51
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
52
|
Aboul Hosn S, El Ahmadieh C, Thoumi S, Sinno A, Al Khoury C. Cimicifugoside H-2 as an Inhibitor of IKK1/Alpha: A Molecular Docking and Dynamic Simulation Study. Biomolecules 2024; 14:860. [PMID: 39062574 PMCID: PMC11274867 DOI: 10.3390/biom14070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
One of the most challenging issues scientists face is finding a suitable non-invasive treatment for cancer, as it is widespread around the world. The efficacy of phytochemicals that target oncogenic pathways appears to be quite promising and has gained attention over the past few years. We investigated the effect of docking phytochemicals isolated from the rhizomes of the Cimicifuga foetida plant on different domains of the IκB kinase alpha (IKK1/alpha) protein. The Cimicifugoside H-2 phytochemical registered a high docking score on the activation loop of IKK1/alpha amongst the other phytochemicals compared to the positive control. The interaction of the protein with Cimicifugoside H-2 was mostly stabilized by hydrogen bonds and hydrophobic interactions. A dynamic simulation was then performed with the Cimicifugoside H-2 phytochemical on the activation loop of IKK1/alpha, revealing that Cimicifugoside H-2 is a possible inhibitor of this protein. The pharmacokinetic properties of the drug were also examined to assess the safety of administering the drug. Therefore, in this in silico study, we discovered that the Cimicifugoside H-2 phytochemical inhibits the actively mutated conformation of IKK1/alpha, potentially suppressing the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway.
Collapse
Affiliation(s)
- Shahd Aboul Hosn
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Christina El Ahmadieh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| | - Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon (C.E.A.)
| |
Collapse
|
53
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
54
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
55
|
Jan K, Hassan N, James A, Hussain I, Rashid SM. Exploring molecular targets in cancer: Unveiling the anticancer potential of Paeoniflorin through a comprehensive analysis of diverse signaling pathways and recent advances. J Biol Methods 2024; 11:e99010014. [PMID: 39323487 PMCID: PMC11423941 DOI: 10.14440/jbm.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
Tumors have posed significant threats to human health for over 250 years, emerging as the foremost cause of death. While chemotherapeutic drugs are effective in treating tumors, their side effects can sometimes be challenging to manage during therapy. Nonetheless, there is growing interest in exploring natural compounds as alternatives, which potentially achieve therapeutic outcomes comparable to conventional chemotherapeutics with fewer adverse effects. Paeoniflorin (PF), a monoterpene glycoside derived from the root of Paeonia lactiflora, has garnered significant attention lately due to its promising anti-cancer properties. This review offers an updated outline of the molecular mechanisms underlying PF's anti-tumor function, with a focus on its modulation of various signaling pathways. PF exerts its anti-tumor activity by regulating crucial cellular processes including apoptosis, angiogenesis, proliferation, and metastasis. We explored the multifaceted impact of PF while modulating through signaling pathways, encompassing nuclear factor kappa B, NOTCH, caspase cascade, transforming growth factor-β, NEDD4, P53/14-3-3, STAT 3, MAPK, MMP-9, and SKP2 signaling pathways, highlighting its versatility in targeting diverse malignancies. Furthermore, we discuss future research directions aimed at exploring innovative and targeted cancer therapies facilitated by PF.
Collapse
Affiliation(s)
- Kounser Jan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Neelofar Hassan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Antonisamy James
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| |
Collapse
|
56
|
Rincon-Arevalo H, Stefanski AL, Le TA, Cases M, Wiedemann A, Szelinski F, Ritter J, Dang VD, Lino AC, Dörner T, Schrezenmeier E. Differential response of IgM and IgG memory B cell populations to CD40L: insights of T cell - memory B cell interactions. Front Immunol 2024; 15:1432045. [PMID: 39050849 PMCID: PMC11266000 DOI: 10.3389/fimmu.2024.1432045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Memory B cells (mBCs) are characterized by their long-term stability, fast reactivation, and capability to rapidly differentiate into antibody-secreting cells (ASCs). However, the role of T cells in the differentiation of mBCs, in contrast to naive B cells, remains to be delineated. We study the role of T cells in mBC responses, using CD40L stimulation and autologous T-B co-cultures. Our results showed that increased CD40L levels led to a selective increased proliferation of IgM+ mBC, which did not class-switched, resulting in higher frequencies of IgM+ ASCs and a lower frequency of IgG+ ASCs. The IgG+/IgA+ mBCs were unaffected. We further compared the transcription of immune-related genes in IgM+ and IgG+ pre-plasmablasts cultured at high (500 ng/mL) and low (50 ng/mL) CD40L levels. In response to increased CD40L levels, both populations exhibited a core response to genes related to activation (TRAF1, AKT3, CD69, and CD80). However, they differed in genes related to cytokine/chemokine/homing interactions (CCL3/4/17, LTA, NKX2-3, BCL2 and IL21R) and cell-cell interactions (HLADR, CD40, and ICOSL), which were largely confined to IgG+ cells. Our findings revealed that in co-cultures with a high T-ratio, the response was similar to that found in cultures with high CD40L levels. These results suggest that IgG+ mBCs have a greater capacity for proliferation and T cell interaction, and weaker migration capabilities, leading to a preference for an IgG response over IgM in the short term. This adaptable response could fine-tune the memory repertoire with different functions of IgG versus IgM mBCs.
