51
|
Silva M, Koch JT, Pala M, Edwards CJ, Soares P, Richards MB. On Methodological issues in the Indo-European debate By Michel Danino. J Biosci 2019. [DOI: 10.1007/s12038-019-9890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Silva M, Koch JT, Pala M, Edwards CJ, Soares P, Richards MB. On Methodological issues in the Indo-European debate By Michel Danino. J Biosci 2019; 44:69. [PMID: 31389358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Marina Silva
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | | | | | | | | | | |
Collapse
|
53
|
Bánfai Z, Melegh BI, Sümegi K, Hadzsiev K, Miseta A, Kásler M, Melegh B. Revealing the Genetic Impact of the Ottoman Occupation on Ethnic Groups of East-Central Europe and on the Roma Population of the Area. Front Genet 2019; 10:558. [PMID: 31263480 PMCID: PMC6585392 DOI: 10.3389/fgene.2019.00558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/28/2019] [Indexed: 12/03/2022] Open
Abstract
History of East-Central Europe has been intertwined with the history of Turks in the past. A significant part of this region of Europe has been fallen under Ottoman control during the 150 years of Ottoman occupation in the 16–17th centuries. The presence of the Ottoman Empire affected this area not only culturally but also demographically. The Romani people, the largest ethnic minority of the East-Central European area, share an even more eventful past with Turkish people from the time of their migration throughout Eurasia and they were a notable ethnic group in East-Central Europe in the Ottoman era already. The relationship of Turks with East-Central European ethnic groups and with regional Roma ethnicity was investigated based on genome-wide autosomal single nucleotide polymorphism data. Population structure analysis, ancestry estimation, various formal tests of admixture and DNA segment analyses were carried out in order to shed light to the conclusion of these events on a genome-wide basis. Analyses show that the Ottoman occupation of Europe left detectable impact in the affected East-Central European area and shaped the ancestry of the Romani people as well. We estimate that the investigated European populations have an average identity-by-descent share of 0.61 with Turks, which is notable, compared to other European populations living in West and North Europe far from the affected area, and compared to the share of Sardinians, living isolated from these events. Admixture of Roma and Turks during the Ottoman rule show also high extent.
Collapse
Affiliation(s)
- Zsolt Bánfai
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Béla I Melegh
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Katalin Sümegi
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Béla Melegh
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
54
|
Yardumian A, Schurr TG. The Geography of Jewish Ethnogenesis. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2019. [DOI: 10.1086/702709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Y-chromosomal connection between Hungarians and geographically distant populations of the Ural Mountain region and West Siberia. Sci Rep 2019; 9:7786. [PMID: 31127140 PMCID: PMC6534673 DOI: 10.1038/s41598-019-44272-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hungarians who live in Central Europe today are one of the westernmost Uralic speakers. Despite of the proposed Volga-Ural/West Siberian roots of the Hungarian language, the present-day Hungarian gene pool is highly similar to that of the surrounding Indo-European speaking populations. However, a limited portion of specific Y-chromosomal lineages from haplogroup N, sometimes associated with the spread of Uralic languages, link modern Hungarians with populations living close to the Ural Mountain range on the border of Europe and Asia. Here we investigate the paternal genetic connection between these spatially separated populations. We reconstruct the phylogeny of N3a4-Z1936 clade by using 33 high-coverage Y-chromosomal sequences and estimate the coalescent times of its sub-clades. We genotype close to 5000 samples from 46 Eurasian populations to show the presence of N3a4-B539 lineages among Hungarians and in the populations from Ural Mountain region, including Ob-Ugric-speakers from West Siberia who are geographically distant but linguistically closest to Hungarians. This sub-clade splits from its sister-branch N3a4-B535, frequent today among Northeast European Uralic speakers, 4000-5000 ya, which is in the time-frame of the proposed divergence of Ugric languages.
Collapse
|
56
|
Ralf A, van Oven M, Montiel González D, de Knijff P, van der Beek K, Wootton S, Lagacé R, Kayser M. Forensic Y-SNP analysis beyond SNaPshot: High-resolution Y-chromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing. Forensic Sci Int Genet 2019; 41:93-106. [PMID: 31063905 DOI: 10.1016/j.fsigen.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Y-chromosomal haplogroups assigned from male-specific Y-chromosomal single nucleotide polymorphisms (Y-SNPs) allow paternal lineage identification and paternal bio-geographic ancestry inference, both being relevant in forensic genetics. However, most previously developed forensic Y-SNP tools did not provide Y haplogroup resolution on the high level needed in forensic applications, because the limited multiplex capacity of the DNA technologies used only allowed the inclusion of a relatively small number of Y-SNPs. In a proof-of-principle study, we recently demonstrated that high-resolution Y haplogrouping is feasible via two AmpliSeq PCR analyses and simultaneous massively parallel sequencing (MPS) of 530 Y-SNPs allowing the inference of 432 Y-haplogroups. With the current study, we present a largely improved Y-SNP MPS lab tool that we specifically designed for the analysis of low quality and quantity DNA often confronted with in forensic DNA analysis. Improvements include i) Y-SNP marker selection based on the "minimal reference phylogeny for the human Y chromosome" (PhyloTree Y), ii) strong increase of the number of targeted Y-SNPs allowing many more Y haplogroups to be inferred, iii) focus on short amplicon length enabling successful analysis of degraded DNA, and iv) combination of all amplicons in a single AmpliSeq PCR and simultaneous sequencing allowing single DNA aliquot use. This new MPS tool simultaneously analyses 859 Y-SNPs and allows inferring 640 Y haplogroups. Preliminary forensic developmental validation testing revealed that this tool performs highly accurate, is sensitive and robust. We also provide a revised software tool for analysing the sequencing data produced by the new MPS lab tool including final Y haplogroup assignment. We envision the tools introduced here for high-resolution Y-chromosomal haplogrouping to determine a man's paternal lineage and/or paternal bio-geographic ancestry to become widely used in forensic Y-chromosome DNA analysis and other applications were Y haplogroup information from low quality / quantity DNA samples is required.
Collapse
Affiliation(s)
- Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Kees van der Beek
- Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, the Netherlands
| | - Sharon Wootton
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Robert Lagacé
- Human Identification Group, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
57
|
Hernández CL, Dugoujon JM, Sánchez-Martínez LJ, Cuesta P, Novelletto A, Calderón R. Paternal lineages in southern Iberia provide time frames for gene flow from mainland Europe and the Mediterranean world. Ann Hum Biol 2019; 46:63-76. [PMID: 30822152 DOI: 10.1080/03014460.2019.1587507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The geography of southern Iberia and an abundant archaeological record of human occupation are ideal conditions for a full understanding of scenarios of genetic history in the area. Recent advances in the phylogeography of Y-chromosome lineages offer the opportunity to set upper bounds for the appearance of different genetic components. AIM To provide a global knowledge on the Y haplogroups observed in Andalusia with their Y microsatellite variation. Preferential attention is given to the vehement debate about the age, origin and expansion of R1b-M269 clade and sub-lineages. SUBJECT AND METHODS Four hundred and fourteen male DNA samples from western and eastern autochthonous Andalusians were genotyped for a set of Y-SNPs and Y-STRs. Gene diversity, potential population genetic structures and coalescent times were assessed. RESULTS Most of the analysed samples belong to the European haplogroup R1b1a1a2-M269, whereas haplogroups E, J, I, G and T show lower frequencies. A phylogenetic dissection of the R1b-M269 was performed and younger time frames than those previously reported in the literature were obtained for its sub-lineages. CONCLUSION The particular Andalusian R1b-M269 assemblage confirms the shallow topology of the clade. Moreover, the sharing of lineages with the rest of Europe indicates the impact in Iberia of an amount of pre-existing diversity, with the possible exception of R1b-DF27. Lineages such as J2-M172 and G-M201 highlight the importance of maritime travels of early farmers who reached the Iberian Peninsula.
Collapse
Affiliation(s)
- Candela L Hernández
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Jean-Michel Dugoujon
- b CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS) , Université Paul Sabatier Toulouse III , Toulouse , France
| | - Luis J Sánchez-Martínez
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| | - Pedro Cuesta
- c Centro de Proceso de Datos , Universidad Complutense , Madrid , Spain
| | | | - Rosario Calderón
- a Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología , Universidad Complutense , Madrid , Spain
| |
Collapse
|
58
|
Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, Daly KG, Del Corvo M, Guldbrandtsen B, Lenstra JA, Rosen BD, Vajana E, Catillo G, Joost S, Nicolazzi EL, Rochat E, Rothschild MF, Servin B, Sonstegard TS, Steri R, Van Tassell CP, Ajmone-Marsan P, Crepaldi P, Stella A. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 2018; 50:58. [PMID: 30449284 PMCID: PMC6240949 DOI: 10.1186/s12711-018-0422-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Goat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats. RESULTS A high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows. CONCLUSIONS After domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.
