51
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
52
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
53
|
Pereira-Marques J, Ferreira RM, Figueiredo C. A metatranscriptomics strategy for efficient characterization of the microbiome in human tissues with low microbial biomass. Gut Microbes 2024; 16:2323235. [PMID: 38425025 PMCID: PMC10913719 DOI: 10.1080/19490976.2024.2323235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The high background of host RNA poses a major challenge to metatranscriptome analysis of human samples. Hence, metatranscriptomics has been mainly applied to microbe-rich samples, while its application in human tissues with low ratio of microbial to host cells has yet to be explored. Since there is no computational workflow specifically designed for the taxonomic and functional analysis of this type of samples, we propose an effective metatranscriptomics strategy to accurately characterize the microbiome in human tissues with a low ratio of microbial to host content. We experimentally generated synthetic samples with well-characterized bacterial and host cell compositions, and mimicking human samples with high and low microbial loads. These synthetic samples were used for optimizing and establishing the workflow in a controlled setting. Our results show that the integration of the taxonomic analysis of optimized Kraken 2/Bracken with the functional analysis of HUMAnN 3 in samples with low microbial content, enables the accurate identification of a large number of microbial species with a low false-positive rate, while improving the detection of microbial functions. The effectiveness of our metatranscriptomics workflow was demonstrated in synthetic samples, simulated datasets, and most importantly, human gastric tissue specimens, thus providing a proof of concept for its applicability on mucosal tissues of the gastrointestinal tract. The use of an accurate and reliable metatranscriptomics approach for human tissues with low microbial content will expand our understanding of the functional activity of the mucosal microbiome, uncovering critical interactions between the microbiome and the host in health and disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Rui M. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
54
|
Heumel S, de Rezende Rodovalho V, Urien C, Specque F, Brito Rodrigues P, Robil C, Delval L, Sencio V, Descat A, Deruyter L, Ferreira S, Gomes Machado M, Barthelemy A, Angulo FS, Haas JT, Goosens JF, Wolowczuk I, Grangette C, Rouillé Y, Grimaud G, Lenski M, Hennart B, Ramirez Vinolo MA, Trottein F. Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection. Gut Microbes 2024; 16:2325067. [PMID: 38445660 PMCID: PMC10936607 DOI: 10.1080/19490976.2024.2325067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.
Collapse
Affiliation(s)
- Séverine Heumel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | | | | | - Florian Specque
- Biomathematica, Rue des Aloes, Quartier Balestrino, Ajaccio, France
| | - Patrícia Brito Rodrigues
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Cyril Robil
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Lou Delval
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Amandine Descat
- Univ. Lille, CHU Lille, EA 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Lucie Deruyter
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | | | - Marina Gomes Machado
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Adeline Barthelemy
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Joel. T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean François Goosens
- Univ. Lille, CHU Lille, EA 7365 – GRITA – Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Corinne Grangette
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Yves Rouillé
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Ghjuvan Grimaud
- Biomathematica, Rue des Aloes, Quartier Balestrino, Ajaccio, France
| | - Marie Lenski
- Univ. Lrille, CHU Lille, Service de toxicologie et Génopathies, ULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaine, Lille, France
| | - Benjamin Hennart
- Univ. Lrille, CHU Lille, Service de toxicologie et Génopathies, ULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaine, Lille, France
| | | | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
55
|
Deulofeu-Capo O, Sebastián M, Auladell A, Cardelús C, Ferrera I, Sánchez O, Gasol JM. Growth rates of marine prokaryotes are extremely diverse, even among closely related taxa. ISME COMMUNICATIONS 2024; 4:ycae066. [PMID: 38800126 PMCID: PMC11126302 DOI: 10.1093/ismeco/ycae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Marine prokaryotes play crucial roles in ocean biogeochemical cycles, being their contribution strongly influenced by their growth rates. Hence, elucidating the variability and phylogenetic imprint of marine prokaryotes' growth rates are crucial for better determining the role of individual taxa in biogeochemical cycles. Here, we estimated prokaryotic growth rates at high phylogenetic resolution in manipulation experiments using water from the northwestern Mediterranean Sea. Experiments were run in the four seasons with different treatments that reduced growth limiting factors: predators, nutrient availability, viruses, and light. Single-amplicon sequence variants (ASVs)-based growth rates were calculated from changes in estimated absolute abundances using total prokaryotic abundance and the proportion of each individual ASV. The trends obtained for growth rates in the different experiments were consistent with other estimates based on total cell-counts, catalyzed reporter deposition fluorescence in situ hybridization subcommunity cell-counts or metagenomic-operational taxonomic units (OTUs). Our calculations unveil a broad range of growth rates (0.3-10 d-1) with significant variability even within closely related ASVs. Likewise, the impact of growth limiting factors changed over the year for individual ASVs. High numbers of responsive ASVs were shared between winter and spring seasons, as well as throughout the year in the treatments with reduced nutrient limitation and viral pressure. The most responsive ASVs were rare in the in situ communities, comprising a large pool of taxa with the potential to rapidly respond to environmental changes. Essentially, our results highlight the lack of phylogenetic coherence in the range of growth rates observed, and differential responses to the various limiting factors, even for closely related taxa.
Collapse
Affiliation(s)
- Ona Deulofeu-Capo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Adrià Auladell
- Institut de Biologia Evolutiva, CSIC-UPF, Barcelona 08003, Catalunya, Spain
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Puerto Pesquero s/n, Fuengirola 29640, Málaga, Spain
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya 08193, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
56
|
Baud GLC, Prasad A, Ellegaard KM, Engel P. Turnover of strain-level diversity modulates functional traits in the honeybee gut microbiome between nurses and foragers. Genome Biol 2023; 24:283. [PMID: 38066630 PMCID: PMC10704631 DOI: 10.1186/s13059-023-03131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Strain-level diversity is widespread among bacterial species and can expand the functional potential of natural microbial communities. However, to what extent communities undergo consistent shifts in strain composition in response to environmental/host changes is less well understood. RESULTS Here, we used shotgun metagenomics to compare the gut microbiota of two behavioral states of the Western honeybee (Apis mellifera), namely nurse and forager bees. While their gut microbiota is composed of the same bacterial species, we detect consistent changes in strain-level composition between nurses and foragers. Single nucleotide variant profiles of predominant bacterial species cluster by behavioral state. Moreover, we identify strain-specific gene content related to nutrient utilization, vitamin biosynthesis, and cell-cell interactions specifically associated with the two behavioral states. CONCLUSIONS Our findings show that strain-level diversity in host-associated communities can undergo consistent changes in response to host behavioral changes modulating the functional potential of the community.
Collapse
Affiliation(s)
- Gilles L C Baud
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
57
|
Liao H, Shang J, Sun Y. GDmicro: classifying host disease status with GCN and deep adaptation network based on the human gut microbiome data. Bioinformatics 2023; 39:btad747. [PMID: 38085234 PMCID: PMC10749762 DOI: 10.1093/bioinformatics/btad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023] Open
Abstract
MOTIVATION With advances in metagenomic sequencing technologies, there are accumulating studies revealing the associations between the human gut microbiome and some human diseases. These associations shed light on using gut microbiome data to distinguish case and control samples of a specific disease, which is also called host disease status classification. Importantly, using learning-based models to distinguish the disease and control samples is expected to identify important biomarkers more accurately than abundance-based statistical analysis. However, available tools have not fully addressed two challenges associated with this task: limited labeled microbiome data and decreased accuracy in cross-studies. The confounding factors, such as the diet, technical biases in sample collection/sequencing across different studies/cohorts often jeopardize the generalization of the learning model. RESULTS To address these challenges, we develop a new tool GDmicro, which combines semi-supervised learning and domain adaptation to achieve a more generalized model using limited labeled samples. We evaluated GDmicro on human gut microbiome data from 11 cohorts covering 5 different diseases. The results show that GDmicro has better performance and robustness than state-of-the-art tools. In particular, it improves the AUC from 0.783 to 0.949 in identifying inflammatory bowel disease. Furthermore, GDmicro can identify potential biomarkers with greater accuracy than abundance-based statistical analysis methods. It also reveals the contribution of these biomarkers to the host's disease status. AVAILABILITY AND IMPLEMENTATION https://github.com/liaoherui/GDmicro.
