51
|
Leavey K, MacKenzie RK, Faber S, Lloyd VK, Mao C, Wills MKB, Boucoiran I, Cates EC, Omar A, Marquez O, Darling EK. Lyme borreliosis in pregnancy and associations with parent and offspring health outcomes: An international cross-sectional survey. Front Med (Lausanne) 2022; 9:1022766. [PMID: 36405612 PMCID: PMC9669415 DOI: 10.3389/fmed.2022.1022766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Lyme disease (LD) is a complex tick-borne pathology caused by Borrelia burgdorferi sensu lato bacteria. Currently, there are limited data regarding the health outcomes of people infected during pregnancy, the potential for perinatal transmission to their fetus, and the long-term effects on these children. Therefore, the primary objective of this survey study was to investigate the impact of LD in pregnancy on both the parent and their offspring. Methods A seven-section survey was developed and administered in REDCap. Although recruitment was primarily through LD-focused organizations, participation was open to anyone over the age of 18 who had been pregnant. Participant health/symptoms were compared across those with “Diagnosed LD,” “Suspected LD,” or “No LD” at any time in their lives. The timing of LD events in the participants’ histories (tick bite, diagnosis, treatment start, etc.) were then utilized to classify the participants’ pregnancies into one of five groups: “Probable Treated LD,” “Probable Untreated LD,” “Possible Untreated LD,” “No Evidence of LD,” and “Unclear.” Results A total of 691 eligible people participated in the survey, of whom 65% had Diagnosed LD, 6% had Suspected LD, and 29% had No LD ever. Both the Diagnosed LD and Suspected LD groups indicated a high symptom burden (p < 0.01). Unfortunately, direct testing of fetal/newborn tissues for Borrelia burgdorferi only occurred following 3% of pregnancies at risk of transmission; positive/equivocal results were obtained in 14% of these cases. Pregnancies with No Evidence of LD experienced the fewest complications (p < 0.01) and were most likely to result in a live birth (p = 0.01) and limited short- and long-term offspring pathologies (p < 0.01). Within the LD-affected pregnancy groups, obtaining treatment did not decrease complications for the parent themselves but did ameliorate neonatal health status, with reduced rates of rashes, hypotonia, and respiratory distress (all p < 0.01). The impact of parent LD treatment on longer-term child outcomes was less clear. Conclusion Overall, this pioneering survey represents significant progress toward understanding the effects of LD on pregnancy and child health. A large prospective study of pregnant people with LD, combining consistent diagnostic testing, exhaustive assessment of fetal/newborn samples, and long-term offspring follow-up, is warranted.
Collapse
Affiliation(s)
- Katherine Leavey
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON, Canada
| | - Rachel K. MacKenzie
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON, Canada
| | | | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Charlotte Mao
- Dean Center for Tick Borne Illness, Spaulding Rehabilitation Hospital, Boston, MA, United States
- Invisible International, Cambridge, MA, United States
| | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Isabelle Boucoiran
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, QC, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth C. Cates
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON, Canada
| | - Abeer Omar
- Trent/Fleming School of Nursing, Trent University, Peterborough, ON, Canada
| | - Olivia Marquez
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON, Canada
| | - Elizabeth K. Darling
- McMaster Midwifery Research Centre, McMaster University, Hamilton, ON, Canada
- *Correspondence: Elizabeth K. Darling,
| |
Collapse
|
52
|
Wojcik GL, Murphy J, Edelson JL, Gignoux CR, Ioannidis AG, Manning A, Rivas MA, Buyske S, Hendricks AE. Opportunities and challenges for the use of common controls in sequencing studies. Nat Rev Genet 2022; 23:665-679. [PMID: 35581355 PMCID: PMC9765323 DOI: 10.1038/s41576-022-00487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 01/02/2023]
Abstract
Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.
Collapse
Affiliation(s)
- Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica Murphy
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Jacob L Edelson
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | - Christopher R Gignoux
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alisa Manning
- Metabolism Program, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Audrey E Hendricks
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA.
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
53
|
Soko ND, Dlamini S, Ntsekhe M, Dandara C. The COVID-19 Pandemic and Explaining Outcomes in Africa: Could Genomic Variation Add to the Debate? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:594-607. [PMID: 36322905 PMCID: PMC9700373 DOI: 10.1089/omi.2022.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, emanated from the Wuhan Province in China and rapidly spread across the globe causing extensive morbidity and mortality rate, and affecting the global economy and livelihoods. Contrary to early predictions of "body bags" across Africa, the African COVID-19 pandemic was marked by apparent low case numbers and an overall mortality rate when compared with the other geographical regions. Factors used to describe this unexpected pattern included a younger population, a swifter and more effective national health policy, limited testing capacities, and the possibility of inadequate reporting of the cases, among others. However, despite genomics contributing to interindividual variations in many diseases across the world, there are inadequate genomic and multiomics data on COVID-19 in Africa that prevent richer transdisciplinary discussions on the contribution of genomics to the spread of COVID-19 pandemic. To invite future debates on comparative studies of COVID-19 genomics and the pandemic spread around the world regions, this expert review evaluates the reported frequency distribution of genetic variants in candidate genes that are likely to affect COVID-19 infection dynamics/disease outcomes. We propose here that genomic variation should be considered among the many factors determining the COVID-19 infection and its outcomes in African populations and across the world.