Collapse
Affiliation(s)
- Hector Rincon-Arevalo
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ana-Luisa Stefanski
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Tuan Anh Le
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Marcos Cases
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Franziska Szelinski
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Van Duc Dang
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Andreia C. Lino
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Thomas Dörner
- Department of Medicine/Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Medicine/Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| |
Collapse
|
57
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
58
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
59
|
El-Naggar AE, Helmy MM, El-Gowilly SM, El-Mas MM. Suppression by central adenosine A3 receptors of the cholinergic defense against cardiovascular aberrations of sepsis: role of PI3K/MAPKs/NFκB signaling. Front Pharmacol 2024; 15:1418981. [PMID: 38966542 PMCID: PMC11222418 DOI: 10.3389/fphar.2024.1418981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Despite the established role of peripheral adenosine receptors in sepsis-induced organ dysfunction, little or no data is available on the interaction of central adenosine receptors with sepsis. The current study tested the hypothesis that central adenosine A3 receptors (A3ARs) modulate the cardiovascular aberrations and neuroinflammation triggered by sepsis and their counteraction by the cholinergic antiinflammatory pathway. Methods: Sepsis was induced by cecal ligation and puncture (CLP) in rats pre-instrumented with femoral and intracisternal (i.c.) catheters for hemodynamic monitoring and central drug administration, respectively. Results: The CLP-induced hypotension, reduction in overall heart rate variability (HRV) and sympathovagal imbalance towards parasympathetic predominance were abolished by i.v. nicotine (100 μg/kg) or i.c. VUF5574 (A3AR antagonist, 2 µg/rat). In addition, the selective A3AR agonist, 3-iodobenzyl-5'-N-methylcarboxamidoadenosine IB-MECA, 4 µg/rat, i.c.) exaggerated the hypotension and cardiac autonomic dysfunction induced by sepsis and opposed the favorable nicotine actions against these septic manifestations. Immunohistochemically, IB-MECA abolished the nicotine-mediated downregulation of NFκB and NOX2 expression in rostral ventrolateral medullary areas (RVLM) of brainstem of septic rats. The inhibitory actions of IB-MECA on nicotine responses disappeared after i.c. administration of PD98059 (MAPK-ERK inhibitor), SP600125 (MAPK-JNK inhibitor) or wortmannin (PI3K inhibitor). Moreover, infliximab (TNFα inhibitor) eliminated the IB-MECA-induced rises in RVLM-NFκB expression and falls in HRV, but not blood pressure. Conclusion: Central PI3K/MAPKs pathway mediates the A3AR counteraction of cholinergic defenses against cardiovascular and neuroinflammatory aberrations in sepsis.
Collapse
Affiliation(s)
- Amany E. El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mai M. Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
60
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
61
|
Zheng G, Sun S, Zhang G, Liang X. miR-144 affects the immune response and activation of inflammatory responses in Cynoglossus semilaevis by regulating the expression of CsMAPK6. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109578. [PMID: 38670413 DOI: 10.1016/j.fsi.2024.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.
Collapse
Affiliation(s)
- Guiliang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siqi Sun
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guosong Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Xia Liang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| |
Collapse
|
62
|
Zlatanova M, Nešić A, Trbojević-Ivić J, Četić D, Gavrović-Jankulović M. Targeting NF-κB Signaling: Selected Small Molecules Downregulate Pro-Inflammatory Cytokines in Both Food Allergen and LPS-Induced Inflammation. Int J Mol Sci 2024; 25:5798. [PMID: 38891984 PMCID: PMC11172266 DOI: 10.3390/ijms25115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Although inflammation is primarily a protective response guarding the human body, it can result in a variety of chronic diseases such as allergies, auto-immune, cardiovascular diseases, and cancer. In NF-κB-mediated inflammation, many small molecules and food compounds characterized as nutraceuticals have shown positive effects associated with immunomodulatory properties. We investigated the effects of selected bioactive small molecules, commonly found in food components, vanillyl alcohol (VA) and lauric acid (LA), on different cell lines exposed to pro-inflammatory stimuli, lipopolysaccharide (LPS), and the food allergen actinidin (Act d 1). Pro-inflammatory cytokines were downregulated in response to both VA and LA, and this downregulation was caused by a decrease in the activation of the NF-κB pathway and the translocation of p65, the pathway's major component. Small nutraceutical molecules, VA and LA, showed not only inhibition of the pro-inflammatory cytokines, but also inhibition of the NF-κB activation, and reduced translocation of the p65 component. The present study may contribute to the therapeutic use of these molecules for various inflammatory diseases, which have in common an increased expression of pro-inflammatory cytokines and NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Milena Zlatanova
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
| | - Andrijana Nešić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH), 20457 Hamburg, Germany
| | | | - Danilo Četić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.); (A.N.)
| |
Collapse
|
63
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
64
|
Thirugnanam S, Rout N. A Perfect Storm: The Convergence of Aging, Human Immunodeficiency Virus Infection, and Inflammasome Dysregulation. Curr Issues Mol Biol 2024; 46:4768-4786. [PMID: 38785555 PMCID: PMC11119826 DOI: 10.3390/cimb46050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The emergence of combination antiretroviral therapy (cART) has greatly transformed the life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have access to this life-saving therapy. However, this progress has come with a new challenge: an increase in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging population experiences immunosenescence marked by an increased proinflammatory environment. This phenomenon is linked to chronic inflammation, driven in part by cellular structures called inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state. This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a focus on the inflammasomes. This review also explores current research regarding inflammasomes and potential strategies for targeting inflammasomes to mitigate inflammation. Further research on inflammasome signaling presents a unique opportunity to develop targeted interventions and innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
65
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
66
|
Jones IH, Collins JE, Hall NJ, Heinson AI. Transcriptomic analysis of the effect of remote ischaemic conditioning in an animal model of necrotising enterocolitis. Sci Rep 2024; 14:10783. [PMID: 38734725 PMCID: PMC11088709 DOI: 10.1038/s41598-024-61482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸβ2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.
