51
|
Ievleva KD, Danusevich IN, Suturina LV. [Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis]. ACTA ACUST UNITED AC 2020; 66:74-80. [PMID: 33481370 DOI: 10.14341/probl12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female endocrine infertility. Insulin resistanсе is supposed to be one of the essential factors of this disease pathways. At the same time, the mechanisms of PCOS development in insulin-resistant patients have not been completely established. Leptin and Peroxisome Proliferator-Activated Receptor γ(PPARγ) are involved in carbohydrate metabolism and reproduction function regulation. It indicates that leptin and PPARγ possibly play a role in the pathways of PCOS. This article is a review of publications on this issue. The purpose of this review was to systematize the available information on the molecular mechanisms that determine the role of leptin and PPARγ in the development of PCOS. The literature search was carried out from 04/05/2020 to 05/17/2020 using the scientific literature databases: NCBI PubMed (foreign sources) and Cyberleninka (domestic sources). We analyzed publications for the period 1990-2020.The review presents the current understanding of the possible role of leptin and PPARγ in the regulation of endocrine, immune systems, and reproductive function, as well as in the development of PCOS. Currently, no studies cover the mechanisms of interaction between leptin and PPARγ in the pathways of this syndrome. The available studies indicating the individual contribution and association of leptin and PPARγ with PCOS are conflicting and have many limitations. Therefore, more studies of direct and indirect interaction of leptin and PPARγ, as well as their role in PCOS pathways, are needed.
Collapse
Affiliation(s)
- K D Ievleva
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - I N Danusevich
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - L V Suturina
- Scientific Сentre for Family Health and Human Reproduction Problems
| |
Collapse
|
52
|
Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB 1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 2020; 9:60771. [PMID: 33210603 PMCID: PMC7728447 DOI: 10.7554/elife.60771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP. When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body’s energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Wesley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergő Szanda
- MTA-SE Laboratory of Molecular Physiology, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
53
|
Zhao P, Saltiel AR. Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Front Immunol 2020; 11:592949. [PMID: 33193441 PMCID: PMC7606291 DOI: 10.3389/fimmu.2020.592949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points. Both the expression and activity of the non-canonical IKK family member TBK1 are induced in adipose tissues during diet-induced obesity. TBK1 plays important roles in the regulation of both metabolism and inflammation in adipose tissue and thus affects glucose and energy metabolism. Here we review the regulation and functions of TBK1 and the molecular mechanisms by which TBK1 regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the potential of a TBK1/IKKε inhibitor as a new therapy for metabolic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
54
|
Ullah H, De Filippis A, Khan H, Xiao J, Daglia M. An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors. Food Chem Toxicol 2020; 144:111574. [PMID: 32679287 DOI: 10.1016/j.fct.2020.111574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Metabolic syndrome is a cluster of pathologies and conditions such as obesity, hyperglycemia, hyperlipidemia and hypertension representing a serious health concern in many countries due to its high rate of mortality and morbidity. Insulin resistance is known to play a central role in the development of metabolic syndrome and several risk factors, including visceral obesity, oxidative stress and chronic inflammation, could trigger insulin resistance. Different strategies are currently in practice to manage metabolic syndrome. Along with dietary components, botanicals contain secondary metabolites, which may play a pivotal role in the maintenance of health by combating chronic disorders. Genus Prunus is classified under family Rosaceae and consists of 400-430 species. This genus contains some important species of fruits and ornamental plants. Prunus species contain important micronutrients such as vitamins and minerals and their consumption could maintain health by nourishing the body with essential and non-essential compounds. Besides nutritional components, they also contain bioactive compounds such as polyphenols, which make them potential alternative therapeutic agents for a number of chronic disorders including dysregulated metabolic conditions. The present review is designed to highlight the evidence-based effects of Prunus species against metabolic syndrome risk factors.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
55
|
Singha A, Palavicini JP, Pan M, Farmer S, Sandoval D, Han X, Fujikawa T. Leptin Receptors in RIP-Cre 25Mgn Neurons Mediate Anti-dyslipidemia Effects of Leptin in Insulin-Deficient Mice. Front Endocrinol (Lausanne) 2020; 11:588447. [PMID: 33071988 PMCID: PMC7538546 DOI: 10.3389/fendo.2020.588447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.
Collapse
Affiliation(s)
- Ashish Singha
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Scotlynn Farmer
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Darleen Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, TX, United States
- Division of Hypothalamic Research Center, Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
56
|
Liu H, Luo J, Guillory B, Chen JA, Zang P, Yoeli JK, Hernandez Y, Lee IIG, Anderson B, Storie M, Tewnion A, Garcia JM. Ghrelin ameliorates tumor-induced adipose tissue atrophy and inflammation via Ghrelin receptor-dependent and -independent pathways. Oncotarget 2020; 11:3286-3302. [PMID: 32934774 PMCID: PMC7476735 DOI: 10.18632/oncotarget.27705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue (AT) atrophy is a hallmark of cancer cachexia contributing to increased morbidity/mortality. Ghrelin has been proposed as a treatment for cancer cachexia partly by preventing AT atrophy. However, the mechanisms mediating ghrelin's effects are incompletely understood, including the extent to which its only known receptor, GHSR-1a, is required for these effects. This study characterizes the pathways involved in AT atrophy in the Lewis Lung Carcinoma (LLC)-induced cachexia model and those mediating the effects of ghrelin in Ghsr +/+ and Ghsr -/- mice. We show that LLC causes AT atrophy by inducing anorexia, and increasing lipolysis, AT inflammation, thermogenesis and energy expenditure. These changes were greater in Ghsr -/-. Ghrelin administration prevented LLC-induced anorexia only in Ghsr +/+, but prevented WAT lipolysis, inflammation and atrophy in both genotypes, although its effects were greater in Ghsr +/+. LLC-induced increases in BAT inflammation, WAT and BAT thermogenesis, and energy expenditure were not affected by ghrelin. In conclusion, ghrelin ameliorates WAT inflammation, fat atrophy and anorexia in LLC-induced cachexia. GHSR-1a is required for ghrelin's orexigenic effect but not for its anti-inflammatory or fat-sparing effects.
