer-Blok A, Timmer M, van der Stelt M, Ubbink M. Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4. Biochemistry 2021; 60:1178-1190. [PMID: 33749246 PMCID: PMC8154263 DOI: 10.1021/acs.biochem.0c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.
Collapse
Affiliation(s)
- Soumya
Deep Chatterjee
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Juan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anneloes Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
69
|
Mohr F, Hurrle T, Burggraaff L, Langer L, Bemelmans MP, Knab M, Nieger M, van Westen GJP, Heitman LH, Bräse S. Synthesis and SAR evaluation of coumarin derivatives as potent cannabinoid receptor agonists. Eur J Med Chem 2021; 220:113354. [PMID: 33915369 DOI: 10.1016/j.ejmech.2021.113354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
We report the development and extensive structure-activity relationship evaluation of a series of modified coumarins as cannabinoid receptor ligands. In radioligand, and [35S]GTPγS binding assays the CB receptor binding affinities and efficacies of the new ligands were determined. Furthermore, we used a ligand-based docking approach to validate the empirical observed results. In conclusion, several crucial structural requirements were identified. The most potent coumarins like 3-butyl-7-(1-butylcyclopentyl)-5-hydroxy-2H-chromen-2-one (36b, Ki CB2 13.7 nM, EC50 18 nM), 7-(1-butylcyclohexyl)-5-hydroxy-3-propyl-2H-chromen-2-one (39b, Ki CB2 6.5 nM, EC50 4.51 nM) showed a CB2 selective agonistic profile with low nanomolar affinities.
Collapse
Affiliation(s)
- Florian Mohr
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Lindsey Burggraaff
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Lukas Langer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martijn P Bemelmans
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Maximilian Knab
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen Aukio 1), 00014, Finland
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
70
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
71
|
Mabou Tagne A, Fotio Y, Lin L, Squire E, Ahmed F, Rashid TI, Karimian Azari E, Piomelli D. Palmitoylethanolamide and hemp oil extract exert synergistic anti-nociceptive effects in mouse models of acute and chronic pain. Pharmacol Res 2021; 167:105545. [PMID: 33722712 DOI: 10.1016/j.phrs.2021.105545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The use of products derived from hemp - i.e., cannabis varieties with low Δ9-tetrahydrocannabinol (Δ9-THC) content - as self-medication for pain and other health conditions is gaining in popularity but preclinical and clinical evidence for their effectiveness remains very limited. In the present study, we assessed the efficacy of a full-spectrum hemp oil extract (HOE; 10, 50 and 100 mg-kg-1; oral route), alone or in combination with the anti-inflammatory and analgesic agent palmitoylethanolamide (PEA; 10, 30, 100 and 300 mg-kg-1; oral route), in the formalin and chronic constriction injury (CCI) tests. We found that HOE exerts modest antinociceptive effects when administered alone, whereas the combination of sub-effective oral doses of HOE and PEA produces a substantial greater-than-additive alleviation of pain-related behaviors. Transcription of interleukin (IL)-6 and IL-10 increased significantly in lumbar spinal cord tissue on day 7 after CCI surgery, an effect that was attenuated to the same extent by HOE alone or by the HOE/PEA combination. Pharmacokinetic experiments show that co-administration of HOE enhances and prolongs systemic exposure to PEA. Collectively, our studies lend support to possible beneficial effects of using HOE in combination with PEA to treat acute and chronic pain.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Tarif Ibne Rashid
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | | | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
72
|
Wuyts E, De Neef N, Coppens V, Schuerwegen A, de Zeeuw-Jans I, Van Der Pol M, Morrens M. Beyond Pain: A Study on the Variance of Pain Thresholds Within BDSM Interactions in Dominants and Submissives. J Sex Med 2021; 18:556-564. [PMID: 33642237 DOI: 10.1016/j.jsxm.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND BDSM is an acronym describing bondage and discipline, dominance and submission, and sadism and masochism. Afflicting or receiving pain is usually an important part of the BDSM interaction. AIM This research will focus on better understanding the aspect of pain within a BDSM interaction. METHODS Submissive and dominant counterparts of 35 couples were recruited to participate in a BDSM interaction, of which 34 dominants and 33 submissives were included in the analyses. A non-BDSM interested control group (n = 27) was included to control for social interaction, of which 24 were included in the analyses. OUTCOMES This research investigates the differences in (i) baseline pain thresholds, (ii) the impact of a BDSM interaction on those thresholds, and (iii) threshold moderating factors like pain cognition between submissive and dominant BDSM participants and control individuals. RESULTS BDSM practitioners have a higher pain threshold overall and a BSDM interaction will result in a temporary elevation of pain thresholds for submissives. Additionally, pain thresholds in dominants will be dependent upon their fear of pain and tendency to catastrophize pain and submissives will experience less fear of pain than the control group. CLINICAL IMPLICATIONS By further enhancing our understanding of the mechanisms behind a BDSM interaction in this way, we aspire to relieve the stigma these practitioners still endure. STRENGTHS & LIMITATIONS This is one of the first studies of its kind with a large sample size compared to similar research, which makes it a significant contribution to the field. It must be mentioned that there is a possible selection bias because recruitment was only done through the Flemish BDSM community and specifically those who visit clubs. Additionally, pain threshold remains a subjective measurement, which must be taken into account. CONCLUSION This study helps shed further light on the biological processes behind a BDSM interaction through pain threshold measurements. Wuyts E, De Neef N, Coppens V, et al. Beyond Pain: A Study on the Variance of Pain Thresholds Within BDSM Interactions in Dominants and Submissives. J Sex Med 2021;18:556-564.
