51
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
52
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
53
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
54
|
Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.
Collapse
|
55
|
Sun Y, Zhang L, Hong L, Zheng W, Cui J, Liu X, Xu T. MicroRNA-181b-2 and MicroRNA-21-1 Negatively Regulate NF-κB and IRF3-Mediated Innate Immune Responses via Targeting TRIF in Teleost. Front Immunol 2021; 12:734520. [PMID: 34956174 PMCID: PMC8695722 DOI: 10.3389/fimmu.2021.734520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Upon recognition of bacterial or viral components by Toll-like receptors (TLRs), cells could be activated to induce a series of reactions to produce inflammatory cytokines, type I interferon (IFN), and IFN stimulating genes (ISG). MicroRNAs (miRNAs) are an important regulatory molecules that are widely involved in the regulatory networks of mammalian inflammation and immune responses; however, in lower vertebrates, the regulatory network of miRNA-mediated immune responses is poorly understood. Here, we report two miRNAs form Miichthys miiuy, namely, miR-181b-2 and miR-21-1, that play a negative role in host antiviral and antibacterial immunity. We found that miR-181b-2 and miR-21-1 are abundantly expressed in gram-negative bacteria, as well as RNA rhabdovirus infection. Inducible miR-181b-2 and miR-21-1 suppress the production of inflammatory cytokines and type I IFN by targeting TRIF, thereby avoiding excessive inflammation. We further revealed that miR-181b-2 and miR-21-1 modulate antibacterial and antiviral immunity through the TRIF-mediated NF-κB and IRF3 signaling pathways. The overall results indicate that miR-181b-2 and miR-21-1 act as negative feedback regulators and participate in host antibacterial and antiviral immune responses; this finding could provide information for a deeper understanding of the resistance of lower vertebrates to the invasion of pathogens and to avoidance of excessive immunity.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ling Hong
- School of Medicine, Tongji University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
56
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Qin Y, Jia L, Liu H, Ma W, Ren X, Li H, Liu Y, Li H, Ma S, Liu M, Li P, Yan J, Zhang J, Guo Y, You H, Guo Y, Rahman NA, Wołczyński S, Kretowski A, Li D, Li X, Ren F, Li X. Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance. Nat Commun 2021; 12:6121. [PMID: 34675215 PMCID: PMC8531303 DOI: 10.1038/s41467-021-26408-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
In obesity, macrophages drive a low-grade systemic inflammation (LSI) and insulin resistance (IR). The ribosome biosynthesis protein NOC4 (NOC4) mediates 40 S ribosomal subunits synthesis in yeast. Hereby, we reported an unexpected location and function of NOC4L, which was preferentially expressed in human and mouse macrophages. NOC4L was decreased in both obese human and mice. The macrophage-specific deletion of Noc4l in mice displayed IR and LSI. Conversely, Noc4l overexpression by lentivirus treatment and transgenic mouse model improved glucose metabolism in mice. Importantly, we found that Noc4l can interact with TLR4 to inhibit its endocytosis and block the TRIF pathway, thereafter ameliorated LSI and IR in mice.
Collapse
Affiliation(s)
- Yongli Qin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huijiao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinmin Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haifeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanwu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiwen Li
- Agricultural Research Station, College of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Shuoqian Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Pingping Li
- Academy of Medical Sciences & Peking Union, Medical College, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yangdong Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Dangsheng Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiru Li
- Department of Surgery, Chinese PLA General Hospital, Beijing, China
| | - Fazheng Ren
- Department of Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
58
|
Wong NR, Mohan J, Kopecky BJ, Guo S, Du L, Leid J, Feng G, Lokshina I, Dmytrenko O, Luehmann H, Bajpai G, Ewald L, Bell L, Patel N, Bredemeyer A, Weinheimer CJ, Nigro JM, Kovacs A, Morimoto S, Bayguinov PO, Fisher MR, Stump WT, Greenberg M, Fitzpatrick JAJ, Epelman S, Kreisel D, Sah R, Liu Y, Hu H, Lavine KJ. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 2021; 54:2072-2088.e7. [PMID: 34320366 PMCID: PMC8446343 DOI: 10.1016/j.immuni.2021.07.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.
Collapse
Affiliation(s)
- Nicole R Wong
- Departmental of Medicine, Washington University School of Medicine
| | - Jay Mohan
- Departmental of Medicine, Washington University School of Medicine
| | | | - Shuchi Guo
- Departmental of Medicine, Washington University School of Medicine
| | - Lixia Du
- Department of Anesthesiology, Washington University School of Medicine
| | - Jamison Leid
- Departmental of Medicine, Washington University School of Medicine
| | - Guoshuai Feng
- Departmental of Medicine, Washington University School of Medicine
| | - Inessa Lokshina
- Departmental of Medicine, Washington University School of Medicine
| | | | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine
| | - Geetika Bajpai
- Departmental of Medicine, Washington University School of Medicine
| | - Laura Ewald
- Departmental of Medicine, Washington University School of Medicine
| | - Lauren Bell
- Departmental of Medicine, Washington University School of Medicine
| | - Nikhil Patel
- Departmental of Genetics, Washington University School of Medicine
| | | | | | - Jessica M Nigro
- Departmental of Medicine, Washington University School of Medicine
| | - Attila Kovacs
- Departmental of Medicine, Washington University School of Medicine
| | - Sachio Morimoto
- Department of Physical Therapy, International University of Health and Welfare, Japan
| | - Peter O Bayguinov
- Department of Biochemistry, Washington University School of Medicine
| | - Max R Fisher
- Department of Biochemistry, Washington University School of Medicine
| | - W Tom Stump
- Department of Biochemistry, Washington University School of Medicine
| | - Michael Greenberg
- Department of Biochemistry, Washington University School of Medicine
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Departments of Neuroscience, Cell Biology & Physiology, and Biomedical Engineering, Washington University School of Medicine
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine; Department of Surgery, Washington University School of Medicine
| | - Rajan Sah
- Departmental of Medicine, Washington University School of Medicine
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine
| | - Kory J Lavine
- Departmental of Medicine, Washington University School of Medicine; Department of Pathology and Immunology, Washington University School of Medicine; Department of Developmental Biology, Washington University School of Medicine.