Collapse
Affiliation(s)
- Haiming Liu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Gerontology and Geriatric Medicine, University of Washington Department of Medicine, Seattle, WA, USA.,These authors contributed equally to this work
| | - Jiaohua Luo
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing, China.,These authors contributed equally to this work
| | - Bobby Guillory
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ji-An Chen
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Health Education, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Pu Zang
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Endocrinology, Nanjing Jinling Hospital, Nanjing, China
| | - Jordan K Yoeli
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yamileth Hernandez
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ian In-Gi Lee
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Gerontology and Geriatric Medicine, University of Washington Department of Medicine, Seattle, WA, USA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Gerontology and Geriatric Medicine, University of Washington Department of Medicine, Seattle, WA, USA
| | - Mackenzie Storie
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Gerontology and Geriatric Medicine, University of Washington Department of Medicine, Seattle, WA, USA
| | - Alison Tewnion
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Gerontology and Geriatric Medicine, University of Washington Department of Medicine, Seattle, WA, USA.,Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
57
|
Zhang L, Reed F, Herzog H. Leptin signalling on arcuate NPY neurones controls adiposity independent of energy balance or diet composition. J Neuroendocrinol 2020; 32:e12898. [PMID: 32885528 DOI: 10.1111/jne.12898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Central action of the adipocyte hormone leptin via the neuropeptide Y (NPY) system is considered critical for energy homeostatic control. However, the precise mechanisms for this control are still not clear. To specifically investigate how leptin signalling on the NPY neurone contributes to the control of energy homeostasis, we generated an inducible adult-onset NPY neurone-specific leptin receptor (Lepr) knockout model and performed a comprehensive metabolic phenotyping study. Here, we show that the NPY neurone subpopulation that is directly responsive to leptin is not required for the inhibition of fasting-induced hyperphagia by leptin, although it is essential for the regulation of adiposity independent of changes in energy balance or diet composition. Furthermore, under obesogenic conditions such as a high-fat diet, a lack of Lepr signalling on NPY neurones results in significant increases in food intake and concomitant reductions in energy expenditure, leading to accelerated accumulation of fat mass. Collectively, these findings support the notion that Lepr-expressing NPY neurones act as the key relay point where peripheral adipose storage information is sensed, and corresponding responses are initiated to protect adipose reserves.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Felicia Reed
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia
- Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
58
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
59
|
SOCS2 Inhibits Mitochondrial Fatty Acid Oxidation via Suppressing LepR/JAK2/AMPK Signaling Pathway in Mouse Adipocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3742542. [PMID: 32733634 PMCID: PMC7376435 DOI: 10.1155/2020/3742542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an important role in fat deposition, skeletal muscle, central nervous system development, and mitochondria biogenesis. Nevertheless, the regulatory mechanisms of SOCS2 on mitochondrial fatty acid oxidation (FAO) remain unclear. Leptin could inhibit food intake and increase thermogenesis through leptin receptor (LepR), which was present in the hypothalamus and certain peripheral organs, including adipose tissue. With strong interest, we focused on the connection between leptin and SOCS2 and their effect on FAO in adipocytes. In our study, we found that the mRNA level of SOCS2 and the protein levels of PGC-1α, CPT-1b, FAT, and p-ACC were elevated by leptin in the inguinal adipose tissue of mice. On the contrary, the protein levels of FABP4, FATP1, and FAS were declined. The genes related to fatty acid oxidation such as PGC-1α, NRF-1, TFAM, CPT-1b, AOX1, COX2, and UCP2 were attenuated by SOCS2, but elevated by leptin. Moreover, fatty acid oxidation enzyme MCAD, LCAD, and Cyt C levels were reduced in response to SOCS2. These reductions correspond well with the reduced release of free fatty acid and the reduction of mitochondrial complexes I and III by SOCS2. Furthermore, JAK2/AMPK pathway-specific inhibitors could block the mitochondrial FAO; hence, this pathway was implied to have a potential impact on FAO. Together, these studies suggested that SOCS2 had a negative effect on mitochondrial fatty acid oxidation, and the LepR/JAK2/AMPK pathway played a crucial role in this process.
Collapse
|
60
|
DHA reduces hypothalamic inflammation and improves central leptin signaling in mice. Life Sci 2020; 257:118036. [PMID: 32622949 DOI: 10.1016/j.lfs.2020.118036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
AIMS Anti-obesity effects and improved leptin sensitivity from n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported in diet-induced obese animals. This study sought to determine the beneficial central effects and mechanism of docosahexaenoic acid (DHA, 22:6 n-3) in high-fat (HF) diet fed mice. MAIN METHODS Male C57BL/6J mice were given HF diet with or without intracerebroventricular (icv) injection of docosahexaenoic acid (DHA, 22:6 n-3) for two days. Central leptin sensitivity, hypothalamic inflammation, leptin signaling molecules and tyrosine hydroxylase (TH) were examined by central leptin sensitivity test and Western blot. Furthermore, the expression of hepatic genes involved in lipid metabolism was examined by RT-PCR. KEY FINDINGS We found that icv administration of DHA not only reduced energy intake and body weight gain but also corrected the HF diet-induced hypothalamic inflammation. DHA decreased leptin signaling inhibitor SOCS3 and improved the leptin JAK2-Akt signaling pathways in the hypothalamus. Furthermore, icv administration of DHA improved the effects of leptin in the regulation of mRNA expression of enzymes related to lipogenesis, fatty acid β-oxidation, and cholesterol synthesis in the liver. DHA increased leptin-induced activation of TH in the hypothalamus. SIGNIFICANCE Therefore, increasing central DHA concentration may prevent the deficit of hypothalamic regulation, which is associated with disorders of energy homeostasis in the liver as a result of a high-fat diet.
Collapse
|
61
|
Lotfi Yagin N, Aliasgharzadeh S, Alizadeh M, Aliasgari F, Mahdavi R. The association of circulating endocannabinoids with appetite regulatory substances in obese women. Obes Res Clin Pract 2020; 14:321-325. [PMID: 32580926 DOI: 10.1016/j.orcp.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Endocannabinoids especially anadamide (AEA) and 2‑arachidonoylglycerol (2-AG) together with appetite modulators have recently been of great importance in body weight regulation and obesity incidence. The present study was carried out to investigate AEA and 2-AG levels and their association with leptin, insulin, orexin - A, and anthropometric indices in obese women. METHODS The demographic and anthropometric data of 180 overweight/ obese women with mean age 34.2±8.27 years old, and mean BMI 32.54±3.73kg/m2 were evaluated. The plasma levels of anadamide and 2‑arachidonoylglycerol levels and also serum levels of leptin, insulin and orexin- A concentrations were measured. Pearson and spearmen correlation tests along with hieratical regression test were used to assess the association of endocannabinoids levels with anthropometric indices and appetite modulators. RESULTS Significant correlations were revealed between AEA and 2-AG with leptin, BMI, waist circumference (WC) and body fat percent (BF%) (P<0.001). 2-AG levels correlated positively with mean insulin levels (P<0.001). Neither AEA nor 2-AG correlated significantly with serum orexin - A levels. Leptin, insulin, BMI, WC, and BF% were significant independent predictors of AEA and 2-AG in the hierarchical regression model (P<.001) and explained 65% and 68% of variance in AEA and 2-AG respectively (P<0.001). CONCLUSION The findings showed that levels of AEA and 2-AG were associated with BMI, WC, BF%, and leptin and insulin levels. Also, BMI, WC, BF%, leptin and, insulin levels can have predictive value for determining AEA and 2-AG.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Liu Y, Chen X, Qu Y, Song L, Lin Q, Li M, Su K, Li Y, Dong J. Central nesfatin-1 activates lipid mobilization in adipose tissue and fatty acid oxidation in muscle via the sympathetic nervous system. Biofactors 2020; 46:454-464. [PMID: 31898375 DOI: 10.1002/biof.1600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 01/14/2023]
Abstract
Little is known about the influence of central nesfatin-1 on lipid metabolism under diabetic conditions. The main objective of this study was to characterize the mechanisms by which central nesfatin-1 regulates lipid metabolism in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) and whether the sympathetic nervous system is involved. Male Kunming mice were fed high-fat diets (HFDs) and were treated twice with low-dose STZ (100 mg/kg, intraperitoneal [IP]) to generate the T2DM model. Pharmacological adrenergic blockage (phentolamine 10 mg/kg, propranolol 0.017 mmol) and surgical denervation of sympathetic nervous system of the hindlimb and inguinal fat were used to block nerve conduction to determine whether the effect of central nesfatin-1 required the hypothalamic-sympathetic nervous system axis. Plasma free fatty acid (FFA) and insulin levels were measured. AMP-activated protein kinase (AMPK) levels in skeletal muscle and hormone-sensitive lipase and adipose triglycerides lipase (HSL/ATGL) levels in white adipose tissue (WAT) were measured using western blot. mRNA expression of AMPK was measured. We found that there were significantly fewer NUCB2/nesfatin-1 immunoreactive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) in T2DM mice. Central nesfatin-1 administration decreased levels of plasma FFA significantly and activated AMPK to enhance fatty-acid oxidation in skeletal muscle in T2DM mice. In addition, HSL and ATGL were significantly activated during triglyceride mobilization in WAT triggered by central nesfatin-1 administration. Adrenergic blockade and morphological denervation of the sciatic and femoral nerves reduced these changes. Taken together, these data suggest that central nesfatin-1 regulates peripheral lipid metabolism in type 2 diabetes via the sympathetic nervous system.