Collapse
Affiliation(s)
- Licia Colli
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy. .,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy.
| | - Marco Milanesi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,School of Veterinary Medicine, Department of Support, Production and Animal Health, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Andrea Talenti
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, USA.,National Institute of Aquatic Resources, Technical University of Denmark, DTU, Lyngby, Denmark
| | - Minhui Chen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark.,Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alessandra Crisà
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Kevin Gerard Daly
- Population Genetics Lab, Smurfit Institute of Genetics, Trinity College of Dublin, Dublin, Ireland
| | - Marcello Del Corvo
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Elia Vajana
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Bertrand Servin
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Roberto Steri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Paolo Ajmone-Marsan
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Paola Crepaldi
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Alessandra Stella
- Fondazione Parco Tecnologico Padano, Lodi, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | |
Collapse
|
59
|
Alonso Morales LA, Casas-Vargas A, Rojas Castro M, Resque R, Ribeiro-dos-Santos ÂK, Santos S, Gusmão L, Usaquén W. Paternal portrait of populations of the middle Magdalena River region (Tolima and Huila, Colombia): New insights on the peopling of Central America and northernmost South America. PLoS One 2018; 13:e0207130. [PMID: 30439976 PMCID: PMC6237345 DOI: 10.1371/journal.pone.0207130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022] Open
Abstract
The valley of the Magdalena River is one of the main population pathways in Colombia. The gene pool and spatial configuration of human groups in this territory have been outlined throughout three historical stages: the Native pre-Hispanic world, Spanish colonization, and XIX century migrations. This research was designed with the goal of characterizing the diversity and distribution pattern of Y-chromosome lineages that are currently present in the Tolima and Huila departments (middle Magdalena River region). Historic cartography was used to identify the main geographic sites where the paternal lineages belonging to this area have gathered. Twelve municipalities were chosen, and a survey that included genealogical information was administered. Samples collected from 83 male volunteers were analyzed for 48 Y-SNPs and 17 Y-STRs. The results showed a highly diverse region characterized by the presence of 16 sublineages within the major clades R, Q, J, G, T and E and revealed that 93% (n = 77) of haplotypes were different. Among these haplogroups, European-specific R1b-M269 lineages were the most representative (57.83%), with six different subhaplogroups and 43 unique haplotypes. Native American paternal ancestry was also detected based on the presence of the Q1a2-M3*(xM19, M194, M199) and Q1a2-M346*(xM3) lineages. Interestingly, all Q1a2-M346*(xM3) samples (n = 7, with five different haplotypes) carried allele six at the DYS391 locus. This allele has a worldwide frequency of 0.169% and was recently associated with a new Native subhaplogroup. An in-depth phylogenetic analysis of these samples suggests the Tolima and Huila region to be the principal area in all Central and South America where this particular Native lineage is found. This lineage has been present in the region for at least 1,809 (+/- 0,5345) years.
Collapse
Affiliation(s)
- Luz Angela Alonso Morales
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| | - Andrea Casas-Vargas
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Madelyn Rojas Castro
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rafael Resque
- Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Ândrea Kelly Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| |
Collapse
|
60
|
Diepenbroek M, Cytacka S, Szargut M, Arciszewska J, Zielińska G, Ossowski A. Analysis of male specific region of the human Y chromosome sheds light on historical events in Nazi occupied eastern Poland. Int J Legal Med 2018; 133:395-409. [PMID: 30327924 PMCID: PMC6373375 DOI: 10.1007/s00414-018-1943-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/10/2018] [Indexed: 11/25/2022]
Abstract
In Poland, during the World War II, almost 3 million people were killed during the Nazi occupation, and about 570,000 during the Soviet occupation. Furthermore, historians have estimated that after the World War II at least 30,000 people were killed during the Stalinist regime in Poland (1944–1956). The exact number is unknown, because both executions and burials were kept secret. Thousands of people just vanished. As a response to those events, forensic scientists from the Pomeranian Medical University in Szczecin in cooperation with historians from the Institute of National Remembrance started the project of the Polish Genetic Database of Victims of Totalitarianism, which aim is to identify victims killed in the years 1939–1956. Several exhumations were done under the project, with the biggest one done in Białystok. According to the information gathered by local historians, a detention centre in Białystok was the place of the secret burials in late 1940s and 1950s. Surprisingly, except few graves from the post-war period, most of the burials found in Białystok indicated that majority the victims were probably local civilians who died during the Nazi occupation. Unfortunately, data concerning what happened in the detention ward during that period of time is not very detailed. What was known is that people who got incarcerated were “political prisoners” what, according to Nazi politics, was based on their nationality, religion and activity against the Third Reich. The aim of this research was to test genetically the remains found in Białystok to determine their possible ethnic background, in order to shed new light on the victims and what happened in the Białystok detention centre during the Nazi occupation. The analysis of male specific region of the human Y chromosome shows that including phylogenetic analysis into the complex process led by the Polish Genetic Database of Victims of Totalitarianism may help with the final identification of hundreds of anonymous victims.
Collapse
Affiliation(s)
- Marta Diepenbroek
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland.
| | - Sandra Cytacka
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland
| | - Maria Szargut
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland
| | - Joanna Arciszewska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland
| | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, Szczecin, Poland
| |
Collapse
|
61
|
Rowold DJ, Gayden T, Luis JR, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. Investigating the genetic diversity and affinities of historical populations of Tibet. Gene 2018; 682:81-91. [PMID: 30266503 DOI: 10.1016/j.gene.2018.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
This study elucidates Y chromosome distribution patterns in the three general provincial populations of historical Tibet, Amdo (n = 88), Dotoe (n = 109) and U-Tsang (n = 153) against the backdrop of 37 Asian reference populations. The central aim of this study is to investigate the genetic affinities of the three historical Tibetan populations among themselves and to neighboring populations. Y-SNP and Y-STR profiles were assessed in these historical populations. Correspondence analyses (CA) were generated with Y-SNP haplogroup data. Y-STR haplotypes were determined and employed to generate multidimensional scaling (MDS) plots based on Rst distances. Frequency contour maps of informative Y haplogroups were constructed to visualize the distributions of specific chromosome types. Network analyses based on Y-STR profiles of individuals under specific Y haplogroups were generated to examine the genetic heterogeneity among populations. Average gene diversity values and other parameters of population genetics interest were estimated to characterize the populations. The Y chromosomal results generated in this study indicate that using two sets of markers (Y-SNP, and Y-STR) the three Tibetan populations are genetically distinct. In addition, U-Tsang displays the highest gene diversity, followed by Amdo and Dotoe. The results of this transcontinental biogeographical investigation also indicate various degrees of paternal genetic affinities among these three Tibetan populations depending on the type of loci (Y-SNP or Y-STR) analyzed. The CA generated with Y-SNP haplogroup data demonstrates that Amdo and U-Tsang are closer to each other than to any neighboring non-Tibetan group. In contrast, the MDS plot based on Y-STR haplotypes displays Rst distances that are much shorter between U-Tsang and its geographic nearby populations of Ladakh, Punjab, Kathmandu and Newar than between it and Amdo. Moreover, although Dotoe is isolated from all other groups using both types of marker systems, it lies nearer to the other Tibetan collections in the Y-SNP CA than in the Y-STR MDS plot. High resolution and shallow evolutionary time frames engendered by Y-STR based analyses may reflect a more recent demographic history than that delineated by the more conserved Y-SNP markers.
Collapse
Affiliation(s)
- Diane J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | - Tenzin Gayden
- PRecision Oncology For Young PeopLE (PROFYLE), Montreal Node, Canada
| | - Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782 Santiago de Compostela, Spain
| | - Miguel A Alfonso-Sanchez
- Departamento de Genetica y Antropologia Fisica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), Bilbao, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
62
|
Effective resolution of the Y chromosome sublineages of the Iberian haplogroup R1b-DF27 with forensic purposes. Int J Legal Med 2018; 133:17-23. [PMID: 30229332 DOI: 10.1007/s00414-018-1936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) found within the non-recombining region of the Y chromosome (NRY) represent a powerful tool in forensic genetics for inferring the paternal ancestry of a vestige and complement the determination of biogeographical origin in combination with other markers like AIMs. In the present study, we introduce a panel of 15 Y-SNPs for a fine-resolution subtyping of the haplogroup R1b-DF27, in a single minisequencing reaction. This is the first minisequencing panel that allows a fine subtyping of R1b-DF27, which displays high frequencies in Iberian and Iberian-influenced populations. This panel includes subhaplogroups of DF27 that display moderate geographical differentiation, of interest to link a sample with a specific location of the Iberian Peninsula or with Iberian ancestry. Conversely, part of the intricacy of a new minisequencing panel is to have all the included variants available to test the effectiveness of the analysis method. We have overcome the absence of the least common variants through site-directed mutagenesis. Overall, the results show that our panel is a robust and effective method for subtyping R1b-DF27 lineages from a minimal amount of DNA, and its high resolution enables to improve male lineage discrimination in Iberian and Southwest European descent individuals. The small length of the amplicons and its reproducibility makes this assay suitable for forensic and population genetics purposes.