| |
Collapse
|
59
|
Kralova J, Pavliuchenko N, Fabisik M, Ilievova K, Spoutil F, Prochazka J, Pokorna J, Sedlacek R, Brdicka T. The receptor-type protein tyrosine phosphatase CD45 promotes onset and severity of IL-1β-mediated autoinflammatory osteomyelitis. J Biol Chem 2021; 297:101131. [PMID: 34461100 PMCID: PMC8455366 DOI: 10.1016/j.jbc.2021.101131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1β production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1β synthesis and disease initiation and/or progression.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
60
|
Facchini F, Minotti A, Luraghi A, Romerio A, Gotri N, Matamoros-Recio A, Iannucci A, Palmer C, Wang G, Ingram R, Martin-Santamaria S, Pirianov G, De Andrea M, Valvano MA, Peri F. Synthetic Glycolipids as Molecular Vaccine Adjuvants: Mechanism of Action in Human Cells and In Vivo Activity. J Med Chem 2021; 64:12261-12272. [PMID: 34382796 PMCID: PMC8404200 DOI: 10.1021/acs.jmedchem.1c00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/07/2023]
Abstract
Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.
Collapse
Affiliation(s)
- Fabio
A. Facchini
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Alberto Minotti
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Andrea Luraghi
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Alessio Romerio
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Nicole Gotri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Alejandra Matamoros-Recio
- Department
of Structural and Chemical Biology, Centro
de Investigaciones Biologicas Margarita Salas, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Andrea Iannucci
- Department
of Translational Medicine, University of
Eastern Piedmont, 28100 Novara, Italy
- CAAD—Center
for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, 28100 Novara, Italy
| | - Charys Palmer
- Department
of Biomedical and Forensic Sciences, Anglia
Ruskin University, East Road, Cambridge CB1
1PT, U.K.
| | - Guanbo Wang
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University of Belfast; 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Rebecca Ingram
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University of Belfast; 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Sonsoles Martin-Santamaria
- Department
of Structural and Chemical Biology, Centro
de Investigaciones Biologicas Margarita Salas, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Grisha Pirianov
- Department
of Biomedical and Forensic Sciences, Anglia
Ruskin University, East Road, Cambridge CB1
1PT, U.K.
| | - Marco De Andrea
- CAAD—Center
for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, 28100 Novara, Italy
- Department
of Public Health and Pediatric Sciences, University of Turin, Medical School, 10126 Turin, Italy
| | - Miguel A. Valvano
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University of Belfast; 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Francesco Peri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| |
Collapse
|
61
|
Peng F, Jin S, Chen Z, Chang H, Xiao J, Li J, Zou J, Feng H. TRIF-mediated antiviral signaling is differentially regulated by TRAF2 and TRAF6 in black carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104073. [PMID: 33766587 DOI: 10.1016/j.dci.2021.104073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
TRIF is an antiviral adaptor downstream of Toll-like receptors, the roles of teleost TRIF and their regulation remain largely unknown. In this study, a TRIF homologue (bcTRIF) of black carp (Mylopharyngodon piceus) has been cloned, and the transcription of bcTRIF in vivo and ex vivo increased in response to different stimuli. Overexpressed bcTRIF induced the transcription of interferon promoter in the EPC cells and enhanced protection of cells against infection of spring viremia of carp virus (SVCV). The previous study has identified that black carp TRAF2 (bcTRAF2) and TRAF6 (bcTRAF6) functioned positively in RIG-I/MAVS signaling. When co-expressed with bcTRAF2, bcTRIF-induced the transcription of interferon promoter in EPC cells was decreased, and the antiviral activity of bcTRIF was dampened accordingly. On the contrary, co-expressed bcTRAF6 enhanced both bcTRIF-mediated interferon promoter transcription and antiviral activity. The subsequent co-immunoprecipitation identified the interaction between bcTRAF2/6 and bcTRIF. Thus, bcTRIF-mediated antiviral signaling is up-regulated by bcTRAF6 and down-regulated by bcTRAF2.
Collapse
Affiliation(s)
- Fei Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Saisai Jin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhaoyuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haiyan Chang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
62
|
Ghita L, Spanier J, Chhatbar C, Mulenge F, Pavlou A, Larsen PK, Waltl I, Lueder Y, Kohls M, Jung K, Best SM, Förster R, Stangel M, Schreiner D, Kalinke U. MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Sci Immunol 2021; 6:6/60/eabc9165. [PMID: 34172587 DOI: 10.1126/sciimmunol.abc9165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/18/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Viral encephalitis initiates a series of immunological events in the brain that can lead to brain damage and death. Astrocytes express IFN-β in response to neurotropic infection, whereas activated microglia produce proinflammatory cytokines and accumulate at sites of infection. Here, we observed that neurotropic vesicular stomatitis virus (VSV) infection causes recruitment of leukocytes into the central nervous system (CNS), which requires MyD88, an adaptor of Toll-like receptor and interleukin-1 receptor signaling. Infiltrating leukocytes, and in particular CD8+ T cells, protected against lethal VSV infection of the CNS. Reconstitution of MyD88, specifically in neurons, restored chemokine production in the olfactory bulb as well as leukocyte recruitment into the infected CNS and enhanced survival. Comparative analysis of the translatome of neurons and astrocytes verified neurons as the critical source of chemokines, which regulated leukocyte infiltration of the infected brain and affected survival.
Collapse
Affiliation(s)
- Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany.,Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Moritz Kohls
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.,Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hanover, Germany.,Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany. .,Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
63
|
Aluri J, Cooper MA, Schuettpelz LG. Toll-Like Receptor Signaling in the Establishment and Function of the Immune System. Cells 2021; 10:cells10061374. [PMID: 34199501 PMCID: PMC8228919 DOI: 10.3390/cells10061374] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play a central role in the development and function of the immune system. TLR signaling promotes the earliest emergence of hematopoietic cells during development, and thereafter influences the fate and function of both primitive and effector immune cell types. Aberrant TLR signaling is associated with hematopoietic and immune system dysfunction, and both loss- and gain-of- function variants in TLR signaling-associated genes have been linked to specific infection susceptibilities and immune defects. Herein, we will review the role of TLR signaling in immune system development and the growing number of heritable defects in TLR signaling that lead to inborn errors of immunity.