Collapse
Affiliation(s)
- Ian Howard Jones
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK.
| | - Jane Elizabeth Collins
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton, UK
| | - Nigel John Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Southampton Children's Hospital, Tremona Road, Southampton, UK
| | - Ashley Ivan Heinson
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical Informatics Research Unit, Cancer Sciences, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
67
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
68
|
Liu J, Hu W, Feng Z. The Unrecognized Role of Ninjurin 2 in Inflammation, Metabolism, and Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:637-640. [PMID: 38417699 DOI: 10.1016/j.ajpath.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, New Jersey
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, New Jersey
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
69
|
Xia X, Zhu L, Xu M, Lei Z, Yu H, Li G, Wang X, Jia H, Yin Z, Huang F, Gao Y. ANKRD22 promotes resolution of psoriasiform skin inflammation by antagonizing NIK-mediated IL-23 production. Mol Ther 2024; 32:1561-1577. [PMID: 38454607 PMCID: PMC11081937 DOI: 10.1016/j.ymthe.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.
Collapse
Affiliation(s)
- Xichun Xia
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Leqing Zhu
- Guangzhou Laboratory, Bioland, Guangzhou 510005, China
| | - Miaomiao Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Yunfei Gao
- Department of Oncology, Research Center of Cancer Diagnosis and Therapy, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
70
|
Kim EJ, Park H, Kim EY, Kim DK, Jung HS, Sohn Y. Ursodeoxycholic acid alleviates atopic dermatitis-associated inflammatory responses in HaCaT and RBL-2H3 cells and DNCB/DFE-treated mice. Life Sci 2024; 344:122560. [PMID: 38490296 DOI: 10.1016/j.lfs.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/18/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
AIMS Ursodeoxycholic acid (UDCA) is a hydrophilic dihydroxy bile acid used for cholestatic liver disease and exhibits antioxidant, antitumor, and anti-inflammatory effects. However, its potential effects on atopic dermatitis (AD) have not been elucidated. This study aimed to evaluate the efficacy of UDCA in inhibiting the inflammatory response and alleviating lesions in AD-like mice. MAIN METHODS To investigate the efficacy of UDCA in AD-like inflammatory responses, tumor necrosis factor-alpha (TNF-α)- and interferon-gamma (IFN-γ)-stimulated HaCaT cells and anti-dinitrophenyl immunoglobulin E (DNP-IgE)- and human serum albumin (HSA)-stimulated RBL-2H3 cells were used to investigate the levels of inflammatory factors and their mechanisms. AD-like lesions were induced by applying DNCB/DFE to mice. The effect of UDCA administration in AD-like mice was analyzed by assessing organ weight, serum IgE and inflammatory cytokine levels, and histopathological changes using immunohistochemical and immunofluorescent staining. KEY FINDINGS In HaCaT cells, UDCA significantly diminished TARC, MDC, MCP-1, and IL-6 expression by inhibiting the phosphorylation of nuclear NF-κB and cytoplasmic IκB, and also increased the levels of skin barrier protein. In RBL-2H3 cells, UDCA reduced β-hexosaminidase and IL-4 levels. In AD-like mice, UDCA suppressed organ hypertrophy, ear edema, SCORAD index, DFE-specific IgE levels, inflammatory cytokine levels, skin hypertrophy, mast cell invasion, skin barrier loss, and thymic stromal lymphopoietin-positive areas. SIGNIFICANCE UDCA suppressed the expression of pro-inflammatory cytokines by keratinocytes and mast cells. It also alleviated atopy by suppressing symptoms without organ toxicity in AD-like mice. UDCA may be an effective and safe treatment for AD.
Collapse
Affiliation(s)
- Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
71
|
Chandra Shill M, El-Nashar HAS, Prova Mollick P, Nath Acharyya R, Afrin S, Hossain H, Halder S, Torequl Islam M, Bhuia MS, Reza HM, El-Shazly M, Mubarak MS. Longevity Spinach (Gynura procumbens) Ameliorated Oxidative Stress and Inflammatory Mediators in Cisplatin-Induced Organ Dysfunction in Rats: Comprehensive in vivo and in silico Studies. Chem Biodivers 2024; 21:e202301719. [PMID: 38361048 DOI: 10.1002/cbdv.202301719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
This study focused to assess the efficacy of Gynura procumbens (GP) leaf extract against cisplatin (CP)-induced hepatorenal complications in Wister albino rats. Additionally, it aims to detect polyphenolic compounds using high-performance liquid chromatography with diode-array detection (HPLC-DAD). The rats were treated intraperitoneally with CP (7.5 mg/kg) to mediate hepatorenal damage. They were then treated with GP extract (75 and 150 mg/kg, P.O.) for 7 consecutive days. Although GP extract significantly ameliorated CP-mediated hepatorenal biomarkers like alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen (BUN) levels in a dose-dependent manner, GP extract at 150 mg/kg dose normalized hepatorenal biomarkers ALP (45.11 U/L), ALT (34 U/L), AST (29 U/L), creatinine (10.3 mg/dl) and BUN (11.19 mg/dl) while comparing to control and disease group. Similarly, though it significantly reduced CP-induced oxidative stress inducers, including nitric oxide (NO) and advanced oxidative protein products (AOPP), higher dose (150 mg/kg) exhibited better activity in reducing NO (281.54 mmol/gm tissue in liver and 52.73 mmol/gm tissue in the kidney) and AOPP (770.95 mmol/mg protein in liver and 651.90 mmol/mg protein in the kidney). Besides, it showed better enhancement in the antioxidant enzymes superoxide dismutase, and glutathione levels at a higher dose (150 mg/kg). Histopathological studies showed that CP caused collagen accumulation in the liver and kidney tissues. GP extract drained the collagen mass and acted against hepatorenal damage. Ellagic acid, gallic acid, quercetin hydrate, kaempferol, and rutin hydrate were revealed in GP extract. In-silico modelling showed good docking scores of the polyphenolic compounds with molecular targets including CYP4502E1, NF-κB, caspase-3, and TNF-α. GP could be an effective therapeutic option for management of anticancer drugs' complications like CP-induced organ damage, although clinical studies are required to establish herbal formulation.