Collapse
Affiliation(s)
- Elise Wuyts
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium.
| | - Nele De Neef
- Europe Hospitals, Campus St Michel, Brussels, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| | - Alana Schuerwegen
- University Forensic Centre, University Hospital Antwerp, Antwerp, Belgium
| | - Ilona de Zeeuw-Jans
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; Department of Psychology, University of Tilburg, Tilburg, Netherlands
| | | | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| |
Collapse
|
73
|
Rodríguez-Cueto C, García-Toscano L, Santos-García I, Gómez-Almería M, Gonzalo-Consuegra C, Espejo-Porras F, Fernández-Ruiz J, de Lago E. Targeting the CB 2 receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1373-1387. [PMID: 33486755 DOI: 10.1111/bph.15386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids form a singular group of plant-derived compounds, endogenous lipids and synthetic derivatives with multiple therapeutic effects exerted by targeting different elements of the endocannabinoid system. One of their therapeutic applications is the preservation of neuronal integrity exerted by attenuating the multiple neurotoxic events that kill neurons in neurodegenerative disorders. In this review, we will address the potential of cannabinoids as neuroprotective agents in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder characterized by muscle denervation, atrophy and paralysis, and progressive deterioration in upper and/or lower motor neurons. The emphasis will be paid on the cannabinoid type 2 (CB2 ) receptor, whose activation limits glial reactivity, but the potential of additional endocannabinoid-related targets will be also addressed. The evidence accumulated so far at the preclinical level supports the need to soon move towards the patients and initiate clinical trials to confirm the potential of cannabinoid-based medicines as disease modifiers in ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Francisco Espejo-Porras
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
74
|
Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. The Neuroprotective Properties, Functions, and Roles of Cannabis sativa in Selected Diseases Related to the Nervous System. Cent Nerv Syst Agents Med Chem 2021; 21:20-38. [PMID: 33504317 DOI: 10.2174/1871524921666210127110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions. METHODS Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered. RESULTS The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others. CONCLUSION In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.
Collapse
Affiliation(s)
- Onesimus Mahdi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad T H Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Nurul Huda M Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad A M Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| |
Collapse
|
75
|
Behringer V, Krumbholz A, Stevens JMG, Keiler AM, Zierau O, Hohmann G. Exploring the Utility of Hair Endocannabinoids for Monitoring Homeostasis in Bonobos. Physiol Biochem Zool 2021; 94:83-98. [PMID: 33434116 DOI: 10.1086/712658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractQuantifying physiological challenges has gained increasing importance in evolutionary biology, behavioral physiology, and conservation. One matrix that is particularly useful for obtaining long-term records of physiological changes in mammals is hair. Potential markers are components of the endocannabinoid (EC) system, which regulates homeostasis of the brain as well as the endocrine and immune systems. Here, we present results from the first study to measure ECs (anandamide [AEA], 2-archidonyl glycerol [2-AG]) and EC-like compounds (N-palmitoylethanolamine [PEA], N-oleoylethanolamine [OEA], N-stearoylethanolamine [SEA]) in the hair of a nonhuman primate. We found that AEA, SEA, PEA, and OEA can be reliably measured in hair samples. When comparing the measurements of hair from different body parts, we found that variations of some analytes suggest that hair location is likely to affect results. For changes in health status, measurements of ECs and EC-like compounds reflected differences at both intra- and interindividual levels. We concluded that the EC system potentially provides novel tools to assess well-being, health status, and metabolic stress-not only in the hair of humans but also in that of domestic and wild animals. Measuring changes in ECs and EC-like compounds may improve the long-term monitoring of health status in captive and wild primates and may serve as a useful measure in animal welfare programs.
Collapse
|
76
|
Blanton HL, Barnes RC, McHann MC, Bilbrey JA, Wilkerson JL, Guindon J. Sex differences and the endocannabinoid system in pain. Pharmacol Biochem Behav 2021; 202:173107. [PMID: 33444598 DOI: 10.1016/j.pbb.2021.173107] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 01/21/2023]
Abstract
Cannabis use has been increasing in recent years, particularly among women, and one of the most common uses of cannabis for medical purposes is pain relief. Pain conditions and response to analgesics have been demonstrated to be influenced by sex, and evidence is emerging that this is also true with cannabinoid-mediated analgesia. In this review we evaluate the preclinical evidence supporting sex differences in cannabinoid pharmacology, as well as emerging evidence from human studies, both clinical and observational. Numerous animal studies have reported sex differences in the antinociceptive response to natural and synthetic cannabinoids that may correlate to sex differences in expression, and function, of endocannabinoid system components. Female rodents have generally been found to be more sensitive to the effects of Δ9-THC. This finding is likely a function of both pharmacokinetic and pharmacodynamics factors including differences in metabolism, differences in cannabinoid receptor expression, and influence of ovarian hormones including estradiol and progesterone. Preclinical evidence supporting direct interactions between sex hormones and the endocannabinoid system may translate to sex differences in response to cannabis and cannabinoid use in men and women. Further research into the role of sex in endocannabinoid system function is critical as we gain a deeper understanding of the impact of the endocannabinoid system in various disease states, including chronic pain.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America.
| | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America
| | - Melissa C McHann
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, United States of America
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, United States of America
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America.
| |
Collapse
|
77
|
N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2021; 238:249-258. [PMID: 33037452 PMCID: PMC7796956 DOI: 10.1007/s00213-020-05678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 μg/μl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 μg/μl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.