Collapse
|
64
|
Murakami K, Kamimura D, Hasebe R, Uchida M, Abe N, Yamamoto R, Jiang JJ, Hidaka Y, Nakanishi Y, Fujita S, Toda Y, Toda N, Tanaka H, Akira S, Tanaka Y, Murakami M. Rhodobacter azotoformans LPS (RAP99-LPS) Is a TLR4 Agonist That Inhibits Lung Metastasis and Enhances TLR3-Mediated Chemokine Expression. Front Immunol 2021; 12:675909. [PMID: 34113349 PMCID: PMC8185171 DOI: 10.3389/fimmu.2021.675909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
The lipopolysaccharides (LPSs) of Rhodobacter are reported to be TLR4 antagonists. Accordingly, the extract of Rhodobacter azotoformans (RAP99) is used as a health supplement for humans and animals in Japan to regulate immune responses in vivo. We previously analyzed the LPS structure of RAP99 (RAP99-LPS) and found it is different from that of E. coli-LPS but similar to lipid A from Rhodobacter sphaeroides (RSLA), a known antagonist of TLR4, with both having three C14 fatty acyl groups, two C10 fatty acyl groups, and two phosphates. Here we show that RAP99-LPS has an immune stimulatory activity and acts as a TLR4 agonist. Pretreatment of RAP99-LPS suppressed E. coli-LPS-mediated weight loss, suggesting it is an antagonist against E. coli-LPS like other LPS isolated from Rhodobacter. However, injections of RAP99-LPS caused splenomegaly and increased immune cell numbers in C57BL/6 mice but not in C3H/HeJ mice, suggesting that RAP99-LPS stimulates immune cells via TLR4. Consistently, RAP99-LPS suppressed the lung metastasis of B16F1 tumor cells and enhanced the expression of TLR3-mediated chemokines. These results suggest that RAP99-LPS is a TLR4 agonist that enhances the activation status of the immune system to promote anti-viral and anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mona Uchida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuya Abe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Reiji Yamamoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | | | | | | | | | | | - Hiroki Tanaka
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
65
|
Melin N, Sánchez-Taltavull D, Fahrner R, Keogh A, Dosch M, Büchi I, Zimmer Y, Medová M, Beldi G, Aebersold DM, Candinas D, Stroka D. Synergistic effect of the TLR5 agonist CBLB502 and its downstream effector IL-22 against liver injury. Cell Death Dis 2021; 12:366. [PMID: 33824326 PMCID: PMC8024273 DOI: 10.1038/s41419-021-03654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Nicolas Melin
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - René Fahrner
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of General, Visceral and Vascular Surgery, Bürgerspital Solothurn, 4500, Solothurn, Switzerland
| | - Adrian Keogh
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Michel Dosch
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Isabel Büchi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Guido Beldi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel M Aebersold
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Daniel Candinas
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
66
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
67
|
Wang X, Wu K, Keeler SP, Mao D, Agapov EV, Zhang Y, Holtzman MJ. TLR3-Activated Monocyte-Derived Dendritic Cells Trigger Progression from Acute Viral Infection to Chronic Disease in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1297-1314. [PMID: 33514511 PMCID: PMC7946811 DOI: 10.4049/jimmunol.2000965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/01/2021] [Indexed: 11/19/2022]
Abstract
Acute infection is implicated as a trigger for chronic inflammatory disease, but the full basis for this switch is uncertain. In this study, we examine this issue using a mouse model of chronic lung disease that develops after respiratory infection with a natural pathogen (Sendai virus). We investigate this model using a combination of TLR3-deficient mice and adoptive transfer of immune cells into these mice versus the comparable responses in wild-type mice. We found that acute and transient expression of TLR3 on monocyte-derived dendritic cells (moDCs) was selectively required to induce long-term expression of IL-33 and consequent type 2 immune-driven lung disease. Unexpectedly, moDC participation was not based on canonical TLR3 signaling and relied instead on a trophic effect to expand the alveolar epithelial type 2 cell population beyond repair of tissue injury and thereby provide an enriched and persistent cell source of IL-33 required for progression to a disease phenotype that includes lung inflammation, hyperreactivity, excess mucus production, and remodeling. The findings thereby provide a framework wherein viral infection activates TLR3 in moDCs as a front-line immune cell niche upstream of lung epithelial cells to drive the type 2 immune response, leading to chronic inflammatory diseases of the lung (such as asthma and chronic obstructive pulmonary disease in humans) and perhaps progressive and long-term postviral disease in general.
