51
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
52
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
53
|
Sun M, Lv S, Pan Y, Song Q, Ma C, Yu M, Gao X, Guo X, Wang S, Gao Z, Wang S, Meng Q, Zhang L, Li Y. Discovery of Daclatasvir as a potential PD-L1 inhibitor from drug repurposing. Bioorg Chem 2024; 153:107874. [PMID: 39418845 DOI: 10.1016/j.bioorg.2024.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
This study employed a drug repositioning strategy to discover novel PD-L1 small molecule inhibitors. 3D-QSAR pharmacophore models were establishedand subsequently validated through various means to select a robust model, Hypo-1, suitable for virtual screening. Hypo1 was used toscreen a library of 7,475 compounds from the Drugbank database, leading to the identification of 283 molecules following molecular docking with PD-L1.19 compounds underwent HTRF assays, with 15 showing varying degrees of inhibition of the PD-1/PD-L1 interaction. Compounds2202,2204,2207, and2208were further confirmed to bind to PD-L1 using SPR experiments. Among them, compound2204(Daclatasvir, KD = 11.4 μM) showeda higher affinity for human PD-L1 than the control compound BMS-1. In the HepG2/Jurkat cell co-culture model, Daclatasvir effectively activated Jurkat cells to kill HepG2 cells. In the mouse H22 hepatocellular tumor model, Daclatasvir significantly inhibited tumor growth (TGI = 53.4 % at a dose of 100 mg/kg). Its anti-tumor effect was more pronounced when combined with Lenvatinib (TGI = 85.1 %). Flow cytometry analysis of splenocytes and tumor cells indicated that Daclatasvir activated the immune system in both models. In summary, Daclatasvir was identified as a novel PD-L1small molecule inhibitor.
Collapse
Affiliation(s)
- Mengmeng Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Shixuan Lv
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Yanyan Pan
- Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning, China, 116023
| | - Qiling Song
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Chunyan Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Menglin Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Xinru Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024
| | - Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016
| | - Zhigang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016
| | - Shuai Wang
- Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016
| | - Li Zhang
- Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning, China, 116023
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, China, 116024; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo, China, 315016.
| |
Collapse
|
54
|
Lin J, Liu S, Xue X, Lv J, Zhao L, Yu L, Wang H, Chen J. Injectable Genetic Engineering Hydrogel for Promoting Spatial Tolerance of Transplanted Kidney in Situ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408631. [PMID: 39498870 DOI: 10.1002/advs.202408631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility. It is revealed that iGE-Gel displayed with abundant regulatory cytokines and coinhibitory contact molecules, promoting the formation of immune tolerance in situ. The multiplex immunohistofluorescence confirmed tolerant niches is dominated by FOXP3+ Tregs and PDL1+ cells in the allograft, which reduced the drainage of alloantigens to subcapsular sinus of lymph nodes, and suppressed the formation of germinal centers. Remarkably, the proportion of alloreactive T cells (IFN-γ/IL-2) and B cells (IgG1/IgG2a/IgG3) as well as the serum titers of donor specific antibody (DSA) is decreased by iGE-Gel. In murine allogeneic transplantation, the injection of iGE-Gel significantly alleviated immune cell infiltration and complement damage in the graft, preserved the structure and function of renal cells and prolonged recipient survival period from 30.8 to 79.3 days, highlighting the potential of iGE-Gel as a transformative treatment in allotransplant.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liqin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
55
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
56
|
McCarthy EE, Yu S, Perlmutter N, Nakao Y, Naito R, Lin C, Riekher V, DeRisi J, Ye CJ, Weiss A, Ashouri JF. Endogenous antigens shape the transcriptome and TCR repertoire in an autoimmune arthritis model. J Clin Invest 2024; 135:e174647. [PMID: 39589811 PMCID: PMC11735108 DOI: 10.1172/jci174647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
The development of pathogenic autoreactive CD4+ T cells, particularly in the context of impaired signaling, remains poorly understood. Unraveling how defective signaling pathways contribute to their activation and persistence is crucial for identifying new therapeutic targets. We performed bulk and single-cell RNA-Seq (scRNA-Seq) and single-cell T cell receptor sequencing (scTCR-Seq) to profile a highly arthritogenic subset of naive CD4+ T cells from BALB/c-Zap70*W163C (SKG) mice, which develop CD4+ T cell-mediated autoimmune arthritis driven by a hypomorphic mutation in Zap70 - a key TCR signaling kinase. Despite impaired signaling, these cells exhibited heightened expression of T cell activation and cytokine signaling genes but diminished expression of a subset of tolerogenic markers (Izumo1r, Tnfrsf9, Cd5, S100a11) compared with WT cells. The arthritogenic cells showed an enrichment for TCR variable β (Vβ) chains targeting superantigens (Sags) from the endogenous mouse mammary tumor virus (MMTV) but exhibited diminished induction of tolerogenic markers following peripheral antigen encounter, contrasting with the robust induction of the negative regulators seen in WT cells. In arthritic joints, cells expressing Sag-reactive Vβs expanded alongside detectable MMTV proviruses. Antiretroviral treatment and Sag-reactive T cell depletion curtailed SKG arthritis, suggesting that endogenous retroviruses disrupted peripheral tolerance and promoted the activation and differentiation of autoreactive CD4+ T cells into pathogenic effector cells.
Collapse
MESH Headings
- Animals
- Mice
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- Transcriptome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- CD4-Positive T-Lymphocytes/immunology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Mice, Inbred BALB C
- Mutation, Missense
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/pathology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Elizabeth E. McCarthy
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Department of Epidemiology and Biostatistics, and
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Steven Yu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Noah Perlmutter
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Yuka Nakao
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Ryota Naito
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Charles Lin
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Stanford University, Palo Alto, California, USA
| | - Vivienne Riekher
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Friedrich-Alexander University of Erlangen-Nuremburg, Bavaria, Germany
| | - Joe DeRisi
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine
| |
Collapse
|
57
|
Shimada K, Michaud DE, Cui YX, Zheng K, Goldberg J, Ju Z, Schnitt SJ, Pastorello R, Kania LD, Hoffer J, Muhlich JL, Hyun N, Krueger R, Gottlieb A, Nelson A, Wanderley CW, Antonellis G, McAllister SS, Tolaney SM, Waks AG, Jeselsohn R, Sorger PK, Agudo J, Mittendorf EA, Guerriero JL. An estrogen receptor signaling transcriptional program linked to immune evasion in human hormone receptor-positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.619172. [PMID: 39651157 PMCID: PMC11623498 DOI: 10.1101/2024.11.23.619172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
T cells are generally sparse in hormone receptor-positive (HR+) breast cancer, potentially due to limited antigen presentation, but the driving mechanisms of low T cell abundance remains unclear. Therefore, we defined and investigated programs ('gene modules'), related to estrogen receptor signaling (ERS) and immune signaling using bulk and single-cell transcriptome and multiplexed immunofluorescence of breast cancer tissues from multiple clinical sources and human cell lines. The ERS gene module, dominantly expressed in cancer cells, was negatively associated with immune-related gene modules TNFα/NF-κB signaling and type-I interferon (IFN-I) response, which were expressed in distinct stromal and immune cell types, but also, in part, expressed and preserved as a cancer cell-intrinsic mechanisms. Spatial analysis revealed that ERS strongly correlated with reduced T cell infiltration, potentially due to its association with suppression of TNFα/NF-κB-induced angiogenesis and IFN-I-induced HLA expression in macrophages. Preoperative endocrine therapy in ER+/HER2-breast cancer patients produced better responses in ERS-high patients, with TNFα/NF-κB expression associated with reduced ERS. Targeting these pathways may enhance T cell infiltration in HR+ breast cancer patients. Statement of Significance This study elucidates the immunosuppressive role of ER signaling in breast cancer, highlighting a complex interplay between cancer, stromal, and immune cells and reveals potential approaches to enhance immunogenicity in HR+ breast cancer. These findings offer crucial insights into immune evasion in breast cancer and identify strategies to enhance T cell abundance.