Collapse
Affiliation(s)
- Yuan Liu
- Special Medicine Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Physiology Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Yan Qu
- Physiology Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Limin Song
- Special Medicine Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Qian Lin
- Special Medicine Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Manwen Li
- Special Medicine Department, Basic Medical College, Qingdao University, Qingdao, China
| | - Kaizhen Su
- Clinical medicine, Medical College, Qingdao University, Qingdao, China
| | - Yanrun Li
- Clinical medicine, Medical College, Qingdao University, Qingdao, China
| | - Jing Dong
- Special Medicine Department, Basic Medical College, Qingdao University, Qingdao, China
- Physiology Department, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
63
|
Quarta C, Cota D. Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. Int J Obes (Lond) 2020; 44:2179-2193. [PMID: 32317751 DOI: 10.1038/s41366-020-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France. .,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
64
|
Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nat Commun 2020; 11:1517. [PMID: 32251290 PMCID: PMC7089966 DOI: 10.1038/s41467-020-15328-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2020] [Indexed: 01/08/2023] Open
Abstract
Leptin stimulates the sympathetic nervous system (SNS), energy expenditure, and weight loss; however, the underlying molecular mechanism remains elusive. Here, we uncover Sh2b1 in leptin receptor (LepR) neurons as a critical component of a SNS/brown adipose tissue (BAT)/thermogenesis axis. LepR neuron-specific deletion of Sh2b1 abrogates leptin-stimulated sympathetic nerve activation and impairs BAT thermogenic programs, leading to reduced core body temperature and cold intolerance. The adipose SNS degenerates progressively in mutant mice after 8 weeks of age. Adult-onset ablation of Sh2b1 in the mediobasal hypothalamus also impairs the SNS/BAT/thermogenesis axis; conversely, hypothalamic overexpression of human SH2B1 has the opposite effects. Mice with either LepR neuron-specific or adult-onset, hypothalamus-specific ablation of Sh2b1 develop obesity, insulin resistance, and liver steatosis. In contrast, hypothalamic overexpression of SH2B1 protects against high fat diet-induced obesity and metabolic syndromes. Our results unravel an unrecognized LepR neuron Sh2b1/SNS/BAT/thermogenesis axis that combats obesity and metabolic disease.
Collapse
|
65
|
Li Y, Tian M, Yang M, Yang G, Chen J, Wang H, Liu D, Wang H, Deng W, Zhu Z, Zheng H, Li L. Central Sfrp5 regulates hepatic glucose flux and VLDL-triglyceride secretion. Metabolism 2020; 103:154029. [PMID: 31770545 DOI: 10.1016/j.metabol.2019.154029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Secreted frizzled-related protein 5 (Sfrp5) has been shown to be associated with energy homeostasis and insulin resistance in mouse models of obesity and diabetes. However, its central role in glucose and lipid metabolism is unknown. METHODS HFD-fed rats received ICV infusions of vehicle or Sfrp5 during a pancreatic euglycemic clamp procedure. To delineate the pathway(s) by which ICV Sfrp5 modulates HGP and VLDL-TG secretion, we inhibited the hypothalamic KATP channel using glibenclamide, the DVC NMDA receptor with MK801, and selectively transected the hepatic branch of the vagal nerve while centrally infusing Sfrp5. RESULTS ICV Sfrp5 in HFD-fed rats significantly increased the glucose infusion required to maintain euglycemia due to HGP inhibition during the clamp procedure; moreover, hepatic PEPCK and G6Pase expression was decreased, and InsR and Akt phosphorylation was increased in the liver. ICV Sfrp5 also decreased circulating triglyceride levels via inhibiting hepatic VLDL-TG secretion. These changes were accompanied by the inhibition of enzymes related to lipogenesis in the liver. ICV Sfrp5 significantly increased insulin-stimulated phosphorylation of InsR and Akt in the hypothalamus of HFD-fed rats, and insulin-stimulated immunodetectable PIP3 levels were higher in Sfrp5 group than in control group both in vitro and vivo. The glucose- and lipid-lowering effects of ICV Sfrp5 were eliminated by NMDA receptor or DVC KATP channel inhibition or HVAG. CONCLUSIONS The present study demonstrates that central Sfrp5 signaling activates a previously unappreciated InsR-Akt-PI3k-KATP channel pathway in the hypothalamus and brain-hepatic vagus neurocircuitry to decrease HGP and VLDL-TG secretion.
Collapse
Affiliation(s)
- Yang Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mengliu Yang
- School of Biomedical Sciences, the University of Queensland, Brisbane 4103, Australia
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jianrong Chen
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Han Wang
- Department of Laboratory, Children's Hospital of Chongqing Medical University, 400015, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hongyan Wang
- Chongqing Emergency Medical Center, Chongqing, China
| | - Wuquan Deng
- Chongqing Emergency Medical Center, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400010, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400010, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
66
|
Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, Perkins AV, Yau SY, McAinch AJ, Hryciw DH. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin Exp Pharmacol Physiol 2020; 47:907-915. [PMID: 31883131 DOI: 10.1111/1440-1681.13244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Maternal nutrition plays a critical role in fetal development and can influence adult onset of disease. Linoleic acid (LA) and alpha-linolenic acid (ALA) are major omega-6 (n-6) and n-3 polyunsaturated fatty acids (PUFA), respectively, that are essential in our diet. LA and ALA are critical for the development of the fetal neurological and immune systems. However, in recent years, the consumption of n-6 PUFA has increased gradually worldwide, and elevated n-6 PUFA consumption may be harmful to human health. Consumption of diets with high levels of n-6 PUFA before or during pregnancy may have detrimental effects on fetal development and may influence overall health of offspring in adulthood. This review discusses the role of n-6 PUFA in fetal programming, the importance of a balance between n-6 and n-3 PUFAs in the maternal diet, and the need of further animal models and human studies that critically evaluate both n-6 and n-3 PUFA contents in diets.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Simone L Sleep
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - James S M Cuffe
- School of Medical Science, Griffith University, Southport, Qld, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,University Research Facility in Behavioural and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Vic., Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,School of Environment and Science, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
67
|
Li X. Epigenetics and cell cycle regulation in cystogenesis. Cell Signal 2019; 68:109509. [PMID: 31874209 DOI: 10.1016/j.cellsig.2019.109509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The role of genetic mutations in the development of polycystic kidney disease (PKD), such as alterations in PKD1 and PKD2 genes in autosomal dominant PKD (ADPKD), is well understood. However, the significance of epigenetic mechanisms in the progression of PKD remains unclear and is increasingly being investigated. The term of epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. Epigenetic information can be inherited during mammalian cell division to sustain phenotype specifically and physiologically responsive gene expression in the progeny cells. A multitude of functional studies of epigenetic modifiers and systematic genome-wide mapping of epigenetic marks reveal the importance of epigenomic mechanisms, including DNA methylation, histone/chromatin modifications and non-coding RNAs, in PKD pathologies. Deregulated proliferation is a characteristic feature of cystic renal epithelial cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cyst formation and progression. Recent evidence suggests that alterations of DNA methylation and histone modifications on specific genes and the whole genome involved in cell cycle regulation and contribute to the pathogenesis of PKD. This review summarizes the recent advances of epigenetic mechanisms in PKD, which helps us to define the term of "PKD epigenetics" and group PKD epigenetic changes in three categories. In particularly, this review focuses on the interplay of epigenetic mechanisms with cell cycle regulation during normal cell cycle progression and cystic cell proliferation, and discusses the potential to detect and quantify DNA methylation from body fluids as diagnostic/prognostic biomarkers. Collectively, this review provides concepts and examples of epigenetics in cell cycle regulation to reveal a broad view of different aspects of epigenetics in biology and PKD, which may facilitate to identify possible novel therapeutic intervention points and to explore epigenetic biomarkers in PKD.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
68
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
69
|
Hackl MT, Fürnsinn C, Schuh CM, Krssak M, Carli F, Guerra S, Freudenthaler A, Baumgartner-Parzer S, Helbich TH, Luger A, Zeyda M, Gastaldelli A, Buettner C, Scherer T. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun 2019; 10:2717. [PMID: 31222048 PMCID: PMC6586634 DOI: 10.1038/s41467-019-10684-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatic steatosis develops when lipid influx and production exceed the liver's ability to utilize/export triglycerides. Obesity promotes steatosis and is characterized by leptin resistance. A role of leptin in hepatic lipid handling is highlighted by the observation that recombinant leptin reverses steatosis of hypoleptinemic patients with lipodystrophy by an unknown mechanism. Since leptin mainly functions via CNS signaling, we here examine in rats whether leptin regulates hepatic lipid flux via the brain in a series of stereotaxic infusion experiments. We demonstrate that brain leptin protects from steatosis by promoting hepatic triglyceride export and decreasing de novo lipogenesis independently of caloric intake. Leptin's anti-steatotic effects are generated in the dorsal vagal complex, require hepatic vagal innervation, and are preserved in high-fat-diet-fed rats when the blood brain barrier is bypassed. Thus, CNS leptin protects from ectopic lipid accumulation via a brain-vagus-liver axis and may be a therapeutic strategy to ameliorate obesity-related steatosis.