Collapse
Affiliation(s)
- Xinyu Wang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
68
|
Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021; 7:e06441. [PMID: 33732942 PMCID: PMC7944035 DOI: 10.1016/j.heliyon.2021.e06441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) in the first line defense system of our bodies; they are widely expressed on leukocytes and kidney epithelial cells. Infections due to pathogens or danger signals from injured tissues often activate several TLRs and these receptors mediate their signal transduction through the activation of transcription factors that regulate the expression of cytokine interleukin-1β (IL-1β), type I interferons (IFNs), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) dependent cytokines and chemokines. Acute kidney injury (AKI) involves early Toll-like receptors driven immunopathology, while resolution of inflammation is needed for rapid regeneration of injured tubular cells. Despite their well known function in the progression of inflammation; interestingly, activation of TLRs also has been implicated in renal epithelial repair through the induction of certain interleukins and improvement in autophagy mechanism. Studies have found that although the blockade of TLRs during the early injury phase of renal tissues prevented tubular necrosis, suppression of interleukins production and impaired kidney regeneration due to their blockade has been observed during the healing phase of tissue. Taken together, these results suggest that the two danger response programs of renal cells i.e. renal inflammation and regeneration may link at the level of TLRs. This review aims to emphasize on the role of TLRs signaling in different acute kidney injury phases. Understanding of these pathways may turn out to be effective as therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, 74200, Pakistan
| |
Collapse
|
69
|
Müller BJ, Westheider A, Birkner K, Seelig B, Kirschnek S, Bogdan C, von Loewenich FD. Anaplasma phagocytophilum Induces TLR- and MyD88-Dependent Signaling in In Vitro Generated Murine Neutrophils. Front Cell Infect Microbiol 2021; 11:627630. [PMID: 33747981 PMCID: PMC7970703 DOI: 10.3389/fcimb.2021.627630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a tick-transmitted obligate intracellular Gram-negative bacterium that replicates in neutrophils. It elicits febrile disease in humans and in animals. In a mouse model, elimination of A. phagocytophilum required CD4+ T cells, but was independent of IFN-γ and other classical antibacterial effector mechanisms. Further, mice deficient for immune recognition and signaling via Toll-like receptor (TLR) 2, TLR4 or MyD88 were unimpaired in pathogen control. In contrast, animals lacking adaptor molecules of Nod-like receptors (NLR) such as RIP2 or ASC showed delayed clearance of A. phagocytophilum. In the present study, we investigated the contribution of further pattern recognition receptor (PRR) pathways to the control of A. phagocytophilum in vivo. Mice deficient for the NLR NOD2 had elevated bacterial loads in the early phase of infection, but were unimpaired in pathogen elimination. In contrast, animals lacking adaptor proteins of different C-type lectin receptors (CLR) such as DAP12, Fc-receptor γ-chain (FcRγ) and SYK controlled A. phagocytophilum as efficiently as wild-type mice. Further, we investigated which PRR pathways are involved in the sensing of A. phagocytophilum by in vitro generated Hoxb8 murine neutrophils. In vitro, recognition of A. phagocytophilum by murine neutrophils was dependent on TLR- and MyD88 signaling. However, it remained intact in the absence of the NLR NOD1, NOD2 and NALP3 and of the CLR adaptor molecules DAP12 and FcRγ. From these results, we conclude that TLR rather than NLR or CLR are critical for the detection of A. phagocytophilum by neutrophils although in vivo defective TLR-signaling is compensated probably because of the redundancy of the immune system.
Collapse
Affiliation(s)
- Beate J Müller
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Arne Westheider
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Katharina Birkner
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Birte Seelig
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
70
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell Surface Expression of Endosomal Toll-Like Receptors-A Necessity or a Superfluous Duplication? Front Immunol 2021; 11:620972. [PMID: 33597952 PMCID: PMC7882679 DOI: 10.3389/fimmu.2020.620972] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases-cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
71
|
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2021; 1:699-716. [PMID: 22934262 PMCID: PMC3429574 DOI: 10.4161/onci.20696] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are prototypic pattern recognition receptors (PRRs) best known for their ability to activate the innate immune system in response to conserved microbial components such as lipopolysaccharide and double-stranded RNA. Accumulating evidence indicates that the function of TLRs is not restricted to the elicitation of innate immune responses against invading pathogens. TLRs have indeed been shown to participate in tissue repair and injury-induced regeneration as well as in adaptive immune responses against cancer. In particular, TLR4 signaling appears to be required for the efficient processing and cross-presentation of cell-associated tumor antigens by dendritic cells, which de facto underlie optimal therapeutic responses to some anticancer drugs. Thus, TLRs constitute prominent therapeutic targets for the activation/intensification of anticancer immune responses. In line with this notion, long-used preparations such as the Coley toxin (a mixture of killed Streptococcus pyogenes and Serratia marcescens bacteria) and the bacillus Calmette-Guérin (BCG, an attenuated strain of Mycobacterium bovis originally developed as a vaccine against tuberculosis), both of which have been associated with consistent anticancer responses, potently activate TLR2 and TLR4 signaling. Today, besides BCG, only one TLR agonist is FDA-approved for therapeutic use in cancer patients: imiquimod. In this Trial Watch, we will briefly present the role of TLRs in innate and cognate immunity and discuss the progress of clinical studies evaluating the safety and efficacy of experimental TLR agonists as immunostimulatory agents for oncological indications.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
73
|
Astrakhantseva IV, Tomilin AN, Tarabykin VS, Nedospasov SA. Genome-Wide Mutagenesis in Mice: In Search for Genes Regulating Immune Responses and Inflammation. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Clayton E, Munir M. Fundamental Characteristics of Bat Interferon Systems. Front Cell Infect Microbiol 2020; 10:527921. [PMID: 33363045 PMCID: PMC7759481 DOI: 10.3389/fcimb.2020.527921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Interferons are an essential component of the innate arm of the immune system and are arguably one of the most important lines of defence against viruses. The human IFN system and its functionality has already been largely characterized and studied in detail. However, the IFN systems of bats have only been marginally examined to date up until the recent developments of the Bat1k project which have now opened new opportunities in research by identifying six new bat genomes to possess novel genes that are likely associated with viral tolerance exhibited in bats. Interestingly, bats have been hypothesized to possess the ability to establish a host-virus relationship where despite being infected, they exhibit limited signs of disease and still retain the ability to transmit the disease into other susceptible hosts. Bats are one of the most abundant and widespread vertebrates on the planet and host many zoonotic viruses that are highly pathogenic to humans. Several genomics, immunological, and biological features are thought to underlie novel antiviral mechanisms of bats. This review aims to explore the bat IFN system and developments in its diverse IFN features, focusing mainly on the model species, the Australian black flying fox (Pteropus alecto), while also highlighting bat innate immunity as an exciting and fruitful area of research to understand their ability to control viral-mediated pathogenesis.
Collapse
Affiliation(s)
- Emily Clayton
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
75
|
Abstract
ABSTRACT Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.
Collapse
|
76
|
Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci Rep 2020; 10:22216. [PMID: 33335135 PMCID: PMC7747705 DOI: 10.1038/s41598-020-77725-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual's lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.