Collapse
|
63
|
O’Sullivan N, Posth C, Coia V, Schuenemann VJ, Price TD, Wahl J, Pinhasi R, Zink A, Krause J, Maixner F. Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard. SCIENCE ADVANCES 2018; 4:eaao1262. [PMID: 30191172 PMCID: PMC6124919 DOI: 10.1126/sciadv.aao1262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 05/31/2018] [Indexed: 05/25/2023]
Abstract
From historical and archeological records, it is posited that the European medieval household was a combination of close relatives and recruits. However, this kinship structure has not yet been directly tested at a genomic level on medieval burials. The early 7th century CE burial at Niederstotzingen, discovered in 1962, is the most complete and richest example of Alemannic funerary practice in Germany. Excavations found 13 individuals who were buried with an array of inscribed bridle gear, jewelry, armor, and swords. These artifacts support the view that the individuals had contact with France, northern Italy, and Byzantium. This study analyzed genome-wide sequences recovered from the remains, in tandem with analysis of the archeological context, to reconstruct kinship and the extent of outside contact. Eleven individuals had sufficient DNA preservation to genetically sex them as male and identify nine unique mitochondrial haplotypes and two distinct Y chromosome lineages. Genome-wide analyses were performed on eight individuals to estimate genetic affiliation to modern west Eurasians and genetic kinship at the burial. Five individuals were direct relatives. Three other individuals were not detectably related; two of these showed genomic affinity to southern Europeans. The genetic makeup of the individuals shares no observable pattern with their orientation in the burial or the cultural association of their grave goods, with the five related individuals buried with grave goods associated with three diverse cultural origins. These findings support the idea that not only were kinship and fellowship held in equal regard: Diverse cultural appropriation was practiced among closely related individuals as well.
Collapse
Affiliation(s)
- Niall O’Sullivan
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Valentina Coia
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Verena J. Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
- Senckenberg Center for Human Evolution and Paleoecology, Palaeoanthropology, University of Tübingen, 72070 Tübingen, Germany
| | - T. Douglas Price
- Laboratory for Archaeological Chemistry, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, USA
| | - Joachim Wahl
- State Office for Cultural Heritage Management Baden-Württemberg, Osteology, D-78467 Konstanz, Germany
- Institute for Archaeological Sciences, Palaeoanthropology, University of Tübingen, 72070 Tübingen, Germany
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Department of Anthropology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| |
Collapse
|
64
|
Grugni V, Raveane A, Mattioli F, Battaglia V, Sala C, Toniolo D, Ferretti L, Gardella R, Achilli A, Olivieri A, Torroni A, Passarino G, Semino O. Reconstructing the genetic history of Italians: new insights from a male (Y-chromosome) perspective. Ann Hum Biol 2018; 45:44-56. [PMID: 29382284 DOI: 10.1080/03014460.2017.1409801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.
Collapse
Affiliation(s)
- Viola Grugni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Alessandro Raveane
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Francesca Mattioli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Vincenza Battaglia
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Cinzia Sala
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Daniela Toniolo
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Luca Ferretti
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Rita Gardella
- c Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Brescia , Italy
| | - Alessandro Achilli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Anna Olivieri
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Antonio Torroni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Giuseppe Passarino
- d Dipartimento di Biologia, Ecologia e Scienze della Terra , Università della Calabria , Arcavacata di Rende , Cosenza , Italy
| | - Ornella Semino
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| |
Collapse
|
65
|
Messina F, Finocchio A, Akar N, Loutradis A, Michalodimitrakis EI, Brdicka R, Jodice C, Novelletto A. Enlarging the gene-geography of Europe and the Mediterranean area to STR loci of common forensic use: longitudinal and latitudinal frequency gradients. Ann Hum Biol 2018; 45:77-85. [PMID: 29382282 DOI: 10.1080/03014460.2017.1409365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tetranucleotide Short Tandem Repeats (STRs) for human identification and common use in forensic cases have recently been used to address the population genetics of the North-Eastern Mediterranean area. However, to gain confidence in the inferences made using STRs, this kind of analysis should be challenged with changes in three main aspects of the data, i.e. the sizes of the samples, their distance across space and the genetic background from which they are drawn. AIM To test the resilience of the gradients previously detected in the North-Eastern Mediterranean to the enlargement of the surveyed area and population set, using revised data. SUBJECTS AND METHODS STR genotype profiles were obtained from a publicly available database (PopAffilietor databank) and a dataset was assembled including >7000 subjects from the Arabian Peninsula to Scandinavia, genotyped at eight loci. Spatial principal component analysis (sPCA) was applied and the frequency maps of the nine alleles which contributed most strongly to sPC1 were examined in detail. RESULTS By far the greatest part of diversity was summarised by a single spatial principal component (sPC1), oriented along a SouthEast-to-NorthWest axis. The alleles with the top 5% squared loadings were TH01(9.3), D19S433(14), TH01(6), D19S433(15.2), FGA(20), FGA(24), D3S1358(14), FGA(21) and D2S1338(19). These results confirm a clinal pattern over the whole range for at least four loci (TH01, D19S433, FGA, D3S1358). CONCLUSIONS Four of the eight STR loci (or even alleles) considered here can reproducibly capture continental arrangements of diversity. This would, in principle, allow for the exploitation of forensic data to clarify important aspects in the formation of local gene pools.
Collapse
Affiliation(s)
- Francesco Messina
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Andrea Finocchio
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Nejat Akar
- b Pediatrics Department , TOBB-Economy and Technology University Hospital , Ankara , Turkey
| | | | | | - Radim Brdicka
- e Institute of Hematology and Blood Transfusion , Praha , Czech Republic
| | - Carla Jodice
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Andrea Novelletto
- a Department of Biology , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
66
|
ElHefnawi M, Jeon S, Bhak Y, ElFiky A, Horaiz A, Jun J, Kim H, Bhak J. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes. Gene 2018; 668:129-134. [DOI: 10.1016/j.gene.2018.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/13/2018] [Indexed: 12/27/2022]
|
67
|
de Barros Damgaard P, Martiniano R, Kamm J, Moreno-Mayar JV, Kroonen G, Peyrot M, Barjamovic G, Rasmussen S, Zacho C, Baimukhanov N, Zaibert V, Merz V, Biddanda A, Merz I, Loman V, Evdokimov V, Usmanova E, Hemphill B, Seguin-Orlando A, Yediay FE, Ullah I, Sjögren KG, Iversen KH, Choin J, de la Fuente C, Ilardo M, Schroeder H, Moiseyev V, Gromov A, Polyakov A, Omura S, Senyurt SY, Ahmad H, McKenzie C, Margaryan A, Hameed A, Samad A, Gul N, Khokhar MH, Goriunova OI, Bazaliiskii VI, Novembre J, Weber AW, Orlando L, Allentoft ME, Nielsen R, Kristiansen K, Sikora M, Outram AK, Durbin R, Willerslev E. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 2018; 360:eaar7711. [PMID: 29743352 PMCID: PMC6748862 DOI: 10.1126/science.aar7711] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyzed 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after, but not at the time of, Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia.