Collapse
|
58
|
Chen Y, Wang K, Zhang X, Tao D, Shang Y, Wang P, Li Q, Liu Y. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. J Physiol Biochem 2024:10.1007/s13105-024-01061-8. [PMID: 39546272 DOI: 10.1007/s13105-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.
Collapse
Affiliation(s)
- Yidan Chen
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kemei Wang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyun Zhang
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongying Tao
- Department of Pediatric, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yulong Shang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ping Wang
- Department of Gastroenterology, Dongying People's Hospital, Dongying, China.
| | - Qiang Li
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Yansheng Liu
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
59
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
60
|
Szukiewicz D. Insights into Reproductive Immunology and Placental Pathology. Int J Mol Sci 2024; 25:12135. [PMID: 39596208 PMCID: PMC11594814 DOI: 10.3390/ijms252212135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The formation of a daughter organism as a result of the fusion of an egg and a sperm cell, followed by the implantation of the embryo, the formation of the placenta, and the further growth of the embryo and then fetus until delivery, poses particular challenges for the immune system [...].
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
61
|
Cao L, Peng H, Chen Y, Xia B, Zeng T, Guo J, Yu F, Ye H, Zhang H, Chen X. ICOS-expressing CAR-T cells mediate durable eradication of triple-negative breast cancer and metastasis. J Immunother Cancer 2024; 12:e010028. [PMID: 39532433 PMCID: PMC11555110 DOI: 10.1136/jitc-2024-010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The failure of conventional therapies and the propensity for recurrence and metastasis make triple-negative breast cancer (TNBC) a formidable challenge with grim prognoses and diminished survival rates. Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cell therapy, presents innovative and potentially more effective strategies for addressing TNBC. Within this context, the inducible costimulator (ICOS), a member of the CTLA4/CD28 family, plays a crucial role in regulating immune responses and T-cell differentiation by binding to its ligand ICOSL. However, the impact of the ICOS/ICOSL axis on cancer varies. METHODS In this study, immunohistochemistry was conducted to examine the expression level of ICOSL in TNBC tumor tissues. We developed ICOS-enhanced B7H3-CAR-T cells (ICOS-B7H3-CAR) using the third-generation CAR-T cell technology, which featured magnified ICOS expression and targeted the B7H3 antigen. Xenograft and metastasis models of TNBC were conducted to examine the cytotoxicity and durability of CAR-T cells in tumors. Overexpression and CRISPR/Cas9-mediated knockout (KO) techniques were employed to regulate the expression of ICOSL on TNBC cell lines. RESULTS Notably, we observed elevated ICOSL expression in TNBC tumor tissues, which correlated with poor survival prognosis in patients with TNBC. Compared with conventional B7H3-CAR-T cells, ICOS-B7H3-CAR-T cells significantly inhibited the tumor growth of TNBC cells both in vitro and in vivo, accompanied by increased secretion of cytokines such as interferon gamma and tumor necrosis factor alpha. Furthermore, the in vivo experiments illustrated that ICOS-B7H3-CAR-T cells exhibited prolonged antitumor activity and could effectively eradicate metastases in a TNBC metastasis model, consequently extending survival. Importantly, manipulating the expression of ICOSL on TNBC cells through overexpression or KO significantly influenced the function of ICOS-B7H3-CAR-T cells. This suggests that the level of ICOSL expression on TNBC cells is critical for enhancing the potent antitumor effects of ICOS-B7H3-CAR-T cells. CONCLUSION Overall, our study highlights the potential clinical application of ICOS as a promising strategy for combating TNBC recurrence and metastasis.
Collapse
Affiliation(s)
- Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Yanzhen Chen
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jialing Guo
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyan Ye
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinxin Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
62
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
63
|
Leveque E, Battut L, Petitfils C, Valitutti S, Cenac N, Dietrich G, Espinosa E. Alternative activation of mast cells by CD4+ T helper cells. J Leukoc Biol 2024; 116:1127-1141. [PMID: 38916515 DOI: 10.1093/jleuko/qiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Effector CD4+ T (Teff) lymphocytes infiltrate sites of inflammation and orchestrate the immune response by instructing local leukocytes. Mast cells (MCs) are tissue sentinel cells strategically located near blood vessels and T cell-rich areas. MC/Teff cell interactions shape Teff cell responses, but in turn, Teff cell action on MCs is still poorly understood. Here, we analyzed the human MC/Teff cell interplay through both the application of RNA sequencing and functional assays. We showed that activated Teff cells induce a specific transcriptomic program in MCs including production of both inflammatory cytokines and chemokines, prostaglandin, and a FcεRI-dependent degranulation facilitation, thereby driving them toward an inflammatory phenotype. Moreover, Teff cells induce in MCs the capacity to interact with CD4+ T cells through a wide range of dedicated soluble and membrane ligands and to play the role of antigen-presenting cells.