Collapse
|
77
|
Gu T, Li G, Wu X, Zeng T, Xu Q, Li L, Vladyslav S, Chen G, Lu L. Pattern-recognition receptors in duck ( Anas platyrhynchos): identification, expression and function analysis of toll-like receptor 3. Br Poult Sci 2020; 62:346-352. [PMID: 33215508 DOI: 10.1080/00071668.2020.1853045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. Innate immunity provides the first line of defence against pathogenic organisms through a myriad of germline encoded receptors called pattern-recognition receptors (PRRs). Toll-like receptor (TLR) 3, as an important member of PRRs, is indispensable for host defence against viral infection by recognising virus-derived RNAs. However, little is known about the structure and function of TLR3 in ducks (Anas platyrhynchos), a natural host for the avian influenza virus.2. This study cloned the full-length cDNA of duck TLR3 using reverse transcription polymerase chain reaction (RT-PCR) with rapid amplification of cDNA ends (RACE). The cDNA sequence of duck TLR3 was 4046 bp in length and encoded 895 amino acids. Multiple sequence alignment showed that duck TLR3 shared high similarity with that from other vertebrates.3. Quantitative real-time PCR (qRT-PCR) analysis suggested that TLR3 mRNA was constitutively expressed in all tissues tested, having higher levels in the kidney, liver, breast muscle, ovary and heart. After stimulation with viral- or bacterial-mimics, including LPS, poly(I:C), pam3CSK4, FLS-1, FLA-ST and R848, the TLR3 transcript was significantly upregulated. Meanwhile, overexpression of duck TLR3 significantly promoted the transcription of IFN-β, IRF7, TRIF, Mx, STAT1 and STAT2 mRNA after stimulation with poly(I:C).4. These results suggested that TLR3 play an important role in resistance against viral and bacterial infections in ducks.
Collapse
Affiliation(s)
- T Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.,Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - G Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - X Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - T Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Q Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - L Li
- Zhuji Poultry Development Co., Ltd, Zhuji, Zhejiang, China
| | - S Vladyslav
- University of Life and Environment Sciences, National Academy Science of Ukraine, Kyiv, Ukraine
| | - G Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - L Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
78
|
Effect of lipopolysaccharide structure on functional response of whole blood cells. Immunobiology 2020; 226:152030. [PMID: 33278708 DOI: 10.1016/j.imbio.2020.152030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
Lipopolysaccharides (LPSs) induce a wide spectrum of functional activities after interaction with blood cells. Effect of structure of toxic LPS from S- and Re-chemotypes of E. coli and/or non-toxic LPS of Rhodobacter capsulatus PG (R. caps.) on activation of neutrophils and monocytes of human whole blood were studied, particularly, expression of TLR4, CD14 and CD11b receptors, phagocytosis of BioParticles Alexa Fluor 488, synthesis of cytokines and chemokines. A leading role of CD11b receptor in phagocytic activity of neutrophils primed by LPS from various E. coli chemotypes was shown. The non-toxic LPS of R. caps. does not affect the efficiency of phagocytosis activity of the neutrophils. The LPS of R. caps. was shown to induce production of TRIF-dependent cytokine IFN-β in human whole blood leukocytes selectively, without activating MyD88-dependent pathway of pro-inflammatory cytokine synthesis, displaying properties of patrial agonist of TLR4. Structure and biological activity of LPS R. caps. allows considering it as a promising immunity stimulating pharmacological agent.
Collapse
|
79
|
Host genetic susceptibility to viral infections: the role of type I interferon induction. Genes Immun 2020; 21:365-379. [PMID: 33219336 PMCID: PMC7677911 DOI: 10.1038/s41435-020-00116-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The innate immune response is the major front line of defense against viral infections. It involves hundreds of genes with antiviral properties which expression is induced by type I interferons (IFNs) and are therefore called interferon stimulated genes (ISGs). Type I IFNs are produced after viral recognition by pathogen recognition receptors, which trigger a cascade of activation events. Human and mouse studies have shown that defective type I IFNs induction may hamper the ability to control viral infections. In humans, moderate to high-effect variants have been identified in individuals with particularly severe complications following viral infection. In mice, functional studies using knock-out alleles have revealed the specific role of most genes of the IFN pathway. Here, we review the role of the molecular partners of the type I IFNs induction pathway and their implication in the control of viral infections and of their complications.
Collapse
|
80
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
81
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
82
|
An assessment of toll-like receptor 7 and 8 gene polymorphisms with susceptibility to HIV-1 infection, AIDS development and response to antiretroviral therapy. Immunol Lett 2020; 227:88-95. [PMID: 32888973 DOI: 10.1016/j.imlet.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
Toll-like receptors (TLRs) play an important role in activating the innate immune response, inducing inflammation and initiating the adaptive immune response. In this study, we assess the influence of TLR7 and TLR8 gene polymorphisms on HIV-1 susceptibility, AIDS development, and treatment outcomes. The TLR7 and TLR8 single nucleotide polymorphisms (SNPs) were genotyped through real-time PCR in 222 patients living with HIV-1 and 141 healthy controls. Frequencies of the TLR7-IVS2-151 G/A and TLR7-IVS1 + 1817 G/T genotypes and alleles were not significantly increased in patients with HIV-1 infection compared to healthy controls both in males and females. Whereas, males carrying TLR8 Met allele were twice susceptible to HIV-1 infection compared to subjects with A allele (OR = 2.04, 95 % CI 1.10-3.76; p = 0.021). Interestingly, for TLR8-129 G/C, both males and females carrying G allele and GG genotype, respectively were significantly associated with HIV-1 infection (p < 0.0001). Moreover, the TLR7 IVS1 + 1817 G/T and the TLR8 rs3764880 were associated with protection to progress the AIDS stage in male and female, respectively (p < 0.05). Males carrying TLR7 IVS2-151-A allele showed a significant increased level of HIV-1 viral load pre-treatment, in comparison with individuals carrying the G allele (p-value = 0.036). Additionally, males carrying TLR8 Met allele showed statistically higher HIV viral load at baseline (p-value = 0.04) and after treatment (p-value = 0.013). Regarding CD4 + T cell counts, no significant association was found with TLR7 and TLR8 SNPs before and after antiretroviral treatment. This data demonstrates that TLR8 polymorphisms could affect HIV-1 infection. Moreover, an association between TLR7 IVS2-151-A and TLR8 Met alleles and plasma HIV viral load level was found.