Collapse
|
78
|
Argueta DA, Aich A, Muqolli F, Cherukury H, Sagi V, DiPatrizio NV, Gupta K. Considerations for Cannabis Use to Treat Pain in Sickle Cell Disease. J Clin Med 2020; 9:E3902. [PMID: 33271850 PMCID: PMC7761429 DOI: 10.3390/jcm9123902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Pain in Sickle Cell Disease (SCD) is a major comorbidity and unique with acute pain due to recurrent and episodic vaso-occlusive crises as well as chronic pain, which can span an individual's entire life. Opioids are the mainstay treatment for pain in SCD. Due to recent health crises raised by adverse effects including deaths from opioid use, pain management in SCD is adversely affected. Cannabis and its products are most widely used for pain in multiple conditions and also by patients with SCD on their own. With the availability of "Medical Cannabis" and approval to use cannabis as medicine across majority of States in the United States as well as over-the-counter preparations, cannabis products are being used increasingly for SCD. The reliability of many of these products remains questionable, which poses a major health risk to the vulnerable individuals seeking pain relief. Therefore, this review provides up to date insights into available categories of cannabis-based treatment strategies, their mechanism of action and pre-clinical and clinical outcomes in SCD. It provides evidence for the benefits and risks of cannabis use in SCD and cautions about the unreliable and unvalidated products that may be adulterated with life-threatening non-cannabis compounds.
Collapse
Affiliation(s)
- Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Fjolla Muqolli
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Hemanth Cherukury
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Varun Sagi
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Twin Cities, MN 55455, USA;
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
- Southern California Institute for Research and Education, Long Beach VA Medical Center, Long Beach, CA 90822, USA
| |
Collapse
|
79
|
Cipollina G, Davari Serej A, Di Nolfi G, Gazzano A, Marsala A, Spatafora MG, Peviani M. Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity? Int J Mol Sci 2020; 21:E7923. [PMID: 33113845 PMCID: PMC7662281 DOI: 10.3390/ijms21217923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.C.); (A.D.S.); (G.D.N.); (A.G.); (A.M.); (M.G.S.)
| |
Collapse
|
80
|
Gugliandolo E, Peritore AF, Impellizzeri D, Cordaro M, Siracusa R, Fusco R, D’Amico R, Di Paola R, Schievano C, Cuzzocrea S, Crupi R. Dietary Supplementation with Palmitoyl-Glucosamine Co-Micronized with Curcumin Relieves Osteoarthritis Pain and Benefits Joint Mobility. Animals (Basel) 2020; 10:ani10101827. [PMID: 33049960 PMCID: PMC7601140 DOI: 10.3390/ani10101827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Canine osteoarthritis is a chronic degenerative joint disease and a major cause of elective euthanasia. The disorder increasingly limits joint motion, might cause lameness as well as pain, and impacts quality of life. An unmet need remains for safe and effective therapies for osteoarthritis. Palmitoyl-glucosamine and curcumin are used in animal nutrition. A co-micronized formulation, with the two substances being jointly processed to reduce their particle size and increase the extent to which they can be absorbed, is currently available on the European market. The present study investigated if this formulation could relieve joint pain and benefit mobility. Two well-established rat models of inflammation and osteoarthritis pain were used. Results from the first set of experiments showed that the dietary supplement relieved experimentally induced paw edema, infiltration of inflammatory cells, and decreased sensitivity to painful stimuli (thermal hyperalgesia). In the osteoarthritis model, the supplement proved to protect joint cartilage against degradation and successfully address neuropathic pain (i.e., pain from normally non-painful stimuli). Locomotor function recovered by 45% under supplement administration. The present findings suggest that the dietary supplement with palmitoyl-glucosamine co-micronized with curcumin might help manage osteoarthritis. Abstract Chronic mixed pain and orthopedic dysfunction are the most frequently associated consequences of canine osteoarthritis (OA). An unmet need remains for safe and effective therapies for OA. Palmitoyl-glucosamine (PGA) and curcumin are safe and naturally occurring compounds whose use is limited by poor bioavailability. Micronization is an established technique to increase bioavailability. The aim of this study was to investigate if the dietary supplementation with PGA co-micronized with curcumin (PGA-Cur, 2:1 ratio by mass) could limit pathologic process in two well-established rat models of inflammation and OA pain, i.e., subplantar carrageenan (CAR) and knee injection of sodium monoiodoacetate (MIA), respectively. In CAR-injected animals, a single dose of PGA-cur significantly reduced paw edema and hyperalgesia, as well as tissue damage and neutrophil infiltration. The repeated administration of PGA-Cur three times per week for 21 days, starting the third day after MIA injection resulted in a significant anti-allodynic effect. Protection against cartilage damage and recovery of locomotor function by 45% were also recorded. Finally, PGA-cur significantly counteracted MIA-induced increase in serum levels of TNF-α, IL-1β, NGF, as well as metalloproteases 1, 3, and 9. All the effects of PGA-Cur were superior compared to the compounds used singly. PGA-Cur emerged as a useful dietary intervention for OA.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