Collapse
Affiliation(s)
- Herui Liao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), 518057, China
| |
Collapse
|
58
|
Yersin S, Garneau JR, Schneeberger PHH, Osman KA, Cercamondi CI, Muhummed AM, Tschopp R, Zinsstag J, Vonaesch P. Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Sci Rep 2023; 13:21342. [PMID: 38049420 PMCID: PMC10696028 DOI: 10.1038/s41598-023-47748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2-5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, D-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pierre H H Schneeberger
- Helminth Drug Development Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | | | - Colin Ivano Cercamondi
- Department of Health Sciences and Technology, ETHZ, Rämistrasse 101, 8092, Zurich, Switzerland
| | - Abdifatah Muktar Muhummed
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Rea Tschopp
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
59
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
60
|
Huang X, Hu M, Sun T, Li J, Zhou Y, Yan Y, Xuan B, Wang J, Xiong H, Ji L, Zhu X, Tong T, Ning L, Ma Y, Zhao Y, Ding J, Guo Z, Zhang Y, Fang JY, Hong J, Chen H. Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. Cell Host Microbe 2023; 31:1930-1943.e4. [PMID: 37944495 DOI: 10.1016/j.chom.2023.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of gut bacteria on the response to immune checkpoint inhibitors (ICIs) has been studied, but the relationship between fungi and ICI responses is not fully understood. Herein, 862 fecal metagenomes from 9 different cohorts were integrated for the identification of differentially abundant fungi and subsequent construction of random forest (RF) models to predict ICI responses. Fungal markers demonstrate excellent performance, with an average area under the curve (AUC) of 0.87. Their performance improves even further, reaching an average AUC of 0.89 when combined with bacterial markers. Higher enrichment of exhausted T cells is detected in responders, as predicted by fungal markers. Multi-kingdom network and functional analysis reveal that the fungus Schizosaccharomyces octosporus may ferment starch into short-chain fatty acids in responders. This study provides a fungal profile of the ICI response and the identification of multi-kingdom microbial markers with good performance that may improve the overall applicability of ICI therapy.
Collapse
Affiliation(s)
- Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Tiantian Sun
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jiantao Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hua Xiong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
61
|
Ter Horst AM, Fudyma JD, Sones JL, Emerson JB. Dispersal, habitat filtering, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography. THE ISME JOURNAL 2023; 17:2079-2089. [PMID: 37735616 PMCID: PMC10579374 DOI: 10.1038/s41396-023-01516-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Wetlands store 20-30% of the world's soil carbon, and identifying the microbial controls on these carbon reserves is essential to predicting feedbacks to climate change. Although viral infections likely play important roles in wetland ecosystem dynamics, we lack a basic understanding of wetland viral ecology. Here 63 viral size-fraction metagenomes (viromes) and paired total metagenomes were generated from three time points in 2021 at seven fresh- and saltwater wetlands in the California Bodega Marine Reserve. We recovered 12,826 viral population genomic sequences (vOTUs), only 4.4% of which were detected at the same field site two years prior, indicating a small degree of population stability or recurrence. Viral communities differed most significantly among the seven wetland sites and were also structured by habitat (plant community composition and salinity). Read mapping to a new version of our reference database, PIGEONv2.0 (515,763 vOTUs), revealed 196 vOTUs present over large geographic distances, often reflecting shared habitat characteristics. Wetland vOTU microdiversity was significantly lower locally than globally and lower within than between time points, indicating greater divergence with increasing spatiotemporal distance. Viruses tended to have broad predicted host ranges via CRISPR spacer linkages to metagenome-assembled genomes, and increased SNP frequencies in CRISPR-targeted major tail protein genes suggest potential viral eco-evolutionary dynamics in response to both immune targeting and changes in host cell receptors involved in viral attachment. Together, these results highlight the importance of dispersal, environmental selection, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography.
Collapse
Affiliation(s)
| | - Jane D Fudyma
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Jacqueline L Sones
- Bodega Marine Reserve, University of California, Davis, Bodega Bay, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
62
|
Cacace E, Kim V, Varik V, Knopp M, Tietgen M, Brauer-Nikonow A, Inecik K, Mateus A, Milanese A, Mårli MT, Mitosch K, Selkrig J, Brochado AR, Kuipers OP, Kjos M, Zeller G, Savitski MM, Göttig S, Huber W, Typas A. Systematic analysis of drug combinations against Gram-positive bacteria. Nat Microbiol 2023; 8:2196-2212. [PMID: 37770760 PMCID: PMC10627819 DOI: 10.1038/s41564-023-01486-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Drug combinations can expand options for antibacterial therapies but have not been systematically tested in Gram-positive species. We profiled ~8,000 combinations of 65 antibacterial drugs against the model species Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Thereby, we recapitulated previously known drug interactions, but also identified ten times more novel interactions in the pathogen S. aureus, including 150 synergies. We showed that two synergies were equally effective against multidrug-resistant S. aureus clinical isolates in vitro and in vivo. Interactions were largely species-specific and synergies were distinct from those of Gram-negative species, owing to cell surface and drug uptake differences. We also tested 2,728 combinations of 44 commonly prescribed non-antibiotic drugs with 62 drugs with antibacterial activity against S. aureus and identified numerous antagonisms that might compromise the efficacy of antimicrobial therapies. We identified even more synergies and showed that the anti-aggregant ticagrelor synergized with cationic antibiotics by modifying the surface charge of S. aureus. All data can be browsed in an interactive interface ( https://apps.embl.de/combact/ ).
Collapse
Affiliation(s)
- Elisabetta Cacace
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Vladislav Kim
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Vallo Varik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Michael Knopp
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuela Tietgen
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | | | - Kemal Inecik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alessio Milanese
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Department of Biology, Institute of Microbiology, and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karin Mitosch
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Ana Rita Brochado
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Molecular Biology and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
63
|
Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Nickols WA, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023; 41:1633-1644. [PMID: 36823356 PMCID: PMC10635831 DOI: 10.1038/s41587-023-01688-w] [Citation(s) in RCA: 325] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.
Collapse
Affiliation(s)
| | | | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Lauren J McIver
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kelsey N Thompson
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Kun D Huang
- Department CIBIO, University of Trento, Trento, Italy
| | | | - William A Nickols
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | | | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | | | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
64
|
Meng D, Ai S, Spanos M, Shi X, Li G, Cretoiu D, Zhou Q, Xiao J. Exercise and microbiome: From big data to therapy. Comput Struct Biotechnol J 2023; 21:5434-5445. [PMID: 38022690 PMCID: PMC10665598 DOI: 10.1016/j.csbj.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise is a vital component in maintaining optimal health and serves as a prospective therapeutic intervention for various diseases. The human microbiome, comprised of trillions of microorganisms, plays a crucial role in overall health. Given the advancements in microbiome research, substantial databases have been created to decipher the functionality and mechanisms of the microbiome in health and disease contexts. This review presents an initial overview of microbiomics development and related databases, followed by an in-depth description of the multi-omics technologies for microbiome. It subsequently synthesizes the research pertaining to exercise-induced modifications of the microbiome and diseases that impact the microbiome. Finally, it highlights the potential therapeutic implications of an exercise-modulated microbiome in intestinal disease, obesity and diabetes, cardiovascular disease, and immune/inflammation-related diseases.