Collapse
Affiliation(s)
- Martina Theresa Hackl
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Christina Maria Schuh
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Krssak
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Sara Guerra
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Angelika Freudenthaler
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anton Luger
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Maximilian Zeyda
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, and Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mt Sinai, One Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Thomas Scherer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
70
|
Garcia-Galiano D, Borges BC, Allen SJ, Elias CF. PI3K signalling in leptin receptor cells: Role in growth and reproduction. J Neuroendocrinol 2019; 31:e12685. [PMID: 30618188 PMCID: PMC6533139 DOI: 10.1111/jne.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110β catalytic subunits in leptin receptor cells (LRΔα+β ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+β mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Beatriz C. Borges
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan J. Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol F. Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
71
|
Lin Y, Liang Z, He L, Yang M, Liu D, Gu HF, Liu H, Zhu Z, Zheng H, Li L, Yang G. Gut ghrelin regulates hepatic glucose production and insulin signaling via a gut-brain-liver pathway. Cell Commun Signal 2019; 17:8. [PMID: 30683114 PMCID: PMC6347823 DOI: 10.1186/s12964-019-0321-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ghrelin modulates many physiological processes. However, the effects of intestinal ghrelin on hepatic glucose production (HGP) are still unclear. The current study was to explore the roles of intestinal ghrelin on glucose homeostasis and insulin signaling in the liver. METHODS The system of intraduodenal infusion and intracerebral microinfusion into the nucleus of the solitary tract (NTS) in the normal chow-diet rats and pancreatic-euglycemic clamp procedure (PEC) combined with [3-3H] glucose as a tracer were used to analyze the effect of intestinal ghrelin. Intraduodenal co-infusion of ghrelin, tetracaine and Activated Protein Kinase (AMPK) activator (AICAR), or pharmacologic and molecular inhibitor of N-methyl-D-aspartate receptors within the dorsal vagal complex, or hepatic vagotomy in rats were used to explore the possible mechanism of the effect of intestinal ghrelin on HGP. RESULTS Our results demonstrated that gut infusion of ghrelin inhibited duodenal AMP-dependent protein kinase (AMPK) signal pathways, increased HGP and expression of gluconeogenic enzymes, and decreased insulin signaling in the liver of the rat. Intraduodenal co-infusion of ghrelin receptor antagonist [D-Lys3]-GHRP-6 and AMPK agonist with ghrelin diminished gut ghrelin-induced increase in HGP and decrease in glucose infusion rate (GIR) and hepatic insulin signaling. The effects of gut ghrelin were also negated by co-infusion with tetracaine, or MK801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, and adenovirus expressing the shRNA of NR1 subunit of NMDA receptors (Ad-shNR1) within the dorsal vagal complex, and hepatic vagotomy in rats. When ghrelin and lipids were co-infused into the duodenum, the roles of gut lipids in increasing the rate of glucose infusion (GIR) and lowering HGP were reversed. CONCLUSIONS The current study provided evidence that intestinal ghrelin has an effect on HGP and identified a neural glucoregulatory function of gut ghrelin signaling.
Collapse
Affiliation(s)
- Yao Lin
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.,The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Zerong Liang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Liping He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, MS 39216-4505, USA
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400010, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ling Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
72
|
Andrade N, Andrade S, Silva C, Rodrigues I, Guardão L, Guimarães JT, Keating E, Martel F. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr 2019; 59:151-165. [PMID: 30631887 DOI: 10.1007/s00394-019-01895-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabolic syndrome (MS) is a major public health issue worldwide and fructose consumption has been associated with MS development. Recently, we showed that the dietary polyphenol chrysin is an effective inhibitor of fructose uptake by human intestinal epithelial cells. Therefore, our aim was to investigate if chrysin interferes with the development of MS induced by fructose in an animal model. METHODS Adult male Sprague-Dawley rats (220-310 g) were randomly divided into four groups: (A) tap water (control), (B) tap water and a daily dose of chrysin (100 mg/kg) by oral administration (chrysin) (C) 10% fructose in tap water (fructose), and (D) 10% fructose in tap water and a daily dose of chrysin (100 mg/kg) by oral administration (fructose + chrysin). All groups were fed ad libitum with standard laboratory chow diet and dietary manipulation lasted 18 weeks. RESULTS Fructose-feeding for 18 weeks induced an increase in serum triacylglycerols, insulin and angiotensin II levels and in hepatic fibrosis and these changes did not occur in fructose + chrysin rats. Moreover, the increase in both systolic and diastolic blood pressure which was found in fructose-fed animals from week 14th onwards was not observed in fructose + chrysin animals. In contrast, the increase in energy consumption, liver/body, heart/body and right kidney/body weight ratios, serum proteins, serum leptin and liver triacylglycerols observed in fructose-fed rats was not affected by chrysin. CONCLUSIONS Chrysin was able to protect against some of the MS features induced by fructose-feeding.
Collapse
Affiliation(s)
- Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Sara Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Claúdia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - Luísa Guardão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - João T Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Elisa Keating
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- CINTESIS, Center for Research in Health Technologies and Information Systems, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal.
| |
Collapse
|
73
|
Shikano K, Iwakoshi-Ukena E, Kato M, Furumitsu M, Bentley GE, Kriegsfeld LJ, Ukena K. Neurosecretory Protein GL Induces Fat Accumulation in Chicks. Front Endocrinol (Lausanne) 2019; 10:392. [PMID: 31275247 PMCID: PMC6593053 DOI: 10.3389/fendo.2019.00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/31/2019] [Indexed: 01/27/2023] Open
Abstract
We recently found a previously unidentified cDNA in chicken hypothalamus which encodes the precursor for neurosecretory protein GL (NPGL). A previous study showed that intracerebroventricular (i.c.v.) infusion of NPGL caused body mass gain in chicks. However, it was not clear which part(s) of the body gained mass. In the present study, we investigated which tissues increased in mass after chronic i.c.v. infusion of NPGL in chicks. We found that NPGL increased the masses of the liver, abdominal fat, and subcutaneous fat, while NPGL did not affect the masses of muscles, including pectoralis major, pectoralis minor, and biceps femoris. Oil Red O staining revealed that fat deposition had occurred in the liver. In addition, the size of the lipid droplets in the abdominal fat increased. Furthermore, we found an upregulation of lipogenesis and downregulation of lipolysis in the abdominal fat, but not in the liver. These results indicate that NPGL is involved in fat storage in chicks.