| | - Carlo Schievano
- Innovative Statistical Research srl, Prato Della Valle 24, I-35123 Padova, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98168 Messina, Italy; (E.G.); (A.F.P.); (D.I.); (M.C.); (R.S.); (R.F.); (R.D.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence:
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
81
|
Paton KF, Shirazi R, Vyssotski M, Kivell BM. N-docosahexaenoyl ethanolamine (synaptamide) has antinociceptive effects in male mice. Eur J Pain 2020; 24:1990-1998. [PMID: 32852071 DOI: 10.1002/ejp.1641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND N-docosahexaenoyl ethanolamine (DHEA; also known as synaptamide) binds to both the cannabinoid-1 and 2 (CB1 and CB2) cannabinoid receptors and has anti-inflammatory properties in vitro. However, the in vivo effects of DHEA remain unknown. Therefore, this study was designed to understand the effects of DHEA in models of pain and inflammation in mice. METHODS The intraplantar formaldehyde assay, hot water tail withdrawal assay and hotplate model were used to assess the antinociceptive properties of DHEA in mice. The mechanism of action was studied by antagonising the cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1) ion channel, peroxisome proliferator-activated receptors (PPARs) and G-protein receptor 55 (GPR55). RESULTS N-docosahexaenoyl ethanolamine (2-10 mg/kg) reduced the levels of nociceptive and inflammatory pain-related behaviour over 60 min in the intraplantar formaldehyde assay via both intraperitoneal and local intraplantar administration. The area under the curve analysis showed the overall antinociceptive effects of DHEA (10 mg/kg) were not modulated by pre-treatment with antagonists for the cannabinoid receptors, TRPV1ion channel, PPARα, PPARγ or GPR55. However, the time-course analysis showed that within the early inflammatory phase, antagonism of the CB2 receptor, PPARα and PPARγ led to a partial reversal of the antinociceptive effects of DHEA. In the hot water tail withdrawal and hotplate models of thermal nociception, DHEA (2-10 mg/kg) did not have any antinociceptive effects. CONCLUSIONS N-docosahexaenoyl ethanolamine reduced the level of formaldehyde-induced nociceptive and inflammatory pain-related behaviour; however, was not active in thermal nociceptive models. This study highlights the potential of DHEA for the treatment of acute inflammatory pain. SIGNIFICANCE This study shows that both intraperitoneal and intraplantar administration of DHEA reduces the level of formaldehyde-induced nociceptive and inflammatory pain.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
82
|
Roles of TRP Channels in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289194. [PMID: 32963700 PMCID: PMC7492880 DOI: 10.1155/2020/7289194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Transient receptor potential (TRP) proteins consist of a superfamily of cation channels that have been involved in diverse physiological processes in the brain as well as in the pathogenesis of neurological disease. TRP channels are widely expressed in the brain, including neurons and glial cells, as well as in the cerebral vascular endothelium and smooth muscle. Members of this channel superfamily show a wide variety of mechanisms ranging from ligand binding to voltage, physical, and chemical stimuli, implying the promising therapeutic potential of TRP in neurological diseases. In this review, we focus on the physiological functions of TRP channels in the brain and the pathological roles in neurological disorders to explore future potential neuroprotective strategies.
Collapse
|
83
|
Browe BM, Olsen AR, Ramirez C, Rickman RH, Smith ESJ, Park TJ. The naked mole-rat has a functional purinergic pain pathway despite having a non-functional peptidergic pain pathway. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100047. [PMID: 32478202 PMCID: PMC7248424 DOI: 10.1016/j.ynpai.2020.100047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) have adaptations within their pain pathway that are beneficial to survival in large colonies within poorly ventilated burrow systems, with lower O2 and higher CO2 ambient levels than ground-level environments. These adaptations ultimately lead to a partial disruption of the C-fiber pain pathway, which enables naked mole-rats to not feel pain from the acidosis associated with CO2 accumulation. One hallmark of this disruption is that naked mole-rats do not express neuropeptides, such as Substance P and calcitonin gene-related peptide in their cutaneous C-fibers, effectively making the peptidergic pain pathway hypofunctional. One C-fiber pathway that remains unstudied in the naked mole-rat is the non-peptidergic, purinergic pathway, despite this being a key pathway for inflammatory pain. The current study aimed to establish the functionality of the purinergic pathway in naked mole-rats and the effectiveness of cannabinoids in attenuating pain through this pathway. Cannabinoids can manage chronic inflammatory pain in both humans and mouse models, and studies suggest a major downstream role for the purinergic receptor, P2X3, in this treatment. Here we used Ca2+-imaging of cultured dorsal root ganglion neurons and in vivo behavioral testing to demonstrate that the P2X3 pathway is functional in naked mole-rats. Additionally, formalin-induced inflammatory pain was reduced by the cannabinoid receptor agonist, WIN55 (inflammatory, but not acute phase) and the P2X3 receptor antagonist A-317491 (acute and inflammatory phases). This study establishes that the purinergic C-fiber pathway is present and functional in naked mole-rats and that cannabinoid-mediated analgesia occurs in this species.