Collapse
Affiliation(s)
- Nyarai D. Soko
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation, Cape Town, South Africa
| | - Sipho Dlamini
- Division of Infectious Diseases, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation, Cape Town, South Africa
| |
Collapse
|
54
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
55
|
Augusto DG, Yusufali T, Sabatino JJ, Peyser ND, Murdolo LD, Butcher X, Murray V, Pae V, Sarvadhavabhatla S, Beltran F, Gill G, Lynch K, Yun C, Maguire C, Peluso MJ, Hoh R, Henrich TJ, Deeks SG, Davidson M, Lu S, Goldberg SA, Kelly JD, Martin JN, Viera-Green CA, Spellman SR, Langton DJ, Lee S, Marcus GM, Olgin JE, Pletcher MJ, Gras S, Maiers M, Hollenbach JA. A common allele of HLA mediates asymptomatic SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.05.13.21257065. [PMID: 34031661 PMCID: PMC8142661 DOI: 10.1101/2021.05.13.21257065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite some inconsistent reporting of symptoms, studies have demonstrated that at least 20% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain asymptomatic. Although most global efforts have focused on understanding factors underlying severe illness in COVID-19 (coronavirus disease of 2019), the examination of asymptomatic infection provides a unique opportunity to consider early disease and immunologic features promoting rapid viral clearance. Owing to its critical role in the immune response, we postulated that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection. We enrolled 29,947 individuals registered in the National Marrow Donor Program for whom high-resolution HLA genotyping data were available in the UCSF Citizen Science smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n=1428) was comprised of unvaccinated, self-identified subjects who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci (HLA-A, -B, -C, -DRB1, -DQB1) with disease course and identified a strong association of HLA-B*15:01 with asymptomatic infection, and reproduced this association in two independent cohorts. Suggesting that this genetic association is due to pre-existing T-cell immunity, we show that T cells from pre-pandemic individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF, and 100% of the reactive cells displayed memory phenotype. Finally, we characterize the protein structure of HLA-B*15:01-peptide complexes, demonstrating that the NQKLIANQF peptide from SARS-CoV-2, and the highly homologous NQKLIANAF from seasonal coronaviruses OC43-CoV and HKU1-CoV, share similar ability to be stabilized and presented by HLA-B*15:01, providing the molecular basis for T-cell cross-reactivity and HLA-B*15:01-mediated pre-existing immunity.
Collapse
Affiliation(s)
- Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Tasneem Yusufali
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph J. Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Noah D. Peyser
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawton D. Murdolo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Xochitl Butcher
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Victoria Murray
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gurjot Gill
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kara Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Colin Maguire
- University of Utah, Clinical and Translational Science Institute, Salt Lake City, UT
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Davidson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- F.I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia A. Viera-Green
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen R. Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - David J. Langton
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, UK
| | - Sulggi Lee
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gregory M. Marcus
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey E. Olgin
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mark J. Pletcher
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
56
|
Jo HY, Kim SC, Ahn DH, Lee S, Chang SH, Jung SY, Kim YJ, Kim E, Kim JE, Kim YS, Park WY, Cho NH, Park D, Lee JH, Park HY. Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen. BMB Rep 2022; 55:465-471. [PMID: 35996834 PMCID: PMC9537027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 03/08/2024] Open
Abstract
Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].
Collapse
Affiliation(s)
- Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Do-hwan Ahn
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | | | - Se-Hyun Chang
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - So-Young Jung
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Young-Jin Kim
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Eugene Kim
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Jung-Eun Kim
- Division of Bio Bigdata, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Yeon-Sook Kim
- Division of Infectious Disease, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woong-Yang Park
- Geninus Inc, Seoul 05836, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | | | - Ju-Hee Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| |
Collapse
|
57
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Loucera C, Perez-Florido J, Casimiro-Soriguer CS, Ortuño FM, Carmona R, Bostelmann G, Martínez-González LJ, Muñoyerro-Muñiz D, Villegas R, Rodriguez-Baño J, Romero-Gomez M, Lorusso N, Garcia-León J, Navarro-Marí JM, Camacho-Martinez P, Merino-Diaz L, de Salazar A, Viñuela L, Lepe JA, Garcia F, Dopazo J. Assessing the Impact of SARS-CoV-2 Lineages and Mutations on Patient Survival. Viruses 2022; 14:1893. [PMID: 36146700 PMCID: PMC9500738 DOI: 10.3390/v14091893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES More than two years into the COVID-19 pandemic, SARS-CoV-2 still remains a global public health problem. Successive waves of infection have produced new SARS-CoV-2 variants with new mutations for which the impact on COVID-19 severity and patient survival is uncertain. METHODS A total of 764 SARS-CoV-2 genomes, sequenced from COVID-19 patients, hospitalized from 19th February 2020 to 30 April 2021, along with their clinical data, were used for survival analysis. RESULTS A significant association of B.1.1.7, the alpha lineage, with patient mortality (log hazard ratio (LHR) = 0.51, C.I. = [0.14,0.88]) was found upon adjustment by all the covariates known to affect COVID-19 prognosis. Moreover, survival analysis of mutations in the SARS-CoV-2 genome revealed 27 of them were significantly associated with higher mortality of patients. Most of these mutations were located in the genes coding for the S, ORF8, and N proteins. CONCLUSIONS This study illustrates how a combination of genomic and clinical data can provide solid evidence for the impact of viral lineage on patient survival.