Collapse
Affiliation(s)
- Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiaohui Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
65
|
Flahaut M, Leprohon P, Pham NP, Gingras H, Bourbeau J, Papadopoulou B, Maltais F, Ouellette M. Distinctive features of the oropharyngeal microbiome in Inuit of Nunavik and correlations of mild to moderate bronchial obstruction with dysbiosis. Sci Rep 2023; 13:16622. [PMID: 37789055 PMCID: PMC10547696 DOI: 10.1038/s41598-023-43821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction group or a control group based on their clinical history and their pulmonary function, as monitored by spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes between the two groups. More microbial metabolic pathways were enriched in the control participants and these were often involved in vitamin and anti-inflammatory metabolism, while a link could be established between the enriched pathways in the disease group and inflammation. Overall, our results suggest a link between microbial abundance, interactions and metabolic activities and respiratory health in the Inuit population.
Collapse
Affiliation(s)
- Mathilde Flahaut
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jean Bourbeau
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Maltais
- Groupe de Recherche en Santé Respiratoire, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
66
|
Pusadkar V, Azad RK. Benchmarking Metagenomic Classifiers on Simulated Ancient and Modern Metagenomic Data. Microorganisms 2023; 11:2478. [PMID: 37894136 PMCID: PMC10609333 DOI: 10.3390/microorganisms11102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Taxonomic profiling of ancient metagenomic samples is challenging due to the accumulation of specific damage patterns on DNA over time. Although a number of methods for metagenome profiling have been developed, most of them have been assessed on modern metagenomes or simulated metagenomes mimicking modern metagenomes. Further, a comparative assessment of metagenome profilers on simulated metagenomes representing a spectrum of degradation depth, from the extremity of ancient (most degraded) to current or modern (not degraded) metagenomes, has not yet been performed. To understand the strengths and weaknesses of different metagenome profilers, we performed their comprehensive evaluation on simulated metagenomes representing human dental calculus microbiome, with the level of DNA damage successively raised to mimic modern to ancient metagenomes. All classes of profilers, namely, DNA-to-DNA, DNA-to-protein, and DNA-to-marker comparison-based profilers were evaluated on metagenomes with varying levels of damage simulating deamination, fragmentation, and contamination. Our results revealed that, compared to deamination and fragmentation, human and environmental contamination of ancient DNA (with modern DNA) has the most pronounced effect on the performance of each profiler. Further, the DNA-to-DNA (e.g., Kraken2, Bracken) and DNA-to-marker (e.g., MetaPhlAn4) based profiling approaches showed complementary strengths, which can be leveraged to elevate the state-of-the-art of ancient metagenome profiling.
Collapse
Affiliation(s)
- Vaidehi Pusadkar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
67
|
Shi Z, Hu G, Li MW, Zhang L, Li X, Li L, Wang X, Fu X, Sun Z, Zhang X, Tian L, Li Z, Chen WH, Zhang M. Gut microbiota as non-invasive diagnostic and prognostic biomarkers for natural killer/T-cell lymphoma. Gut 2023; 72:1999-2002. [PMID: 36347595 PMCID: PMC10511952 DOI: 10.1136/gutjnl-2022-328256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guoru Hu
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Min W Li
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Li Tian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology College of Life Sciences and Technology, Wuhan, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong, China
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
68
|
Saenz C, Fang Q, Gnanasekaran T, Trammell SAJ, Buijink JA, Pisano P, Wierer M, Moens F, Lengger B, Brejnrod A, Arumugam M. Clostridium scindens secretome suppresses virulence gene expression of Clostridioides difficile in a bile acid-independent manner. Microbiol Spectr 2023; 11:e0393322. [PMID: 37750706 PMCID: PMC10581174 DOI: 10.1128/spectrum.03933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.
Collapse
Affiliation(s)
- Carmen Saenz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qing Fang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesse Arnold Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Pisano
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Asker Brejnrod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
69
|
Rahlff J, Wietz M, Giebel HA, Bayfield O, Nilsson E, Bergström K, Kieft K, Anantharaman K, Ribas-Ribas M, Schweitzer HD, Wurl O, Hoetzinger M, Antson A, Holmfeldt K. Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick. ISME COMMUNICATIONS 2023; 3:97. [PMID: 37723220 PMCID: PMC10507051 DOI: 10.1038/s43705-023-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mariana Ribas-Ribas
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | | | - Oliver Wurl
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
70
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
71
|
Wuyts S, Alves R, Zimmermann‐Kogadeeva M, Nishijima S, Blasche S, Driessen M, Geyer PE, Hercog R, Kartal E, Maier L, Müller JB, Garcia Santamarina S, Schmidt TSB, Sevin DC, Telzerow A, Treit PV, Wenzel T, Typas A, Patil KR, Mann M, Kuhn M, Bork P. Consistency across multi-omics layers in a drug-perturbed gut microbial community. Mol Syst Biol 2023; 19:e11525. [PMID: 37485738 PMCID: PMC10495815 DOI: 10.15252/msb.202311525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.
Collapse
Affiliation(s)
- Sander Wuyts
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Renato Alves
- European Molecular Biology LaboratoryHeidelbergGermany
| | | | | | - Sonja Blasche
- European Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| | | | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Rajna Hercog
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Ece Kartal
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Lisa Maier
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Johannes B Müller
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Sarela Garcia Santamarina
- European Molecular Biology LaboratoryHeidelbergGermany
- Present address:
MOSTMICRO Unit, Instituto de Tecnologia Quimica e BiologicaUniversidade Nova de LisboaOeirasPortugal
| | | | | | - Anja Telzerow
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Peter V Treit
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Tobias Wenzel
- European Molecular Biology LaboratoryHeidelbergGermany
- Present address:
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Catolica de ChileSantiagoChile
| | | | - Kiran R Patil
- European Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Proteomics Program, NNF Center for Protein Research, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michael Kuhn
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Peer Bork
- European Molecular Biology LaboratoryHeidelbergGermany
- Max Delbrück Centre for Molecular MedicineBerlinGermany
- Yonsei Frontier Lab (YFL)Yonsei UniversitySeoulSouth Korea
- Department of Bioinformatics, BiocenterUniversity of WürzburgWürzburgGermany
| |
Collapse
|
72
|
Wortelboer K, de Jonge PA, Scheithauer TPM, Attaye I, Kemper EM, Nieuwdorp M, Herrema H. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat Commun 2023; 14:5600. [PMID: 37699894 PMCID: PMC10497675 DOI: 10.1038/s41467-023-41329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacteriophages (phages) are bacterial viruses that have been shown to shape microbial communities. Previous studies have shown that faecal virome transplantation can decrease weight gain and normalize blood glucose tolerance in diet-induced obese mice. Therefore, we performed a double-blind, randomised, placebo-controlled pilot study in which 24 individuals with metabolic syndrome were randomised to a faecal filtrate transplantation (FFT) from a lean healthy donor (n = 12) or placebo (n = 12). The primary outcome, change in glucose metabolism, and secondary outcomes, safety and longitudinal changes within the intestinal bacteriome and phageome, were assessed from baseline up to 28 days. All 24 included subjects completed the study and are included in the analyses. While the overall changes in glucose metabolism are not significantly different between both groups, the FFT is well-tolerated and without any serious adverse events. The phage virion composition is significantly altered two days after FFT as compared to placebo, which coincides with more virulent phage-microbe interactions. In conclusion, we provide evidence that gut phages can be safely administered to transiently alter the gut microbiota of recipients.