Collapse
Affiliation(s)
- Edouard Leveque
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
| | - Louise Battut
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Camille Petitfils
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1037, Centre de Recherche en Cancérologie de Toulouse, 2 Avenue H. Curien, F-31037, France
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Centre Hospitalier Universitaire de Toulouse, 1 avenue Irène Joliot-Curie, Toulouse F-31059, France
| | - Nicolas Cenac
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Gilles Dietrich
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| | - Eric Espinosa
- Université Toulouse III - Paul Sabatier, 118 route de Narbone, Toulouse F-31062, France
- Institut National de la Santé et de la Recherche Médicale, U1220, Institut de Recherche en Santé Digestive, Institut National de la Recherche Agronomique, Institut National Polytechnique de Toulouse-École Nationale Vétérinaire de Toulouse, CHU Purpan place du Dr Baylac CS 60039, Toulouse F-31024, France
| |
Collapse
|
64
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
65
|
Kim CW, Kim HJ, Lee HK. Microbiome dynamics in immune checkpoint blockade. Trends Endocrinol Metab 2024; 35:996-1005. [PMID: 38705760 DOI: 10.1016/j.tem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
66
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
67
|
Wang S, Zhang Z, Wang J, Lou Y, Zhu Y, You J, Liu P, Xu LX. Neutrophils promote the activation of monocytes via ROS to boost systemic antitumor immunity after cryo-thermal therapy. Front Immunol 2024; 15:1445513. [PMID: 39555061 PMCID: PMC11563809 DOI: 10.3389/fimmu.2024.1445513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background The characteristics of the tumor immunosuppressive microenvironment represent a major challenge that limits the efficacy of immunotherapy. Our previous results suggested that cryo-thermal therapy, a tumor ablation system developed in our laboratory, promotes macrophage M1-type polarization and the complete maturation of DCs to remodel the immunosuppressive environment. However, the cells that respond promptly to CTT have not yet been identified. CTT can cause extensive cell death and the release of danger-associated molecular patterns and antigens. Neutrophils are the first white blood cells recruited to sites of damage and acute inflammation. Therefore, we hypothesized that neutrophils are the initial cells that respond to CTT and are involved in the subsequent establishment of antitumor immunity. Methods In this study, we examined the kinetics of neutrophil recruitment after CTT via flow cytometry and immunofluorescence staining and explored the effect of neutrophils on the establishment of systemic antitumor immunity by in vivo neutrophil depletion and in vitro co-culture assays. Results We found that CTT led to a rapid and strong proinflammatory neutrophil response, which was essential for the long-term survival of mice. CTT-induced neutrophils promoted the activation of monocytes via reactive oxygen species and further upregulated the expression of IFN-γ and cytotoxic molecules in T and NK cells. Adoptive neutrophil transfer further enhanced the antitumor efficacy of CTT in tumor models of spontaneous and experimental metastasis. Conclusion These results reveal the important role of neutrophil‒monocyte interactions in the development of anti-tumor immunity and highlight that CTT could be used as an immunotherapy for targeting neutrophils and monocytes to enhance antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
68
|
Moon S, Jung M, Go S, Hong J, Sohn HS, Kim C, Kang M, Lee BJ, Kim J, Lim J, Kim BS. Engineered Nanoparticles for Enhanced Antitumoral Synergy Between Macrophages and T Cells in the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410340. [PMID: 39252658 DOI: 10.1002/adma.202410340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
T cells and macrophages have the potential to collaborate to eliminate tumor cells efficiently. Macrophages can eliminate tumor cells through phagocytosis and subsequently activate T cells by presenting tumor antigens. The activated T cells, in turn, can kill tumor cells and redirect tumor-associated macrophages toward an antitumoral M1 phenotype. However, checkpoint molecules expressed on tumor cells impede the collaborative action of these immune cells. Meanwhile, monotherapy with a single immune checkpoint inhibitor (ICI) for either macrophages or T cells yields suboptimal efficacy in cancer patients. To address this challenge, here a nanoparticle capable of efficiently delivering dual ICIs to tumors for both macrophages and T cells is developed. These programmed cell death protein 1 (PD-1)-transfected macrophage membrane-derived nanoparticles (PMMNPs) can target tumors and provide signal-regulatory protein alpha and PD-1 to block CD47 and programmed cell death-ligand 1 (PD-L1), respectively, on tumor cells. PMMNPs enhance macrophage-mediated cancer cell phagocytosis and antigen presentation, promote T cell activation, and induce the reprogramming of macrophages toward an antitumoral phenotype. In syngeneic tumor-bearing mice, PMMNPs demonstrate superior therapeutic efficacy compared to nanoparticles delivering single ICIs and non-targeted delivery of anti-CD47 and anti-PD-L1 antibodies. PMMNPs capable of augmenting the antitumoral interplay between macrophages and T cells may offer a promising avenue for cancer immunotherapy.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Institute of Chemical Processes, and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
69
|
Zhang Z, Zhang W, Liu X, Yan Y, Fu W. T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncol Lett 2024; 28:537. [PMID: 39319215 PMCID: PMC11421013 DOI: 10.3892/ol.2024.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Gastric cancer (GC) remains a global healthcare challenge because of its high incidence and poor prognosis. The efficacy of current chemotherapy regimens for advanced GC is limited. T cells, which have been implicated in the progression of GC, have a significant impact in the tumor microenvironment. With a more detailed understanding of the mechanisms underlying the cancer immunoediting process, immunotherapy may become a promising treatment option for patients with GC. Several clinical trials are currently investigating different mechanisms targeting the tumor immune response. The present review summarized T cell-involved immune responses and various immunotherapy strategies for GC.
Collapse
Affiliation(s)
- Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenxin Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongjia Yan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
70
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
71
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
72
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
73
|
Rogers MC, Lamens KD, Tollefson SJ, Williams JV. Genetic absence of PD-L1 does not restore CD8 + T cell function during respiratory virus infection and delays virus clearance. J Virol 2024; 98:e0079724. [PMID: 39311697 PMCID: PMC11495042 DOI: 10.1128/jvi.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/25/2024] [Indexed: 10/23/2024] Open
Abstract
A key mediator of T cell impairment during respiratory virus infection is the inhibitory receptor PD-1. PD-1 is induced on T cells following antigen exposure, whereas proinflammatory cytokines upregulate the ligands PD-L1 and PD-L2. Respiratory virus infection leads to upregulation of PD-L1 on airway epithelial cells, dendritic cells, and alveolar macrophages. However, the role of PD-L1 on different cell types in acute respiratory virus infections is not known. We sought to determine the role of PD-L1 on different cell types in CD8+ T cell impairment. We found that PD-L1-/- mice challenged with human metapneumovirus or influenza showed a similar level of CD8+ T cell impairment compared to wild-type (WT) mice. Moreover, virus clearance was delayed in PD-L1-/- mice compared to WT. CD8+ T cells from PD-L1-deficient mice expressed higher levels of inhibitory receptors both at baseline and after respiratory virus infection. The antibody blockade of PD-L2 failed to restore function to the impaired cells. While reciprocal bone marrow chimeras between WT and PD-L1-/- mice did not restore CD8+ T cell function after the respiratory virus challenge, mice that received the PD-L1-/- bone marrow had higher inhibitory receptor expression on CD8+ cells. This discrepancy in the inhibitory receptor expression suggests that cells of the hematopoietic compartment contribute to T cell impairment on CD8+ T cells.IMPORTANCEThe phenomenon of pulmonary CD8+ T cell impairment with diminished antiviral function occurs during acute respiratory virus infection mediated by Programmed Cell Death-1 (PD-1) signaling. Moreover, PD-1 blockade enhances T cell function to hasten viral clearance. The ligand PD-L1 is expressed in many cell types, but which cells drive lung T cell impairment is not known. We used genetic approaches to determine the contribution of PD-L1 on lung T cell impairment. We found that PD-L2 cannot compensate for the loss of PD-L1, and PD-L1-deficient mice exhibit increased expression of other inhibitory receptors. Bone marrow chimeras between PD-L1-deficient and wild-type mice indicated that hematopoietic PD-L1 expression is associated with inhibitory receptor upregulation and impairment.