Collapse
Affiliation(s)
| | - Rui Martiniano
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jack Kamm
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Guus Kroonen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
- Leiden University Centre for Linguistics, Leiden University, Leiden, Netherlands
| | - Michaël Peyrot
- Leiden University Centre for Linguistics, Leiden University, Leiden, Netherlands
| | - Gojko Barjamovic
- Department of Near Eastern Languages and Civilizations, Harvard University, Cambridge, MA, USA
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Zacho
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | | | - Victor Zaibert
- Institute of Archaeology and Steppe Civilization, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Victor Merz
- S. Toraighyrov Pavlodar State University, Joint Research Center for Archeological Studies named after A.Kh. Margulan, Pavlodar, Kazakhstan
| | - Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Ilja Merz
- S. Toraighyrov Pavlodar State University, Joint Research Center for Archeological Studies named after A.Kh. Margulan, Pavlodar, Kazakhstan
| | - Valeriy Loman
- Saryarkinsky Institute of Archaeology, Buketov Karaganda State University, Karaganda. 100074, Kazakhstan
| | - Valeriy Evdokimov
- Saryarkinsky Institute of Archaeology, Buketov Karaganda State University, Karaganda. 100074, Kazakhstan
| | - Emma Usmanova
- Saryarkinsky Institute of Archaeology, Buketov Karaganda State University, Karaganda. 100074, Kazakhstan
| | - Brian Hemphill
- Department of Anthropology, University of Alaska, Fairbanks, AK, USA
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Fulya Eylem Yediay
- The Institute of Forensic Sciences, Istanbul University, Istanbul, Turkey
| | - Inam Ullah
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Hazara University, Garden Campus, Mansehra, Pakistan
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, 40530 Göteborg, Sweden
| | - Katrine Højholt Iversen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jeremy Choin
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Constanza de la Fuente
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Melissa Ilardo
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St. Petersburg, Russia
| | - Andrey Gromov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St. Petersburg, Russia
| | - Andrei Polyakov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sachihiro Omura
- Japanese Institute of Anatolian Archaeology, Kaman, Kırşehir, Turkey
| | | | - Habib Ahmad
- Department of Genetics, Hazara University, Garden Campus, Mansehra, Pakistan
- Center of Omic Sciences, Islamia College, Peshawar, Pakistan
| | - Catriona McKenzie
- Department of Archaeology, University of Exeter, Exeter, EX4 4QE, UK
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Hameed
- Department of Archeology, Hazara University, Garden Campus, Mansehra, Pakistan
| | - Abdul Samad
- Directorate of Archaeology and Museums Government of Khyber Pakhtunkhwa, Pakistan
| | - Nazish Gul
- Department of Genetics, Hazara University, Garden Campus, Mansehra, Pakistan
| | | | - O I Goriunova
- Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'iev Ave. 17, Novosibirsk, 630090, Russia
- Department of History, Irkutsk State University, Karl Marx Street 1, Irkutsk 664003, Russia
| | - Vladimir I Bazaliiskii
- Department of History, Irkutsk State University, Karl Marx Street 1, Irkutsk 664003, Russia
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Andrzej W Weber
- Department of Anthropology, University of Alberta, Edmonton, Alberta, T6G 2H4, Canada
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université deToulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of Berkeley, Berkeley, CA, USA
| | - Kristian Kristiansen
- Department of Historical Studies, University of Gothenburg, 40530 Göteborg, Sweden
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Alan K Outram
- Department of Archaeology, University of Exeter, Exeter, EX4 4QE, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
68
|
Hollard C, Zvénigorosky V, Kovalev A, Kiryushin Y, Tishkin A, Lazaretov I, Crubézy E, Ludes B, Keyser C. New genetic evidence of affinities and discontinuities between bronze age Siberian populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:97-107. [PMID: 29900529 DOI: 10.1002/ajpa.23607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES This work focuses on the populations of South Siberia during the Eneolithic and Bronze Age and specifically on the contribution of uniparental lineage and phenotypical data to the question of the genetic affinities and discontinuities between western and eastern populations. MATERIALS AND METHODS We performed molecular analyses on the remains of 28 ancient humans (10 Afanasievo (3600-2500 BC) and 18 Okunevo (2500-1800 BC) individuals). For each sample, two uniparentally inherited systems (mitochondrial DNA and Y-chromosome DNA) were studied, in order to trace back maternal and paternal lineages. Phenotype-informative SNPs (Single Nucleotide Polymorphisms) were also analyzed, along with autosomal STRs (Short Tandem Repeats). RESULTS Most of the Afanasievo men submitted to analysis belonged to a single sub-haplogroup, R1b1a1a, which reveals the predominance of this haplogroup in these early Bronze Age populations. Conversely, Okunevo individuals carried more diverse paternal lineages that mostly belonged to Asian/Siberian haplogroups. These differences are also apparent, although less strongly, in mitochondrial lineage composition and phenotype marker variant frequencies. DISCUSSION This study provides new elements that contribute to our understanding of the genetic interactions between populations in Eneolithic and Bronze Age southern Siberia. Our results support the hypothesis of a genetic link between Afanasievo and Yamnaya (in western Eurasia), as suggested by previous studies of other markers. However, we found no Y-chromosome lineage evidence of a possible Afanasievo migration to the Tarim Basin. Moreover, the presence of Y-haplogroup Q in Okunevo individuals links them to Native American populations, as was suggested by whole-genome sequencing.
Collapse
Affiliation(s)
- Clémence Hollard
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | - Vincent Zvénigorosky
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France.,Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| | - Alexey Kovalev
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia
| | - Yurii Kiryushin
- The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Alexey Tishkin
- The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Igor Lazaretov
- Institute of the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Eric Crubézy
- Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| | - Bertrand Ludes
- Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France.,Institut Médico-légal de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Christine Keyser
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France.,Laboratoire AMIS, CNRS UMR 5288, Université de Toulouse, Toulouse, France
| |
Collapse
|
69
|
Ancestry and different rates of suicide and homicide in European countries: A study with population-level data. J Affect Disord 2018; 232:152-162. [PMID: 29494899 DOI: 10.1016/j.jad.2018.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION There are large differences in suicide rates across Europe. The current study investigated the relationship of suicide and homicide rates in different countries of Europe with ancestry as it is defined with the haplotype frequencies of Y-DNA and mtDNA. MATERIAL AND METHODS The mortality data were retrieved from the WHO online database. The genetic data were retrieved from http://www.eupedia.com. The statistical analysis included Forward Stepwise Multiple Linear Regression analysis and Pearson Correlation Coefficient (R). RESULTS In males, N and R1a Y-DNA haplotypes were positively related to both homicidal and suicidal behaviors while I1 was negatively related. The Q was positively related to the homicidal rate. Overall, 60-75% of the observed variance was explained. L, J and X mtDNA haplogroups were negatively related with suicide in females alone, with 82-85% of the observed variance described. DISCUSSION The current study should not be considered as a study of genetic markers but rather a study of human ancestry. Its results could mean that research on suicidality has a strong biological but locally restricted component and could be limited by the study population; generalizability of the results at an international level might not be possible. Further research with patient-level data are needed to verify whether these haplotypes could serve as biological markers to identify persons at risk to commit suicide or homicide and whether biologically-determined ancestry could serve as an intermediate grouping method or even as an endophenotype in suicide research.
Collapse
|
70
|
Inferring genetic origins and phenotypic traits of George Bähr, the architect of the Dresden Frauenkirche. Sci Rep 2018; 8:2115. [PMID: 29391530 PMCID: PMC5794802 DOI: 10.1038/s41598-018-20180-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
For historic individuals, the outward appearance and other phenotypic characteristics remain often non-resolved. Unfortunately, images or detailed written sources are only scarcely available in many cases. Attempts to study historic individuals with genetic data so far focused on hypervariable regions of mitochondrial DNA and to some extent on complete mitochondrial genomes. To elucidate the potential of in-solution based genome-wide SNP capture methods - as now widely applied in population genetics - we extracted DNA from the 17th century remains of George Bähr, the architect of the Dresdner Frauenkirche. We were able to identify the remains to be of male origin, showing sufficient DNA damage, deriving from a single person and being thus likely authentic. Furthermore, we were able to show that George Bähr had light skin pigmentation and most likely brown eyes. His genomic DNA furthermore points to a Central European origin. We see this analysis as an example to demonstrate the prospects that new in-solution SNP capture methods can provide for historic cases of forensic interest, using methods well established in ancient DNA (aDNA) research and population genetics.
Collapse
|
71
|
Dzhaubermezov MA, Ekomasova NV, Litvinov SS, Khusainova RI, Akhmetova VL, Balinova NV, Khusnutdinova EK. Genetic characterization of Balkars and Karachays according to the variability of the Y chromosome. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Murillo-Melo NM, Márquez-Quiróz LC, Gómez R, Orozco L, Mendoza-Caamal E, Tapia-Guerrero YS, Camacho-Mejorado R, Cortés H, López-Reyes A, Santana C, Noris G, Hernández-Hernández O, Cisneros B, Magaña JJ. Origin of the myotonic dystrophy type 1 mutation in Mexican population and influence of Amerindian ancestry on CTG repeat allelic distribution. Neuromuscul Disord 2017; 27:1106-1114. [PMID: 29054426 DOI: 10.1016/j.nmd.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/17/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy type 1 is caused by expansion of a CTG trinucleotide repeat situated in the DMPK gene. Worldwide genetic studies suggest a single or limited number of mutational events cause the disease. However, distribution of CTG alleles and disease incidence varies among ethnicities. Due to the great ethnic diversity of the Mexican population, the present study was aimed at analyzing the impact of different lineages in shaping the CTG-repeat allelic distribution in the contemporary Mexican-Mestizo population as well as to shed light on the DM1 ancestral origin. Distribution of CTG-repeat alleles was similar among Mestizo and Amerindian subpopulations with (CTG)11-13 being the most frequent alleles in both groups, which implies that Mexican-Mestizo allelic distribution has been modeled by Amerindian ancestry. We diagnosed a relatively high number of cases, consistent with the high frequency of large-normal alleles found in Mexican subpopulations. Haplotype analysis using various polymorphic-markers in proximity to DMPK gene indicates that a single founder mutation originates myotonic dystrophy type 1 in Mexico; however, Y-STR haplogroups data and the presence of pre-mutated and large normal alleles in Amerindians support the hypothesis that both European and Amerindian ancestral chromosomes might have introduced the disease to the Mexican population, which was further disseminated through mestizaje.