Collapse
Affiliation(s)
- Carlos Loucera
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Javier Perez-Florido
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Carlos S. Casimiro-Soriguer
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
| | - Francisco M. Ortuño
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Department of Computer Architecture and Computer Technology, University of Granada, 18011 Granada, Spain
| | - Rosario Carmona
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
| | - Gerrit Bostelmann
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
| | - L. Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Dolores Muñoyerro-Muñiz
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud, 41001 Sevilla, Spain
| | - Román Villegas
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud, 41001 Sevilla, Spain
| | - Jesus Rodriguez-Baño
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Medicina, Universidad de Sevilla, C. San Fernando, 4, 41004 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, 28029 Madrid, Spain
| | - Manuel Romero-Gomez
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
- Departamento de Medicina, Universidad de Sevilla, C. San Fernando, 4, 41004 Sevilla, Spain
- Servicio de Aparato Digestivo, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Nicola Lorusso
- Dirección General de Salud Pública, Consejería de Salud y Familias, Junta de Andalucía, 41020 Sevilla, Spain
| | - Javier Garcia-León
- Departamento de Metafísica y Corrientes Actuales de la Filosofía, Ética y Filosofía Política, Universidad de Sevilla, 41004 Sevilla, Spain
| | - Jose M. Navarro-Marí
- Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Pedro Camacho-Martinez
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Laura Merino-Diaz
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Adolfo de Salazar
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Viñuela
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | | | - Jose A. Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, 28029 Madrid, Spain
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Federico Garcia
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Joaquin Dopazo
- Bioinformatics Area, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
| |
Collapse
|
59
|
Redin C, Thorball CW, Fellay J. Host genomics of SARS-CoV-2 infection. Eur J Hum Genet 2022; 30:908-914. [PMID: 35768520 PMCID: PMC9244159 DOI: 10.1038/s41431-022-01136-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infected a large fraction of humans in the past 2 years. The clinical presentation of acute infection varies greatly between individuals, ranging from asymptomatic or mild to life-threatening COVID-19 pneumonia with multi-organ complications. Demographic and comorbid factors explain part of this variability, yet it became clear early in the pandemic that human genetic variation also plays a role in the stark differences observed amongst SARS-CoV-2 infected individuals. Using tools and approaches successfully developed for human genomic studies in the previous decade, large international collaborations embarked in the exploration of the genetic determinants of multiple outcomes of SARS-CoV-2 infection, with a special emphasis on disease severity. Genome-wide association studies identified multiple common genetic variants associated with COVID-19 pneumonia, most of which in regions encoding genes with known or suspected immune function. However, the downstream, functional work required to understand the precise causal variants at each locus has only begun. The interrogation of rare genetic variants using targeted, exome, or genome sequencing approaches has shown that defects in genes involved in type I interferon response explain some of the most severe cases. By highlighting genes and pathways involved in SARS-CoV-2 pathogenesis and host-virus interactions, human genomic studies not only revealed novel preventive and therapeutic targets, but also paved the way for more individualized disease management.
Collapse
Affiliation(s)
- Claire Redin
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christian W Thorball
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
60
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
61
|
Mørup SB, Nazaryan-Petersen L, Gabrielaite M, Reekie J, Marquart HV, Hartling HJ, Marvig RL, Katzenstein TL, Masmas TN, Lundgren J, Murray DD, Helleberg M, Borgwardt L. Added Value of Reanalysis of Whole Exome- and Whole Genome Sequencing Data From Patients Suspected of Primary Immune Deficiency Using an Extended Gene Panel and Structural Variation Calling. Front Immunol 2022; 13:906328. [PMID: 35874679 PMCID: PMC9302041 DOI: 10.3389/fimmu.2022.906328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Knowledge of the genetic variation underlying Primary Immune Deficiency (PID) is increasing. Reanalysis of genome-wide sequencing data from undiagnosed patients with suspected PID may improve the diagnostic rate. Methods We included patients monitored at the Department of Infectious Diseases or the Child and Adolescent Department, Rigshospitalet, Denmark, for a suspected PID, who had been analysed previously using a targeted PID gene panel (457 PID-related genes) on whole exome- (WES) or whole genome sequencing (WGS) data. A literature review was performed to extend the PID gene panel used for reanalysis of single nucleotide variation (SNV) and small indels. Structural variant (SV) calling was added on WGS data. Results Genetic data from 94 patients (86 adults) including 36 WES and 58 WGS was reanalysed a median of 23 months after the initial analysis. The extended gene panel included 208 additional PID-related genes. Genetic reanalysis led to a small increase in the proportion of patients with new suspicious PID related variants of uncertain significance (VUS). The proportion of patients with a causal genetic diagnosis was constant. In total, five patients (5%, including three WES and two WGS) had a new suspicious PID VUS identified due to reanalysis. Among these, two patients had a variant added due to the expansion of the PID gene panel, and three patients had a variant reclassified to a VUS in a gene included in the initial PID gene panel. The total proportion of patients with PID related VUS, likely pathogenic, and pathogenic variants increased from 43 (46%) to 47 (50%), as one patient had a VUS detected in both initial- and reanalysis. In addition, we detected new suspicious SNVs and SVs of uncertain significance in PID candidate genes with unknown inheritance and/or as heterozygous variants in genes with autosomal recessive inheritance in 8 patients. Conclusion These data indicate a possible diagnostic gain of reassessing WES/WGS data from patients with suspected PID. Reasons for the possible gain included improved knowledge of genotype-phenotype correlation, expanding the gene panel, and adding SV analyses. Future studies of genotype-phenotype correlations may provide additional knowledge on the impact of the new suspicious VUSs.
Collapse
Affiliation(s)
- Sara Bohnstedt Mørup
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Migle Gabrielaite
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joanne Reekie
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hanne V. Marquart
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Jakob Hartling
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Terese L. Katzenstein
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tania N. Masmas
- The Child and Adolescent Department, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Lundgren
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel D. Murray
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
62
|
Epigenomic analysis reveals a dynamic and context-specific macrophage enhancer landscape associated with innate immune activation and tolerance. Genome Biol 2022; 23:136. [PMID: 35751107 PMCID: PMC9229144 DOI: 10.1186/s13059-022-02702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background Chromatin states and enhancers associate gene expression, cell identity and disease. Here, we systematically delineate the acute innate immune response to endotoxin in terms of human macrophage enhancer activity and contrast with endotoxin tolerance, profiling the coding and non-coding transcriptome, chromatin accessibility and epigenetic modifications. Results We describe the spectrum of enhancers under acute and tolerance conditions and the regulatory networks between these enhancers and biological processes including gene expression, splicing regulation, transcription factor binding and enhancer RNA signatures. We demonstrate that the vast majority of differentially regulated enhancers on acute stimulation are subject to tolerance and that expression quantitative trait loci, disease-risk variants and eRNAs are enriched in these regulatory regions and related to context-specific gene expression. We find enrichment for context-specific eQTL involving endotoxin response and specific infections and delineate specific differential regions informative for GWAS variants in inflammatory bowel disease and multiple sclerosis, together with a context-specific enhancer involving a bacterial infection eQTL for KLF4. We show enrichment in differential enhancers for tolerance involving transcription factors NFκB-p65, STATs and IRFs and prioritize putative causal genes directly linking genetic variants and disease risk enhancers. We further delineate similarities and differences in epigenetic landscape between stem cell-derived macrophages and primary cells and characterize the context-specific enhancer activities for key innate immune response genes KLF4, SLAMF1 and IL2RA. Conclusions Our study demonstrates the importance of context-specific macrophage enhancers in gene regulation and utility for interpreting disease associations, providing a roadmap to link genetic variants with molecular and cellular functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02702-1.