Collapse
Affiliation(s)
- Meredith C. Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristina D. Lamens
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sharon J. Tollefson
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
74
|
Shi Q, Chen Z, Yang J, Liu X, Su Y, Wang M, Xi J, Yang F, Li F. Review of Codonopsis Radix biological activities: A plant of traditional Chinese tonic. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118334. [PMID: 38740108 DOI: 10.1016/j.jep.2024.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Radix, commonly known as Dangshen in Chinese, is frequently used to treat deficiencies of spleen and lung Qi, gastrointestinal discomfort, fatigue, asthmatic breathing, sallow complexion, lack of strength, shortness of breath, deficiencies of both Qi and blood, as well as impairments to both Qi and body fluids in suboptimal health status. AIM OF THE REVIEW This review systematically expounds on the modern pharmacological studies related to the use of Codonopsis Radix in invigorating Qi and nourishing the body in recent years. The aim is to provide theoretical research and reference for the in-depth and systematic exploration and development of the applications of Codonopsis Radix in the fields of food and medicine. MATERIALS AND METHODS This study employs "Codonopsis Radix," "Codonopsis," and "Dangshen" as keywords to gather pertinent information on Codonopsis Radix medicine through electronic searches of classical literature and databases such as PubMed, Elsevier, Google Scholar, Wiley, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and Baidu Scholar. RESULTS From previous studies, activities such as immune system modulation, gastrointestinal motility regulation, cardiac function revitalization, lung function improvement, blood circulation enhancement, aging process deceleration, learning and memory augmentation, fatigue resistance enhancement, and liver and kidney damage protection of Codonopsis Radix have been reported. Recognized as an important medicine and food homologous traditional Chinese herbal remedy for supplementing deficiencies, its mode of action is multi-elemental, multi-systemic, multi-organ, multi-mechanistic, and multi-targeted. Furthermore, the benefits of its tonic surpass its therapeutic value, establishing it as an extraordinary preventive and therapeutic medicine. CONCLUSIONS With its long history of traditional applications and the revelations of contemporary pharmacological research, Codonopsis Radix exhibits great potential as both a therapeutic agent and a dietary supplement for further research in medicine, nutrition, and healthcare.
Collapse
Affiliation(s)
- Qi Shi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhengjun Chen
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuxia Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanjin Su
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Miao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiayu Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fude Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Fang Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
75
|
Forsyth KS, Toothacre NE, Jiwrajka N, Driscoll AM, Shallberg LA, Cunningham-Rundles C, Barmettler S, Farmer J, Verbsky J, Routes J, Beiting DP, Romberg N, May MJ, Anguera MC. Maintenance of X chromosome inactivation after T cell activation requires NF-κB signaling. Sci Immunol 2024; 9:eado0398. [PMID: 39365876 DOI: 10.1126/sciimmunol.ado0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
X chromosome inactivation (XCI) balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of X-inactive specific transcript (Xist) RNA and heterochromatic modifications on the inactive X chromosome (Xi), which are involved in maintenance of XCI, and these modifications return to the Xi after stimulation. Here, we examined allele-specific gene expression and epigenomic profiles of the Xi in T cells. We found that the Xi in unstimulated T cells is largely dosage compensated and enriched with the repressive H3K27me3 modification but not the H2AK119-ubiquitin (Ub) mark. Upon T cell stimulation mediated by both CD3 and CD28, the Xi accumulated H2AK119-Ub at gene regions of previous H3K27me3 enrichment. T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of the TCR, was required for Xist RNA localization to the Xi. Disruption of NF-κB signaling in mouse and human T cells using genetic deletion, chemical inhibitors, and patients with immunodeficiencies prevented Xist/XIST RNA accumulation at the Xi and altered X-linked gene expression. Our findings reveal a previously undescribed connection between NF-κB signaling pathways, which affects XCI maintenance in T cells in females.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda M Driscoll
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York City, NY 10029, USA
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - Jocelyn Farmer
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - James Verbsky
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John Routes
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
76
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
77
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
78
|
Udeshi ND, Xu C, Jiang Z, Gao SM, Yin Q, Luo W, Carr SA, Davis MM, Li J. Cell-surface Milieu Remodeling in Human Dendritic Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1023-1032. [PMID: 39132986 PMCID: PMC11408084 DOI: 10.4049/jimmunol.2400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Dendritic cells (DCs) are specialized sentinel and APCs coordinating innate and adaptive immunity. Through proteins on their cell surface, DCs sense changes in the environment, internalize pathogens, present processed Ags, and communicate with other immune cells. By combining chemical labeling and quantitative mass spectrometry, we systematically profiled and compared the cell-surface proteomes of human primary conventional DCs (cDCs) in their resting and activated states. TLR activation by a lipopeptide globally reshaped the cell-surface proteome of cDCs, with >100 proteins upregulated or downregulated. By simultaneously elevating positive regulators and reducing inhibitory signals across multiple protein families, the remodeling creates a cell-surface milieu promoting immune responses. Still, cDCs maintain the stimulatory-to-inhibitory balance by leveraging a distinct set of inhibitory molecules. This analysis thus uncovers the molecular complexity and plasticity of the cDC cell surface and provides a roadmap for understanding cDC activation and signaling.