Collapse
Affiliation(s)
- Kenshiro Shikano
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masaki Kato
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Megumi Furumitsu
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Kazuyoshi Ukena
- Laboratory of Neuroendocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- *Correspondence: Kazuyoshi Ukena
| |
Collapse
|
74
|
Yasmeen R, Shen Q, Lee A, Leung JH, Kowdley D, DiSilvestro DJ, Xu L, Yang K, Maiseyeu A, Bal NC, Periasamy M, Fadda P, Ziouzenkova O. Epiregulin induces leptin secretion and energy expenditure in high-fat diet-fed mice. J Endocrinol 2018; 239:377-388. [PMID: 30400011 PMCID: PMC6226053 DOI: 10.1530/joe-18-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Qiwen Shen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - David J. DiSilvestro
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lu Xu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kefeng Yang
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 200025
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Naresh C. Bal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Nucleic Acid Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Correspondence Ouliana Ziouzenkova, PhD, 1787 Neil Avenue, 331A Campbell Hall; Columbus, OH 43210, ; Telephone: 001 614 292 5034; Fax: 001 614 292 8880
| |
Collapse
|
75
|
Li MD, Vera NB, Yang Y, Zhang B, Ni W, Ziso-Qejvanaj E, Ding S, Zhang K, Yin R, Wang S, Zhou X, Fang EX, Xu T, Erion DM, Yang X. Adipocyte OGT governs diet-induced hyperphagia and obesity. Nat Commun 2018; 9:5103. [PMID: 30504766 PMCID: PMC6269424 DOI: 10.1038/s41467-018-07461-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023] Open
Abstract
Palatable foods (fat and sweet) induce hyperphagia, and facilitate the development of obesity. Whether and how overnutrition increases appetite through the adipose-to-brain axis is unclear. O-linked beta-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) couples nutrient cues to O-GlcNAcylation of intracellular proteins at serine/threonine residues. Chronic dysregulation of O-GlcNAc signaling contributes to metabolic diseases. Here we show that adipocyte OGT is essential for high fat diet-induced hyperphagia, but is dispensable for baseline food intake. Adipocyte OGT stimulates hyperphagia by transcriptional activation of de novo lipid desaturation and accumulation of N-arachidonyl ethanolamine (AEA), an endogenous appetite-inducing cannabinoid (CB). Pharmacological manipulation of peripheral CB1 signaling regulates hyperphagia in an adipocyte OGT-dependent manner. These findings define adipocyte OGT as a fat sensor that regulates peripheral lipid signals, and uncover an unexpected adipose-to-brain axis to induce hyperphagia and obesity.
Collapse
Affiliation(s)
- Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Nicholas B Vera
- Cardiovascular, Metabolic & Endocrine Disease Research Unit, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA
| | - Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Bichen Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Weiming Ni
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Enida Ziso-Qejvanaj
- Cardiovascular, Metabolic & Endocrine Disease Research Unit, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA
| | - Sheng Ding
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ruonan Yin
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Simeng Wang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xu Zhou
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ethan X Fang
- Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tian Xu
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Derek M Erion
- Cardiovascular, Metabolic & Endocrine Disease Research Unit, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism and Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
76
|
Potential Involvement of Peripheral Leptin/STAT3 Signaling in the Effects of Resveratrol and Its Metabolites on Reducing Body Fat Accumulation. Nutrients 2018; 10:nu10111757. [PMID: 30441779 PMCID: PMC6265754 DOI: 10.3390/nu10111757] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Bioactive compounds such as polyphenols have increased in importance in recent years, and among them, resveratrol (3,5,4′-trihydroxy-trans-stilbene) has generated great interest as an anti-obesity agent. Recent investigations have highlighted the importance of leptin signaling in lipid metabolism in peripheral organs. The aims of this study were (1) to investigate whether resveratrol can reduce fat accumulation in peripheral tissues by increasing their leptin sensitivity and (2) to identify which resveratrol-derived circulating metabolites are potentially involved in these metabolic effects. Serum leptin levels and the leptin signaling pathway were assessed in diet-induced obese rats. Moreover, serum metabolites of resveratrol were studied by ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MSn). The daily consumption of 200 mg/kg of resveratrol, but not doses of 50 and 100 mg/kg, reduced body weight and fat accumulation in obese rats and restored leptin sensitivity in the periphery. These effects were due to increases in sirtuin 1 activity in the liver, leptin receptors in muscle and protection against endoplasmic reticulum (ER)-stress in adipose tissue. In general, the resveratrol metabolites associated with these beneficial effects were derived from both phase II and microbiota metabolism, although only those derived from microbiota increased proportionally with the administered dose of resveratrol. In conclusion, resveratrol reversed leptin resistance caused by diet-induced obesity in peripheral organs using tissue-specific mechanisms.
Collapse
|
77
|
Spexin: A novel regulator of adipogenesis and fat tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1228-1236. [DOI: 10.1016/j.bbalip.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023]
|
78
|
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev 2018; 19:1317-1328. [PMID: 30015415 DOI: 10.1111/obr.12716] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity alters the composition, structure and function of adipose tissue, characterized by chronic inflammation, insulin resistance and metabolic dysfunction. Adipose-derived mesenchymal stem cells (ASCs) are responsible for cell renewal, spontaneous repair and immunomodulation in adipose tissue. Increasing evidence highlights that ASCs are deficient in obesity, and the underlying mechanisms are not well understood. We have recently shown that obese ASCs have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functions. This work suggests an intertwined connection of obesity, defective cilia and dysfunctional ASCs. We have here discussed the current data regarding defective cilia in various cell types in obesity. Based on these observations, we hypothesize that obesity, a systemic chronic metainflammation, could impair cilia in diverse ciliated cells, like pancreatic islet cells, stem cells and hypothalamic neurons, making these critical cells dysfunctional by shutting down their signal sensors and transducers. In this context, obesity may represent a secondary form of ciliopathy induced by obesity-related inflammation and metabolic dysfunction. Reactivation of ciliated cells might be an alternative strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- A Ritter
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
79
|
Song Z, Xiaoli AM, Yang F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 2018; 10:nu10101383. [PMID: 30274245 PMCID: PMC6213738 DOI: 10.3390/nu10101383] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
De novo lipogenesis (DNL) is a complex and highly regulated process in which carbohydrates from circulation are converted into fatty acids that are then used for synthesizing either triglycerides or other lipid molecules. Dysregulation of DNL contributes to human diseases such as obesity, type 2 diabetes, and cardiovascular diseases. Thus, the lipogenic pathway may provide a new therapeutic opportunity for combating various pathological conditions that are associated with dysregulated lipid metabolism. Hepatic DNL has been well documented, but lipogenesis in adipocytes and its contribution to energy homeostasis and insulin sensitivity are less studied. Recent reports have gained significant insights into the signaling pathways that regulate lipogenic transcription factors and the role of DNL in adipose tissues. In this review, we will update the current knowledge of DNL in white and brown adipose tissues with the focus on transcriptional, post-translational, and central regulation of DNL. We will also summarize the recent findings of adipocyte DNL as a source of some signaling molecules that critically regulate energy metabolism.