Collapse
Affiliation(s)
- Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Patrick A de Jonge
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Ilias Attaye
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pharmacy and Clinical Pharmacology, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije University Medical Center, Department of Internal Medicine, Diabetes Center, Amsterdam, The Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands.
| |
Collapse
|
73
|
Santos-Júnior CD, Der Torossian Torres M, Duan Y, del Río ÁR, Schmidt TS, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Computational exploration of the global microbiome for antibiotic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555663. [PMID: 37693522 PMCID: PMC10491242 DOI: 10.1101/2023.08.31.555663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Álvaro Rodríguez del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Thomas S.B. Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institute, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Li P, Roos S, Luo H, Ji B, Nielsen J. Metabolic engineering of human gut microbiome: Recent developments and future perspectives. Metab Eng 2023; 79:1-13. [PMID: 37364774 DOI: 10.1016/j.ymben.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manipulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.
Collapse
Affiliation(s)
- Peishun Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| |
Collapse
|
75
|
Takeuchi T, Kubota T, Nakanishi Y, Tsugawa H, Suda W, Kwon ATJ, Yazaki J, Ikeda K, Nemoto S, Mochizuki Y, Kitami T, Yugi K, Mizuno Y, Yamamichi N, Yamazaki T, Takamoto I, Kubota N, Kadowaki T, Arner E, Carninci P, Ohara O, Arita M, Hattori M, Koyasu S, Ohno H. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 2023; 621:389-395. [PMID: 37648852 PMCID: PMC10499599 DOI: 10.1038/s41586-023-06466-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes1,2. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance3-9. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction10, thereby playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Diabetes and Metabolism, The Institute for Medical Science Asahi Life Foundation, Tokyo, Japan.
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan.
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Hiroshi Tsugawa
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Andrew Tae-Jun Kwon
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yoshiki Mochizuki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Toshimori Kitami
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Katsuyuki Yugi
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Mizuno
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Development Bank of Japan, Tokyo, Japan
| | - Nobutake Yamamichi
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Ami Town, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Erik Arner
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Fondazione Human Technopole, Milan, Italy
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
76
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
77
|
Sun Z, Liu J, Zhang M, Wang T, Huang S, Weiss ST, Liu YY. Removal of false positives in metagenomics-based taxonomy profiling via targeting Type IIB restriction sites. Nat Commun 2023; 14:5321. [PMID: 37658057 PMCID: PMC10474111 DOI: 10.1038/s41467-023-41099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Accurate species identification and abundance estimation are critical for the interpretation of whole metagenome sequencing (WMS) data. Yet, existing metagenomic profilers suffer from false-positive identifications, which can account for more than 90% of total identified species. Here, by leveraging species-specific Type IIB restriction endonuclease digestion sites as reference instead of universal markers or whole microbial genomes, we present a metagenomic profiler, MAP2B (MetAgenomic Profiler based on type IIB restriction sites), to resolve those issues. We first illustrate the pitfalls of using relative abundance as the only feature in determining false positives. We then propose a feature set to distinguish false positives from true positives, and using simulated metagenomes from CAMI2, we establish a false-positive recognition model. By benchmarking the performance in metagenomic profiling using a simulation dataset with varying sequencing depth and species richness, we illustrate the superior performance of MAP2B over existing metagenomic profilers in species identification. We further test the performance of MAP2B using real WMS data from an ATCC mock community, confirming its superior precision against sequencing depth. Finally, by leveraging WMS data from an IBD cohort, we demonstrate the taxonomic features generated by MAP2B can better discriminate IBD and predict metabolomic profiles.
Collapse
Affiliation(s)
- Zheng Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiang Liu
- Qingdao OE Biotechnology Company Limited, Qingdao, Shandong, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
78
|
Pascoal F, Tomasino MP, Piredda R, Quero GM, Torgo L, Poulain J, Galand PE, Fuhrman JA, Mitchell A, Tinta T, Turk Dermastia T, Fernandez-Guerra A, Vezzi A, Logares R, Malfatti F, Endo H, Dąbrowska AM, De Pascale F, Sánchez P, Henry N, Fosso B, Wilson B, Toshchakov S, Ferrant GK, Grigorov I, Vieira FRJ, Costa R, Pesant S, Magalhães C. Inter-comparison of marine microbiome sampling protocols. ISME COMMUNICATIONS 2023; 3:84. [PMID: 37598259 PMCID: PMC10439934 DOI: 10.1038/s43705-023-00278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/21/2023]
Abstract
Research on marine microbial communities is growing, but studies are hard to compare because of variation in seawater sampling protocols. To help researchers in the inter-comparison of studies that use different seawater sampling methodologies, as well as to help them design future sampling campaigns, we developed the EuroMarine Open Science Exploration initiative (EMOSE). Within the EMOSE framework, we sampled thousands of liters of seawater from a single station in the NW Mediterranean Sea (Service d'Observation du Laboratoire Arago [SOLA], Banyuls-sur-Mer), during one single day. The resulting dataset includes multiple seawater processing approaches, encompassing different material-type kinds of filters (cartridge membrane and flat membrane), three different size fractionations (>0.22 µm, 0.22-3 µm, 3-20 µm and >20 µm), and a number of different seawater volumes ranging from 1 L up to 1000 L. We show that the volume of seawater that is filtered does not have a significant effect on prokaryotic and protist diversity, independently of the sequencing strategy. However, there was a clear difference in alpha and beta diversity between size fractions and between these and "whole water" (with no pre-fractionation). Overall, we recommend care when merging data from datasets that use filters of different pore size, but we consider that the type of filter and volume should not act as confounding variables for the tested sequencing strategies. To the best of our knowledge, this is the first time a publicly available dataset effectively allows for the clarification of the impact of marine microbiome methodological options across a wide range of protocols, including large-scale variations in sampled volume.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169- 007, Porto, Portugal
| | - Maria Paola Tomasino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Roberta Piredda
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grazia Marina Quero
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca 2, 60125, Ancona, Italy
| | - Luís Torgo
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Jed A Fuhrman
- Marine & Environmental Biology, Department of Biological Sciences, University of Southern California (USC), Los Angeles, CA, USA
| | - Alex Mitchell
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Tinkara Tinta
- National Institute of Biology, Marine Biology Station Piran, Piran, Slovenia
| | | | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Vezzi
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC. Passeig Marítim de la Barceloneta, 37-49, ES08003, Barcelona, Spain
| | | | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Anna Maria Dąbrowska
- Department of Marine Ecology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Fabio De Pascale
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Pablo Sánchez
- Institute of Marine Sciences (ICM), CSIC. Passeig Marítim de la Barceloneta, 37-49, ES08003, Barcelona, Spain
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, UMR 7144, Roscoff, France
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Bruno Fosso
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126, Bari, Italy
| | - Bryan Wilson
- Department of Biology, John Krebs Field Station, University of Oxford, Wytham, OX2 8QJ, UK
| | | | | | - Ivo Grigorov
- Technical University of Denmark, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| | | | - Rodrigo Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB) and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Stéphane Pesant
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169- 007, Porto, Portugal.
| |
Collapse
|
79
|
Pandey S, Avuthu N, Guda C. StrainIQ: A Novel n-Gram-Based Method for Taxonomic Profiling of Human Microbiota at the Strain Level. Genes (Basel) 2023; 14:1647. [PMID: 37628698 PMCID: PMC10454763 DOI: 10.3390/genes14081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The emergence of next-generation sequencing (NGS) technology has greatly influenced microbiome research and led to the development of novel bioinformatics tools to deeply analyze metagenomics datasets. Identifying strain-level variations in microbial communities is important to understanding the onset and progression of diseases, host-pathogen interrelationships, and drug resistance, in addition to designing new therapeutic regimens. In this study, we developed a novel tool called StrainIQ (strain identification and quantification) based on a new n-gram-based (series of n number of adjacent nucleotides in the DNA sequence) algorithm for predicting and quantifying strain-level taxa from whole-genome metagenomic sequencing data. We thoroughly evaluated our method using simulated and mock metagenomic datasets and compared its performance with existing methods. On average, it showed 85.8% sensitivity and 78.2% specificity on simulated datasets. It also showed higher specificity and sensitivity using n-gram models built from reduced reference genomes and on models with lower coverage sequencing data. It outperforms alternative approaches in genus- and strain-level prediction and strain abundance estimation. Overall, the results show that StrainIQ achieves high accuracy by implementing customized model-building and is an efficient tool for site-specific microbial community profiling.