Collapse
Affiliation(s)
| | - Charles Xu
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zuzhi Jiang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Yuanpei College, Peking University, Beijing 100871, China
| | - Shihong Max Gao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Qian Yin
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Luo
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven A. Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jiefu Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
79
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
80
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
81
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
82
|
Jacobs MME, Maas RJF, Jonkman I, Negishi Y, Tielemans Zamora W, Yanginlar C, van Heck J, Matzaraki V, Martens JHA, Baltissen M, Vermeulen M, Morla-Folch J, Ranzenigo A, Wang W, Umali M, Ochando J, van der Vlag J, Hilbrands LB, Joosten LAB, Netea MG, Mulder WJM, van Leent MMT, Mhlanga MM, Teunissen AJP, Rother N, Duivenvoorden R. Trained immunity is regulated by T cell-induced CD40-TRAF6 signaling. Cell Rep 2024; 43:114664. [PMID: 39178113 PMCID: PMC11536040 DOI: 10.1016/j.celrep.2024.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J F Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem Tielemans Zamora
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Umali
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
83
|
Wakamatsu E, Machiyama H, Toyota H, Takeuchi A, Hashimoto R, Kozono H, Yokosuka T. Indirect suppression of CD4 T cell activation through LAG-3-mediated trans-endocytosis of MHC class II. Cell Rep 2024; 43:114655. [PMID: 39191259 DOI: 10.1016/j.celrep.2024.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Blockade of immune checkpoint receptors has shown outstanding efficacy for tumor immunotherapy. Promising treatment with anti-lymphocyte-activation gene-3 (LAG-3) has already been recognized as the next efficacious treatment, but there is still limited understanding of the mechanism of LAG-3-mediated immune suppression. Here, utilizing high-resolution molecular imaging, we find a mechanism of CD4 T cell suppression via LAG-3, in which LAG-3-bound major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) gather at the central region of an immunological synapse and are trans-endocytosed by T cell receptor-driven internalization motility toward CD4 and CD8 T cells expressing LAG-3. Downregulation of MHC class II molecules on APCs thus results in the attenuation of their antigen-presentation function and impairment of CD4 T cell activation. From these data, anti-LAG-3 treatment is suggested to have potency to directly block the inhibitory signaling via LAG-3 and simultaneously reduce MHC class II expression on APCs by LAG-3-mediated trans-endocytosis for recovery from T cell exhaustion.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryuji Hashimoto
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Haruo Kozono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
84
|
Wang T, Yang Y, Ma L, Feng R, Li J, Zhang C, Bai J, Ding Y, Liu G, Wu F, Lu X, Feng S, Li Z, He T, Li J, Liu H. BCMA-BBZ-OX40 CAR-T Therapy Using an Instant Manufacturing Platform in Multiple Myeloma. J Immunother Cancer 2024; 12:e009476. [PMID: 39313307 PMCID: PMC11418555 DOI: 10.1136/jitc-2024-009476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell has revolutionary efficacy against relapsed/refractory multiple myeloma (R/R MM). However, current CAR-T cell therapy has several limitations including long vein-to-vein time and limited viability. METHODS A 4-1BB-costimulated B-cell maturation antigen (BCMA) CAR-T integrating an independently-expressed OX40 (BCMA-BBZ-OX40) was designed and generated by a traditional manufacturing process (TraditionCART) or instant manufacturing platform (named InstanCART). The tumor-killing efficiency, differentiation, exhaustion, and expansion level were investigated in vitro and in tumor-bearing mice. An investigator-initiated clinical trial was performed in patients with R/R MM to evaluate the outcomes of both TraditionCART and InstanCART. The primary objective was safety within 1 month after CAR-T cell infusion. The secondary objective was the best overall response rate. RESULTS Preclinical studies revealed that integrated OX40 conferred BCMA CAR-T cells with superior cytotoxicity and reduced exhaustion levels. InstanCART process further enhanced the proliferation and T-cell stemness of BCMA-BBZ-OX40 CAR-T cells. BCMA-BBZ-OX40 CAR-T cells were successfully administered in 22 patients with R/R MM, including 15 patients with TraditionCART and 7 patients with InstanCART. Up to 50% (11/22) patients had a high-risk cytogenetic profile and 36% (8/22) had extramedullary disease. CAR-T therapy caused grade 1-2 cytokine release syndrome in 19/22 (80%) patients, grade 1 neurotoxicity in 2/22 (9%) patients and led to ≥grade 3 adverse events including neutropenia (20/22, 91%), thrombocytopenia (15/22, 68%), anemia (12/22, 55%), creatinine increased (1/22, 5%), hepatic enzymes increased (5/22, 23%), and sepsis (1/22, 5%). The best overall response rate was 100%, and 64% (14/22) of the patients had a complete response or better. The median manufacturing time was shorter for InstanCART therapy (3 days) than for TraditionCART therapy (10 days). Expansion and duration were dramatically higher for InstanCART cells than for TraditionCART cells. CONCLUSIONS BCMA-BBZ-OX40 CAR-T cells were well tolerated and exhibited potent responses in patients with R/R MM. InstanCART shortened the manufacturing period compared to TraditionCART, and improved the cellular kinetics. Our results demonstrated the potency and feasibility of OX40-modified BCMA CAR-T cells using InstanCART technology for R/R MM therapy. TRIAL REGISTRATION NUMBER This trial was registered at www. CLINICALTRIALS gov as #NCT04537442.
Collapse
Affiliation(s)
- Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (100730), China
| | - Yazi Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| | - Lie Ma
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| | - Jiefei Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| | - Yanping Ding
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Guanghua Liu
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Fei Wu
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Xinan Lu
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Shi Feng
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Zhenling Li
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| | - Ting He
- Beijing Imunopharm Technology Co., Ltd, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing (100730), China
| |
Collapse
|
85
|
Paranga TG, Pavel-Tanasa M, Constantinescu D, Iftimi E, Plesca CE, Miftode IL, Cianga P, Miftode E. Distinct soluble immune checkpoint profiles characterize COVID-19 severity, mortality and SARS-CoV-2 variant infections. Front Immunol 2024; 15:1464480. [PMID: 39376569 PMCID: PMC11456479 DOI: 10.3389/fimmu.2024.1464480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Over the past four years, the COVID-19 pandemic has posed serious global health challenges. The severe form of disease and death resulted from the failure of immune regulatory mechanisms, closely highlighted by the dual proinflammatory cytokine and soluble immune checkpoint (sICP) storm. Identifying the individual factors impacting on disease severity, evolution and outcome, as well as any additional interconnections, have become of high scientific interest. Methods In this study, we evaluated a novel panel composed of ten sICPs for the predictive values of COVID-19 disease severity, mortality and Delta vs. Omicron variant infections in relation to hyperinflammatory biomarkers. The serum levels of sICPs from confirmed SARS-CoV-2 infected patients at hospital admission were determined by Luminex, and artificial neural network analysis was applied for defining the distinct patterns of molecular associations with each form of disease: mild, moderate, and severe. Results Notably, distinct sICP profiles characterized various stages of disease and Delta infections: while sCD40 played a central role in all defined diagrams, the differences emerged from the distribution levels of four molecules recently found and relatively less investigated (sCD30, s4-1BB, sTIM-1, sB7-H3), and their associations with various hematological and biochemical inflammatory biomarkers. The artificial neural network analysis revealed the prominent role of serum sTIM-1 and Galectin-9 levels at hospital admission in discriminating between survivors and non-survivors, as well as the role of specific anti-interleukin therapy (Tocilizumab, Anakinra) in improving survival for patients with initially high sTIM-1 levels. Furthermore, strong associations between sCD40 and Galectin-9 with suPAR defined the Omicron variant infections, while the positive match of sCD40 with sTREM-1 serum levels characterized the Delta-infected patients. Conclusions Of importance, this study provides a comprehensive analysis of circulatory immune factors governing the COVID-19 pathology, and identifies key roles of sCD40, sTIM-1, and Galectin-9 in predicting mortality.