Collapse
Affiliation(s)
- Ziyi Song
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Alus M Xiaoli
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fajun Yang
- Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
80
|
Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Brüning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T. Insulin regulates POMC neuronal plasticity to control glucose metabolism. eLife 2018; 7:38704. [PMID: 30230471 PMCID: PMC6170188 DOI: 10.7554/elife.38704] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Natalie J Michael
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Robert S Lee-Young
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Jack T Pryor
- Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Astrid C Munder
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Jens Claus Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,National Center for Diabetes Research, Neuherberg, Germany
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, United States.,Department of Anatomy and Histology, University of Veterinary Medicine, Hungary, Europe
| | - David Spanswick
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| |
Collapse
|
81
|
Rossi F, Punzo F, Umano GR, Argenziano M, Miraglia Del Giudice E. Role of Cannabinoids in Obesity. Int J Mol Sci 2018; 19:E2690. [PMID: 30201891 PMCID: PMC6163475 DOI: 10.3390/ijms19092690] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity is an increasing health problem worldwide. Its related comorbidities imply a high cost for the National Health System and diminish a patient's life quality. Adipose tissue is composed of three types of cells. White adipocytes are involved in fat storage and secretion of hormones. Brown adipocytes are involved in thermogenesis and caloric expenditure. Beige adipocytes are transitional adipocytes that in response to various stimuli can turn from white to brown and could be protective against the obesity, enhancing energy expenditure. The conversion of white in beige adipose tissue is a potential new therapeutic target for obesity. Cannabinoid receptors (CB) regulate thermogenesis, food intake and inflammation. CB1 ablation or inhibition helps reducing body weight and food intake. Stimulation of CB2 limits inflammation and promotes anti-obesity effects by reducing food intake and weight gain. Its genetic ablation results in adiposity development. CB receptors are also responsible for transforming white adipose tissue towards beige or brown adipocytes, therefore their modulation can be considered potential anti-obesity target. CB1 principal localization in central nervous system represents an important limit. Stimulation of CB2, principally localized on peripheral cells instead, should facilitate the anti-obesity effects without exerting remarkable psychotropic activity.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Francesca Punzo
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maura Argenziano
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| |
Collapse
|
82
|
Oishi K, Hashimoto C. Short-term time-restricted feeding during the resting phase is sufficient to induce leptin resistance that contributes to development of obesity and metabolic disorders in mice. Chronobiol Int 2018; 35:1576-1594. [PMID: 30084652 DOI: 10.1080/07420528.2018.1496927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Feeding at unusual times of the day is thought to be associated with obesity and metabolic disorders in both experimental animals and humans. We previously reported that time-imposed feeding during the sleep phase (daytime feeding, DF) induces obesity and metabolic disorders compared with mice fed only during the active phase (nighttime feeding, NF). The present study aimed to determine whether leptin resistance is caused by DF, and whether it is involved in the underlying mechanisms of DF-induced obesity in mice, since leptin plays an essential role in regulating energy expenditure and adiposity in addition to food intake. We compared leptin sensitivity by evaluating the effects of exogenous injected leptin on food intake and body weight in wild-type C57BL/6J mice under NF and DF. The mice were fed with a high-fat high-sucrose diet throughout the study. To determine whether leptin resistance is a cause or a result of DF-induced obesity with metabolic disorders, we restricted the feeding times of leptin resistant db/db mice. We also examined leptin sensitivity in leptin deficient ob/ob mice under NF and DF to elucidate the underlying mechanisms of DF-induced leptin resistance. C57BL/6J mice under DF gained more weight and adiposity compared with mice under NF, and developed hyperleptinemia and hypothermia. We found that six days of DF abolished exogenous leptin-induced hypophagia and reduction in body weight in mice. We also found that the leptin injection significantly suppressed the mRNA expression of lipogenic genes in the liver of NF, but not in DF mice, suggesting that short-term DF was sufficient to induce metabolic leptin resistance. The DF-induced increases in body weight gain, food efficiency, adipose tissue mass, lipogenic gene expression in metabolic tissues, and hepatic lipid accumulation were abolished in db/db mice, suggesting that the leptin resistance is a cause of DF-induced metabolic disorders. DF resulted in deep hypothermia in db/db, as well as in wild-type mice, suggesting that a decrease in energy expenditure was not the main cause of DF-induced obesity. Exogenous leptin reduced the body weight of ob/ob mice under both NF and DF, and the effect was significantly higher in DF- than in NF-ob/ob mice. Therefore, the development of DF-induced leptin resistance requires endogenous leptin, and central leptin sensitivity fluctuates in a circadian manner. The present findings suggest that leptin resistance is responsible for DF-induced obesity and metabolic disorders, and that the circadian fluctuation of central leptin sensitivity might be involved in leptin resistance induced by DF, although further studies are needed to elucidate the mechanisms of metabolic disorders that depend on the time of feeding. Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; ANOVA, analysis of variance; DF, daytime feeding; FFA, free fatty acid; HOMA-IR, homeostasis model assessment of insulin resistance; NEAT, non-exercise activity thermogenesis; NF, nighttime feeding; PI3, phosphatidylinositol 3; RF, restricted feeding; RW, running-wheel; SCN, suprachiasmatic nucleus; SEM, standard error of the mean; STAT3, signal transducer and activator of transcription 3; T-Cho, total cholesterol; TG, triglyceride; WAT, white adipose tissues.
Collapse
Affiliation(s)
- Katsutaka Oishi
- a Biological Clock Research Group, Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki , Japan.,b Department of Applied Biological Science, Graduate School of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan.,c Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences , The University of Tokyo , Kashiwa , Chiba , Japan
| | - Chiaki Hashimoto
- a Biological Clock Research Group, Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki , Japan.,b Department of Applied Biological Science, Graduate School of Science and Technology , Tokyo University of Science , Noda , Chiba , Japan
| |
Collapse
|
83
|
Pozo M, Claret M. Hypothalamic Control of Systemic Glucose Homeostasis: The Pancreas Connection. Trends Endocrinol Metab 2018; 29:581-594. [PMID: 29866501 DOI: 10.1016/j.tem.2018.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Maintenance of glucose homeostasis is mandatory for organismal survival. It is accomplished by complex and coordinated interplay between glucose detection mechanisms and multiple effector systems. The brain, in particular homeostatic regions such as the hypothalamus, plays a crucial role in orchestrating such a highly integral response. We review here current understanding of how the hypothalamus senses glucose availability and participates in systemic glucose homeostasis. We provide an update of the relevant signaling pathways and neuronal subsets involved, as well as of the mechanisms modulating metabolic processes in peripheral tissues such as liver, skeletal muscle, fat, and especially the pancreas. We also discuss the relevance of these networks in human biology and prevalent metabolic conditions such as diabetes and obesity.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain.
| |
Collapse
|
84
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
85
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
86
|
van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of Adipose Tissue Metabolism by the Endocannabinoid System. Trends Endocrinol Metab 2018; 29:326-337. [PMID: 29588112 DOI: 10.1016/j.tem.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
White adipose tissue (WAT) stores excess energy as triglycerides, and brown adipose tissue (BAT) is specialized in dissipating energy as heat. The endocannabinoid system (ECS) is involved in a broad range of physiological processes and is increasingly recognized as a key player in adipose tissue metabolism. High ECS tonus in the fed state is associated with a disadvantageous metabolic phenotype, and this has led to a search for pharmacological strategies to inhibit the ECS. In this review we present recent developments that cast light on the regulation of adipose tissue metabolism by the ECS, and we discuss novel treatment options including the modulation of endocannabinoid synthesis and breakdown enzymes.
Collapse
Affiliation(s)
- Robin van Eenige
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
87
|
Ukena K. Avian and murine neurosecretory protein GL participates in the regulation of feeding and energy metabolism. Gen Comp Endocrinol 2018; 260:164-170. [PMID: 28951261 DOI: 10.1016/j.ygcen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
Probing previously unknown neuropeptides and/or peptide hormones is essential for our understanding of the regulation of energy homeostasis in the brain. We recently performed a cDNA subtractive screening of the chicken hypothalamus, which contained one of the feeding and energy metabolic centers. We found a gene encoding a novel protein of 182 amino acid residues, including one putative small secretory protein of 80 amino acid residues. The C-terminal amino acids of the small protein were Gly-Leu-NH2, and as a result, the small protein was termed neurosecretory protein GL (NPGL). Subcutaneous and intracerebroventricular infusions of NPGL increased body mass gain in chicks, suggesting a central role for this protein in regulating growth and energy homeostasis. A database search revealed that the Npgl gene is conserved in vertebrates, including mice and rats. This review summarizes the advances in the characterization, localization, and biological action of NPGL, in birds and rodents.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| |
Collapse
|
88
|
Côté I, Sakarya Y, Green SM, Morgan D, Carter CS, Tümer N, Scarpace PJ. iBAT sympathetic innervation is not required for body weight loss induced by central leptin delivery. Am J Physiol Endocrinol Metab 2018; 314:E224-E231. [PMID: 29089334 PMCID: PMC5899217 DOI: 10.1152/ajpendo.00219.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluated the contribution of brown adipose tissue (BAT) sympathetic innervation on central leptin-mediated weight loss. In a short- and long-term study, F344BN rats were submitted to either a denervation of interscapular BAT (Denervated) or a sham operation (Sham). Animals from each group received the Ob (Leptin) or green fluorescent protein (GFP; Control) gene through a single injection of recombinant adeno-associated virus delivered centrally. Changes in body weight were recorded for 14 or 35 days, after which adipose tissues and skeletal muscles were weighed. In both studies, hypothalamic phosphorylated STAT3 (P-STAT3) was significantly higher in Sham-Leptin and Denervated-Leptin groups compared with their respective Control groups ( P < 0.01), indicating that leptin signaling was enhanced at the end point. We measured uncoupling protein 1 (UCP1), a marker of BAT thermogenic activity, and found a significant induction in Leptin in Sham animals ( P < 0.001) but not in Denervated animals, demonstrating that BAT UCP1 protein was only induced in Sham rats. Both Sham-Leptin and Denervated-Leptin rats lost ~15% of their initial body weight ( P < 0.001) by day 14 and reached a maximum of 18% body weight loss that stabilized over week 3 of treatment, indicating that sympathetic outflow to BAT is not required for leptin-mediated weight loss. In summary, interscapular BAT (iBAT) denervation did not prevent body weight loss following central leptin gene delivery. The present data show that sympathetic innervation of iBAT is not essential for leptin-induced body weight loss.