Collapse
Affiliation(s)
- N M Murillo-Melo
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - L C Márquez-Quiróz
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - R Gómez
- Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - L Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - E Mendoza-Caamal
- Laboratory of Immunogenomics and Metabolic Diseases, National Genomic Medicine Institute (INMEGEN), Mexico City, Mexico
| | - Y S Tapia-Guerrero
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | | | - H Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - A López-Reyes
- Laboratory of Sinovial Liquid, INR, Mexico City, Mexico
| | - C Santana
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - G Noris
- Laboratory of Diagnostic Molecular Biology (BIMODI), Querétaro, Qro, Mexico
| | - O Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico
| | - B Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies-National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico.
| | - J J Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR), Mexico City, Mexico; Biomedical Sciences Program, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
73
|
Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, de Pancorbo MM, Calafell F. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci Rep 2017; 7:7341. [PMID: 28779148 PMCID: PMC5544771 DOI: 10.1038/s41598-017-07710-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carla García-Fernández
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Neus Font-Porterias
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - María José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Claude Férec
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France.,Université de Bretagne Occidentale, Brest, France.,Etablissement Français du Sang-Bretagne, Brest, France
| | - Karen Rouault
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Susana Jiménez-Moreno
- Forensic and Legal Medicine Area, Department of Pathology and Surgery, University Miguel Hernández, Elche, Spain
| | | | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | | | - Ángel Carracedo
- Genomic Medicine Group, CIBERER- University of Santiago de Compostela, Galician Foundation of Genomic Medicine (SERGAS), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
74
|
Martiniano R, Cassidy LM, Ó'Maoldúin R, McLaughlin R, Silva NM, Manco L, Fidalgo D, Pereira T, Coelho MJ, Serra M, Burger J, Parreira R, Moran E, Valera AC, Porfirio E, Boaventura R, Silva AM, Bradley DG. The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet 2017; 13:e1006852. [PMID: 28749934 PMCID: PMC5531429 DOI: 10.1371/journal.pgen.1006852] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022] Open
Abstract
We analyse new genomic data (0.05–2.95x) from 14 ancient individuals from Portugal distributed from the Middle Neolithic (4200–3500 BC) to the Middle Bronze Age (1740–1430 BC) and impute genomewide diploid genotypes in these together with published ancient Eurasians. While discontinuity is evident in the transition to agriculture across the region, sensitive haplotype-based analyses suggest a significant degree of local hunter-gatherer contribution to later Iberian Neolithic populations. A more subtle genetic influx is also apparent in the Bronze Age, detectable from analyses including haplotype sharing with both ancient and modern genomes, D-statistics and Y-chromosome lineages. However, the limited nature of this introgression contrasts with the major Steppe migration turnovers within third Millennium northern Europe and echoes the survival of non-Indo-European language in Iberia. Changes in genomic estimates of individual height across Europe are also associated with these major cultural transitions, and ancestral components continue to correlate with modern differences in stature. Recent ancient DNA work has demonstrated the significant genetic impact of mass migrations from the Steppe into Central and Northern Europe during the transition from the Neolithic to the Bronze Age. In Iberia, archaeological change at the level of material culture and funerary rituals has been reported during this period, however, the genetic impact associated with this cultural transformation has not yet been estimated. In order to investigate this, we sequence Neolithic and Bronze Age samples from Portugal, which we compare to other ancient and present-day individuals. Genome-wide imputation of a large dataset of ancient samples enabled sensitive methods for detecting population structure and selection in ancient samples. We revealed subtle genetic differentiation between the Portuguese Neolithic and Bronze Age samples suggesting a markedly reduced influx in Iberia compared to other European regions. Furthermore, we predict individual height in ancients, suggesting that stature was reduced in the Neolithic and affected by subsequent admixtures. Lastly, we examine signatures of strong selection in important traits and the timing of their origins.
Collapse
Affiliation(s)
- Rui Martiniano
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail: (DGB); (RM)
| | - Lara M. Cassidy
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ros Ó'Maoldúin
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- The Irish Fieldschool of Prehistoric Archaeology, Department of Archaeology, NUI Galway, Galway, Ireland
| | - Russell McLaughlin
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Nuno M. Silva
- Department of Genetics & Evolution - Anthropology Unit, University of Geneva, Switzerland
| | - Licinio Manco
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Daniel Fidalgo
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Tania Pereira
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria J. Coelho
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Serra
- Palimpsesto - Estudo e Preservação do Património Cultural Lda., Coimbra, Portugal
| | - Joachim Burger
- Palaeogenetics Group, Johannes Gutenberg University, Mainz, Germany
| | - Rui Parreira
- Workgroup on Ancient Peasant Societies, University of Lisbon Archaeological Center, Lisboa, Portugal
| | - Elena Moran
- Workgroup on Ancient Peasant Societies, University of Lisbon Archaeological Center, Lisboa, Portugal
| | - Antonio C. Valera
- Nucleo de Investigação Arqueologica - ERA Arqueologia, Cruz Quebrada, Portugal
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior – University of Algarve, Faro, Portugal
| | - Eduardo Porfirio
- Palimpsesto - Estudo e Preservação do Património Cultural Lda., Coimbra, Portugal
| | - Rui Boaventura
- Workgroup on Ancient Peasant Societies, University of Lisbon Archaeological Center, Lisboa, Portugal
| | - Ana M. Silva
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Workgroup on Ancient Peasant Societies, University of Lisbon Archaeological Center, Lisboa, Portugal
- Laboratory of Forensic Anthropology, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DGB); (RM)
| |
Collapse
|
75
|
Genetic differentiation between upland and lowland populations shapes the Y-chromosomal landscape of West Asia. Hum Genet 2017; 136:437-450. [DOI: 10.1007/s00439-017-1770-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
76
|
Chukhryaeva MI, Pavlova ES, Napolskich VV, Garin EV, Klopov AS, Temnyatkin SN, Zaporozhchenko VV, Romanov AG, Agdzhoyan AT, Utevska OM, Markina NV, Koshel SM, Balanovsky OP, Balanovska EV. Is there a Finno-Ugric component in the gene pool of Russians from Yaroslavl oblast? Evidence from Y-chromosome. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Characterization of the Iberian Y chromosome haplogroup R-DF27 in Northern Spain. Forensic Sci Int Genet 2017; 27:142-148. [DOI: 10.1016/j.fsigen.2016.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
|
78
|
Jones ER, Zarina G, Moiseyev V, Lightfoot E, Nigst PR, Manica A, Pinhasi R, Bradley DG. The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers. Curr Biol 2017; 27:576-582. [PMID: 28162894 PMCID: PMC5321670 DOI: 10.1016/j.cub.2016.12.060] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/10/2016] [Accepted: 12/29/2016] [Indexed: 12/04/2022]
Abstract
The Neolithic transition was a dynamic time in European prehistory of cultural, social, and technological change. Although this period has been well explored in central Europe using ancient nuclear DNA [1, 2], its genetic impact on northern and eastern parts of this continent has not been as extensively studied. To broaden our understanding of the Neolithic transition across Europe, we analyzed eight ancient genomes: six samples (four to ∼1- to 4-fold coverage) from a 3,500 year temporal transect (∼8,300–4,800 calibrated years before present) through the Baltic region dating from the Mesolithic to the Late Neolithic and two samples spanning the Mesolithic-Neolithic boundary from the Dnieper Rapids region of Ukraine. We find evidence that some hunter-gatherer ancestry persisted across the Neolithic transition in both regions. However, we also find signals consistent with influxes of non-local people, most likely from northern Eurasia and the Pontic Steppe. During the Late Neolithic, this Steppe-related impact coincides with the proposed emergence of Indo-European languages in the Baltic region [3, 4]. These influences are distinct from the early farmer admixture that transformed the genetic landscape of central Europe, suggesting that changes associated with the Neolithic package in the Baltic were not driven by the same Anatolian-sourced genetic exchange. A degree of genetic continuity from the Mesolithic to the Neolithic in the Baltic Steppe-related genetic influences found in the Baltic during the Neolithic No Anatolian farmer-related genetic admixture in Neolithic Baltic samples Steppe ancestry in Latvia at the time of the emergence of Balto-Slavic languages
Collapse
Affiliation(s)
- Eppie R Jones
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Gunita Zarina
- Institute of Latvian History, University of Latvia, Kalpaka Bulvāris 4, Rīga 1050, Latvia
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | - Emma Lightfoot
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Philip R Nigst
- Division of Archaeology, Department of Archaeology and Anthropology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland.
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
79
|
Messina F, Finocchio A, Akar N, Loutradis A, Michalodimitrakis EI, Brdicka R, Jodice C, Novelletto A. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean. PLoS One 2016; 11:e0167065. [PMID: 27898725 PMCID: PMC5127579 DOI: 10.1371/journal.pone.0167065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools.
Collapse
Affiliation(s)
| | | | - Nejat Akar
- Pediatrics Department, TOBB-Economy and Technology University Hospital, Ankara, Turkey
| | | | | | - Radim Brdicka
- Institute of Haematology and Blood Transfusion, Praha, Czech Republic
| | - Carla Jodice
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - Andrea Novelletto
- Department of Biology, University "Tor Vergata", Rome, Italy
- * E-mail:
| |
Collapse
|
80
|
Rowold DJ, Perez-Benedico D, Stojkovic O, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. On the Bantu expansion. Gene 2016; 593:48-57. [PMID: 27451076 DOI: 10.1016/j.gene.2016.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups.