Collapse
Affiliation(s)
- Brigitte M. Browe
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abigail R. Olsen
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cesar Ramirez
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca H. Rickman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | - Thomas J. Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
84
|
Chiocchetti R, Rinnovati R, Tagliavia C, Stanzani A, Galiazzo G, Giancola F, Silva MD, Capodanno Y, Spadari A. Localisation of cannabinoid and cannabinoid-related receptors in the equine dorsal root ganglia. Equine Vet J 2020; 53:549-557. [PMID: 32524649 DOI: 10.1111/evj.13305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Growing evidence recognises cannabinoid receptors as potential therapeutic targets for pain. Consequently, there is increasing interest in developing cannabinoid receptor agonists for treating pain. As a general rule, to better understand the actions of a drug, it would be of extreme importance to know the cellular distribution of its specific receptors. The localisation of cannabinoid receptors in the dorsal root ganglia of the horse has not yet been investigated. OBJECTIVES To localise the cellular distribution of canonical and putative cannabinoid receptors in the equine cervical dorsal root ganglia. STUDY DESIGN Qualitative and quantitative immunohistochemical study. METHODS Cervical (C6-C8) dorsal root ganglia were collected from six horses (1.5 years of age) at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and for three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1) and serotonin 5-HT1a receptor (5-HT1aR). RESULTS The neurons showed immunoreactivity for CB1R (100%), CB2R (80% ± 13%), PPARα (100%), TRPA1 (74% ± 10%) and 5-HT1aR (84% ± 6%). The neuronal satellite glial cells showed immunoreactivity for CB2R, PPARα, TRPA1 and 5-HT1aR. MAIN LIMITATIONS The low number of horses included in the study. CONCLUSIONS This study highlighted the expression of cannabinoid receptors in the sensory neurons and glial cells of the dorsal root ganglia. These findings could be of particular relevance for future functional studies assessing the effects of cannabinoids in horses to manage pain.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Agnese Stanzani
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Ylenia Capodanno
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences (UNI EN ISO), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
85
|
Synthesis, characterization and biological evaluation of novel N-phenoyl phosphatidylethanolamine derivatives. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
86
|
Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing. Vet Sci 2020; 7:vetsci7020078. [PMID: 32560159 PMCID: PMC7355440 DOI: 10.3390/vetsci7020078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of “one drug, one target, one disease”, opening a new era in the management of animals’ health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.
Collapse
|
87
|
Dunkley CR, Henshaw CD, Henshaw SK, Brotto LA. Physical Pain as Pleasure: A Theoretical Perspective. JOURNAL OF SEX RESEARCH 2020; 57:421-437. [PMID: 31044619 DOI: 10.1080/00224499.2019.1605328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Physical pain represents a common feature of Bondage and Discipline/Dominance and Submission/Sadism and Machochism (BDSM) activity. This article explores the literature accounting for how painful stimuli may be experienced as pleasurable among practitioners of BDSM, and contrasting this with how it is experienced as painful among non-BDSM individuals. We reviewed the available literature on pain and on BDSM, and used the findings to postulate a theory accounting for how painful stimuli are experienced as pleasurable. Our theory was then checked with BDSM practitioners. The emotional, physiological, and psychological elements of pain interact to facilitate the experience of pain as pleasure in BDSM. A multitude of interconnected factors was theorized to alter the experience of BDSM pain, including: neural networks, neurotransmitters, endogenous opioids and endocannabinoids, visual stimuli, environmental context, emotional state, volition and control, interpersonal connection, sexual arousal, and memories. The experience of pain in this context can bring about altered states of consciousness that may be similar to what occurs during mindfulness meditation. Through understanding the mechanisms by which pain may be experienced as pleasure, the role of pain in BDSM is demystified and, it is hoped, destigmatized.
Collapse
Affiliation(s)
- Cara R Dunkley
- Department of Psychology, University of British Columbia
- Department of Obstetrics and Gynaecology, University of British Columbia
| | - Craig D Henshaw
- Department of Psychology, University of British Columbia
- Department of Obstetrics and Gynaecology, University of British Columbia
| | - Saira K Henshaw
- Department of Psychology, University of British Columbia
- Department of Obstetrics and Gynaecology, University of British Columbia
| | - Lori A Brotto
- Department of Psychology, University of British Columbia
- Department of Obstetrics and Gynaecology, University of British Columbia
| |
Collapse
|
88
|
Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B 2020; 10:582-602. [PMID: 32322464 PMCID: PMC7161712 DOI: 10.1016/j.apsb.2019.10.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.
Collapse
Key Words
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidaoylglycerol
- 2-OG, 2-oleoylglycerol
- 4-NPA, 4-nitrophenylacetate
- 7-HCA, 7-hydroxycoumarinyl arachidonate
- AA, arachidonic acid
- ABHD6 and ABHD12, α/β-hydrolase 6 and 12
- ABP, activity-based probes
- ABPP, activity-based protein profiling
- AD, Alzheimer's disease
- AEA, anandamide
- Arachidonic acid
- BCRP, breast cancer resistant protein
- CB1R and CB2R, cannabinoid receptors
- CC-ABPP, click chemistry activity-based protein profiling
- CFA, complete Freund's adjuvant
- CNS, central nervous system
- COX, cyclooxygenases
- CYP, cytochrome P450 proteins
- Cancer
- DAG, diacylglycerol
- DAGLs, diacylglycerol lipases
- DTT, dithiothreitol
- Drug discovery
- EAE, encephalomyelitis
- EI, enzyme–inhibitor complex
- FAAH, amide hydrolase
- FFAs, free fatty acids
- FP, fluorophosphonate
- FP-Rh, fluorophosphonate-rhodamine
- FQ, fit quality
- HFD, high-fat diet
- HFIP, hexafluoroisopropyl
- LC–MS, liquid chromatographic mass spectrometry
- LFD, low-fat diet
- MAGL, monoacylglycerol lipase
- MAGs, monoglycerides
- MS, multiple sclerosis
- Metabolic syndrome
- Monoacylglycerol lipases
- NAM, N-arachidonoyl maleimide
- NHS, N-hydroxysuccinimidyl
- Neuroinflammation
- OCT2, organic cation transporter 2
- P-gp, P-glycoprotein
- PA, phosphatidic acid
- PD, Parkinson's disease
- PET, positron emission tomography
- PGE2, prostaglandin
- PGs, prostaglandins
- PK, pharmacokinetic
- PLA2G7, phospholipase A2 group VII
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis
- THL, tetrahydrolipstatin
- cPLA2, cytosolic phospholipase A2
Collapse
Affiliation(s)
- Hui Deng
- Corresponding authors. Tel./fax: +86 28 85422197.