Collapse
|
63
|
López-Rodríguez R, Del Pozo-Valero M, Corton M, Minguez P, Ruiz-Hornillos J, Pérez-Tomás ME, Barreda-Sánchez M, Mancebo E, Villaverde C, Núñez-Moreno G, Romero R, Paz-Artal E, Guillén-Navarro E, Almoguera B, Ayuso C. Presence of rare potential pathogenic variants in subjects under 65 years old with very severe or fatal COVID-19. Sci Rep 2022; 12:10369. [PMID: 35725860 PMCID: PMC9208539 DOI: 10.1038/s41598-022-14035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare variants affecting host defense against pathogens could be involved in COVID-19 severity and may help explain fatal outcomes in young and middle-aged patients. Our aim was to report the presence of rare genetic variants in certain genes, by using whole exome sequencing, in a selected group of COVID-19 patients under 65 years who required intubation or resulting in death (n = 44). To this end, different etiopathogenic mechanisms were explored using gene prioritization-based analysis in which genes involved in immune response, immunodeficiencies or blood coagulation were studied. We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic and were located in genes mainly involved in immune response. A network analysis, including the 42 genes with candidate variants, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks composed by genes enriched in carbohydrate metabolism and in DNA metabolism and repair processes. In conclusion, we have detected candidate variants that may potentially influence COVID-19 outcome in our cohort of patients. Further studies are needed to confirm the ultimate role of the genetic variants described in the present study on COVID-19 severity.
Collapse
Affiliation(s)
- Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo Minguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Javier Ruiz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - María Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Barreda-Sánchez
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Health Sciences Faculty, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Raquel Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Encarna Guillén-Navarro
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- Medical Genetics Section, Pediatric Department, Virgen de la Arrixaca University Clinical Hospital, Faculty of Medicine, University of Murcia (UMU), Murcia, Spain
| | - Berta Almoguera
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
64
|
Scudeller L. Infectious diseases and inborn errors of immunity. Clin Microbiol Infect 2022; 28:1409-1410. [PMID: 35654314 DOI: 10.1016/j.cmi.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Luigia Scudeller
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Reseach and Innovation Unit, Bologna, Italy.
| |
Collapse
|
65
|
Khanaliha K, Bokharaei-Salim F, Donyavi T, Nahand JS, Marjani A, Jamshidi S, Khatami A, Moghaddas M, Esghaei M, Fakhim A. Evaluation of CCR5-Δ32 mutation and HIV-1 surveillance drug-resistance mutations in peripheral blood mononuclear cells of long-term non progressors of HIV-1-infected individuals. Future Virol 2022. [DOI: 10.2217/fvl-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study aimed to evaluate chemokine receptor 5 delta 32 (CCR5-Δ32) mutation and HIV-1 surveillance drug-resistance mutations (SDRMs) in peripheral blood mononuclear cells of long-term non progressors (LTNPs) of HIV-1-infected individuals. Materials and methods: This research was performed on 197 treatment-naive HIV-1-infected patients. After follow-up, it was determined that 15 (7.6%) of these people were LTNPs. The PCR assay was performed to identify the CCR5 genotype and HIV-1 SDRMs. Results: One (6.7%) of the LTNPs was heterozygous (wt/Δ32) for the CCR5 delta 32 (CCR5Δ32). However, none of the individuals was homozygous for this mutation (Δ32/Δ32). Moreover, none of the LTNPs showed HIV-1 SDRMs. The CRF35-AD subtype was the most dominant subtype, with a percentage of 93.3%. Conclusion: Iranian elite controllers are negative for CCR5-delta 32 homozygous genotype and drug resistance against antiretroviral drugs.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Donyavi
- Medical Biotechnology Department, School of Allied Medical Sciences, Iran University of Medical Sciences
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Marjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Moghaddas
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Fakhim
- Department of Architectural Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| |
Collapse
|
66
|
Mentzer AJ, Brenner N, Allen N, Littlejohns TJ, Chong AY, Cortes A, Almond R, Hill M, Sheard S, McVean G, Collins R, Hill AVS, Waterboer T. Identification of host-pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank. Nat Commun 2022; 13:1818. [PMID: 35383168 PMCID: PMC8983701 DOI: 10.1038/s41467-022-29307-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Certain infectious agents are recognised causes of cancer and other chronic diseases. To understand the pathological mechanisms underlying such relationships, here we design a Multiplex Serology platform to measure quantitative antibody responses against 45 antigens from 20 infectious agents including human herpes, hepatitis, polyoma, papilloma, and retroviruses, as well as Chlamydia trachomatis, Helicobacter pylori and Toxoplasma gondii, then assayed a random subset of 9695 UK Biobank participants. We find seroprevalence estimates consistent with those expected from prior literature and confirm multiple associations of antibody responses with sociodemographic characteristics (e.g., lifetime sexual partners with C. trachomatis), HLA genetic variants (rs6927022 with Epstein-Barr virus (EBV) EBNA1 antibodies) and disease outcomes (human papillomavirus-16 seropositivity with cervical intraepithelial neoplasia, and EBV responses with multiple sclerosis). Our accessible dataset is one of the largest incorporating diverse infectious agents in a prospective UK cohort offering opportunities to improve our understanding of host-pathogen-disease relationships with significant clinical and public health implications.