Collapse
Affiliation(s)
- Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | | | | - Silvia Afrin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Hemayet Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shimul Halder
- Department of Pharmaceutical Technology, Dhaka University, Dhaka, 1000, Bangladesh
| | - Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | |
Collapse
|
72
|
Ho NCW, Yap JYY, Zhao Z, Wang Y, Fernando K, Li CH, Kwang XL, Quah HS, Arcinas C, Iyer NG, Fong ELS. Bioengineered Hydrogels Recapitulate Fibroblast Heterogeneity in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307129. [PMID: 38493497 PMCID: PMC11132030 DOI: 10.1002/advs.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Recently mapped transcriptomic landscapes reveal the extent of heterogeneity in cancer-associated fibroblasts (CAFs) beyond previously established single-gene markers. Functional analyses of individual CAF subsets within the tumor microenvironment are critical to develop more accurate CAF-targeting therapeutic strategies. However, there is a lack of robust preclinical models that reflect this heterogeneity in vitro. In this study, single-cell RNA sequencing datasets acquired from head and neck squamous cell carcinoma tissues to predict microenvironmental and cellular features governing individual CAF subsets are leveraged. Some of these features are then incorporated into a tunable hyaluronan-based hydrogel system to culture patient-derived CAFs. Control over hydrogel degradability and integrin adhesiveness enabled derivation of the predominant myofibroblastic and inflammatory CAF subsets, as shown through changes in cell morphology and transcriptomic profiles. Last, using these hydrogel-cultured CAFs, microtubule dynamics are identified, but not actomyosin contractility, as a key mediator of CAF plasticity. The recapitulation of CAF heterogeneity in vitro using defined hydrogels presents unique opportunities for advancing the understanding of CAF biology and evaluation of CAF-targeting therapeutics.
Collapse
Affiliation(s)
- Nicholas Ching Wei Ho
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Josephine Yu Yan Yap
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Zixuan Zhao
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
| | - Yunyun Wang
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Kanishka Fernando
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
| | - Constance H Li
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
| | - Hong Sheng Quah
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Camille Arcinas
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - N. Gopalakrishna Iyer
- Cancer Therapeutics Research LaboratoryNational Cancer Centre SingaporeSingapore168583Singapore
- Duke‐NUS Medical SchoolNational University of SingaporeSingapore169857Singapore
| | - Eliza Li Shan Fong
- Translational Tumor Engineering Laboratory, Department of Biomedical EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science InstituteNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
73
|
Li MY, Chong LC, Duns G, Lytle A, Woolcock B, Jiang A, Telenius A, Ben-Neriah S, Nawaz W, Slack GW, Elisia I, Viganò E, Aoki T, Healy S, Krystal G, Venturutti L, Scott DW, Steidl C. TRAF3 loss-of-function reveals the noncanonical NF-κB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2024; 121:e2320421121. [PMID: 38662551 PMCID: PMC11067025 DOI: 10.1073/pnas.2320421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.
Collapse
Affiliation(s)
- Michael Y. Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Andrew Lytle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Waqas Nawaz
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Elena Viganò
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Shannon Healy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Leandro Venturutti
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| |
Collapse
|
74
|
Waters JA, Robinson M, Lujano-Olazaba O, Lucht C, Gilbert SF, House CD. Omental preadipocytes stimulate matrix remodeling and IGF signaling to support ovarian cancer metastasis. Cancer Res 2024; 84:743101. [PMID: 38635891 PMCID: PMC11217736 DOI: 10.1158/0008-5472.can-23-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Ovarian cancer can metastasize to the omentum, which is associated with a complex tumor microenvironment. Omental stromal cells facilitate ovarian cancer colonization by secreting cytokines and growth factors. Improved understanding of the tumor supportive functions of specific cell populations in the omentum could identify strategies to prevent and treat ovarian cancer metastasis. Here, we showed that omental preadipocytes enhance the tumor initiation capacity of ovarian cancer cells. Secreted factors from preadipocytes supported cancer cell viability during nutrient and isolation stress and enabled prolonged proliferation. Co-culturing with pre-adipocytes led to upregulation of genes involved in extracellular matrix (ECM) organization, cellular response to stress, and regulation of insulin-like growth factor (IGF) signaling in ovarian cancer cells. IGF-1 induced ECM genes and increased alternative NF-κB signaling by activating RelB. Inhibiting the IGF-1 receptor (IGF1R) initially increased tumor omental adhesion but decreased growth of established preadipocyte-induced subcutaneous tumors as well as established intraperitoneal tumors. Together, this study shows that omental preadipocytes support ovarian cancer progression, which has implications for targeting metastasis.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California.
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California.
| | | | - Cassidy Lucht
- Department of Biology, San Diego State University, San Diego, California.
| | - Samuel F. Gilbert
- Department of Biology, San Diego State University, San Diego, California.
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
75
|
Zhang N, Shen S, Yang M, He S, Liu C, Li H, Lu T, Liu H, Hu Q, Tang W, Chen Y. Design, Synthesis, and Biological Evaluation of a Novel NIK Inhibitor with Anti-Inflammatory and Hepatoprotective Effects for Sepsis Treatment. J Med Chem 2024; 67:5617-5641. [PMID: 38563549 DOI: 10.1021/acs.jmedchem.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.
Collapse
Affiliation(s)
- Nanxia Zhang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengyu Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Sijie He
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
76
|
Rathore U, Haas P, Easwar Kumar V, Hiatt J, Haas KM, Bouhaddou M, Swaney DL, Stevenson E, Zuliani-Alvarez L, McGregor MJ, Turner-Groth A, Ochieng' Olwal C, Bediako Y, Braberg H, Soucheray M, Ott M, Eckhardt M, Hultquist JF, Marson A, Kaake RM, Krogan NJ. CRISPR-Cas9 screen of E3 ubiquitin ligases identifies TRAF2 and UHRF1 as regulators of HIV latency in primary human T cells. mBio 2024; 15:e0222223. [PMID: 38411080 PMCID: PMC11005436 DOI: 10.1128/mbio.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.