Collapse
Affiliation(s)
- Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
80
|
Yan Y, Wang Z, Zhou YL, Gao Z, Ning L, Zhao Y, Xuan B, Ma Y, Tong T, Huang X, Hu M, Fang JY, Cui Z, Chen H, Hong J. Commensal bacteria promote azathioprine therapy failure in inflammatory bowel disease via decreasing 6-mercaptopurine bioavailability. Cell Rep Med 2023; 4:101153. [PMID: 37586320 PMCID: PMC10439275 DOI: 10.1016/j.xcrm.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Azathioprine (AZA) therapy failure, though not the primary cause, contributes to disease relapse and progression in inflammatory bowel disease (IBD). However, the role of gut microbiota in AZA therapy failure remains poorly understood. We found a high prevalence of Blautia wexlerae in patients with IBD with AZA therapy failure, associated with shorter disease flare survival time. Colonization of B. wexlerae increased inflammatory macrophages and compromised AZA's therapeutic efficacy in mice with intestinal colitis. B. wexlerae colonization reduced 6-mercaptopurine (6-MP) bioavailability by enhancing selenium-dependent xanthine dehydrogenase (sd-XDH) activity. The enzyme sd-XDH converts 6-MP into its inactive metabolite, 6-thioxanthine (6-TX), thereby impairing its ability to inhibit inflammation in mice. Supplementation with Bacillus (B.) subtilis enriched in hypoxanthine phosphoribosyltransferase (HPRT) effectively mitigated B. wexlerae-induced AZA treatment failure in mice with intestinal colitis. These findings emphasize the need for tailored management strategies based on B. wexlerae levels in patients with IBD.
Collapse
Affiliation(s)
- Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yi-Lu Zhou
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lijun Ning
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ying Zhao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Muni Hu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
81
|
Wu Q, Boonma P, Badu S, Yalcinkaya N, So SY, Garey KW, Williams K, Arnold LE, Shulman RJ, Kellermayer R, Savidge TC. Donor-recipient specificity and age-dependency in fecal microbiota therapy and probiotic resolution of gastrointestinal symptoms. NPJ Biofilms Microbiomes 2023; 9:54. [PMID: 37537181 PMCID: PMC10400536 DOI: 10.1038/s41522-023-00421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has proven to be an effective treatment for recurrent Clostridioides difficile infection (rCDI) in both adult and pediatric patients. However, as microbiome development is a critical factor in children, it remains unclear whether adult fecal donors can provide age-appropriate functional restoration in pediatric patients. To address this issue, we conducted an integrated systems approach and found that concordant donor strain engraftment, along with metabolite restoration, are associated with FMT outcomes in both adult and pediatric rCDI patients. Although functional restoration after FMT is not strain-specific, specialized metabolic functions are retained in pediatric patients when adult fecal donors are used. Furthermore, we demonstrated broad utility of high-resolution variant-calling by linking probiotic-strain engraftment with improved gastrointestinal symptoms in adults with irritable bowel syndrome and in children with autism spectrum disorder. Our findings emphasize the importance of strain-level identification when assessing the efficacy of probiotics and microbiota-based therapeutics.
Collapse
Affiliation(s)
- Qinglong Wu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Prapaporn Boonma
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Shyam Badu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Nazli Yalcinkaya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sik Yu So
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Kent Williams
- Department of Pediatrics, Ohio State University & Nationwide Children's Hospital, Columbus, OH, USA
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Tor C Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
82
|
Carroll LM, Pierneef R, Mafuna T, Magwedere K, Matle I. Genus-wide genomic characterization of Macrococcus: insights into evolution, population structure, and functional potential. Front Microbiol 2023; 14:1181376. [PMID: 37547688 PMCID: PMC10400458 DOI: 10.3389/fmicb.2023.1181376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Macrococcus species have been isolated from a range of mammals and mammal-derived food products. While they are largely considered to be animal commensals, Macrococcus spp. can be opportunistic pathogens in both veterinary and human clinical settings. This study aimed to provide insight into the evolution, population structure, and functional potential of the Macrococcus genus, with an emphasis on antimicrobial resistance (AMR) and virulence potential. Methods All high-quality, publicly available Macrococcus genomes (n = 104, accessed 27 August 2022), plus six South African genomes sequenced here (two strains from bovine clinical mastitis cases and four strains from beef products), underwent taxonomic assignment (using four different approaches), AMR determinant detection (via AMRFinderPlus), and virulence factor detection (using DIAMOND and the core Virulence Factor Database). Results Overall, the 110 Macrococcus genomes were of animal commensal, veterinary clinical, food-associated (including food spoilage), and environmental origins; five genomes (4.5%) originated from human clinical cases. Notably, none of the taxonomic assignment methods produced identical results, highlighting the potential for Macrococcus species misidentifications. The most common predicted antimicrobial classes associated with AMR determinants identified across Macrococcus included macrolides, beta-lactams, and aminoglycosides (n = 81, 61, and 44 of 110 genomes; 73.6, 55.5, and 40.0%, respectively). Genes showing homology to Staphylococcus aureus exoenzyme aureolysin were detected across multiple species (using 90% coverage, n = 40 and 77 genomes harboring aureolysin-like genes at 60 and 40% amino acid [AA] identity, respectively). S. aureus Panton-Valentine leucocidin toxin-associated lukF-PV and lukS-PV homologs were identified in eight M. canis genomes (≥40% AA identity, >85% coverage). Using a method that delineates populations using recent gene flow (PopCOGenT), two species (M. caseolyticus and M. armenti) were composed of multiple within-species populations. Notably, M. armenti was partitioned into two populations, which differed in functional potential (e.g., one harbored beta-lactamase family, type II toxin-antitoxin system, and stress response proteins, while the other possessed a Type VII secretion system; PopCOGenT p < 0.05). Discussion Overall, this study leverages all publicly available Macrococcus genomes in addition to newly sequenced genomes from South Africa to identify genomic elements associated with AMR or virulence potential, which can be queried in future experiments.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
83
|
Arora J, Buček A, Hellemans S, Beránková T, Arias JR, Fisher BL, Clitheroe C, Brune A, Kinjo Y, Šobotník J, Bourguignon T. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc Biol Sci 2023; 290:20230619. [PMID: 37339742 DOI: 10.1098/rspb.2023.0619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Aleš Buček
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Tereza Beránková
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Johanna Romero Arias
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Brian L Fisher
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
- California Academy of Sciences, San Francisco, CA, USA
| | - Crystal Clitheroe
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| |
Collapse
|
84
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
85
|
Leung H, Xiong L, Ni Y, Busch A, Bauer M, Press AT, Panagiotou G. Impaired flux of bile acids from the liver to the gut reveals microbiome-immune interactions associated with liver damage. NPJ Biofilms Microbiomes 2023; 9:35. [PMID: 37286586 DOI: 10.1038/s41522-023-00398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Currently, there is evidence that alteration in the gut ecosystem contributes to the development of liver diseases, however, the complex mechanisms involved are still unclear. We induced cholestasis in mice by bile duct ligation (BDL), mirroring the phenotype of a bile duct obstruction, to understand how gut microbiota alterations caused by an impaired flow of bile acid to the gut contribute to the pathogenesis and progression of liver disease. We performed longitudinal stool, heart, and liver sampling using mice receiving BDL and controls receiving sham operation (ShamOP). Shotgun metagenomics profiling using fecal samples taken before and on day 1, day 3, and day 7 after surgery was performed, and the cytokines and clinical chemistry profiles from heart blood, as well as the liver bile acids profile, were measured. The BDL surgery reshaped the microbiome of mice, resulting in highly distinct characteristics compared to the ShamOP. Our analysis of the microbiome pathways and ECs revealed that BDL reduces the production of hepatoprotective compounds in the gut, such as biotin, spermidine, arginine, and ornithine, which were negatively associated with inflammatory cytokines (IL-6, IL-23, MCP-1). The reduction of the functional potential of the gut microbiota in producing those hepatoprotective compounds is associated with the decrease of beneficial bacteria species from Anaerotruncus, Blautia, Eubacterium, and Lachnoclostridium genera, as well as the increase of disease-associated bacteria e.g., Escherichia coli and Entercoccus faecalis. Our findings advances our knowledge of the gut microbiome-bile acids-liver triangle, which may serve as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ling Xiong
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Yueqiong Ni
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
- Friedrich Schiller University, Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany.