Collapse
Affiliation(s)
- Alexander J. Mentzer
- grid.4991.50000 0004 1936 8948The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Nicole Brenner
- grid.7497.d0000 0004 0492 0584Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Naomi Allen
- grid.4991.50000 0004 1936 8948Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK ,grid.421945.f0000 0004 0396 0496UK Biobank, Stockport, UK ,grid.4991.50000 0004 1936 8948Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Thomas J. Littlejohns
- grid.4991.50000 0004 1936 8948Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Amanda Y. Chong
- grid.4991.50000 0004 1936 8948The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adrian Cortes
- grid.4991.50000 0004 1936 8948Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Rachael Almond
- grid.421945.f0000 0004 0396 0496UK Biobank, Stockport, UK
| | - Michael Hill
- grid.4991.50000 0004 1936 8948Nuffield Department of Population Health, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948MRC-Population Health Research Unit, University of Oxford, Oxford, UK
| | - Simon Sheard
- grid.421945.f0000 0004 0396 0496UK Biobank, Stockport, UK
| | - Gil McVean
- grid.4991.50000 0004 1936 8948Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | | | - Rory Collins
- grid.421945.f0000 0004 0396 0496UK Biobank, Stockport, UK ,grid.4991.50000 0004 1936 8948Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Adrian V. S. Hill
- grid.4991.50000 0004 1936 8948The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948The Jenner Institute, University of Oxford, Oxford, UK
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
67
|
Hernandez-Beeftink T, Marcelino-Rodríguez I, Guillen-Guio B, Rodríguez-Pérez H, Lorenzo-Salazar JM, Corrales A, Díaz-de Usera A, González-Montelongo R, Domínguez D, Espinosa E, Villar J, Flores C. Admixture Mapping of Sepsis in European Individuals With African Ancestries. Front Med (Lausanne) 2022; 9:754440. [PMID: 35345767 PMCID: PMC8957104 DOI: 10.3389/fmed.2022.754440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is a severe systemic inflammatory response to infections that is accompanied by organ dysfunction. Although the ancestral genetic background is a relevant factor for sepsis susceptibility, there is a lack of studies using the genetic singularities of a recently admixed population to identify loci involved in sepsis susceptibility. Here we aimed to discover new sepsis loci by completing the first admixture mapping study of sepsis in Canary Islanders, leveraging their distinctive genetic makeup as a mixture of Europeans and African ancestries. We used a case-control approach and inferred local ancestry blocks from genome-wide data from 113,414 polymorphisms genotyped in 343 patients with sepsis and 410 unrelated controls, all ascertained for grandparental origin in the Canary Islands (Spain). Deviations in local ancestries between cases and controls were tested using logistic regressions, followed by fine-mapping analyses based on imputed genotypes, in silico functional assessments, and gene expression analysis centered on the region of interest. The admixture mapping analysis detected that local European ancestry in a locus spanning 1.2 megabases of chromosome 8p23.1 was associated with sepsis (lowest p = 1.37 × 10−4; Odds Ratio [OR] = 0.51; 95%CI = 0.40–0.66). Fine-mapping studies prioritized the variant rs13249564 within intron 1 of MFHAS1 gene associated with sepsis (p = 9.94 × 10−4; OR = 0.65; 95%CI = 0.50–0.84). Functional and gene expression analyses focused on 8p23.1 allowed us to identify alternative genes with possible biological plausibility such as defensins, which are well-known effector molecules of innate immunity. By completing the first admixture mapping study of sepsis, our results revealed a new genetic locus (8p23.1) harboring a number of genes with plausible implications in sepsis susceptibility.
Collapse
Affiliation(s)
- Tamara Hernandez-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - David Domínguez
- Department of Anesthesiology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elena Espinosa
- Department of Anesthesiology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
68
|
Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life (Basel) 2022; 12:life12040478. [PMID: 35454970 PMCID: PMC9031737 DOI: 10.3390/life12040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, PMB 3452, Kano 700233, Nigeria;
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | | | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria;
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India;
| | - Maryam Abba Tor
- Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane, Mbabane H101, Hhohho, Eswatini;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro, Pelotas 96010-610, RS, Brazil;
| | - Marshall Gowere
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Kona Chowdhury
- Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
69
|
Determination of Human Papillomavirus Type 18 Lineage of E6: A Population Study from Iran. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2839708. [PMID: 35342765 PMCID: PMC8956376 DOI: 10.1155/2022/2839708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
The epidemiological studies in Iran on HPV18 nucleotide changes are rare. This type of virus is prevalent in the Iranian population. Therefore, in the present study, we aimed to identify the genetic variability in HPV18 in the E6 region to evaluate the prevalence of lineage distribution and sublineages in a sample population in Iran. Overall, 60 HPV18 confirmed cases were investigated between 2019 and 2021. The specimens were collected, and molecular genotyping was done using the Linear Array HPV Genotyping Test. DNA extraction was performed by a viral DNA/RNA kit. The HPV E6 gene was amplified by using type-specific primers designed according to the HPV18 genome prototype sequence. The sequencing of the E6 region was successfully done on 43 samples which were then compared to the reference sequence. The most frequent sublineage of HPV18 in this study was A4 (69.7%), followed by A1 (18.6%) and A3 (11.6%). Neither A2 nor A5 sublineage was not detected in this study. The related nucleotide acid changes according to the main references were as follows: A3: T104C/T232G/T485C/C549A, A4: T104C/T485C/C549A. The predominance of A lineage with the high frequency of A4 sublineage was found in the present research. The importance of sublineages in susceptibility to a progressive form of infection requires to be more investigated among the different population.