Collapse
|
83
|
Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160:105172. [PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
Collapse
|
84
|
Programing of an Intravascular Immune Firewall by the Gut Microbiota Protects against Pathogen Dissemination during Infection. Cell Host Microbe 2020; 28:660-668.e4. [PMID: 32810440 DOI: 10.1016/j.chom.2020.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Eradication of pathogens from the bloodstream is critical to prevent disseminated infections and sepsis. Kupffer cells in the liver form an intravascular firewall that captures and clears pathogens from the blood. Here, we show that the catching and killing of circulating pathogens by Kupffer cells in vivo are promoted by the gut microbiota through commensal-derived D-lactate that reaches the liver via the portal vein. The integrity of this Kupffer cell-mediated intravascular firewall requires continuous crosstalk with gut commensals, as microbiota depletion with antibiotics leads to a failure of pathogen clearance and overwhelming disseminated infection. Furthermore, administration of purified D-lactate to germ-free mice, or gnotobiotic colonization with D-lactate-producing commensals, restores Kupffer cell-mediated pathogen clearance by the liver firewall. Thus, the gut microbiota programs an intravascular immune firewall that protects against the spread of bacterial infections via the bloodstream.
Collapse
|
85
|
She L, Alanazi HH, Yan L, Brooks EG, Dube PH, Xiang Y, Zhang F, Sun Y, Liu Y, Zhang X, Li XD. Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness. PLoS One 2020; 15:e0236744. [PMID: 32730309 PMCID: PMC7392318 DOI: 10.1371/journal.pone.0236744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
Repeated exposures to environmental allergens in susceptible individuals drive the development of type 2 inflammatory conditions such as asthma, which have been traditionally considered to be mainly mediated by Th2 cells. However, emerging evidence suggest that a new innate cell type, group 2 innate lymphoid cells (ILC2), plays a central role in initiating and amplifying a type 2 response, even in the absence of adaptive immunity. At present, the regulatory mechanisms for controlling ILC2 activation remain poorly understood. Here we report that respiratory delivery of immunogenic extracellular RNA (exRNAs) derived from RNA- and DNA-virus infected cells, was able to activate a protective response against acute type 2 lung immunopathology and airway hyperresponsiveness (AHR) induced by IL-33 and a fungal allergen, A. flavus, in mice. Mechanistically, we found that the innate immune responses triggered by exRNAs had a potent suppressive effect in vivo on the proliferation and function of ILC2 without the involvement of adaptive immunity. We further provided the loss-of-function genetic evidence that the TLR3- and MAVS-mediated signaling axis is essential for the inhibitory effects of exRNAs in mouse lungs. Thus, our results indicate that the host detection of extracellular immunostimulatory RNAs generated during respiratory viral infections have an important function in the regulation of ILC2-driven acute lung inflammation.
Collapse
Affiliation(s)
- Li She
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hamad H. Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Edward G. Brooks
- Division of Immunology and Infectious Disease, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Peter H. Dube
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
86
|
Li C, Wang T, Zhang Y, Wei F. Evasion mechanisms of the type I interferons responses by influenza A virus. Crit Rev Microbiol 2020; 46:420-432. [PMID: 32715811 DOI: 10.1080/1040841x.2020.1794791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The type I interferons (IFNs) represent the first line of host defense against influenza virus infection, and the precisely control of the type I IFNs responses is a central event of the immune defense against influenza viral infection. Influenza viruses are one of the leading causes of respiratory tract infections in human and are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global human health due to their antigenic variation and interspecies transmission. Although the host cells have evolved sophisticated antiviral mechanisms based on sensing influenza viral products and triggering of signalling cascades resulting in secretion of the type I IFNs (IFN-α/β), influenza viruses have developed many strategies to counteract this mechanism and circumvent the type I IFNs responses, for example, by inducing host shut-off, or by regulating the polyubiquitination of viral and host proteins. This review will summarise the current knowledge of how the host cells recognise influenza viruses to induce the type I IFNs responses and the strategies that influenza viruses exploited to evade the type I IFNs signalling pathways, which will be helpful for the development of antivirals and vaccines.
Collapse
Affiliation(s)
- Chengye Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
87
|
Malik G, Zhou Y. Innate Immune Sensing of Influenza A Virus. Viruses 2020; 12:E755. [PMID: 32674269 PMCID: PMC7411791 DOI: 10.3390/v12070755] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.
Collapse
Affiliation(s)
- Gaurav Malik
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
88
|
Liu G, Gack MU. Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity 2020; 53:26-42. [PMID: 32668226 PMCID: PMC7367493 DOI: 10.1016/j.immuni.2020.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
Faithful maintenance of immune homeostasis relies on the capacity of the cellular immune surveillance machinery to recognize "nonself", such as the presence of pathogenic RNA. Several families of pattern-recognition receptors exist that detect immunostimulatory RNA and then induce cytokine-mediated antiviral and proinflammatory responses. Here, we review the distinct features of bona fide RNA sensors, Toll-like receptors and retinoic-acid inducible gene-I (RIG-I)-like receptors in particular, with a focus on their functional specificity imposed by cell-type-dependent expression, subcellular localization, and ligand preference. Furthermore, we highlight recent advances on the roles of nucleotide-binding oligomerization domain (NOD)-like receptors and DEAD-box or DEAH-box RNA helicases in an orchestrated RNA-sensing network and also discuss the relevance of RNA sensor polymorphisms in human disease.
Collapse
Affiliation(s)
- GuanQun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW The innate immune system is essential in the protection against microbial infection and facilitating tissue repair mechanisms. During these stresses, the maintenance of innate immune cell numbers through stress-induced or emergency hematopoiesis is key for our survival. One major mechanism to recognize danger signals is through the activation of Toll-like receptors (TLRs) on the surface of hematopoietic cells, including hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC), and nonhematopoietic cells, which recognize pathogen-derived or damaged-induced compounds and can influence the emergency hematopoietic response. This review explores how direct pathogen-sensing by HSC/HPC regulates hematopoiesis, and the positive and negative consequences of these signals. RECENT FINDINGS Recent studies have highlighted new roles for TLRs in regulating HSC and HPC differentiation to innate immune cells of both myeloid and lymphoid origin and augmenting HSC and HPC migration capabilities. Most interestingly, new insights as to how acute versus chronic stimulation of TLR signaling regulates HSC and HPC function has been explored. SUMMARY Recent evidence suggests that TLRs may play an important role in many inflammation-associated diseases. This suggests a possible use for TLR agonists or antagonists as potential therapeutics. Understanding the direct effects of TLR signaling by HSC and HPC may help regulate inflammatory/danger signal-driven emergency hematopoiesis.