- Friedrich Schiller University, Medical Faculty, Jena, Germany.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany.
| |
Collapse
|
86
|
Hochart C, Paoli L, Ruscheweyh HJ, Salazar G, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Ziegler M, Porro B, Armstrong EJ, Hume BCC, Aury JM, Pogoreutz C, Paz-García DA, Nugues MM, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Wincker P, Zoccola D, Allemand D, Planes S, Thurber RV, Voolstra CR, Sunagawa S, Galand PE. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat Commun 2023; 14:3037. [PMID: 37264015 DOI: 10.1038/s41467-023-38502-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | | | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany
| | - Barbara Porro
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Claudia Pogoreutz
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, México
| | - Maggy M Nugues
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric Gilson
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, 8 rue de Prague, 75012, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France.
| |
Collapse
|
87
|
Li B, Yan T. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:41-89. [PMID: 37400174 DOI: 10.1016/bs.aambs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
88
|
Westermann LM, Lidbury ID, Li CY, Wang N, Murphy AR, Aguilo Ferretjans MDM, Quareshy M, Shanmugan M, Torcello-Requena A, Silvano E, Zhang YZ, Blindauer CA, Chen Y, Scanlan DJ. Bacterial catabolism of membrane phospholipids links marine biogeochemical cycles. SCIENCE ADVANCES 2023; 9:eadf5122. [PMID: 37126561 PMCID: PMC10132767 DOI: 10.1126/sciadv.adf5122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.
Collapse
Affiliation(s)
- Linda M. Westermann
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ian D. E. A. Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Chun-Yang Li
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew R. J. Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Muralidharan Shanmugan
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | | | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
89
|
Palmu J, Börschel CS, Ortega-Alonso A, Markó L, Inouye M, Jousilahti P, Salido RA, Sanders K, Brennan C, Humphrey GC, Sanders JG, Gutmann F, Linz D, Salomaa V, Havulinna AS, Forslund SK, Knight R, Lahti L, Niiranen T, Schnabel RB. Gut microbiome and atrial fibrillation-results from a large population-based study. EBioMedicine 2023; 91:104583. [PMID: 37119735 PMCID: PMC10165189 DOI: 10.1016/j.ebiom.2023.104583] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is an important heart rhythm disorder in aging populations. The gut microbiome composition has been previously related to cardiovascular disease risk factors. Whether the gut microbial profile is also associated with the risk of AF remains unknown. METHODS We examined the associations of prevalent and incident AF with gut microbiota in the FINRISK 2002 study, a random population sample of 6763 individuals. We replicated our findings in an independent case-control cohort of 138 individuals in Hamburg, Germany. FINDINGS Multivariable-adjusted regression models revealed that prevalent AF (N = 116) was associated with nine microbial genera. Incident AF (N = 539) over a median follow-up of 15 years was associated with eight microbial genera with false discovery rate (FDR)-corrected P < 0.05. Both prevalent and incident AF were associated with the genera Enorma and Bifidobacterium (FDR-corrected P < 0.001). AF was not significantly associated with bacterial diversity measures. Seventy-five percent of top genera (Enorma, Paraprevotella, Odoribacter, Collinsella, Barnesiella, Alistipes) in Cox regression analyses showed a consistent direction of shifted abundance in an independent AF case-control cohort that was used for replication. INTERPRETATION Our findings establish the basis for the use of microbiome profiles in AF risk prediction. However, extensive research is still warranted before microbiome sequencing can be used for prevention and targeted treatment of AF. FUNDING This study was funded by European Research Council, German Ministry of Research and Education, Academy of Finland, Finnish Medical Foundation, and the Finnish Foundation for Cardiovascular Research, the Emil Aaltonen Foundation, and the Paavo Nurmi Foundation.
Collapse
Affiliation(s)
- Joonatan Palmu
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland; Department of Internal Medicine, Turku University Hospital and University of Turku, Finland
| | - Christin S Börschel
- Department of Cardiology, University Heart and Vascular Centre Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alfredo Ortega-Alonso
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland; Neuroscience Center, University of Helsinki, Helsinki, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lajos Markó
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland
| | - Rodolfo A Salido
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caitriona Brennan
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gregory C Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA; Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Friederike Gutmann
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, and University of Adelaide, Adelaide, Australia; Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland; Institute for Molecular Medicine Finland, FIMM - HiLIFE, Helsinki, Finland
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany; Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Turku, Finland; Department of Internal Medicine, Turku University Hospital and University of Turku, Finland
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Centre Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
90
|
Shah SA, Deng L, Thorsen J, Pedersen AG, Dion MB, Castro-Mejía JL, Silins R, Romme FO, Sausset R, Jessen LE, Ndela EO, Hjelmsø M, Rasmussen MA, Redgwell TA, Leal Rodríguez C, Vestergaard G, Zhang Y, Chawes B, Bønnelykke K, Sørensen SJ, Bisgaard H, Enault F, Stokholm J, Moineau S, Petit MA, Nielsen DS. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023; 8:986-998. [PMID: 37037943 PMCID: PMC10159846 DOI: 10.1038/s41564-023-01345-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.
Collapse
Affiliation(s)
- Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark.