Collapse
Affiliation(s)
- Tudorita Gabriela Paranga
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Claudia Elena Plesca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Petru Cianga
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Egidia Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| |
Collapse
|
86
|
Zhang X, Zheng X, Han C, Wu L. Structure-based virtual screening towards the discovery of novel thrombin inhibitors with Anti-HCC activities. Front Chem 2024; 12:1451574. [PMID: 39371595 PMCID: PMC11449769 DOI: 10.3389/fchem.2024.1451574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Hepatic carcinoma (HCC) is one of the most lethal malignant tumors in the world, and new treatment regimens for this disease are urgently needed. Studies have shown that thrombin stimulates tumor progression by forming fibrin and activating platelets. Dabigatran etexilate, a thrombin inhibitor, can inhibit the activity of thrombin and prevent the proliferation and metastasis of HCC in cells and nude mice. Methods The present study was designed to find thrombin inhibitors with novel skeletons, and further confirm the correlation between thrombin inhibition and HCC prevention to identify potential anti-HCC drug leads. Results and Discussion The potential thrombin inhibitors were firstly screened in the Topscience Database, and 20 potential active molecules were found by molecular docking. The effect of these molecules on thrombin inhibition, coagulation and tumor proliferation were evaluated, and the definite activity of ZXX-4 was identified. Further in vivo assays in nude mice showed that ZXX-4 inhibited tumor proliferation in nude mice, reduced tumor metastasis, and enhanced the clinical efficacy of first-line drug sorafenib for the treatment of HCC. ZXX-4 can be further explored as an anti-tumor lead compound with a novel skeleton, and inhibition of thrombin can serve as a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Mental Health, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xumei Zheng
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, China
| | - Chun Han
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, China
| |
Collapse
|
87
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
88
|
Zhao G, Li P, Suo Y, Li C, Yang S, Zhang Z, Wu Z, Shen C, Hu H. An integrated pan-cancer assessment of prognosis, immune infiltration, and immunotherapy response for B7 family using multi-omics data. Life Sci 2024; 353:122919. [PMID: 39034028 DOI: 10.1016/j.lfs.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS B7 molecules (B7s) are crucial synergistic signals for effective immune surveillance against tumor cells. While previous studies have explored the association between the B7 family and cancer, most have been limited to specific genes or cancer subtypes. MAIN METHODS Our study utilized multi-omics data to investigate potential correlations between B7s expression (B7s exp.) and prognosis, clinicopathological features, somatic mutations (SMs), copy number variations (CNVs), immune characteristics, tumor microenvironment (TME), microsatellite instability, tumor mutation burden, immune checkpoint gene (ICG), and drug responsiveness in TCGA tumors. Furthermore, the connection between B7s exp. and immunotherapy (IT) performance assessed in various validated datasets. Following this, immune infiltration analysis (IIA) was conducted based on B7s exp., CNVs, or SMs in bladder cancer (BLCA), complemented by real-time PCR (RT-PCR) and protein confirmation of B7-H3. KEY FINDINGS Across most cancer types, B7s exp. was related to prognosis, clinicopathological characteristics, mutations, CNVs, ICG, TMB, TME. The examination of sensitivity to anticancer drugs unveiled correlations between B7 molecules and different drug sensitivities. Specific B7s exp. patterns were linked to the clinical effectiveness of IT. Using GSEA, several enriched immune-related functions and pathways were identified. Particularly in BLCA, IIA revealed significant connections between B7 CNVs, mutation status, and various immune cell infiltrates. RT-PCR confirmed elevated B7-H3 gene levels in BLCA tumor tissues. SIGNIFICANCE This study confirmed the significance of B7s exp. and genomic changes in predicting outcomes and treatment across different cancer types. Moreover, they indicate a critical function of B7s in BLCA and their potential as IT biomarkers.
Collapse
Affiliation(s)
- Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chenyun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
89
|
Kattelus R, Starskaia I, Lindén M, Batkulwar K, Pietilä S, Moulder R, Marson A, Rasool O, Suomi T, Elo LL, Lahesmaa R, Buchacher T. Phenotypic profiling of human induced regulatory T cells at early differentiation: insights into distinct immunosuppressive potential. Cell Mol Life Sci 2024; 81:399. [PMID: 39264416 PMCID: PMC11393232 DOI: 10.1007/s00018-024-05429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Regulatory T cells (Tregs) play a key role in suppressing systemic effector immune responses, thereby preventing autoimmune diseases but also potentially contributing to tumor progression. Thus, there is great interest in clinically manipulating Tregs, but the precise mechanisms governing in vitro-induced Treg (iTreg) differentiation are not yet fully understood. Here, we used multiparametric mass cytometry to phenotypically profile human iTregs during the early stages of in vitro differentiation at single-cell level. A panel of 25 metal-conjugated antibodies specific to markers associated with human Tregs was used to characterize these immunomodulatory cells. We found that iTregs highly express the transcription factor FOXP3, as well as characteristic Treg-associated surface markers (e.g. CD25, PD1, CD137, CCR4, CCR7, CXCR3, and CD103). Expression of co-inhibitory factors (e.g. TIM3, LAG3, and TIGIT) increased slightly at late stages of iTreg differentiation. Further, CD103 was upregulated on a subpopulation of iTregs with greater suppressive capacity than their CD103- counterparts. Using mass-spectrometry-based proteomics, we showed that sorted CD103+ iTregs express factors associated with immunosuppression. Overall, our study highlights that during early stages of differentiation, iTregs resemble memory-like Treg features with immunosuppressive activity, and provides opportunities for further investigation into the molecular mechanisms underlying Treg function.