Collapse
|
90
|
Ascher S, Wilms E, Pontarollo G, Formes H, Bayer F, Müller M, Malinarich F, Grill A, Bosmann M, Saffarzadeh M, Brandão I, Groß K, Kiouptsi K, Kittner JM, Lackner KJ, Jurk K, Reinhardt C. Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol 2020; 40:2279-2292. [PMID: 32611241 DOI: 10.1161/atvbaha.120.314491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Recruitment of neutrophils and formation of neutrophil extracellular traps (NETs) contribute to lethality in acute mesenteric infarction. To study the impact of the gut microbiota in acute mesenteric infarction, we used gnotobiotic mouse models to investigate whether gut commensals prime the reactivity of neutrophils towards formation of neutrophil extracellular traps (NETosis). Approach and Results: We applied a mesenteric ischemia-reperfusion (I/R) injury model to germ-free (GF) and colonized C57BL/6J mice. By intravital imaging, we quantified leukocyte adherence and NET formation in I/R-injured mesenteric venules. Colonization with gut microbiota or monocolonization with Escherichia coli augmented the adhesion of leukocytes, which was dependent on the TLR4 (Toll-like receptor-4)/TRIF (TIR-domain-containing adapter-inducing interferon-β) pathway. Although neutrophil accumulation was decreased in I/R-injured venules of GF mice, NETosis following I/R injury was significantly enhanced compared with conventionally raised mice or mice colonized with the minimal microbial consortium altered Schaedler flora. Also ex vivo, neutrophils from GF and antibiotic-treated mice showed increased LPS (lipopolysaccharide)-induced NETosis. Enhanced TLR4 signaling in GF neutrophils was due to elevated TLR4 expression and augmented IRF3 (interferon regulatory factor-3) phosphorylation. Likewise, neutrophils from antibiotic-treated conventionally raised mice had increased NET formation before and after ischemia. Increased NETosis in I/R injury was abolished in conventionally raised mice deficient in the TLR adaptor TRIF. In support of the desensitizing influence of enteric LPS, treatment of GF mice with LPS via drinking water diminished LPS-induced NETosis in vitro and in the mesenteric I/R injury model. CONCLUSIONS Collectively, our results identified that the gut microbiota suppresses NETing neutrophil hyperreactivity in mesenteric I/R injury, while ensuring immunovigilance by enhancing neutrophil recruitment.
Collapse
Affiliation(s)
- Stefanie Ascher
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Institute for Pharmacy & Biochemistry, Johannes Gutenberg University of Mainz, Germany (S.A.)
| | - Eivor Wilms
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Giulia Pontarollo
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Henning Formes
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Franziska Bayer
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Maria Müller
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Frano Malinarich
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Alexandra Grill
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany (A.G., C.R.)
| | - Markus Bosmann
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Pulmonary Center, Department of Medicine, Boston University School of Medicine, MA (M.B.)
| | - Mona Saffarzadeh
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Inês Brandão
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal (I.B.)
| | - Kathrin Groß
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Klytaimnistra Kiouptsi
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Jens M Kittner
- I. Department of Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Germany (J.M.K.)
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany (K.J.L.)
| | - Kerstin Jurk
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.)
| | - Christoph Reinhardt
- From the Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz (JGU), Germany (S.A., E.W., G.P., H.F., F.B., M.M., F.M., A.G., M.B., M.S., I.B., K.G., K.K., K.J., C.R.).,German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany (A.G., C.R.)
| |
Collapse
|
91
|
Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, Englert JM, Arwood ML, Wen J, Chan-Li Y, Tenora L, Majer P, Rais R, Slusher BS, Horton MR, Powell JD. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest 2020; 130:3865-3884. [PMID: 32324593 PMCID: PMC7324212 DOI: 10.1172/jci131859] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.
Collapse
Affiliation(s)
- Min-Hee Oh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Im-Hong Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Liang Zhao
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Im-Meng Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Wei Xu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Samuel L. Collins
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J. Tam
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Chirag H. Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | | | - Matthew L. Arwood
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Jiayu Wen
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Rana Rais
- Department of Neuroscience, Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Barbara S. Slusher
- Department of Neuroscience, Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Maureen R. Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan D. Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, and
| |
Collapse
|
92
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
93
|
Wang W, Zhou C, Tang H, Yu Y, Zhang Q. Combined Analysis of DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 2020; 10:250. [PMID: 32547963 PMCID: PMC7272597 DOI: 10.3389/fcimb.2020.00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) that express F4 (K88) fimbriae are the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of ETEC F4ab/ac infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in ETEC F4ab/ac infected porcine intestinal epithelial cells. We characterized the pattern of changes in methylation and found 3297 and 1593 differentially methylated regions in cells infected with F4ab and F4ac, respectively. Moreover, 606 and 780 differentially expressed genes (DEGs) in ETEC F4ab and F4ac infected cells were detected and these genes were highly enriched in immune/defense response related pathways. Integrative analysis identified 27 and 10 genes showing inverse correlations between promoter methylation and expression with ETEC F4ab/ac infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon ETEC F4ab/ac infection. Further functional analyses revealed that three DEGs (S100A9, SGO1, and ESPL1) in F4ab infected cells and three DEGs (MAP3K21, PAK6, and MPZL1) in F4ac infected cells are likely involved in the host cells response to ETEC infection. Our data provides further insight into the epigenetic and transcriptomic alterations of ETEC F4ab/ac infected porcine intestinal epithelial cells, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling ETEC F4ab/ac induced diarrhea.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chuanli Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
94
|
Baasch S, Ruzsics Z, Henneke P. Cytomegaloviruses and Macrophages-Friends and Foes From Early on? Front Immunol 2020; 11:793. [PMID: 32477336 PMCID: PMC7235172 DOI: 10.3389/fimmu.2020.00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 01/01/2023] Open
Abstract
Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
95
|
Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F, Lienenklaus S, Ganal-Vonarburg SC, Klein M, Guendel F, Hain T, Schütze K, Grundmann U, Schmitt V, Dorsch M, Spanier J, Larsen PK, Schwanz T, Jäckel S, Reinhardt C, Bopp T, Danckwardt S, Mahnke K, Heinz GA, Mashreghi MF, Durek P, Kalinke U, Kretz O, Huber TB, Weiss S, Wilhelm C, Macpherson AJ, Schild H, Diefenbach A, Probst HC. Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell 2020; 181:1080-1096.e19. [PMID: 32380006 DOI: 10.1016/j.cell.2020.04.022] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/31/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.