Collapse
Affiliation(s)
- Ujjwal Rathore
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Paige Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Vigneshwari Easwar Kumar
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Medical Scientist Training Program, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Kelsey M. Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Erica Stevenson
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Lorena Zuliani-Alvarez
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Michael J. McGregor
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | | | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Hannes Braberg
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, USA
| | - Manon Eckhardt
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander Marson
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Diabetes Center, University of California, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Robyn M. Kaake
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
77
|
Li S, Sun J, Zhang BW, Yang L, Wan YC, Chen BB, Xu N, Xu QR, Fan J, Shang JN, Li R, Yu CG, Xi Y, Chen S. ATG5 attenuates inflammatory signaling in mouse embryonic stem cells to control differentiation. Dev Cell 2024; 59:882-897.e6. [PMID: 38387460 DOI: 10.1016/j.devcel.2024.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Attenuated inflammatory response is a property of embryonic stem cells (ESCs). However, the underlying mechanisms are unclear. Moreover, whether the attenuated inflammatory status is involved in ESC differentiation is also unknown. Here, we found that autophagy-related protein ATG5 is essential for both attenuated inflammatory response and differentiation of mouse ESCs and that attenuation of inflammatory signaling is required for mouse ESC differentiation. Mechanistically, ATG5 recruits FBXW7 to promote ubiquitination and proteasome-mediated degradation of β-TrCP1, resulting in the inhibition of nuclear factor κB (NF-κB) signaling and inflammatory response. Moreover, differentiation defects observed in ATG5-depleted mouse ESCs are due to β-TrCP1 accumulation and hyperactivation of NF-κB signaling, as loss of β-TrCP1 and inhibition of NF-κB signaling rescued the differentiation defects. Therefore, this study reveals a previously uncharacterized mechanism maintaining the attenuated inflammatory response in mouse ESCs and further expands the understanding of the biological roles of ATG5.
Collapse
Affiliation(s)
- Sheng Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Jin Sun
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bo-Wen Zhang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Ying-Cui Wan
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bei-Bei Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Qian-Ru Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Juan Fan
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| |
Collapse
|
78
|
Nilkhet S, Mongkolpobsin K, Sillapachaiyaporn C, Wongsirojkul N, Tencomnao T, Chuchawankul S. M1 macrophages polarized by crude polysaccharides isolated from Auricularia polytricha exhibit anti-tumor effect on human breast cancer cells. Sci Rep 2024; 14:8179. [PMID: 38589471 PMCID: PMC11001921 DOI: 10.1038/s41598-024-58208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 β and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the β-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and β-glucan may be the potential M1-phenotype inducer.
Collapse
Affiliation(s)
- Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuljira Mongkolpobsin
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
79
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
80
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
81
|
Tang Y. Analysis of the binding pattern of NIK inhibitors by computational simulation. J Biomol Struct Dyn 2024; 42:3318-3331. [PMID: 37183664 DOI: 10.1080/07391102.2023.2212782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
NF-kappaB-Inducing Kinase (NIK) is a key kinase in the activation of the NF-κB non-classical signalling pathway, which has been shown to be over-activated in patients with inflammatory diseases, immune disorders and malignancies and solid tumours inducing activation of the NF-κB non-classical signalling pathway. The design of ATP-competitive small molecule inhibitors against NIK has been a hot topic in the last decade, and many efficient NIK inhibitors have been identified. In this work, I aim to unravel the mechanism of NIK inhibition by different representative NIK type I 1/2 kinase inhibitors, using ADME, molecular docking, molecular dynamics simulation, MM-PBSA analysis and 3D-QSAR analysis. This work contributes to the understanding of the efficiency of NIK inhibitor binding by revealing the basis of the efficiency of NIK inhibitors, the difference in binding modes between different inhibitors and the overall effect on NIK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yingkai Tang
- Department of Anatomy, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
82
|
Li J, Shen H, Guo LW. Transmembrane protein TMEM97 and epigenetic reader BAHCC1 constitute an axis that supports pro-inflammatory cytokine expression. Cell Signal 2024; 116:111069. [PMID: 38290642 PMCID: PMC10997414 DOI: 10.1016/j.cellsig.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Pro-inflammatory cytokine production by the retinal pigment epithelium (RPE) is a key etiology in retinal degenerative diseases, yet the underlying mechanisms are not well understood. TMEM97 is a scarcely studied transmembrane protein recently implicated in retinal degeneration. BAH domain coiled coil 1 (BAHCC1) is a newly discovered histone code reader involved in oncogenesis. A role for TMEM97 and BAHCC1 in RPE inflammation was not known. Here we found that they constitute a novel axis regulating pro-inflammatory cytokine expression in RPE cells. Transcriptomic analysis using a TMEM97-/- ARPE19 human cell line and the validation via TMEM97 loss- and gain-of-function revealed a profound role of TMEM97 in promoting the expression of pro-inflammatory cytokines, notably IL1β and CCL2, and unexpectedly BAHCC1 as well. Moreover, co-immunoprecipitation indicated an association between the TMEM97 and BAHCC1 proteins. While TMEM97 ablation decreased and its overexpression increased NFκB (p50, p52, p65), the master transcription factor for pro-inflammatory cytokines, silencing BAHCC1 down-regulated NFκB and downstream pro-inflammatory cytokines. Furthermore, in an RPE-damage retinal degeneration mouse model, immunofluorescence illustrated down-regulation of IL1β and CCL2 total proteins and suppression of glial activation in the retina of Tmem97-/- mice compared to Tmem97+/+ mice. Thus, TMEM97 is a novel determinant of pro-inflammatory cytokine expression acting via a previously unknown TMEM97- > BAHCC1- > NFκB cascade. SYNOPSIS: Retinal pigment epithelium (RPE) inflammation can lead to blindness. We identify here a previously uncharacterized cascade that underlies RPE cell production of pro-inflammatory cytokines. Specifically, transmembrane protein TMEM97 positively regulates the recently discovered histone code reader BAHCC1, which in turn enhances pro-inflammatory cytokine expression via the transcription factor NFκB.