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders G Pedersen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
| | | | - Ronalds Silins
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Fie O Romme
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Romain Sausset
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Leon E Jessen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Eric Olo Ndela
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mathis Hjelmsø
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Cristina Leal Rodríguez
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Yichang Zhang
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Francois Enault
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Quebec, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
91
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
92
|
Oh M, Zhang L. DeepGeni: deep generalized interpretable autoencoder elucidates gut microbiota for better cancer immunotherapy. Sci Rep 2023; 13:4599. [PMID: 36944780 PMCID: PMC10030841 DOI: 10.1038/s41598-023-31210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Recent studies revealed that gut microbiota modulates the response to cancer immunotherapy and fecal microbiota transplantation has clinical benefits in melanoma patients during treatment. Understanding how microbiota affects individual responses is crucial for precision oncology. However, it is challenging to identify key microbial taxa with limited data as statistical and machine learning models often lose their generalizability. In this study, DeepGeni, a deep generalized interpretable autoencoder, is proposed to improve the generalizability and interpretability of microbiome profiles by augmenting data and by introducing interpretable links in the autoencoder. DeepGeni-based machine learning classifier outperforms state-of-the-art classifier in the microbiome-driven prediction of responsiveness of melanoma patients treated with immune checkpoint inhibitors. Moreover, the interpretable links of DeepGeni elucidate the most informative microbiota associated with cancer immunotherapy response. DeepGeni not only improves microbiome-driven prediction of immune checkpoint inhibitor responsiveness but also suggests potential microbial targets for fecal microbiota transplant or probiotics improving the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Oh
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
- Microsoft Research, Redmond, WA, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
93
|
Younginger BS, Mayba O, Reeder J, Nagarkar DR, Modrusan Z, Albert ML, Byrd AL. Enrichment of oral-derived bacteria in inflamed colorectal tumors and distinct associations of Fusobacterium in the mesenchymal subtype. Cell Rep Med 2023; 4:100920. [PMID: 36706753 PMCID: PMC9975273 DOI: 10.1016/j.xcrm.2023.100920] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
While the association between colorectal cancer (CRC) features and Fusobacterium has been extensively studied, less is known of other intratumoral bacteria. Here, we leverage whole transcriptomes from 807 CRC samples to dually characterize tumor gene expression and 74 intratumoral bacteria. Seventeen of these species, including 4 Fusobacterium spp., are classified as orally derived and are enriched among right-sided, microsatellite instability-high (MSI-H), and BRAF-mutant tumors. Across consensus molecular subtypes (CMSs), integration of Fusobacterium animalis (Fa) presence and tumor expression reveals that Fa has the most significant associations in mesenchymal CMS4 tumors despite a lower prevalence than in immune CMS1. Within CMS4, the prevalence of Fa is uniquely associated with collagen- and immune-related pathways. Additional Fa pangenome analysis reveals that stress response genes and the adhesion FadA are commonly expressed intratumorally. Overall, this study identifies oral-derived bacteria as enriched in inflamed tumors, and the associations of bacteria and tumor expression are context and species specific.
Collapse
Affiliation(s)
- Brett S Younginger
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Oleg Mayba
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Jens Reeder
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Deepti R Nagarkar
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, Inc., South San Francisco, CA, USA
| | | | - Allyson L Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
94
|
Zhang Z, Zhang L, Zhang G, Zhao Z, Wang H, Ju F. Deduplication Improves Cost-Efficiency and Yields of De Novo Assembly and Binning of Shotgun Metagenomes in Microbiome Research. Microbiol Spectr 2023; 11:e0428222. [PMID: 36744896 PMCID: PMC10101064 DOI: 10.1128/spectrum.04282-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
In the last decade, metagenomics has greatly revolutionized the study of microbial communities. However, the presence of artificial duplicate reads raised mainly from the preparation of metagenomic DNA sequencing libraries and their impacts on metagenomic assembly and binning have never been brought to attention. Here, we explicitly investigated the effects of duplicate reads on metagenomic assemblies and binning based on analyses of five groups of representative metagenomes with distinct microbiome complexities. Our results showed that deduplication considerably increased the binning yields (by 3.5% to 80%) for most of the metagenomic data sets examined thanks to the improved contig length and coverage profiling of metagenome-assembled contigs, whereas it slightly decreased the binning yields of metagenomes with low complexity (e.g., human gut metagenomes). Specifically, 411 versus 397, 331 versus 317, 104 versus 88, and 9 versus 5 metagenome-assembled genomes (MAGs) were recovered from MEGAHIT assemblies of bioreactor sludge, surface water, lake sediment, and forest soil metagenomes, respectively. Noticeably, deduplication significantly reduced the computational costs of the metagenomic assembly, including the elapsed time (9.0% to 29.9%) and the maximum memory requirement (4.3% to 37.1%). Collectively, we recommend the removal of duplicate reads in metagenomes with high complexity before assembly and binning analyses, for example, the forest soil metagenomes examined in this study. IMPORTANCE Duplicated reads in shotgun metagenomes are usually considered technical artifacts. Their presence in metagenomes would theoretically not only introduce bias into the quantitative analysis but also result in mistakes in the coverage profile, leading to adverse effects on or even failures in metagenomic assembly and binning, as the widely used metagenome assemblers and binners all need coverage information for graph partitioning and assembly binning, respectively. However, this issue was seldom noticed, and its impacts on downstream essential bioinformatic procedures (e.g., assembly and binning) remained unclear. In this study, we comprehensively evaluated for the first time the implications of duplicate reads for the de novo assembly and binning of real metagenomic data sets by comparing the assembly qualities, binning yields, and requirements for computational resources with and without the removal of duplicate reads. It was revealed that deduplication considerably increased the binning yields of metagenomes with high complexity and significantly reduced the computational costs, including the elapsed time and the maximum memory requirement, for most of the metagenomes studied. These results provide empirical references for more cost-efficient metagenomic analyses in microbiome research.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Lu Zhang
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Guoqing Zhang
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Ze Zhao
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Feng Ju
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
95
|
Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F, Chiriac MC, Ionescu D, Büsing P, Grossart HP, Xing P, Priscu JC, Alymkulov S, Pester M. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. SCIENCE ADVANCES 2023; 9:eadc9392. [PMID: 36724220 PMCID: PMC9891703 DOI: 10.1126/sciadv.adc9392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, "Candidatus Nitrosopumilus limneticus," is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Corresponding author.
| | - Michaela M. Salcher
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Franziska Klotz
- Department of Biology, University of Konstanz, D-78457 Constance, Germany
| | - Maria-Cecilia Chiriac
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Danny Ionescu
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, D-14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Free University, D-14195 Berlin, Germany
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Salmor Alymkulov
- Institute of Physics, National Academy of Sciences of Kyrgyz Republic, Chui Avenue, 265-a, Bishkek 720071, Kyrgyzstan
| | - Michael Pester
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, D-38108 Braunschweig, Germany
| |
Collapse
|
96
|
Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, Sugiyama M, Suda W, Nakanishi Y, Terada-Hirashima J, Kimura M, Nishijima T, Inooka H, Miyoshi-Akiyama T, Kojima Y, Shimokawa C, Hisaeda H, Zhang F, Yeoh YK, Ng SC, Uemura N, Itoi T, Mizokami M, Kawai T, Sugiyama H, Ohmagari N, Ohno H. Human Gut Microbiota and Its Metabolites Impact Immune Responses in COVID-19 and Its Complications. Gastroenterology 2023; 164:272-288. [PMID: 36155191 PMCID: PMC9499989 DOI: 10.1053/j.gastro.2022.09.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS We investigate interrelationships between gut microbes, metabolites, and cytokines that characterize COVID-19 and its complications, and we validate the results with follow-up, the Japanese 4D (Disease, Drug, Diet, Daily Life) microbiome cohort, and non-Japanese data sets. METHODS We performed shotgun metagenomic sequencing and metabolomics on stools and cytokine measurements on plasma from 112 hospitalized patients with SARS-CoV-2 infection and 112 non-COVID-19 control individuals matched by important confounders. RESULTS Multiple correlations were found between COVID-19-related microbes (eg, oral microbes and short-chain fatty acid producers) and gut metabolites (eg, branched-chain and aromatic amino acids, short-chain fatty acids, carbohydrates, neurotransmitters, and vitamin B6). Both were also linked to inflammatory cytokine dynamics (eg, interferon γ, interferon λ3, interleukin 6, CXCL-9, and CXCL-10). Such interrelationships were detected highly in severe disease and pneumonia; moderately in the high D-dimer level, kidney dysfunction, and liver dysfunction groups; but rarely in the diarrhea group. We confirmed concordances of altered metabolites (eg, branched-chain amino acids, spermidine, putrescine, and vitamin B6) in COVID-19 with their corresponding microbial functional genes. Results in microbial and metabolomic alterations with severe disease from the cross-sectional data set were partly concordant with those from the follow-up data set. Microbial signatures for COVID-19 were distinct from diabetes, inflammatory bowel disease, and proton-pump inhibitors but overlapping for rheumatoid arthritis. Random forest classifier models using microbiomes can highly predict COVID-19 and severe disease. The microbial signatures for COVID-19 showed moderate concordance between Hong Kong and Japan. CONCLUSIONS Multiomics analysis revealed multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 and COVID-19related complications but few in gastrointestinal complications, suggesting microbiota-mediated immune responses distinct between the organ sites. Our results underscore the existence of a gut-lung axis in COVID-19.