Collapse
Affiliation(s)
- Isabelle Côté
- Department of Pharmacology and Therapeutics, University of Florida , Gainesville, Florida
| | - Yasemin Sakarya
- Department of Pharmacology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sara M Green
- Department of Pharmacology and Therapeutics, University of Florida , Gainesville, Florida
| | - Drake Morgan
- Department of Psychiatry, University of Florida , Gainesville, Florida
| | - Christy S Carter
- Department of Aging and Geriatric Research, University of Florida , Gainesville, Florida
| | - Nihal Tümer
- Department of Pharmacology and Therapeutics, University of Florida , Gainesville, Florida
| | - Philip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida , Gainesville, Florida
| |
Collapse
|
89
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
90
|
Abraham MA, Rasti M, Bauer PV, Lam TKT. Leptin enhances hypothalamic lactate dehydrogenase A (LDHA)-dependent glucose sensing to lower glucose production in high-fat-fed rats. J Biol Chem 2018; 293:4159-4166. [PMID: 29374061 DOI: 10.1074/jbc.ra117.000838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Indexed: 01/15/2023] Open
Abstract
The responsiveness of glucose sensing per se to regulate whole-body glucose homeostasis is dependent on the ability of a rise in glucose to lower hepatic glucose production and increase peripheral glucose uptake in vivo In both rodents and humans, glucose sensing is lost in diabetes and obesity, but the site(s) of impairment remains elusive. Here, we first report that short-term high-fat feeding disrupts hypothalamic glucose sensing to lower glucose production in rats. Second, leptin administration into the hypothalamus of high-fat-fed rats restored hypothalamic glucose sensing to lower glucose production during a pancreatic (basal insulin)-euglycemic clamp and increased whole-body glucose tolerance during an intravenous glucose tolerance test. Finally, both chemical inhibition of hypothalamic lactate dehydrogenase (LDH) (achieved via hypothalamic LDH inhibitor oxamate infusion) and molecular knockdown of LDHA (achieved via hypothalamic lentiviral LDHA shRNA injection) negated the ability of hypothalamic leptin infusion to enhance glucose sensing to lower glucose production in high fat-fed rats. In summary, our findings illustrate that leptin enhances LDHA-dependent glucose sensing in the hypothalamus to lower glucose production in high-fat-fed rodents in vivo.
Collapse
Affiliation(s)
- Mona A Abraham
- From the Toronto General Hospital Research Institute, University Health Network, Toronto M5G 1L7, Canada.,Departments of Physiology and
| | - Mozhgan Rasti
- From the Toronto General Hospital Research Institute, University Health Network, Toronto M5G 1L7, Canada
| | - Paige V Bauer
- From the Toronto General Hospital Research Institute, University Health Network, Toronto M5G 1L7, Canada.,Departments of Physiology and
| | - Tony K T Lam
- From the Toronto General Hospital Research Institute, University Health Network, Toronto M5G 1L7, Canada, .,Departments of Physiology and.,Medicine, University of Toronto, Toronto M5S 1A8, Canada, and.,Banting and Best Diabetes Centre, University of Toronto, Toronto M5G 2C4, Canada
| |
Collapse
|
91
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
92
|
Mora C, Pintado C, Rubio B, Mazuecos L, López V, Fernández A, Salamanca A, Bárcena B, Fernández-Agulló T, Arribas C, Gallardo N, Andrés A. Central leptin regulates heart lipid content by selectively increasing PPAR β/δ expression. J Endocrinol 2018; 236:43-56. [PMID: 29109080 DOI: 10.1530/joe-17-0554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ, encoded by Pparb/d) and their target genes, adipose triglyceride lipase (encoded by Pnpla2, herefater referred to as Atgl), hormone sensitive lipase (encoded by Lipe, herefater referred to as Hsl), pyruvate dehydrogenase kinase 4 (Pdk4) and acyl CoA oxidase 1 (Acox1), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 (Scd1) and diacylglycerol acyltransferase 1 (Dgat1) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal β-oxidation. Finally, the pharmacological inhibition of PPARβ/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARβ/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight.
Collapse
Affiliation(s)
- Cristina Mora
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Cristina Pintado
- BiochemistryFaculty of Environmental Sciences and and CRIB, UCLM, Toledo, Spain
| | - Blanca Rubio
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Lorena Mazuecos
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Virginia López
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Alejandro Fernández
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Aurora Salamanca
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Brenda Bárcena
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | | | - Carmen Arribas
- BiochemistryFaculty of Environmental Sciences and and CRIB, UCLM, Toledo, Spain
| | - Nilda Gallardo
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Antonio Andrés
- BiochemistryFaculty of Science and Technological Chemistry, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), Ciudad Real, Spain
| |
Collapse
|
93
|
Fruhwürth S, Vogel H, Schürmann A, Williams KJ. Novel Insights into How Overnutrition Disrupts the Hypothalamic Actions of Leptin. Front Endocrinol (Lausanne) 2018; 9:89. [PMID: 29632515 PMCID: PMC5879088 DOI: 10.3389/fendo.2018.00089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity has become a worldwide health problem, but we still do not understand the molecular mechanisms that contribute to overeating and low expenditure of energy. Leptin has emerged as a major regulator of energy balance through its actions in the hypothalamus. Importantly, obese people exhibit high circulating levels of leptin, yet the hypothalamus no longer responds normally to this hormone to suppress appetite or to increase energy expenditure. Several well-known hypotheses have been proposed to explain impaired central responsiveness to the effects of leptin in obesity, including defective transit across the blood-brain barrier at the arcuate nucleus, hypothalamic endoplasmic reticulum stress, maladaptive sterile inflammation in the hypothalamus, and overexpression of molecules that may inhibit leptin signaling. We also discuss a new explanation that is based on our group's recent discovery of a signaling pathway that we named "NSAPP" after its five main protein components. The NSAPP pathway consists of an oxide transport chain that causes a transient, targeted burst in intracellular hydrogen peroxide (H2O2) to inactivate redox-sensitive members of the protein tyrosine phosphatase gene family. The NSAPP oxide transport chain is required for full activation of canonical leptin signaling in neurons but fails to function normally in states of overnutrition. Remarkably, leptin and insulin both require the NSAPP oxide transport chain, suggesting that a defect in this pathway could explain simultaneous resistance to the appetite-suppressing effects of both hormones in obesity.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kevin Jon Williams
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Kevin Jon Williams,
| |
Collapse
|
94
|
Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin. Mol Metab 2017; 8:1-12. [PMID: 29289646 PMCID: PMC5985226 DOI: 10.1016/j.molmet.2017.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives The autonomic nervous system is critically involved in mediating the control by leptin of many physiological processes. Here, we examined the role of the leptin receptor (LepR) in proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in mediating the effects of leptin on regional sympathetic and parasympathetic nerve activity. Methods We analyzed how deletion of the LepR in POMC neurons (POMCCre/LepRfl/fl mice) or AgRP neurons (AgRPCre/LepRfl/fl mice) affects the ability of leptin to increase sympathetic and parasympathetic nerve activity. We also studied mice lacking the catalytic p110α or p110β subunits of phosphatidylinositol-3 kinase (PI3K) in POMC neurons. Results Leptin-evoked increase in sympathetic nerve activity subserving thermogenic brown adipose tissue was partially blunted in mice lacking the LepR in either POMC or AgRP neurons. On the other hand, loss of the LepR in AgRP, but not POMC, neurons interfered with leptin-induced sympathetic nerve activation to the inguinal fat depot. The increase in hepatic sympathetic traffic induced by leptin was also reduced in mice lacking the LepR in AgRP, but not POMC, neurons whereas LepR deletion in either AgRP or POMC neurons attenuated the hepatic parasympathetic nerve activation evoked by leptin. Interestingly, the renal, lumbar and splanchnic sympathetic nerve activation caused by leptin were significantly blunted in POMCCre/LepRfl/fl mice, but not in AgRPCre/LepRfl/fl mice. However, loss of the LepR in POMC or AgRP neurons did not interfere with the ability of leptin to increase sympathetic traffic to the adrenal gland. Furthermore, ablation of the p110α, but not the p110β, isoform of PI3K from POMC neurons eliminated the leptin-elicited renal sympathetic nerve activation. Finally, we show trans-synaptic retrograde tracing of both POMC and AgRP neurons from the kidneys. Conclusions POMC and AgRP neurons are differentially involved in mediating the effects of leptin on autonomic nerve activity subserving various tissues and organs. Both POMC and AgRP neurons contribute to leptin-elicited increase in BAT SNA and hepatic PSNA. AgRP neurons mediate leptin-evoked increase in SNA subserving WAT and liver. Leptin-induced increase in lumbar, splanchnic and renal SNA is mediated by POMC neurons. The p110α, but not p110β, subunit of PI3K in POMC neurons is required for the effect of leptin on renal SNA.