Collapse
Affiliation(s)
- Laura Schaupp
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Institute for Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Leif Rogell
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Michael Kofoed-Branzk
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Felix Melchior
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Matthias Klein
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Fabian Guendel
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias Hain
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kristian Schütze
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ulrike Grundmann
- Institute for Medical Microbiology and Hygiene, University of Freiburg Medical Center, Hermann-Herder-Str. 11, 79104 Freiburg, Germany
| | - Vanessa Schmitt
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Martina Dorsch
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Thomas Schwanz
- Institute of Medical Microbiology and Hygiene, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; University Cancer Center Mainz, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; German Cancer Consortium (DKTK)
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, D-69120 Heidelberg, Germany
| | - Gitta Anne Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department for Neuroanatomy, Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131 Mainz, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany.
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
96
|
Zare F, Seifati SM, Dehghan-Manshadi M, Fesahat F. Preimplantation Factor (PIF): a peptide with various functions. JBRA Assist Reprod 2020; 24:214-218. [PMID: 32202400 PMCID: PMC7169918 DOI: 10.5935/1518-0557.20190082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Preimplantation Factor (PIF) is a novel fifteen amino acid linear peptide (MVRIKPGSANKPSDD), which has different biological functions in mammalian species e.g. its role in neuron restoration, pregnancy and related disorders, and also in autoimmune diseases. Since all clinical studies have shown that PIF has both local and systemic effects, it can be considered as an integrated therapy for the treatment of inflammation conditions, along with the prevention of advanced disease. The synthetic PIF (sPIF) analog is a good representative of native PIF action, and it regulates peripheral immune cells to achieve endurance without immune suppression - an effective agent in nonpregnant autoimmune models. This study provides information, from evidence-based studies so far about PIF’s different functional aspects.
Collapse
Affiliation(s)
- Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Dehghan-Manshadi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
97
|
Pfister SP, Schären OP, Beldi L, Printz A, Notter MD, Mukherjee M, Li H, Limenitakis JP, Werren JP, Tandon D, Cuenca M, Hagemann S, Uster SS, Terrazos MA, Gomez de Agüero M, Schürch CM, Coelho FM, Curtiss R, Slack E, Balmer ML, Hapfelmeier S. Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nat Commun 2020; 11:1978. [PMID: 32332737 PMCID: PMC7181798 DOI: 10.1038/s41467-020-15891-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.
Collapse
Affiliation(s)
- Simona P Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Printz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Julien P Limenitakis
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Disha Tandon
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Miguelangel Cuenca
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephanie S Uster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Christian M Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda M Coelho
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Roy Curtiss
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
98
|
Lin B, Sun J, Fraser IDC. Single-tube genotyping for small insertion/deletion mutations: simultaneous identification of wild type, mutant and heterozygous alleles. Biol Methods Protoc 2020; 5:bpaa007. [PMID: 33782652 DOI: 10.1093/biomethods/bpaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Current methods of genotyping small insertion/deletion (indel) mutations are costly, laborious, and can be unreliable. To address this, we have developed a method for small indel genotyping in a single polymerase chain reaction, with wild-type, heterozygous and mutant alleles distinguishable by band pattern in routine agarose gel electrophoresis. We demonstrate this method with multiple genes to distinguish 10 bp, 4 bp and even 1 bp deletions from the wild type. Through systematic testing of numerous primer designs, we also propose guidelines for genotyping small indel mutations. Our method provides a convenient approach to genotyping small indels derived from clustered regularly interspaced short palindromic repeats-mediated gene editing, N-ethyl-N-nitrosourea induced mutagenesis or diagnosis of naturally occurring polymorphisms/mutations.
Collapse
Affiliation(s)
- Bin Lin
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Sun
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
99
|
Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS APPLIED BIO MATERIALS 2020; 3:2765-2778. [DOI: 10.1021/acsabm.9b01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Sun
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
100
|
Maelfait J, Liverpool L, Rehwinkel J. Nucleic Acid Sensors and Programmed Cell Death. J Mol Biol 2020; 432:552-568. [PMID: 31786265 PMCID: PMC7322524 DOI: 10.1016/j.jmb.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acids derived from microorganisms are powerful triggers for innate immune responses. Proteins called RNA and DNA sensors detect foreign nucleic acids and, in mammalian cells, include RIG-I, cGAS, and AIM2. On binding to nucleic acids, these proteins initiate signaling cascades that activate host defense responses. An important aspect of this defense program is the production of cytokines such as type I interferons and IL-1β. Studies conducted over recent years have revealed that nucleic acid sensors also activate programmed cell death pathways as an innate immune response to infection. Indeed, RNA and DNA sensors induce apoptosis, pyroptosis, and necroptosis. Cell death via these pathways prevents replication of pathogens by eliminating the infected cell and additionally contributes to the release of cytokines and inflammatory mediators. Interestingly, recent evidence suggests that programmed cell death triggered by nucleic acid sensors plays an important role in a number of noninfectious pathologies. In addition to nonself DNA and RNA from microorganisms, nucleic acid sensors also recognize endogenous nucleic acids, for example when cells are damaged by genotoxic agents and in certain autoinflammatory diseases. This review article summarizes current knowledge on the links between nucleic acid sensing and cell death and explores important open questions for future studies in this area.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Layal Liverpool
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|