| | - Weimin Li
- Corresponding authors. Tel./fax: +86 28 85422197.
| |
Collapse
|
89
|
Fotio Y, Palese F, Guaman Tipan P, Ahmed F, Piomelli D. Inhibition of fatty acid amide hydrolase in the CNS prevents and reverses morphine tolerance in male and female mice. Br J Pharmacol 2020; 177:3024-3035. [PMID: 32077093 DOI: 10.1111/bph.15031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Fatty acid amide hydrolase (FAAH) is an intracellular serine amidase that terminates the signalling of various lipid messengers involved in pain regulation, including anandamide and palmitoylethanolamide. Here, we investigated the effects of pharmacological or genetic FAAH removal on tolerance to the anti-nociceptive effects of morphine. EXPERIMENTAL APPROACH We induced tolerance in male and female mice by administering twice-daily morphine for 7 days while monitoring nociceptive thresholds by the tail immersion test. The globally active FAAH inhibitor URB597 (1 and 3 mg·kg-1 , i.p.) or the peripherally restricted FAAH inhibitor URB937 (3 mg·kg-1 , i.p.) were administered daily 30 min prior to morphine, alone or in combination with the cannabinoid CB1 receptor antagonist AM251 (3 mg·kg-1 , i.p.), the CB2 receptor antagonist AM630 (3 mg·kg-1 , i.p.), or the PPAR-α antagonist GW6471 (4 mg·kg-1 , i.p.). Spinal levels of FAAH-regulated lipids were quantified by LC/MS-MS. Gene transcription was assessed by RT-qPCR. KEY RESULTS URB597 prevented and reversed morphine tolerance in both male and female mice. This effect was mimicked by genetic FAAH deletion, but not by URB937. Treatment with AM630 suppressed, whereas treatment with AM251 or GW6471, attenuated the effects of URB597. Anandamide mobilization was enhanced in the spinal cord of morphine-tolerant mice. mRNA levels of the anandamide-producing enzyme N-acyl-phosphatidylethanolamine PLD (NAPE-PLD) and the palmitoylethanolamide receptor PPAR-α, but not those for CB2 , CB1 receptors or FAAH, were elevated in spinal cord CONCLUSION AND IMPLICATIONS: FAAH-regulated lipid signalling in the CNS modulated opiate tolerance, suggesting FAAH as a potential target for opiate-sparing medications.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Francesca Palese
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Pablo Guaman Tipan
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California.,Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
90
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
91
|
Cifani C, Avagliano C, Micioni Di Bonaventura E, Giusepponi ME, De Caro C, Cristiano C, La Rana G, Botticelli L, Romano A, Calignano A, Gaetani S, Micioni Di Bonaventura MV, Russo R. Modulation of Pain Sensitivity by Chronic Consumption of Highly Palatable Food Followed by Abstinence: Emerging Role of Fatty Acid Amide Hydrolase. Front Pharmacol 2020; 11:266. [PMID: 32231568 PMCID: PMC7086305 DOI: 10.3389/fphar.2020.00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 01/03/2023] Open
Abstract
There is a strong relationship between palatable diet and pain sensitivity, and the cannabinoid and opioid systems might play an important role in this correlation. The palatable diet used in many animal models of obesity is the cafeteria (CAF) diet, based on human food with high sugar, salt, and fat content. In this study, we investigated whether long-term exposure to a CAF diet could modify pain sensitivity and explored the role of the cannabinergic system in this modification. Male Sprague–Dawley rats were divided into two groups: one fed with standard chow only (CO) and the other with extended access (EA) to a CAF diet. Hot plate and tail flick tests were used to evaluate pain sensitivity. At the end of a 40-day CAF exposure, EA rats showed a significant increase in the pain threshold compared to CO rats, finding probably due to up-regulation of CB1 and mu-opioid receptors. Instead, during abstinence from palatable foods, EA animals showed a significant increase in pain sensibility, which was ameliorated by repeated treatment with a fatty acid amide hydrolase inhibitor, PF-3845 (10 mg/kg, intraperitoneally), every other day for 28 days. Ex vivo analysis of the brains of these rats clearly showed that this effect was mediated by mu-opioid receptors, which were up-regulated following repeated treatment of PF-3845. Our data add to the knowledge about changes in pain perception in obese subjects, revealing a key role of CB1 and mu-opioid receptors and their possible pharmacological crosstalk and reinforcing the need to consider this modulation in planning effective pain management for obese patients.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carmen Avagliano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | | | | | - Carmen De Caro
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Roberto Russo
- Department of Pharmacy, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
92
|
The Effect of Orally Dosed Levagen+™ (palmitoylethanolamide) on Exercise Recovery in Healthy Males-A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2020; 12:nu12030596. [PMID: 32106527 PMCID: PMC7146510 DOI: 10.3390/nu12030596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to evaluate the effect of palmitoylethanolamide (PEA), a cannabimimetic compound and lipid messenger, on recovery from muscle damaging exercise. Twenty-eight healthy young male participants attended the laboratory four times on subsequent days. In the first visit, baseline characteristics were recorded before participants were randomized to consume either liquid PEA (167.5 mg Levagen+ with 832.5 mg maltodextrin) or a matched placebo (1 g maltodextrin) drink. Leg press exercise consisted of four sets at 80% of one repetition maximum followed by a performance set. Muscle soreness, thigh circumference, blood lactate concentration, biomarkers of muscle damage and inflammation, and transcription factor pathways were measured pre- and immediately post-exercise and again at 1, 2, 3, 24, 48, and 72 h post-exercise. The leg press exercise increased (p < 0.05) blood lactate concentration and induced muscle damage as evidenced by increased muscle soreness, thigh circumference, biomarkers of muscle damage, and concentrations of tumor necrosis factor-α. PEA reduced (p < 0.05) myoglobin and blood lactate concentrations and increased protein kinase B phosphorylation following exercise. Taken together, these results indicate PEA supplementation may aid in muscle recovery from repeat bouts of exercise performed within a short duration by reducing myoglobin and lactate concentration.