Collapse
Affiliation(s)
- Roosa Kattelus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Markus Lindén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
90
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
91
|
Lesouhaitier M, Belicard F, Tadié JM. Cardiopulmonary bypass and VA-ECMO induced immune dysfunction: common features and differences, a narrative review. Crit Care 2024; 28:300. [PMID: 39256830 PMCID: PMC11389086 DOI: 10.1186/s13054-024-05058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
Cardiopulmonary bypass (CPB) and veno-arterial extracorporeal membrane oxygenation are critical tools in contemporary cardiac surgery and intensive care, respectively. While these techniques share similar components, their application contexts differ, leading to distinct immune dysfunctions which could explain the higher incidence of nosocomial infections among ECMO patients compared to those undergoing CPB. This review explores the immune modifications induced by these techniques, comparing their similarities and differences, and discussing potential treatments to restore immune function and prevent infections. The immune response to CPB and ECMO involves both humoral and cellular components. The kinin system, complement system, and coagulation cascade are rapidly activated upon blood contact with the circuit surfaces, leading to the release of pro-inflammatory mediators. Ischemia-reperfusion injury and the release of damage-associated molecular patterns further exacerbate the inflammatory response. Cellular responses involve platelets, neutrophils, monocytes, dendritic cells, B and T lymphocytes, and myeloid-derived suppressor cells, all of which undergo phenotypic and functional alterations, contributing to immunoparesis. Strategies to mitigate immune dysfunctions include reducing the inflammatory response during CPB/ECMO and enhancing immune functions. Approaches such as off-pump surgery, corticosteroids, complement inhibitors, leukocyte-depleting filters, and mechanical ventilation during CPB have shown varying degrees of success in clinical trials. Immunonutrition, particularly arginine supplementation, has also been explored with mixed results. These strategies aim to balance the inflammatory response and support immune function, potentially reducing infection rates and improving outcomes. In conclusion, both CPB and ECMO trigger significant immune alterations that increase susceptibility to nosocomial infections. Addressing these immune dysfunctions through targeted interventions is essential to improving patient outcomes in cardiac surgery and critical care settings. Future research should focus on refining these strategies and developing new approaches to better manage the immune response in patients undergoing CPB and ECMO.
Collapse
Affiliation(s)
- Mathieu Lesouhaitier
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.
- CIC-1414, INSERM, Rennes, France.
| | - Félicie Belicard
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marc Tadié
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.
- CIC-1414, INSERM, Rennes, France.
| |
Collapse
|
92
|
Luo Y, Xia Y, Liu D, Li X, Li H, Liu J, Zhou D, Dong Y, Li X, Qian Y, Xu C, Tao K, Li G, Pan W, Zhong Q, Liu X, Xu S, Wang Z, Liu R, Zhang W, Shan W, Fang T, Wang S, Peng Z, Jin P, Jin N, Shi S, Chen Y, Wang M, Jiao X, Luo M, Gong W, Wang Y, Yao Y, Zhao Y, Huang X, Ji X, He Z, Zhao G, Liu R, Wu M, Chen G, Hong L, Ma D, Fang Y, Liang H, Gao Q. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 2024; 187:4905-4925.e24. [PMID: 38971151 DOI: 10.1016/j.cell.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Collapse
Affiliation(s)
- Yikai Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huayi Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongchen Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dong
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xin Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyu Qian
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangjia Tao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Zhong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhe Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Wang
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ronghua Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zikun Peng
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shennan Shi
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengjie Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofei Jiao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengshi Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjian Gong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Yao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Yi Zhao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xinlin Huang
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Zhaoren He
- BioMap (Beijing) Intelligence Technology Limited, Beijing 100089, China
| | - Guangnian Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
93
|
Li J, Clark R, Slaga D, Avery K, Liu K, Schubbert S, Varma R, Chiang E, Totpal K, Bernett MJ, Holder PG, Junttila TT. IL-15/IL-15Rα-Fc-Fusion Protein XmAb24306 Potentiates Activity of CD3 Bispecific Antibodies through Enhancing T-Cell Expansion. Mol Cancer Ther 2024; 23:1305-1316. [PMID: 38739434 DOI: 10.1158/1535-7163.mct-23-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
An insufficient quantity of functional T cells is a likely factor limiting the clinical activity of T-cell bispecific antibodies, especially in solid tumor indications. We hypothesized that XmAb24306 (efbalropendekin alfa), a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein, may potentiate the activity of T-cell dependent (TDB) antibodies. The activation of human peripheral T cells by cevostamab, an anti-FcRH5/CD3 TDB, or anti-HER2/CD3 TDB resulted in the upregulation of the IL-2/15Rβ (CD122) receptor subunit in nearly all CD8+ and majority of CD4+ T cells, suggesting that TDB treatment may sensitize T cells to IL-15. XmAb24306 enhanced T-cell bispecific antibody-induced CD8+ and CD4+ T-cell proliferation and expansion. In vitro combination of XmAb24306 with cevostamab or anti-HER2/CD3 TDB resulted in significant enhancement of tumor cell killing, which was reversed when T-cell numbers were normalized, suggesting that T-cell expansion is the main mechanism of the observed benefit. Pretreatment of immunocompetent mice with a mouse-reactive surrogate of XmAb24306 (mIL-15-Fc) resulted in a significant increase of T cells in the blood, spleen, and tumors and converted transient anti-HER2/CD3 TDB responses to complete durable responses. In summary, our results support the hypothesis that the number of tumor-infiltrating T cells is rate limiting for the activity of solid tumor-targeting TDBs. Upregulation of CD122 by TDB treatment and the observed synergy with XmAb24306 and T-cell bispecific antibodies support clinical evaluation of this novel immunotherapy combination.