Collapse
|
70
|
Li P, Zhang Y, Shen W, Shi S, Zhao Z. dbGSRV: A manually curated database of genetic susceptibility to respiratory virus. PLoS One 2022; 17:e0262373. [PMID: 35298480 PMCID: PMC8929643 DOI: 10.1371/journal.pone.0262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human genetics has been proposed to play an essential role in inter-individual differences in respiratory virus infection occurrence and outcomes. To systematically understand human genetic contributions to respiratory virus infection, we developed the database dbGSRV, a manually curated database that integrated the host genetic susceptibility and severity studies of respiratory viruses scattered over literatures in PubMed. At present, dbGSRV contains 1932 records of genetic association studies relating 1010 unique variants and seven respiratory viruses, manually curated from 168 published articles. Users can access the records by quick searching, batch searching, advanced searching and browsing. Reference information, infection status, population information, mutation information and disease relationship are provided for each record, as well as hyperlinks to public databases in convenient of users accessing more information. In addition, a visual overview of the topological network relationship between respiratory viruses and associated genes is provided. Therefore, dbGSRV offers a convenient resource for researchers to browse and retrieve genetic associations with respiratory viruses, which may inspire future studies and provide new insights in our understanding and treatment of respiratory virus infection. Database URL: http://www.ehbio.com/dbGSRV/front/
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail:
| |
Collapse
|
71
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
72
|
Boahen CK, Temba GS, Kullaya VI, Matzaraki V, Joosten LAB, Kibiki G, Mmbaga BT, van der Ven A, de Mast Q, Netea MG, Kumar V. A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population. Am J Hum Genet 2022; 109:471-485. [PMID: 35167808 DOI: 10.1016/j.ajhg.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.
Collapse
Affiliation(s)
- Collins K Boahen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania; Department of Paediatrics, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Medical Sciences Complex, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
73
|
Sumaiya K, Natarajaseenivasan K. Macrophage migration inhibitory factor gene promoter polymorphism (−173G/C SNP) determines host susceptibility and severity of leptospirosis. Microb Pathog 2022; 164:105445. [DOI: 10.1016/j.micpath.2022.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
74
|
Schmidt A, M. Groh A, S. Frick J, Vehreschild MJGT, U. Ludwig K. Genetic Predisposition and the Variable Course of Infectious Diseases. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:117-123. [PMID: 35101171 PMCID: PMC9160423 DOI: 10.3238/arztebl.m2022.0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Contact with a pathogen is followed by variable courses of infectious disease, which are only partly explicable by classical risk factors. The susceptibility to infection is variable, as is the course of disease after infection. In this review, we discuss the extent to which this variation is due to genetic factors of the affected individual (the host). METHODS Selective review of the literature on host genetics in infectious disease, with special attention to the pathogens SARSCoV- 2, influenza viruses, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). RESULTS Genetic variants of the host contribute to the pathogenesis of infectious diseases. For example, in HIV infection, a relatively common variant leading to a loss of function of the HIV co-receptor CCR5 affects the course of the disease, as do variants in genes of the major histocompatibility complex (MHC) region. Rare monogenic variants of the interferon immune response system contribute to severe disease courses in COVID-19 and influenza (type I interferon in these two cases) and in tuberculosis (type II interferon). An estimated 1.8% of life-threatening courses of COVID-19 in men under age 60 are caused by a deficiency of toll-like receptor 7. The scientific understanding of host genetic factors has already been beneficial to the development of effective drugs. In a small number of cases, genetic information has also been used for individual therapeutic decision-making and for the identification of persons at elevated risk. CONCLUSION A comprehensive understanding of host genetics can improve the care of patients with infectious diseases. Until the present, the clinical utility of host genetics has been limited to rare cases; in the future, polygenic risk scores summarizing the relevant genetic variants in each patient will enable a wider benefit. To make this possible, multicenter studies are needed that will systematically integrate clinical and genetic data.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
| | - Ana M. Groh
- Medical Department II, Infectiology, University HospitalFrankfurt, Goethe University Frankfurt
| | - Julia S. Frick
- Interfaculty Institute for Microbiology and Infection Medicine, University Hospital and Faculty of Medicine Tübingen
- MVZ Laboratory Ludwigsburg GbR
| | | | - Kerstin U. Ludwig
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
- * Institut für Humangenetik, Department of Genomics Universitätsklinikum Bonn Venusberg-Campus 1, Gebäude 76 53127 Bonn, Germany
| |
Collapse
|
75
|
A year of Covid-19 GWAS results from the GRASP portal reveals potential genetic risk factors. HGG ADVANCES 2022; 3:100095. [PMID: 35224516 PMCID: PMC8863308 DOI: 10.1016/j.xhgg.2022.100095] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Host genetic variants influence the susceptibility and severity of several infectious diseases, and the discovery of genetic associations with Covid-19 phenotypes could help developing new therapeutic strategies to reduce its burden. Between May 2020 and June 2021, we used Covid-19 data released periodically by UK Biobank and performed 65 Genome-Wide Association Studies (GWAS) in up to 18 releases of Covid-19 susceptibility (N=18,481 cases in June 2021), hospitalization (N=3,260), severe outcomes (N=1,244) and death (N=1,104), stratified by sex and ancestry. In coherence with previous studies, we observed 2 independent signals at the chr3p21.31 locus (rs73062389-A, OR=1.21, P=4.26×10-15 and rs71325088-C, OR=1.62, P=2.25×10-9) modulating susceptibility and severity, respectively, and a signal influencing susceptibility at the ABO locus (rs9411378-A, OR=1.10, P=3.30×10-12), suggesting an increased risk of infection in non-O blood groups carriers. Additional signals at the APOE (associated with severity and death) LRMDA (susceptibility in non-European) and chr2q32.3 (susceptibility in women) loci were also identified but did not replicate in independent datasets. We then devised an approach to extract variants suggestively associated (P<10-5) exhibiting an increase in significance over time. When applied to the susceptibility, hospitalization and severity analyses, this approach revealed the known RPL24, DPP9, and MAPT loci, respectively, amongst hundreds of other signals. These results, freely available on the GRASP portal, provide insights on the genetic mechanisms involved in Covid-19 phenotypes.