Collapse
|
93
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
94
|
Xing C, Zhuang Y, Xu TH, Feng Z, Zhou XE, Chen M, Wang L, Meng X, Xue Y, Wang J, Liu H, McGuire TF, Zhao G, Melcher K, Zhang C, Xu HE, Xie XQ. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G i Signaling Complex. Cell 2020; 180:645-654.e13. [PMID: 32004460 DOI: 10.1016/j.cell.2020.01.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.
Collapse
Affiliation(s)
- Changrui Xing
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youwen Zhuang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ting-Hai Xu
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maozi Chen
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Wang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xing Meng
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng Liu
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence Francis McGuire
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cheng Zhang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
95
|
Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic pruritus: A review. J Am Acad Dermatol 2020; 82:1205-1212. [PMID: 31987788 DOI: 10.1016/j.jaad.2020.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Medical marijuana is becoming widely available to patients in the United States, and with recreational marijuana now legalized in many states, patient interest is on the rise. The endocannabinoid system plays an important role in skin homeostasis in addition to broader effects on neurogenic responses such as pruritus and nociception, inflammation, and immune reactions. Numerous studies of in vitro and animal models have provided insight into the possible mechanisms of cannabinoid modulation on pruritus, with the most evidence behind neuronal modulation of peripheral itch fibers and centrally acting cannabinoid receptors. In addition, human studies, although limited due to differences in the cannabinoids used, disease models, and delivery method, have consistently shown significant reductions in both scratching and symptoms in chronic pruritus. Clinical studies have shown a reduction in pruritus in several dermatologic (atopic dermatitis, psoriasis, asteatotic eczema, prurigo nodularis, and allergic contact dermatitis) and systemic (uremic pruritus and cholestatic pruritus) diseases. These preliminary human studies warrant controlled trials to confirm the benefit of cannabinoids for treatment of pruritus and to standardize treatment regimens and indications. In patients who have refractory chronic pruritus after standard therapies, cannabinoid formulations may be considered as an adjuvant therapy where it is legal.
Collapse
Affiliation(s)
- Christina Avila
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Susan Massick
- Division of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Shawn G Kwatra
- Division of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Bechtel
- Division of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
96
|
Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain. Pain 2020; 161:1350-1360. [DOI: 10.1097/j.pain.0000000000001807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
97
|
Milligan AL, Szabo-Pardi TA, Burton MD. Cannabinoid Receptor Type 1 and Its Role as an Analgesic: An Opioid Alternative? J Dual Diagn 2020; 16:106-119. [PMID: 31596190 PMCID: PMC7007359 DOI: 10.1080/15504263.2019.1668100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding how the body regulates pain is fundamental to develop rational strategies to combat the growing prevalence of chronic pain states, opioid dependency, and the increased financial burden to the medical care system. Pain is the most prominent reason why Americans seek medical attention and extensive literature has identified the importance of the endocannabinoid pathway in controlling pain. Modulation of the endocannabinoid system offers new therapeutic opportunities for the selective control of excessive neuronal activity in several pain conditions (acute, inflammatory, chronic, and neuropathic). Cannabinoids have a long history of medicinal use and their analgesic properties are well documented; however, there are major impediments to understanding cannabinoid pain modulation. One major issue is the presence of psychotropic side effects associated with D9-tetrahydrocannabinol (THC) or synthetic derivatives, which puts an emphatic brake on their use. This dose-limiting effect prevents the appropriate degree of analgesia . Animal studies have shown that the psychotropic effects are mediated via brain cannabinoid type 1 (CB1) receptors, while analgesic activity in chronic pain states may be mediated via CB1R action in the spinal cord, brainstem, peripheral sensory neurons, or immune cells. The development of appropriate therapies is incumbent on our understanding of the role of peripheral versus central endocannabinoid-driven analgesia. Recent physiological, pharmacological, and anatomical studies provide evidence that one of the main roles of the endocannabinoid system is the regulation of gamma-aminobutyric acid (GABA) and/or glutamate release. This article will review this evidence in the context of its implications for pain. We first provide a brief overview of CB1R's role in the regulation of nociception, followed by a review of the evidence that the peripheral endocannabinoid system modulates nociception. We then look in detail at regulation of central-mediated analgesia, followed up with evidence that cannabinoidmediated modulation of pain involves modulation of GABAergic and glutamatergic neurotransmission in key brain regions. Finally, we discuss cannabinoid action on non-neuronal cells in the context of inflammation and direct modulation of neurons. This work stands to reveal long-standing controversies in the cannabinoid analgesia area that have had an impact on failed clinical trials and implementation of therapeutics targeting this system.