Collapse
|
95
|
Côté I, Green SM, Toklu HZ, Morgan D, Carter CS, Tümer N, Scarpace PJ. Differential physiological responses to central leptin overexpression in male and female rats. J Neuroendocrinol 2017; 29:10.1111/jne.12552. [PMID: 29044801 PMCID: PMC5739960 DOI: 10.1111/jne.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/01/2023]
Abstract
Brains of females are more sensitive to the acute catabolic actions of leptin. However, sex differences in the long-term physiological responses to central leptin receptor modulation are unknown. Accordingly, we centrally delivered a viral vector to overexpress leptin (Leptin), a neutral leptin receptor antagonist (Leptin-Antagonist) or a green fluorescence protein (GFP) (Control). We examined chronic changes in body weight and composition in male and female rats. Females displayed greater and sustained responses to Leptin, whereas males rapidly lost physiological effects and developed leptin resistance as confirmed by lower acute leptin-mediated phosphorylation of signal transducer and activator of transcription 3 (P-STAT3). Surprisingly, despite persistent physiological responses, Leptin-females also exhibited reduced acute leptin-mediated P-STAT3, suggesting an onset of leptin resistance near time of death. In line with this interpretation, Leptin-females and Control-females consumed the same amount of food on the last day of the experiment. Both Leptin-Antagonist groups gained similar percentages of their initial body weight and fat mass, whereas only Leptin-Antagonist-females gained lean body mass. Consequently, the lean/fat mass ratio with Leptin-Antagonist was preserved in females and decreased in males, suggesting a deterioration of body composition in males. In summary, the present study establishes that females are more responsive to long-term central leptin overexpression than males and that leptin antagonism has a greater physiological impact in males. The hormone environment may have played a role in these processes; however, future studies are needed to establish whether such physiological responses are mediated by female or male sex hormones.
Collapse
Affiliation(s)
- Isabelle Côté
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Sara M. Green
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Hale Z. Toklu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Drake Morgan
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States
| | - Christy S. Carter
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States
| | - Nihal Tümer
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Philip J. Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
96
|
Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr 2017; 118:788-803. [PMID: 29110748 DOI: 10.1017/s0007114517002884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Collapse
|
97
|
Gupta A, Beg M, Kumar D, Shankar K, Varshney S, Rajan S, Srivastava A, Singh K, Sonkar S, Mahdi AA, Dikshit M, Gaikwad AN. Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: Implications of NOS2. Free Radic Biol Med 2017; 112:93-108. [PMID: 28739528 DOI: 10.1016/j.freeradbiomed.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Abstract
Leptin, following its discovery, has developed a formidable interest in the scientific community to delineate its contribution towards overall metabolic homeostasis. Contradictory reports have been published on leptin administration effects on whole body insulin sensitivity. Following late reports, we surveyed human serum leptin levels along with other metabolic parameters including BMI and HOMA-IR. We found a positive correlation between leptin levels and insulin resistance parameters. Considering the presence of the long form of leptin receptor on adipocytes, we explored the effects of chronic physiological hyper-leptinemic exposure on adipocyte insulin sensitivity. Chronic leptin (50ng/ml) treatment in 3T3-L1 adipocytes decreased insulin-induced phosphorylation of nodal insulin signaling proteins along with reduced glucose uptake. Metabolic flux studies indicated mitochondrial dysfunction and reduced oxygen consumption rate. Leptin treatment also increased both cellular and mitochondrial superoxide levels concomitant to increased expression of nitric oxide synthase-2 (NOS2). Further, pharmacological depletion of NOS2 reversed leptin mediated effects on insulin signaling. In-vivo implantation of leptin osmotic pumps in C57BL/6 mice also decreased insulin responsiveness. Interestingly, these effects were lacking in NOS2 knockout strain. In conclusion, our studies put forward a potential link between leptin and adipocyte insulin responsiveness in an NOS2 dependent manner.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalpana Singh
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Satyendra Sonkar
- Department of Internal Medicine, King George's Medical University, Lucknow 226003, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Madhu Dikshit
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
98
|
Abstract
Adipose tissue not only has an important role in the storage of excess nutrients but also senses nutrient status and regulates energy mobilization. An overall positive energy balance is associated with overnutrition and leads to excessive accumulation of fat in adipocytes. These cells respond by initiating an inflammatory response that, although maladaptive in the long run, might initially be a physiological response to the stresses obesity places on adipose tissue. In this Review, we characterize adipose tissue inflammation and review the current knowledge of what triggers obesity-associated inflammation in adipose tissue. We examine the connection between adipose tissue inflammation and the development of insulin resistance and catecholamine resistance and discuss the ensuing state of metabolic inflexibility. Finally, we review the current and potential new anti-inflammatory treatments for obesity-associated metabolic disease.
Collapse
Affiliation(s)
- Shannon M Reilly
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
99
|
Dong S, Qi M, Wang Y, Chen L, Weaver JC, Krilis SA, Giannakopoulos B. β2GPI exerts an anti-obesity effect in female mice by inhibiting lipogenesis and promoting lipolysis. Oncotarget 2017; 8:92652-92666. [PMID: 29190946 PMCID: PMC5696212 DOI: 10.18632/oncotarget.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
In humans, males compared to females have increased visceral adipose tissue which contributes to their increased risk of early death. Mice display analogous sexual diamorphism whereby females are protected from weight gain when fed a high fat diet compared to males. A role has recently been reported for β2-glycoprotein I, an abundant plasma protein, in healthy leanness in humans. In this study we investigated the role of β2-glycoprotein I in fat metabolism in male and female mice fed a normal chow or high fat diet. We have made a number of novel insights into factors contributing to sexual diamorphism in obesity. Female wild type mice are protected from obesity when fed a high fat diet due to down regulation of lipogenesis in the visceral adipose tissues. This down regulation is due to β2-glycoprotein I as female mice deficient in this protein have increased levels of lipogenesis enzymes in their visceral adipose tissues with an accompanying increase in weight compared to female wild type controls. Understanding female specific regulators of obesity may lead to sex specific anti-obesity therapies to address this major health problem.
Collapse
Affiliation(s)
- Shangwen Dong
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia.,Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Miao Qi
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia
| | - Ying Wang
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia.,Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - James Crofton Weaver
- Department of Cardiology, St George Hospital, New South Wales, Sydney, Australia
| | - Steven Antony Krilis
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia
| | - Bill Giannakopoulos
- Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia.,Department of Rheumatology, St George Hospital, New South Wales, Sydney, Australia
| |
Collapse
|
100
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|