Collapse
Affiliation(s)
- Ji Li
- Genentech Inc., South San Francisco, California
| | - Robyn Clark
- Genentech Inc., South San Francisco, California
| | | | | | - Ke Liu
- Xencor Inc., Pasadena, California
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Liu J, Yi C, Gong D, Zhao Q, Xie H, Zhao S, Yu H, Lv J, Bian E, Tian D. Construction of a 5-Gene super-enhancer-related signature for osteosarcoma prognosis and the regulatory role of TNFRSF11B in osteosarcoma. Transl Oncol 2024; 47:102047. [PMID: 38972174 PMCID: PMC11283062 DOI: 10.1016/j.tranon.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024] Open
Abstract
Osteosarcoma, one of the most common primary malignancies in children and adolescents, has the primary characteristics of a poor prognosis and high rate of metastasis. This study used super-enhancer-related genes derived from two different cell lines to construct five novel super-enhancer-related gene prognostic models for patients with osteosarcoma. The training and testing datasets were used to confirm the prognostic models of the five super-enhancer-related genes, which resulted in an impartial predictive element for osteosarcoma. The immunotherapy and prediction of the response to anticancer drugs have shown that the risk signature of the five super-enhancer-related genes positively correlate with chemosensitivity. Furthermore, functional analysis of the risk signature genes revealed a significant relationship between gene groups and the malignant characteristics of tumours. TNF Receptor Superfamily Member 11b (TNFRSF11B) was selected for functional verification. Silencing of TNFRSF11B suppressed the proliferation, migration, and invasion of osteosarcoma cells in vitro and suppressed osteosarcoma growth in vivo. Moreover, transcriptome sequencing was performed on MG-63 cells to study the regulatory mechanism of TNFRSF11B in osteosarcoma cells, and it was discovered that TNFRSF11B is involved in the development of osteosarcoma via the phosphoinositide 3-kinase signalling pathway. Following the identification of TNFRSF11B as a key gene, we selected an inhibitor that specifically targeted this gene and performed molecular docking simulations. In addition, risedronic acid inhibited osteosarcoma growth at both cellular and molecular levels. In conclusion, the super-enhancer-related gene signature is a viable therapeutic tool for osteosarcoma prognosis and treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Qingzhong Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Hang Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
95
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
96
|
Sun Q, Gao R, Lin Y, Zhou X, Wang T, He J. Leveraging single-cell RNA-seq for uncovering naïve B cells associated with better prognosis of hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e563. [PMID: 39252823 PMCID: PMC11381656 DOI: 10.1002/mco2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 09/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical highly heterogeneous solid tumor with high morbidity and mortality worldwide, especially in China; however, the immune microenvironment of HCC has not been clarified so far. Here, we employed single-cell RNA sequencing (scRNA-seq) on diethylnitrosamine (DEN)-induced mouse HCC model to dissect the immune cell dynamics during tumorigenesis. Our findings reveal distinct immune profiles in both precancerous and cancerous lesions, indicating early tumor-associated immunological alterations. Notably, specific T and B cell subpopulations are preferentially enriched in the HCC tumor microenvironment (TME). Furthermore, we identified a subpopulation of naïve B cells with high CD83 expression, correlating with improved prognosis in human HCC. These signature genes were validated in The Cancer Genome Atlas HCC RNA-seq dataset. Moreover, cell interaction analysis revealed that subpopulations of B cells in both mouse and human samples are activated and may potentially contribute to oncogenic processes. In summary, our study provides insights into the dynamic immune microenvironment and cellular networks in HCC pathogenesis, with a specific emphasis on naïve B cells. These findings emphasize the significance of targeting TME in HCC patients to prevent HCC pathological progression, which may give a new perspective on the therapeutics for HCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology Head and Neck Surgery The China-Japan Union Hospital of Jilin University Changchun China
| | - Rui Gao
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yingxin Lin
- School of Mathematics and Statistics The University of Sydney Sydney Australia
| | - Xianchao Zhou
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tao Wang
- Univ Lyon, Univ Jean Monnet Saint-Etienne, INSA Lyon, Univ Lyon 2 Université Claude Roanne France
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
- Key Laboratory of Systems Biomedicine Ministry of Education and Collaborative Innovation Center of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
97
|
Li J, Zhou W, Wang W. Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells. Cell Mol Life Sci 2024; 81:378. [PMID: 39215816 PMCID: PMC11365909 DOI: 10.1007/s00018-024-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
98
|
Fan J, Liu Q, Chen T, Chen Y, Wu J. Identification of cuproptosis-related genes related to the progression of ankylosing spondylitis by integrated bioinformatics analysis. Medicine (Baltimore) 2024; 103:e38313. [PMID: 39213249 PMCID: PMC11365630 DOI: 10.1097/md.0000000000038313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease, and the relationship between copper death and AS is not clear. The aim of this study was to analyze and identify potential cuprosis-related genes associated with the onset of AS by bioinformatics methods. We obtained the AS gene expression profile GSE25101 from the Gene Expression Omnibus (GEO) database, which consists of blood samples from 16 active AS patients and 16 sex-and age-matched controls. After analyzing the data, we utilized the WGCNA method to identify genes that exhibited significant differential expression. In order to assess the prognostic and predictive power of these genes, we constructed receiver operating characteristic (ROC) curves. To further validate our predictions, we employed nomograms, calibration curves, decision curve analysis, and external datasets. Lastly, we conducted an analysis on immune infiltration and explored the correlation between key genes and immune response. Three genes, namely INPP5E, CYB5R1, and HGD, have been identified through analysis to be associated with AS. The diagnosis of patients using these genes has been found to possess a high level of accuracy. The area under the ROC curve is reported to be 0.816 for INPP5E, 0.879 for CYB5R1, and also 0.879 for HGD. Furthermore, the nomogram demonstrates an excellent predictive power, and it has been calibrated using a Calibration curve. Its clinical usefulness and net benefit have been thoroughly analyzed and estimated through the use of a DCA curve. Moreover, INPP5E, CYB5R1, and HGD are found to be associated with various types of immune cells. In conclusion, the systematic analysis of cuprosis-related genes may aid in the identification of mechanisms related to copper-induced cell death in AS and offer valuable biomarkers for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Junyi Fan
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Qihua Liu
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Chen
- Internal Medicine Dept. 5 Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Yongbin Chen
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junzhe Wu
- Orthopaedics Dept. 1 Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| |
Collapse
|
99
|
Nicolai CJ, Parker MH, Qin J, Tang W, Ulrich-Lewis JT, Gottschalk RJ, Cooper SE, Hernandez Lopez SA, Parrilla D, Mangio RS, Ericson NG, Brandes AH, Umuhoza S, Michels KR, McDonnell MM, Park LY, Shin S, Leung WH, Scharenberg AM, Kiem HP, Larson RP, Beitz LO, Ryu BY. In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand. Blood 2024; 144:977-987. [PMID: 38861668 PMCID: PMC11406189 DOI: 10.1182/blood.2024024523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformative efficacy in treating B-cell malignancies. However, high costs and manufacturing complexities hinder their widespread use. To overcome these hurdles, we have developed the VivoVec platform, a lentiviral vector capable of generating CAR T cells in vivo. Here, we describe the incorporation of T-cell activation and costimulatory signals onto the surface of VivoVec particles (VVPs) in the form of a multidomain fusion protein and show enhanced in vivo transduction and improved CAR T-cell antitumor functionality. Furthermore, in the absence of lymphodepleting chemotherapy, administration of VVPs into nonhuman primates resulted in the robust generation of anti-CD20 CAR T cells and the complete depletion of B cells for >10 weeks. These data validate the VivoVec platform in a translationally relevant model and support its transition into human clinical testing, offering a paradigm shift in the field of CAR T-cell therapies.
Collapse
Affiliation(s)
| | | | - Jim Qin
- Umoja Biopharma, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|