Collapse
Affiliation(s)
- Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hongtao Shen
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
84
|
Jang S, Kim S, Kim SJ, Kim JY, Gu DH, So BR, Ryu JA, Park JM, Yoon SR, Jung SK. Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation. J Microbiol Biotechnol 2024; 34:644-653. [PMID: 38213288 PMCID: PMC11016773 DOI: 10.4014/jmb.2309.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Young Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da Hye Gu
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo Ram So
- COSMAX NBT, INC., Seongnam 13486, Republic of Korea
| | - Jung A Ryu
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Jeong Min Park
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Ran Yoon
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
85
|
Zhang K, Tang Y, Yu H, Yang J, Tao L, Xiang P. Discovery of lupus nephritis targeted inhibitors based on De novo molecular design: comprehensive application of vinardo scoring, ADMET analysis, and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-14. [PMID: 38501728 DOI: 10.1080/07391102.2024.2329293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Lupus Nephritis (LN) is an autoimmune disease affecting the kidneys, and conventional drug studies have limitations due to its imprecise and complex pathogenesis. Therefore, the aim of this study was to design a novel Lupus Nephritis-targeted drug with good clinical due potential, high potency and selectivity by computer-assisted approach.NIK belongs to the serine/threonine protein kinase, which is gaining attention as a drug target for Lupus Nephritis. we used bioinformatics, homology modelling and sequence comparison analysis, small molecule ab initio design, ADMET analysis, molecular docking, molecular dynamics simulation, and MM/PBSA analysis to design and explore the selectivity and efficiency of a novel Lupus Nephritis-targeting drug, ClImYnib, and a classical NIK inhibitor, NIK SMI1. We used bioinformatics techniques to determine the correlation between lupus nephritis and the NF-κB signaling pathway. De novo drugs design was used to create a NIK-targeted inhibitor, ClImYnib, with lower toxicity, after which we used molecular dynamics to simulate NIK SMI1 against ClImYnib, and the simulation results showed that ClImYnib had better selectivity and efficiency. Our research delves into the molecular mechanism of protein ligands, and we have designed and validated an excellent NIK inhibitor using multiple computational simulation methods. More importantly, it provides an idea of target designing small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Yingkai Tang
- Department of Anatomy, School of basic Medicine, Bengbu Medical College, China
| | - Haiyue Yu
- School of Clinical Medicine, Bengbu Medical College, China
| | - Jingtao Yang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Lu Tao
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ping Xiang
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
86
|
Fujikawa Y, Sendo S, del Peral Fanjul A, Yamada H, Uto K, Yamamoto Y, Nagamoto T, Morinobu A, Saegusa J. Myeloid-derived suppressor cell-derived osteoclasts with bone resorption capacity in the joints of arthritic SKG mice. Front Immunol 2024; 15:1168323. [PMID: 38566990 PMCID: PMC10985135 DOI: 10.3389/fimmu.2024.1168323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells with immunosuppressive functions. It is known that MDSCs are expanded at inflammatory sites after migrating from bone marrow (BM) or spleen (Sp). In chronic inflammatory diseases such as rheumatoid arthritis (RA), previous reports indicate that MDSCs are increased in BM and Sp, but detailed analysis of MDSCs in inflamed joints is very limited. Objective The purpose of this study is to characterize the MDSCs in the joints of mice with autoimmune arthritis. Methods We sorted CD11b+Gr1+ cells from joints (Jo), bone marrow (BM) and spleen (Sp) of SKG mice with zymosan (Zym)-induced arthritis and investigated differentially expressed genes (DEGs) by microarray analysis. Based on the identified DEGs, we assessed the suppressive function of CD11b+Gr1+ cells from each organ and their ability to differentiate into osteoclasts. Results We identified MDSCs as CD11b+Gr1+ cells by flow cytometry and morphological analysis. Microarray analysis revealed that Jo-CD11b+Gr1+ cells had different characteristics compared with BM-CD11b+Gr1+ cells or Sp-CD11b+Gr1+ cells. Microarray and qPCR analysis showed that Jo-CD11b+Gr1+ cells strongly expressed immunosuppressive DEGs (Pdl1, Arg1, Egr2 and Egr3). Jo-CD11b+Gr1+ cells significantly suppressed CD4+ T cell proliferation and differentiation in vitro, which confirmed Jo-CD11b+Gr1+ cells as MDSCs. Microarray analysis also revealed that Jo-MDSCs strongly expressed DEGs of the NF-κB non-canonical pathway (Nfkb2 and Relb), which is relevant for osteoclast differentiation. In fact, Jo-MDSCs differentiated into osteoclasts in vitro and they had bone resorptive function. In addition, intra-articular injection of Jo-MDSCs promoted bone destruction. Conclusions Jo-MDSCs possess a potential to differentiate into osteoclasts which promote bone resorption in inflamed joints, while they are immunosuppressive in vitro.