Collapse
Affiliation(s)
- Daine J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | | | - Oliver Stojkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
81
|
Neparáczki E, Juhász Z, Pamjav H, Fehér T, Csányi B, Zink A, Maixner F, Pálfi G, Molnár E, Pap I, Kustár Á, Révész L, Raskó I, Török T. Genetic structure of the early Hungarian conquerors inferred from mtDNA haplotypes and Y-chromosome haplogroups in a small cemetery. Mol Genet Genomics 2016; 292:201-214. [PMID: 27803981 DOI: 10.1007/s00438-016-1267-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
We applied ancient DNA methods to shed light on the origin of ancient Hungarians and their relation to modern populations. Hungarians moved into the Carpathian Basin from the Eurasian Pontic steppes in the year 895 AD as a confederation of seven tribes, but their further origin remains obscure. Here, we present 17 mtDNA haplotypes and four Y-chromosome haplogroups, which portray the genetic composition of an entire small cemetery of the first generation Hungarians. Using novel algorithms to compare these mitochondrial DNA haplogroups with other ancient and modern Eurasian data, we revealed that a significant portion of the Hungarians probably originated from a long ago consolidated gene pool in Central Asia-South Siberia, which still persists in modern Hungarians. Another genetic layer of the early Hungarians was obtained during their westward migrations by admixing with various populations of European origin, and an important component of these was derived from the Caucasus region. Most of the modern populations, which are genetically closest relatives of ancient Hungarians, today speak non-Indo-European languages. Our results contribute to our understanding of the peopling of Europe by providing ancient DNA data from a still genetically poorly studied period of medieval human migrations.
Collapse
Affiliation(s)
| | - Zoltán Juhász
- Hungarian Academy of Sciences, Centre for Energy Research, Budapest, Hungary
| | - Horolma Pamjav
- DNA Laboratory, Network of Forensic Science Institutes, Ministry of Justice, Budapest, Hungary
| | - Tibor Fehér
- DNA Laboratory, Network of Forensic Science Institutes, Ministry of Justice, Budapest, Hungary
| | - Bernadett Csányi
- Department of Forensic Medicine, University of Szeged, Szeged, Hungary
| | - Albert Zink
- Institute for Mummies and the Iceman EURAC, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummies and the Iceman EURAC, Bolzano, Italy
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Erika Molnár
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum Budapest, Budapest, Hungary
| | - Ágnes Kustár
- Department of Anthropology, Hungarian Natural History Museum Budapest, Budapest, Hungary
| | - László Révész
- Department of Archaeology, University of Szeged, Szeged, Hungary
| | - István Raskó
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tibor Török
- Department of Genetics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
82
|
Molecular Genealogy of a Mongol Queen's Family and Her Possible Kinship with Genghis Khan. PLoS One 2016; 11:e0161622. [PMID: 27627454 PMCID: PMC5023095 DOI: 10.1371/journal.pone.0161622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/12/2016] [Indexed: 11/28/2022] Open
Abstract
Members of the Mongol imperial family (designated the Golden family) are buried in a secret necropolis; therefore, none of their burial grounds have been found. In 2004, we first discovered 5 graves belonging to the Golden family in Tavan Tolgoi, Eastern Mongolia. To define the genealogy of the 5 bodies and the kinship among them, SNP and/or STR profiles of mitochondria, autosomes, and Y chromosomes were analyzed. Four of the 5 bodies were determined to carry the mitochondrial DNA haplogroup D4, while the fifth carried haplogroup CZ, indicating that this individual had no kinship with the others. Meanwhile, Y-SNP and Y-STR profiles indicate that the males examined belonged to the R1b-M343 haplogroup. Thus, their East Asian D4 or CZ matrilineal and West Eurasian R1b-M343 patrilineal origins reveal genealogical admixture between Caucasoid and Mongoloid ethnic groups, despite a Mongoloid physical appearance. In addition, Y chromosomal and autosomal STR profiles revealed that the four D4-carrying bodies bore the relationship of either mother and three sons or four full siblings with almost the same probability. Moreover, the geographical distribution of R1b-M343-carrying modern-day individuals demonstrates that descendants of Tavan Tolgoi bodies today live mainly in Western Eurasia, with a high frequency in the territories of the past Mongol khanates. Here, we propose that Genghis Khan and his family carried Y-haplogroup R1b-M343, which is prevalent in West Eurasia, rather than the Y-haplogroup C3c-M48, which is prevalent in Asia and which is widely accepted to be present in the family members of Genghis Khan. Additionally, Tavan Tolgoi bodies may have been the product of marriages between the lineage of Genghis Khan’s Borjigin clan and the lineage of either the Ongud or Hongirad clans, indicating that these individuals were members of Genghis Khan’s immediate family or his close relatives.
Collapse
|
83
|
Broushaki F, Thomas MG, Link V, López S, van Dorp L, Kirsanow K, Hofmanová Z, Diekmann Y, Cassidy LM, Díez-del-Molino D, Kousathanas A, Sell C, Robson HK, Martiniano R, Blöcher J, Scheu A, Kreutzer S, Bollongino R, Bobo D, Davudi H, Munoz O, Currat M, Abdi K, Biglari F, Craig OE, Bradley DG, Shennan S, Veeramah K, Mashkour M, Wegmann D, Hellenthal G, Burger J. Early Neolithic genomes from the eastern Fertile Crescent. Science 2016; 353:499-503. [PMID: 27417496 PMCID: PMC5113750 DOI: 10.1126/science.aaf7943] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
We sequenced Early Neolithic genomes from the Zagros region of Iran (eastern Fertile Crescent), where some of the earliest evidence for farming is found, and identify a previously uncharacterized population that is neither ancestral to the first European farmers nor has contributed substantially to the ancestry of modern Europeans. These people are estimated to have separated from Early Neolithic farmers in Anatolia some 46,000 to 77,000 years ago and show affinities to modern-day Pakistani and Afghan populations, but particularly to Iranian Zoroastrians. We conclude that multiple, genetically differentiated hunter-gatherer populations adopted farming in southwestern Asia, that components of pre-Neolithic population structure were preserved as farming spread into neighboring regions, and that the Zagros region was the cradle of eastward expansion.
Collapse
Affiliation(s)
- Farnaz Broushaki
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Mark G Thomas
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Vivian Link
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Saioa López
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lucy van Dorp
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Karola Kirsanow
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Zuzana Hofmanová
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Yoan Diekmann
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - David Díez-del-Molino
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-10405, Stockholm, Sweden
| | - Athanasios Kousathanas
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France
| | - Christian Sell
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Harry K. Robson
- BioArCh, Department of Archaeology, University of York, York, YO10 5YW, UK
| | - Rui Martiniano
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Jens Blöcher
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Amelie Scheu
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Susanne Kreutzer
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Ruth Bollongino
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Dean Bobo
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794- 5245, USA
| | - Hossein Davudi
- Department of Archaeology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Olivia Munoz
- UMR 7041 ArScAn -VEPMO, Maison de l’Archéologie et de l’Ethnologie, 21 allée de l’Université, 92023 Nanterre, France
| | - Mathias Currat
- Department of Genetics & Evolution-Anthropology Unit, University of Geneva, 1211 Geneva, Switzerland
| | - Kamyar Abdi
- Samuel Jordan Center for Persian Studies and Culture, University of California-lrvine, Irvine, CA 92697-3370, USA
| | - Fereidoun Biglari
- Paleolithic Department, National Museum of Iran, 113617111, Tehran, Iran
| | - Oliver E. Craig
- BioArCh, Department of Archaeology, University of York, York, YO10 5YW, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Stephen Shennan
- Institute of Archaeology, University College London, London WC1H 0PY, UK
| | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794- 5245, USA
| | - Marjan Mashkour
- CNRS/MNHN/SUs – UMR 7209, Archéozoologie et Archéobotanique, Sociétés, Pratiques et Environnements, Département Ecologie et Gestion de la Biodiversité, 55 rue Buffon, 75005 Paris, France
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Joachim Burger
- Palaeogenetics Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
84
|
Pankratov V, Litvinov S, Kassian A, Shulhin D, Tchebotarev L, Yunusbayev B, Möls M, Sahakyan H, Yepiskoposyan L, Rootsi S, Metspalu E, Golubenko M, Ekomasova N, Akhatova F, Khusnutdinova E, Heyer E, Endicott P, Derenko M, Malyarchuk B, Metspalu M, Davydenko O, Villems R, Kushniarevich A. East Eurasian ancestry in the middle of Europe: genetic footprints of Steppe nomads in the genomes of Belarusian Lipka Tatars. Sci Rep 2016; 6:30197. [PMID: 27453128 PMCID: PMC4958967 DOI: 10.1038/srep30197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 12/04/2022] Open
Abstract
Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars—a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Collapse
Affiliation(s)
- Vasili Pankratov
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergei Litvinov
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Estonian Biocentre, Tartu, Estonia
| | - Alexei Kassian
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia.,School for Advanced Studies in the Humanities, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
| | - Dzmitry Shulhin
- Belarusian State University, Faculty of Applied Mathematics and Computer Science Department of Probability Theory and Mathematical Statistics, Minsk, Belarus
| | - Lieve Tchebotarev
- Center of analytical and genetic engineering studies, Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Tartu, Estonia.,Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | | | - Ene Metspalu
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maria Golubenko
- The Research Institute for Medical Genetics, 634050, Tomsk, Russia
| | - Natalia Ekomasova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Farida Akhatova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelyne Heyer
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Phillip Endicott
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | - Oleg Davydenko
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Richard Villems
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus.,Estonian Biocentre, Tartu, Estonia
| |
Collapse
|
85
|
Chukhryaeva MI, Ivanov IO, Frolova SA, Koshel SM, Utevska OM, Skhalyakho RA, Agdzhoyan AT, Bogunov YV, Balanovska EV, Balanovsky OP. The haplomatch program for comparing Y-chromosome STR-haplotypes and its application to the analysis of the origin of Don Cossacks. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Resque R, Gusmão L, Geppert M, Roewer L, Palha T, Alvarez L, Ribeiro-dos-Santos Â, Santos S. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background. PLoS One 2016; 11:e0152573. [PMID: 27046235 PMCID: PMC4821637 DOI: 10.1371/journal.pone.0152573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time.