Collapse
|
76
|
Peloso GM, Tcheandjieu C, McGeary JE, Posner DC, Ho YL, Zhou JJ, Hilliard AT, Joseph J, O’Donnell CJ, Efird JT, Crawford DC, Wu WC, Arjomandi M, Sun YV, Assimes TL, Huffman JE. Genetic Loci Associated With COVID-19 Positivity and Hospitalization in White, Black, and Hispanic Veterans of the VA Million Veteran Program. Front Genet 2022; 12:777076. [PMID: 35222515 PMCID: PMC8864634 DOI: 10.3389/fgene.2021.777076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 has caused symptomatic COVID-19 and widespread death across the globe. We sought to determine genetic variants contributing to COVID-19 susceptibility and hospitalization in a large biobank linked to a national United States health system. We identified 19,168 (3.7%) lab-confirmed COVID-19 cases among Million Veteran Program participants between March 1, 2020, and February 2, 2021, including 11,778 Whites, 4,893 Blacks, and 2,497 Hispanics. A multi-population genome-wide association study (GWAS) for COVID-19 outcomes identified four independent genetic variants (rs8176719, rs73062389, rs60870724, and rs73910904) contributing to COVID-19 positivity, including one novel locus found exclusively among Hispanics. We replicated eight of nine previously reported genetic associations at an alpha of 0.05 in at least one population-specific or the multi-population meta-analysis for one of the four MVP COVID-19 outcomes. We used rs8176719 and three additional variants to accurately infer ABO blood types. We found that A, AB, and B blood types were associated with testing positive for COVID-19 compared with O blood type with the highest risk for the A blood group. We did not observe any genome-wide significant associations for COVID-19 severity outcomes among those testing positive. Our study replicates prior GWAS findings associated with testing positive for COVID-19 among mostly White samples and extends findings at three loci to Black and Hispanic individuals. We also report a new locus among Hispanics requiring further investigation. These findings may aid in the identification of novel therapeutic agents to decrease the morbidity and mortality of COVID-19 across all major ancestral populations.
Collapse
Affiliation(s)
- Gina M. Peloso
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Catherine Tcheandjieu
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - John E. McGeary
- Providence VA Healthcare System, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, United States
| | - Daniel C. Posner
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
| | - Jin J. Zhou
- Phoenix VA Health Care System, Phoenix, AZ, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | | | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
- Cardiology Section, VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Christopher J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
- Cardiology Section, VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jimmy T. Efird
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, United States
| | - Dana C. Crawford
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Wen-Chih Wu
- Providence VA Healthcare System, Providence, RI, United States
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI, United States
| | - Mehrdad Arjomandi
- Medical Service, San Francisco VA Medical Center, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | | | - Yan V. Sun
- Atlanta VA Health Care System, Decatur, GA, United States
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
77
|
López-Sánchez M, Loucera C, Peña-Chilet M, Dopazo J. Discovering potential interactions between rare diseases and COVID-19 by combining mechanistic models of viral infection with statistical modeling. Hum Mol Genet 2022; 31:2078-2089. [PMID: 35022696 PMCID: PMC9239744 DOI: 10.1093/hmg/ddac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.
Collapse
Affiliation(s)
- Macarena López-Sánchez
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain.,FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| |
Collapse
|
78
|
Buckley SJ, Harvey RJ. Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes. Front Cell Infect Microbiol 2022; 11:809560. [PMID: 35004362 PMCID: PMC8739889 DOI: 10.3389/fcimb.2021.809560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus is a globally significant human pathogen. The extensive variability of the GAS genome, virulence phenotypes and clinical outcomes, render it an excellent candidate for the application of genotype-phenotype association studies in the era of whole-genome sequencing. We have catalogued the distribution and diversity of the transcription regulators of GAS, and employed phylogenetics, concordance metrics and machine learning (ML) to test for associations. In this review, we communicate the lessons learnt in the context of the recent bacteria genotype-phenotype association studies of others that have utilised both genome-wide association studies (GWAS) and ML. We envisage a promising future for the application GWAS in bacteria genotype-phenotype association studies and foresee the increasing use of ML. However, progress in this field is hindered by several outstanding bottlenecks. These include the shortcomings that are observed when GWAS techniques that have been fine-tuned on human genomes, are applied to bacterial genomes. Furthermore, there is a deficit of easy-to-use end-to-end workflows, and a lag in the collection of detailed phenotype and clinical genomic metadata. We propose a novel quality control protocol for the collection of high-quality GAS virulence phenotype coupled to clinical outcome data. Finally, we incorporate this protocol into a workflow for testing genotype-phenotype associations using ML and ‘linked’ patient-microbe genome sets that better represent the infection event.