Collapse
Affiliation(s)
- Yoshikazu Fujikawa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alfonso del Peral Fanjul
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Uto
- Department of Clinical Laboratory, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzuru Yamamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Nagamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
87
|
Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024; 13:485. [PMID: 38534329 PMCID: PMC10968931 DOI: 10.3390/cells13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as the primary immune responders of the central nervous system, microglia exhibit upregulation of NF-κB upon activation in response to pathological conditions. Under such circumstances, microglial crosstalk with other cell types in the central nervous system can induce cell death, further exacerbating the disease pathology. In this review, we will emphasize the role of NF-κB in triggering neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Sudha Anilkumar
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Elizabeth Wright-Jin
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Division of Neurology, Department of Pediatrics, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
88
|
Chandrasekar AP, Maynes M, Badley AD. Dynamic modulation of the non-canonical NF-κB signaling pathway for HIV shock and kill. Front Cell Infect Microbiol 2024; 14:1354502. [PMID: 38505285 PMCID: PMC10949532 DOI: 10.3389/fcimb.2024.1354502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
HIV cure still remains an elusive target. The "Shock and Kill" strategy which aims to reactivate HIV from latently infected cells and subsequently kill them through virally induced apoptosis or immune mediated clearance, is the subject of widespread investigation. NF-κB is a ubiquitous transcription factor which serves as a point of confluence for a number of intracellular signaling pathways and is also a crucial regulator of HIV transcription. Due to its relatively lower side effect profile and proven role in HIV transcription, the non-canonical NF-κB pathway has emerged as an attractive target for HIV reactivation, as a first step towards eradication. A comprehensive review examining this pathway in the setting of HIV and its potential utility to cure efforts is currently lacking. This review aims to summarize non-canonical NF-κB signaling and the importance of this pathway in HIV shock-and-kill efforts.
Collapse
Affiliation(s)
- Aswath P. Chandrasekar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, United States
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
| | - Mark Maynes
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
89
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
90
|
Ma H, Suleman M, Zhang F, Cao T, Wen S, Sun D, Chen L, Jiang B, Wang Y, Lin F, Wang J, Li B, Li Q. Pirin Inhibits FAS-Mediated Apoptosis to Support Colorectal Cancer Survival. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301476. [PMID: 38148593 PMCID: PMC10933653 DOI: 10.1002/advs.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Resistance to immunotherapy in colorectal cancer (CRC) is associated with obstruction of FAS (Apo-1 or CD95)-dependent apoptosis, a hallmark of cancer. Here it is demonstrated that the upregulation of pirin (PIR) protein in colon cancers promotes tumorigenesis. Knockout or inhibition of PIR dramatically increases FAS expression, FAS-dependent apoptosis and attenuates colorectal tumor formation in mice. Specifically, NFκB2 is a direct transcriptional activator of FAS and robustly suppressed by PIR in dual mechanisms. One is the disruption of NFκB2 complex (p52-RELB) association with FAS promoter, the other is the inhibition of NIK-mediated NFκB2 activation and nuclear translocation, leading to the inability of active NFκB2 complex toward the transcription of FAS. Furthermore, PIR interacts with FAS and recruits it in cytosol, preventing its membrane translocation and assembling. Importantly, knockdown or knockout of PIR dramatically sensitizes cells to FAS mAb- or active CD8+ T cells-triggered cell death. Taken together, a PIR-NIK-NFκB2-FAS survival pathway is established, which plays a key role in supporting CRC survival.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Tingyan Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Lili Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| |
Collapse
|
91
|
Kamińska J, Tylicka M, Sutkowska K, Gacuta KM, Sawicka MM, Kowalewska E, Ćwiklińska-Dworakowska M, Maciejczyk M, Łysoń T, Kornhuber J, Lewczuk P, Matowicka-Karna J, Koper-Lenkiewicz OM. The preliminary study suggests an association between NF-ĸB pathway activation and increased plasma 20S proteasome activity in intracranial aneurysm patients. Sci Rep 2024; 14:3941. [PMID: 38366068 PMCID: PMC10873410 DOI: 10.1038/s41598-024-54692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
The significant role of increased activation of 20S proteasomes in the development of abdominal aortic aneurysms has been well-established in a mouse model. The available literature lacks similar studies concerning brain aneurysms. The aim of the study was to verify the hypothesis that patients with unruptured intracranial aneurysms (UIA) have increased 20S proteasome ChT-L activity compared to the control group of individuals without vascular lesions in the brain. In the next step, the relationship between the activity of 20S proteasomes ChT-L and precursor proteins from the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, namely NF-κB1 (p105), NF-κB2 (p100), NF-κB p65, and the inflammatory chemokine MCP-1, was examined. Patients with UIA had significantly higher 20S ChT-L proteasome activity compared to the control group. Patients with multiple aneurysms had significantly higher 20S proteasome ChT-L activity compared to those with single aneurysms. In patients with UIA, the activity of the 20S proteasome ChT-L negatively correlated with the concentration of NF-κB1 (p105) and NF-κB p65 precursor proteins and positively correlated with the concentration of the cerebrospinal fluid chemokine MCP-1. Our results may suggest that increased 20S proteasome ChT-L activity in UIA patients modulates inflammation in the cerebral arterial vessel via the MCP-1 chemokine as a result of activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, 2A Adama Mickiewicza St., 15-089, Białystok, Poland
| | - Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Karolina Marta Gacuta
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Maria Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 2D Mickiewicza St., 15-222, Białystok, Poland
| | - Ewa Kowalewska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Ćwiklińska-Dworakowska
- Department of Oncological Surgery and General Surgery, Independent Public Health Care Facility of the Ministry of the Interior and Administration in Bialystok named Marian Zyndram-Kościałkowski, 27 Fabryczna St., 15-471, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Białystok, 2C Mickiewicza St., 15-022, Białystok, Poland
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok/Clinical Hospital of the Medical University of Bialystok, 24A Marii Skłodowskiej-Curie St., 15-276, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| |
Collapse
|
92
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
93
|