Collapse
Affiliation(s)
- Rafael Resque
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Geppert
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresinha Palha
- Laboratório de Genética Forense, Instituto de Criminalística, Centro de Perícias Científicas Renato Chaves, Belém, Pará, Brasil
| | - Luis Alvarez
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
87
|
New native South American Y chromosome lineages. J Hum Genet 2016; 61:593-603. [PMID: 27030145 DOI: 10.1038/jhg.2016.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/23/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Abstract
Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26.
Collapse
|
88
|
Perez-Benedico D, La Salvia J, Zeng Z, Herrera GA, Garcia-Bertrand R, Herrera RJ. Mayans: a Y chromosome perspective. Eur J Hum Genet 2016; 24:1352-8. [PMID: 26956252 DOI: 10.1038/ejhg.2016.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
UNLABELLED In spite of the wealth of available cultural and archeological information as well as general interest in the Mayans, little is known about their genetics. In this study, for the first time, we attempt to alleviate this lacuna of knowledge by comprehensively investigating the Y chromosome composition of contemporary Mayan populations throughout their domain. To accomplish this, five geographically targeted and ethnically distinct Mayan populations are investigated using Y-SNP and Y-STR markers. FINDINGS overall, the Mayan populations as a group are highly homogeneous, basically made up of only two autochthonous haplogroups, Q1a2a1a1*-M3 and Q1a2a1*-L54. Although the Y-STR data illustrates diversity, this diversity, for the most part, is uniformly distributed among geographically distant Mayan populations. Similar haplotypes among populations, abundance of singletons and absence of population partitioning within networks among Mayan populations suggest recent population expansion and substantial gene flow within the Mayan dominion, possibly due to the development of agriculture, the establishment of interacting City-State systems and commerce.
Collapse
Affiliation(s)
| | | | - Zhaoshu Zeng
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Giselle A Herrera
- Department of Biology, Florida State University, Tallahassee, FL, USA
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, USA
| |
Collapse
|
89
|
Voskarides K, Mazières S, Hadjipanagi D, Di Cristofaro J, Ignatiou A, Stefanou C, King RJ, Underhill PA, Chiaroni J, Deltas C. Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. INVESTIGATIVE GENETICS 2016; 7:1. [PMID: 26870315 PMCID: PMC4750176 DOI: 10.1186/s13323-016-0032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Background The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks. Electronic supplementary material The online version of this article (doi:10.1186/s13323-016-0032-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Stéphane Mazières
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Despina Hadjipanagi
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | | | - Anastasia Ignatiou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Peter A Underhill
- Department of Genetics, Stanford University, Stanford, California 94305 USA
| | - Jacques Chiaroni
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| |
Collapse
|
90
|
Martiniano R, Caffell A, Holst M, Hunter-Mann K, Montgomery J, Müldner G, McLaughlin RL, Teasdale MD, van Rheenen W, Veldink JH, van den Berg LH, Hardiman O, Carroll M, Roskams S, Oxley J, Morgan C, Thomas MG, Barnes I, McDonnell C, Collins MJ, Bradley DG. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat Commun 2016; 7:10326. [PMID: 26783717 PMCID: PMC4735653 DOI: 10.1038/ncomms10326] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/25/2015] [Indexed: 11/09/2022] Open
Abstract
The purported migrations that have formed the peoples of Britain have been the focus of generations of scholarly controversy. However, this has not benefited from direct analyses of ancient genomes. Here we report nine ancient genomes (∼ 1 ×) of individuals from northern Britain: seven from a Roman era York cemetery, bookended by earlier Iron-Age and later Anglo-Saxon burials. Six of the Roman genomes show affinity with modern British Celtic populations, particularly Welsh, but significantly diverge from populations from Yorkshire and other eastern English samples. They also show similarity with the earlier Iron-Age genome, suggesting population continuity, but differ from the later Anglo-Saxon genome. This pattern concords with profound impact of migrations in the Anglo-Saxon period. Strikingly, one Roman skeleton shows a clear signal of exogenous origin, with affinities pointing towards the Middle East, confirming the cosmopolitan character of the Empire, even at its northernmost fringes.
Collapse
Affiliation(s)
- Rui Martiniano
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Anwen Caffell
- York Osteoarchaeology Ltd, 75 Main Street, Bishop Wilton, York YO42 1SR, UK.,Department of Archaeology, Dawson Building, Durham University, South Road, Durham DH1 3LE, UK
| | - Malin Holst
- York Osteoarchaeology Ltd, 75 Main Street, Bishop Wilton, York YO42 1SR, UK.,BioArCh, Biology, S Block, Wentworth Way, York YO10 5DD, UK
| | - Kurt Hunter-Mann
- York Archaeological Trust for Excavation and Research Limited, 47 Aldwark, York YO1 7BX, UK
| | - Janet Montgomery
- Department of Archaeology, Dawson Building, Durham University, South Road, Durham DH1 3LE, UK
| | - Gundula Müldner
- Department of Archaeology, University of Reading, Whiteknights PO Box 227, Reading RG6 6AB, UK
| | - Russell L McLaughlin
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew D Teasdale
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Maureen Carroll
- Department of Archaeology, University of Sheffield Northgate House, West Street, Sheffield S1 4ET, UK
| | - Steve Roskams
- BioArCh, Biology, S Block, Wentworth Way, York YO10 5DD, UK
| | | | - Colleen Morgan
- BioArCh, Biology, S Block, Wentworth Way, York YO10 5DD, UK
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Christine McDonnell
- York Archaeological Trust for Excavation and Research Limited, 47 Aldwark, York YO1 7BX, UK
| | | | - Daniel G Bradley
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
91
|
Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc Natl Acad Sci U S A 2015; 113:368-73. [PMID: 26712024 DOI: 10.1073/pnas.1518445113] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343-3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter-gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026-1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.
Collapse
|
92
|
Grugni V, Battaglia V, Perego UA, Raveane A, Lancioni H, Olivieri A, Ferretti L, Woodward SR, Pascale JM, Cooke R, Myres N, Motta J, Torroni A, Achilli A, Semino O. Exploring the Y Chromosomal Ancestry of Modern Panamanians. PLoS One 2015; 10:e0144223. [PMID: 26636572 PMCID: PMC4670172 DOI: 10.1371/journal.pone.0144223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Collapse
Affiliation(s)
- Viola Grugni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Ancestry, Provo, Utah, United States of America
| | - Jorge Motta
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
93
|
Tarkhnishvili D, Gavashelishvili A, Murtskhvaladze M, Gabelaia M, Tevzadze G. Human paternal lineages, languages, and environment in the Caucasus. Hum Biol 2015; 86:113-30. [PMID: 25397702 DOI: 10.3378/027.086.0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 11/05/2022]
Abstract
Publications that describe the composition of the human Y-DNA haplogroup in diffferent ethnic or linguistic groups and geographic regions provide no explicit explanation of the distribution of human paternal lineages in relation to specific ecological conditions. Our research attempts to address this topic for the Caucasus, a geographic region that encompasses a relatively small area but harbors high linguistic, ethnic, and Y-DNA haplogroup diversity. We genotyped 224 men that identified themselves as ethnic Georgian for 23 Y-chromosome short tandem-repeat markers and assigned them to their geographic places of origin. The genotyped data were supplemented with published data on haplogroup composition and location of other ethnic groups of the Caucasus. We used multivariate statistical methods to see if linguistics, climate, and landscape accounted for geographical diffferences in frequencies of the Y-DNA haplogroups G2, R1a, R1b, J1, and J2. The analysis showed significant associations of (1) G2 with wellforested mountains, (2) J2 with warm areas or poorly forested mountains, and (3) J1 with poorly forested mountains. R1b showed no association with environment. Haplogroups J1 and R1a were significantly associated with Daghestanian and Kipchak speakers, respectively, but the other haplogroups showed no such simple associations with languages. Climate and landscape in the context of competition over productive areas among diffferent paternal lineages, arriving in the Caucasus in diffferent times, have played an important role in shaping the present-day spatial distribution of patrilineages in the Caucasus. This spatial pattern had formed before linguistic subdivisions were finally shaped, probably in the Neolithic to Bronze Age. Later historical turmoil had little influence on the patrilineage composition and spatial distribution. Based on our results, the scenario of postglacial expansions of humans and their languages to the Caucasus from the Middle East, western Eurasia, and the East European Plain is plausible.