Collapse
Affiliation(s)
- Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Masuoka
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryo Aoki
- Mechanism-based Research Laboratory, Ezaki Glico Co, Ltd, Osaka, Japan
| | - Masahiro Ishikane
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan,Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Junko Terada-Hirashima
- Division of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Moto Kimura
- Department of Clinical Research Strategic Planning Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Hiroshi Inooka
- Mechanism-based Research Laboratory, Ezaki Glico Co, Ltd, Osaka, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasushi Kojima
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fen Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China,Microbiota I-Center, Hong Kong, China,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Naomi Uemura
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan,Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Haruhito Sugiyama
- Division of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
97
|
Usyk M, Peters BA, Karthikeyan S, McDonald D, Sollecito CC, Vazquez-Baeza Y, Shaffer JP, Gellman MD, Talavera GA, Daviglus ML, Thyagarajan B, Knight R, Qi Q, Kaplan R, Burk RD. Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. CELL REPORTS METHODS 2023; 3:100391. [PMID: 36814836 PMCID: PMC9939430 DOI: 10.1016/j.crmeth.2022.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
In a large cohort of 1,772 participants from the Hispanic Community Health Study/Study of Latinos with overlapping 16SV4 rRNA gene (bacterial amplicon), ITS1 (fungal amplicon), and shotgun sequencing data, we demonstrate that 16SV4 amplicon sequencing and shotgun metagenomics offer the same level of taxonomic accuracy for bacteria at the genus level even at shallow sequencing depths. In contrast, for fungal taxa, we did not observe meaningful agreements between shotgun and ITS1 amplicon results. Finally, we show that amplicon and shotgun data can be harmonized and pooled to yield larger microbiome datasets with excellent agreement (<1% effect size variance across three independent outcomes) using pooled amplicon/shotgun data compared to pure shotgun metagenomic analysis. Thus, there are multiple approaches to study the microbiome in epidemiological studies, and we provide a demonstration of a powerful pooling approach that will allow researchers to leverage the massive amount of amplicon sequencing data generated over the last two decades.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christopher C. Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yoshiki Vazquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Justin P. Shaffer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Gregory A. Talavera
- Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
| | - Martha L. Daviglus
- Department of Medicine, University of Illinois-Chicago, Chicago, IL, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Departments of Computer Science and Engineering, and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert D. Burk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, and Obstetrics, Gynecology & Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
98
|
Fullam A, Letunic I, Schmidt TSB, Ducarmon QR, Karcher N, Khedkar S, Kuhn M, Larralde M, Maistrenko O, Malfertheiner L, Milanese A, Rodrigues J, Sanchis-López C, Schudoma C, Szklarczyk D, Sunagawa S, Zeller G, Huerta-Cepas J, von Mering C, Bork P, Mende DR. proGenomes3: approaching one million accurately and consistently annotated high-quality prokaryotic genomes. Nucleic Acids Res 2023; 51:D760-D766. [PMID: 36408900 PMCID: PMC9825469 DOI: 10.1093/nar/gkac1078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/.
Collapse
Affiliation(s)
- Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr. 142, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Quinten R Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Supriya Khedkar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology & Biogeochemistry, 1797 SZ, ’t Horntje (Texel), Netherlands
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Alessio Milanese
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | | | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Christian Schudoma
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Damian Szklarczyk
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, 03722 Seoul, South Korea
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
99
|
Zachariasen T, Petersen AØ, Brejnrod A, Vestergaard GA, Eklund A, Nielsen HB. Identification of representative species-specific genes for abundance measurements. BIOINFORMATICS ADVANCES 2023; 3:vbad060. [PMID: 37213867 PMCID: PMC10199311 DOI: 10.1093/bioadv/vbad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Motivation Metagenomic binning facilitates the reconstruction of genomes and identification of Metagenomic Species Pan-genomes or Metagenomic Assembled Genomes. We propose a method for identifying a set of de novo representative genes, termed signature genes, which can be used to measure the relative abundance and used as markers of each metagenomic species with high accuracy. Results An initial set of the 100 genes that correlate with the median gene abundance profile of the entity is selected. A variant of the coupon collector's problem was utilized to evaluate the probability of identifying a certain number of unique genes in a sample. This allows us to reject the abundance measurements of strains exhibiting a significantly skewed gene representation. A rank-based negative binomial model is employed to assess the performance of different gene sets across a large set of samples, facilitating identification of an optimal signature gene set for the entity. When benchmarked the method on a synthetic gene catalog, our optimized signature gene sets estimate relative abundance significantly closer to the true relative abundance compared to the starting gene sets extracted from the metagenomic species. The method was able to replicate results from a study with real data and identify around three times as many metagenomic entities. Availability and implementation The code used for the analysis is available on GitHub: https://github.com/trinezac/SG_optimization. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Asker Brejnrod
- Department of Health and Technology, Technical University of Denmark, Lyngby 2800, Denmark
| | | | - Aron Eklund
- Clinical Microbiomics A/S, Copenhagen 2100, Denmark
| | | |
Collapse
|
100
|
Abdelsalam NA, Elshora H, El-Hadidi M. Interactive Web-Based Services for Metagenomic Data Analysis and Comparisons. Methods Mol Biol 2023; 2649:133-174. [PMID: 37258861 DOI: 10.1007/978-1-0716-3072-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, sequencing technologies have become readily available, and scientists are more motivated to conduct metagenomic research to unveil the potential of a myriad of ecosystems and biomes. Metagenomics studies the composition and functions of microbial communities and paves the way to multiple applications in medicine, industry, and ecology. Nonetheless, the immense amount of sequencing data of metagenomics research and the few user-friendly analysis tools and pipelines carry a new challenge to the data analysis.Web-based bioinformatics tools are now being developed to facilitate the analysis of complex metagenomic data without prior knowledge of any programming languages or special installation. Specialized web tools help answer researchers' main questions on the taxonomic classification, functional capabilities, discrepancies between two ecosystems, and the probable functional correlations between the members of a specific microbial community. With an Internet connection and a few clicks, researchers can conveniently and efficiently analyze the metagenomic datasets, summarize results, and visualize key information on the composition and the functional potential of metagenomic samples under study. This chapter provides a simple guide to a few of the fundamental web-based services used for metagenomic data analyses, such as BV-BRC, RDP, MG-RAST, MicrobiomeAnalyst, METAGENassist, and MGnify.
Collapse
Affiliation(s)
- Nehal Adel Abdelsalam
- University of Science and Technology, Zewail City, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hajar Elshora
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
- Biomedical Informatics Program, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt.
| |
Collapse
|