Collapse
|
98
|
Hindocha C, Cousijn J, Rall M, Bloomfield MAP. The Effectiveness of Cannabinoids in the Treatment of Posttraumatic Stress Disorder (PTSD): A Systematic Review. J Dual Diagn 2020; 16:120-139. [PMID: 31479625 DOI: 10.1080/15504263.2019.1652380] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives: Posttraumatic stress disorder (PTSD) is a potentially debilitating mental health problem. There has been a recent surge of interest regarding the use of cannabinoids in the treatment of PTSD. We therefore sought to systematically review and assess the quality of the clinical evidence of the effectiveness of cannabinoids for the treatment of PTSD. Method: We included all studies published until December 2018 where a patient has had PTSD diagnosed and had been prescribed or were using a cannabinoid for the purpose of reducing PTSD symptoms. Our primary outcome measure was the reduction in PTSD symptoms using a validated instrument. In the absence of randomized controlled trials, we included the next best available levels of evidence including observational and retrospective studies and case reports. We assessed risk of bias and quality using validated tools appropriate for the study design. Results: We included 10 studies in this review, of which only one study was a pilot randomized, double-blind, placebo-controlled, crossover clinical trial. Every identified study had medium to high risk of bias and was of low quality. We found that cannabinoids may decrease PTSD symptomology, in particular sleep disturbances and nightmares. Conclusions: Most studies to date are small and of low quality, with significant limitations to the study designs precluding any clinical recommendations about its use in routine clinical practice. Evidence that cannabinoids may help reduce global PTSD symptoms, sleep disturbances, and nightmares indicates that future well-controlled, randomized, double-blind clinical trials are highly warranted.PROSPERO registration number: 121646.
Collapse
Affiliation(s)
- C Hindocha
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom.,NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - J Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - M Rall
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - M A P Bloomfield
- Clinical Psychopharmacology Unit, University College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom.,NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom.,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
99
|
Petrosino S, Schiano Moriello A, Verde R, Allarà M, Imperatore R, Ligresti A, Mahmoud AM, Peritore AF, Iannotti FA, Di Marzo V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation 2019; 16:274. [PMID: 31878942 PMCID: PMC6933707 DOI: 10.1186/s12974-019-1671-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is a pleiotropic endogenous lipid mediator currently used as a "dietary food for special medical purposes" against neuropathic pain and neuro-inflammatory conditions. Several mechanisms underlie PEA actions, among which the "entourage" effect, consisting of PEA potentiation of endocannabinoid signaling at either cannabinoid receptors or transient receptor potential vanilloid type-1 (TRPV1) channels. Here, we report novel molecular mechanisms through which PEA controls mast cell degranulation and substance P (SP)-induced histamine release in rat basophilic leukemia (RBL-2H3) cells, a mast cell model. METHODS RBL-2H3 cells stimulated with SP were treated with PEA in the presence and absence of a cannabinoid type-2 (CB2) receptor antagonist (AM630), or a diacylglycerol lipase (DAGL) enzyme inhibitor (OMDM188) to inhibit the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The release of histamine was measured by ELISA and β-hexosaminidase release and toluidine blue staining were used as indices of degranulation. 2-AG levels were measured by LC-MS. The mRNA expression of proposed PEA targets (Cnr1, Cnr2, Trpv1, Ppara and Gpr55), and of PEA and endocannabinoid biosynthetic (Napepld, Dagla and Daglb) and catabolic (Faah, Naaa and Mgl) enzymes were also measured. The effects of PEA on the activity of DAGL-α or -β enzymes were assessed in COS-7 cells overexpressing the human recombinant enzyme or in RBL-2H3 cells, respectively. RESULTS SP increased the number of degranulated RBL-2H3 cells and triggered the release of histamine. PEA counteracted these effects in a manner antagonized by AM630. PEA concomitantly increased the levels of 2-AG in SP-stimulated RBL-2H3 cells, and this effect was reversed by OMDM188. PEA significantly stimulated DAGL-α and -β activity and, consequently, 2-AG biosynthesis in cell-free systems. Co-treatment with PEA and 2-AG at per se ineffective concentrations downmodulated SP-induced release of histamine and degranulation, and this effect was reversed by OMDM188. CONCLUSIONS Activation of CB2 underlies the inhibitory effects on SP-induced RBL-2H3 cell degranulation by PEA alone. We demonstrate for the first time that the effects in RBL-2H3 cells of PEA are due to the stimulation of 2-AG biosynthesis by DAGLs.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy.
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Imperatore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Ali Mokhtar Mahmoud
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessio Filippo Peritore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, Canada.
| |
Collapse
|
100
|
Bouagnon AD, Lin L, Srivastava S, Liu CC, Panda O, Schroeder FC, Srinivasan S, Ashrafi K. Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biol 2019; 17:e3000242. [PMID: 31805041 PMCID: PMC6917301 DOI: 10.1371/journal.pbio.3000242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal β-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal β-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.
Collapse
Affiliation(s)
- Aude D. Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Shubhi Srivastava
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chung-Chih Liu
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|