Collapse
Affiliation(s)
- David Tarkhnishvili
- Center of Biodiversity Studies, Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | | | - Marine Murtskhvaladze
- Center of Biodiversity Studies, Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Mariam Gabelaia
- Center of Biodiversity Studies, Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Gigi Tevzadze
- 4D Research Institute, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
94
|
Benn Torres J, Vilar MG, Torres GA, Gaieski JB, Bharath Hernandez R, Browne ZE, Stevenson M, Walters W, Schurr TG. Genetic Diversity in the Lesser Antilles and Its Implications for the Settlement of the Caribbean Basin. PLoS One 2015; 10:e0139192. [PMID: 26447794 PMCID: PMC4598113 DOI: 10.1371/journal.pone.0139192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/10/2015] [Indexed: 11/18/2022] Open
Abstract
Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people's contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region's first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.
Collapse
Affiliation(s)
- Jada Benn Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Miguel G. Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Missions Programs, National Geographic Society, Washington, D.C., United States of America
| | - Gabriel A. Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jill B. Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Zoila E. Browne
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Marlon Stevenson
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
| | - Wendell Walters
- The Garifuna Heritage Foundation Inc., Kingston, St. Vincent and the Grenadines
- Sandy Bay Village, St. Vincent and the Grenadines
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
95
|
Cabana GS, Lewis CM, Tito RY, Covey RA, Cáceres AM, Cruz AFDL, Durand D, Housman G, Hulsey BI, Iannacone GC, López PW, Martínez R, Medina Á, Dávila OO, Pinto KPO, Santillán SIP, Domínguez PR, Rubel M, Smith HF, Smith SE, Massa VRDC, Lizárraga B, Stone AC. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history. Hum Biol 2015; 86:147-65. [PMID: 25836744 DOI: 10.13110/humanbiology.86.3.0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Collapse
Affiliation(s)
- Graciela S Cabana
- 1 Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Pliss L, Timša L, Rootsi S, Tambets K, Pelnena I, Zole E, Puzuka A, Sabule A, Rozane S, Lace B, Kucinskas V, Krumina A, Ranka R, Baumanis V. Y-Chromosomal Lineages of Latvians in the Context of the Genetic Variation of the Eastern-Baltic Region. Ann Hum Genet 2015; 79:418-30. [PMID: 26411886 DOI: 10.1111/ahg.12130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Variations of the nonrecombining Y-chromosomal region were investigated in 159 unrelated Baltic-speaking ethnic Latvians from four different geographic regions, using 28 biallelic markers and 12 short tandem repeats. Eleven different haplogroups (hgs) were detected in a regionally homogeneous Latvian population, among which N1c, R1a, and I1 cover more than 85% of its paternal lineages. When compared its closest geographic neighbors, the composition of the Latvian Y-chromosomal gene pool was found to be very similar to those of Lithuanians and Estonians. Despite the comparable frequency distribution of hg N1c in Latvians and Lithuanians with the Finno-Ugric-speaking populations from the Eastern coast of the Baltic Sea, the observed differences in allelic variances of N1c haplotypes between these two groups are in concordance with the previously stated hypothesis of different dispersal ways of this lineage in the region. More than a third of Latvian paternal lineages belong specifically to a recently defined R1a-M558 hg, indicating an influence from a common source within Eastern Slavic populations on the formation of the present-day Latvian Y-chromosome gene pool.
Collapse
Affiliation(s)
- Liana Pliss
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Līga Timša
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Inese Pelnena
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Areta Sabule
- State Centre for Forensic Medical Examination of the Republic of Latvia, Riga, Latvia
| | - Sandra Rozane
- State Centre for Forensic Medical Examination of the Republic of Latvia, Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vaidutis Kucinskas
- Human Genome Research Centre, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | |
Collapse
|
97
|
Utevska OM, Pshenichnov AS, Dibirova KD, Rootsi S, Agdzhoyan AT, Churnosov MI, Balanovska EV, Atramentova LA, Balanovsky OP. Gene pool similarities and differences between Ukrainians and Russians of Slobozhanshchina based on Y-chromosome data. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Trombetta B, D'Atanasio E, Massaia A, Myres NM, Scozzari R, Cruciani F, Novelletto A. Regional Differences in the Accumulation of SNPs on the Male-Specific Portion of the Human Y Chromosome Replicate Autosomal Patterns: Implications for Genetic Dating. PLoS One 2015; 10:e0134646. [PMID: 26226630 PMCID: PMC4520482 DOI: 10.1371/journal.pone.0134646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Factors affecting the rate and pattern of the mutational process are being identified for human autosomes, but the same relationships for the male specific portion of the Y chromosome (MSY) are not established. We considered 3,390 mutations occurring in 19 sequence bins identified by sequencing 1.5 Mb of the MSY from each of 104 present-day chromosomes. The occurrence of mutations was not proportional to the amount of sequenced bases in each bin, with a 2-fold variation. The regression of the number of mutations per unit sequence against a number of indicators of the genomic features of each bin, revealed the same fundamental patterns as in the autosomes. By considering the sequences of the same region from two precisely dated ancient specimens, we obtained a calibrated region-specific substitution rate of 0.716 × 10-9/site/year. Despite its lack of recombination and other peculiar features, the MSY then resembles the autosomes in displaying a marked regional heterogeneity of the mutation rate. An immediate implication is that a given figure for the substitution rate only makes sense if bound to a specific DNA region. By strictly applying this principle we obtained an unbiased estimate of the antiquity of lineages relevant to the genetic history of the human Y chromosome. In particular, the two deepest nodes of the tree highlight the survival, in Central-Western Africa, of lineages whose coalescence (291 ky, 95% C.I. 253-343) predates the emergence of anatomically modern features in the fossil record.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
99
|
mtDNA analysis of 174 Eurasian populations using a new iterative rank correlation method. Mol Genet Genomics 2015; 291:493-509. [PMID: 26142878 DOI: 10.1007/s00438-015-1084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
In this study, we analyse 27-dimensional mtDNA haplogroup distributions of 174 Eurasian, North-African and American populations, including numerous ancient data as well. The main contribution of this work was the description of the haplogroup distribution of recent and ancient populations as compounds of certain hypothetic ancient core populations immediately or indirectly determining the migration processes in Eurasia for a long time. To identify these core populations, we developed a new iterative algorithm determining clusters of the 27 mtDNA haplogroups studied having strong rank correlation among each other within a definite subset of the populations. Based on this study, the current Eurasian populations can be considered as compounds of three early core populations regarding to maternal lineages. We wanted to show that a simultaneous analysis of ancient and recent data using a new iterative rank correlation algorithm and the weighted SOC learning technique may reveal the most important and deterministic migration processes in the past. This technique allowed us to determine geographically, historically and linguistically well-interpretable clusters of our dataset having a very specific, hardly classifiable structure. The method was validated using a 2-dimensional stepping stone model.
Collapse
|
100
|
Valverde L, Illescas MJ, Villaescusa P, Gotor AM, García A, Cardoso S, Algorta J, Catarino S, Rouault K, Férec C, Hardiman O, Zarrabeitia M, Jiménez S, Pinheiro MF, Jarreta BM, Olofsson J, Morling N, de Pancorbo MM. New clues to the evolutionary history of the main European paternal lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia. Eur J Hum Genet 2015; 24:437-41. [PMID: 26081640 DOI: 10.1038/ejhg.2015.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/09/2022] Open
Abstract
The dissection of S116 in more than 1500 individuals from Atlantic Europe and the Iberian Peninsula has provided important clues about the controversial evolutionary history of M269. First, the results do not point to an origin of M269 in the Franco-Cantabrian refuge, owing to the lack of sublineage diversity within M269, which supports the new theories proposing its origin in Eastern Europe. Second, S116 shows frequency peaks and spatial distribution that differ from those previously proposed, indicating an origin farther west, and it also shows a high frequency in the Atlantic coastline. Third, an outstanding frequency of the DF27 sublineage has been found in Iberia, with a restricted distribution pattern inside this peninsula and a frequency maximum in the area of the Franco-Cantabrian refuge. This entire panorama indicates an old arrival of M269 into Western Europe, because it has generated at least two episodes of expansion in the Franco-Cantabrian area. This study demonstrates the importance of continuing the dissection of the M269 lineage in different European populations because the discovery and study of new sublineages can adjust or even completely revise the theories about European peopling, as has been the case for the place of origin of M269.
Collapse
Affiliation(s)
- Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Amparo M Gotor
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Ainara García
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Sergio Cardoso
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jaime Algorta
- Progenika Biopharma SA (a Grifols company), Bizkaia Technology Park, Derio, Spain.,Department of Molecular Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Susana Catarino
- Progenika Biopharma SA (a Grifols company), Bizkaia Technology Park, Derio, Spain
| | - Karen Rouault
- Inserm UMR1078, Génétique, Génomique fonctionnelle et Biotechnologies, Brest, France
| | - Claude Férec
- Inserm UMR1078, Génétique, Génomique fonctionnelle et Biotechnologies, Brest, France
| | - Orla Hardiman
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Maite Zarrabeitia
- Forensic and Legal Medicine Area, Department of Physiology and Pharmacology, University of Cantabria, Cantabria, Spain
| | - Susana Jiménez
- Forensic Medicine Division, Department of Pathology and Surgery, University Miguel Hernandez Elche, Alicante, Spain
| | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | - Begoña M Jarreta
- Laboratory of Genetics and Genetic Identification, Department of Pharmacology, University of Zaragoza, Zaragoza, Spain
| | - Jill Olofsson
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|