Awad AM, Elshaer SL, Gangaraju R, Abdelaziz RR, Nader MA. Ameliorative effect of montelukast against STZ induced diabetic nephropathy: targeting HMGB1, TLR4, NF-κB, NLRP3 inflammasome, and autophagy pathways. Inflammopharmacology 2024; 32:495-508. [PMID: 37498374 PMCID: PMC10907471 DOI: 10.1007/s10787-023-01301-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Diabetic nephropathy (DN) is reported as one of the most serious microvascular diabetic complications and the trigger of end-stage renal disease (ESRD), underscoring the concern of any therapeutic intervention directed at ameliorating the development and progression of DN. The current study explored the renoprotective impact of montelukast (Mon) against streptozotocin (STZ)-induced DN in rats compared to a standard anti-hyperglycemic insulin (Ins) treatment. Diabetes was induced by a single dose of STZ (55 mg/kg). Diabetic rats were treated with Mon (10 and 20 mg/kg, oral gavage) for eight weeks. Mon administration for 8 weeks after induction of diabetes conferred significant dose-dependent renoprotection, independent of blood glucose levels (unlike Ins), as evidenced by the improvement in serum creatinine, and blood urea nitrogen (BUN), and ameliorated STZ-induced renal necrotic, inflammatory alterations, and renal fibrosis. Additionally, Mon treatment in diabetic rats significantly restored redox hemostasis as evidenced by malondialdehyde (MDA) and total antioxidant capacity (TAC) levels; significantly reduced the renal expression of high mobility group box (HMGB) 1, toll-like receptor (TLR) 4, nuclear factor kappa B (NF-κB) (in the nucleus), NOD-like receptor family pyrin domain containing (NLRP) 3, and interleukin (IL)-1β. Moreover, Mon administration ameliorated the dysregulation in autophagy as evidenced by p62 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-II levels. In conclusion, the renoprotective effect of Mon is potentially associated with its modulatory effect on inflammatory cytokines, antioxidant properties, and autophagy.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally L Elshaer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
94
|
Hu Y, Ye R, Su J, Rui Y, Yu XF. cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol 2024; 96:e29403. [PMID: 38293806 DOI: 10.1002/jmv.29403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Stimulatorof interferon genes (STING) is an intracellular sensor of cyclic dinucleotides involved in the innate immune response against pathogen- or self-derived DNA. For years, interferon (IFN) induction of cyclic GMP-AMP synthase (cGAS)-STING has been considered as a canonical pattern defending the host from viral invasion. The mechanism of the cGAS-STING-IFN pathway has been well-illustrated. However, other signalling cascades driven by cGAS-STING have emerged in recent years and some of them have been found to possess antiviral ability independent of IFN. Here, we summarize the current progress on cGAS-STING-mediated nonclassic antiviral activities with an emphasis on the nuclear factor-κB and autophagy pathways, which are the most-studied pathways. In addition, we briefly present the primordial function of the cGAS-STING pathway in primitive species to show the importance of IFN-unrelated antiviral activity from an evolutionary angle. Finally, we discuss open questions that need to be solved for further exploitation of this field.
Collapse
Affiliation(s)
- Ying Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
| | - Runxin Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
95
|
Daren L, Dan Y, Jinhong W, Chao L. NIK-mediated reactivation of SIX2 enhanced the CSC-like traits of hepatocellular carcinoma cells through suppressing ubiquitin-proteasome system. ENVIRONMENTAL TOXICOLOGY 2024; 39:583-591. [PMID: 37461228 DOI: 10.1002/tox.23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
The critical roles of NF-κB Inducing Kinase (NIK) in tumor progression have been elucidated in various tumors; however, its effects on hepatocellular carcinoma (HCC) progression are still confusing. Here, we found that NIK level was upregulated in HCC tissues compared to that of normal tissues, and positively correlated with the levels of cancer stem cell (CSC) markers. Then we established HCC cells with NIK-stable knockdown and found that NIK knockdown suppressed the CSC-like traits of HCC cells through in vivo and in vitro experiments. Mechanistically, we revealed that SIX2 protein level, but not its mRNA level, was significantly reduced in HCC cells with NIK knockdown, which was rescued by MG132 treatment. Furthermore, NIK knockdown promoted the ubiquitination level of SIX2 and decreased its protein stability. Moreover, Six2 overexpression partially reversed the inhibition of NIK knockdown on the CSC-like traits of HCC cells. This study identified a novel NIK/SIX2 axis conferring HCC stemness.
Collapse
Affiliation(s)
- Liu Daren
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ye Dan
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wu Jinhong
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Li Chao
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
96
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
97
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
98
|
Jansen J, Kroeze S, Man S, Andreini M, Bakker JW, Zamperini C, Tarditi A, Kootstra NA, Geijtenbeek TBH. Noncanonical-NF-κB activation and DDX3 inhibition reduces the HIV-1 reservoir by elimination of latently infected cells ex-vivo. Microbiol Spectr 2024; 12:e0318023. [PMID: 38051053 PMCID: PMC10783037 DOI: 10.1128/spectrum.03180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/28/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE HIV-1 continues to be a major global health challenge. Current HIV-1 treatments are effective but need lifelong adherence. An HIV-1 cure should eliminate the latent viral reservoir that persists in people living with HIV-1. Different methods have been investigated that focus on reactivation and subsequent elimination of the HIV-1 reservoir, and it is becoming clear that a combination of compounds with different mechanisms of actions might be more effective. Here, we target two host factors, inhibitor of apoptosis proteins that control apoptosis and the DEAD-box helicase DDX3, facilitating HIV mRNA transport/translation. We show that targeting of these host factors with SMAC mimetics and DDX3 inhibitors induce reversal of viral latency and eliminate HIV-1-infected cells in vitro and ex vivo.
Collapse
Affiliation(s)
- Jade Jansen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Stefanie Kroeze
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Matteo Andreini
- First Health Pharmaceuticals B.V, Amsterdam, the Netherlands
| | | | | | - Alessia Tarditi
- First Health Pharmaceuticals B.V, Amsterdam, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
99
|
Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, Ju W, Gadhikar MA, Ma W, Shen L, Wang Q, Tang X, Pathak S, Raso MG, Burks JK, Lin SY, Wang J, Multani AS, Pickering CR, Chen J, Myers JN, Zhou G. Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun 2024; 15:180. [PMID: 38167338 PMCID: PMC10761733 DOI: 10.1038/s41467-023-44239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianxiao Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Javier A Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wutong Ju
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mayur A Gadhikar
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sen Pathak
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Surgery-Otolaryngology, Yale School of Medicine, New Haven, CT, 06250, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
100
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|