Collapse
Affiliation(s)
- Sean J Buckley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
79
|
Van Goethem N, Danwang C, Bossuyt N, Van Oyen H, Roosens NHC, Robert A. A systematic review and meta-analysis of host genetic factors associated with influenza severity. BMC Genomics 2021; 22:912. [PMID: 34930124 PMCID: PMC8686082 DOI: 10.1186/s12864-021-08240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Célestin Danwang
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| |
Collapse
|
80
|
Human immune diversity: from evolution to modernity. Nat Immunol 2021; 22:1479-1489. [PMID: 34795445 DOI: 10.1038/s41590-021-01058-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
The extreme diversity of the human immune system, forged and maintained throughout evolutionary history, provides a potent defense against opportunistic pathogens. At the same time, this immune variation is the substrate upon which a plethora of immune-associated diseases develop. Genetic analysis suggests that thousands of individually weak loci together drive up to half of the observed immune variation. Intense selection maintains this genetic diversity, even selecting for the introgressed Neanderthal or Denisovan alleles that have reintroduced variation lost during the out-of-Africa migration. Variations in age, sex, diet, environmental exposure, and microbiome each potentially explain the residual variation, with proof-of-concept studies demonstrating both plausible mechanisms and correlative associations. The confounding interaction of many of these variables currently makes it difficult to assign definitive contributions. Here, we review the current state of play in the field, identify the key unknowns in the causality of immune variation, and identify the multidisciplinary pathways toward an improved understanding.
Collapse
|
81
|
Impact of genetic ancestry on viral infection response. Nat Rev Genet 2021; 23:72. [PMID: 34845336 PMCID: PMC8628835 DOI: 10.1038/s41576-021-00442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
82
|
Casares-Marfil D, Kerick M, Andrés-León E, Bosch-Nicolau P, Molina I, Martin J, Acosta-Herrera M. GWAS loci associated with Chagas cardiomyopathy influences DNA methylation levels. PLoS Negl Trop Dis 2021; 15:e0009874. [PMID: 34714828 PMCID: PMC8580254 DOI: 10.1371/journal.pntd.0009874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/10/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
A recent genome-wide association study (GWAS) identified a locus in chromosome 11 associated with the chronic cardiac form of Chagas disease. Here we aimed to elucidate the potential functional mechanism underlying this genetic association by analyzing the correlation among single nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) levels as cis methylation quantitative trait loci (cis-mQTL) within this region. A total of 2,611 SNPs were tested against 2,647 DNAm sites, in a subset of 37 chronic Chagas cardiomyopathy patients and 20 asymptomatic individuals from the GWAS. We identified 6,958 significant cis-mQTLs (False Discovery Rate [FDR]<0.05) at 1 Mb each side of the GWAS leading variant, where six of them potentially modulate the expression of the SAC3D1 gene, the reported gene in the previous GWAS. In addition, a total of 268 cis-mQTLs showed differential methylation between chronic Chagas cardiomyopathy patients and asymptomatic individuals. The most significant cis-mQTLs mapped in the gene bodies of POLA2 (FDR = 1.04x10-11), PLAAT3 (FDR = 7.22x10-03), and CCDC88B (FDR = 1.89x10-02) that have been associated with cardiovascular and hematological traits in previous studies. One of the most relevant interactions correlated with hypermethylation of CCDC88B. This gene is involved in the inflammatory response, and its methylation and expression levels have been previously reported in Chagas cardiomyopathy. Our findings support the functional relevance of the previously associated genomic region, highlighting the regulation of novel genes that could play a role in the chronic cardiac form of the disease. Genome-wide association studies (GWAS) have provided extensive information regarding the genetic component of complex traits, including parasitic diseases such as Chagas disease. However, these associations mapped in regulatory regions of the genome and assigning them a functional consequence have been cumbersome. In this study we aimed to evaluate the functional mechanism underlying the previously reported genomic association with chronic Chagas cardiomyopathy, by assessing the correlation between methylation changes and the underlying genetic variations within the region. These methylation quantitative trait loci (mQTLs) may be involved in gene expression regulation. We identified mQTLs in three genes that have been associated with cardiovascular diseases in previous studies. Interestingly, one of these genes was previously identified as differentially methylated and expressed in heart biopsies of chronic Chagas cardiomyopathy patients. Our results suggest novel genes that could play a role in the chronic Chagas cardiomyopathy, evidencing the functional relevance of the previously associated loci.
Collapse
Affiliation(s)
| | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | | | - Pau Bosch-Nicolau
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d’Hebron, PROSICS, Barcelona, Spain
| | - Israel Molina
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d’Hebron, PROSICS, Barcelona, Spain
| | | | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | | |
Collapse
|
83
|
Prakrithi P, Lakra P, Sundar D, Kapoor M, Mukerji M, Gupta I, The Indian Genome Variation Consortium. Genetic Risk Prediction of COVID-19 Susceptibility and Severity in the Indian Population. Front Genet 2021; 12:714185. [PMID: 34707636 PMCID: PMC8543005 DOI: 10.3389/fgene.2021.714185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
Host genetic variants can determine their susceptibility to COVID-19 infection and severity as noted in a recent Genome-wide Association Study (GWAS). Given the prominent genetic differences in Indian sub-populations as well as differential prevalence of COVID-19, here, we compute genetic risk scores in diverse Indian sub-populations that may predict differences in the severity of COVID-19 outcomes. We utilized the top 100 most significantly associated single-nucleotide polymorphisms (SNPs) from a GWAS by Pairo-Castineira et al. determining the genetic susceptibility to severe COVID-19 infection, to compute population-wise polygenic risk scores (PRS) for populations represented in the Indian Genome Variation Consortium (IGVC) database. Using a generalized linear model accounting for confounding variables, we found that median PRS was significantly associated (p < 2 x 10−16) with COVID-19 mortality in each district corresponding to the population studied and had the largest effect on mortality (regression coefficient = 10.25). As a control we repeated our analysis on randomly selected 100 non-associated SNPs several times and did not find significant association. Therefore, we conclude that genetic susceptibility may play a major role in determining the differences in COVID-19 outcomes and mortality across the Indian sub-continent. We suggest that combining PRS with other observed risk-factors in a Bayesian framework may provide a better prediction model for ascertaining high COVID-19 risk groups and to design more effective public health resource allocation and vaccine distribution schemes.
Collapse
Affiliation(s)
- P Prakrithi
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Priya Lakra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Mitali Mukerji
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - The Indian Genome Variation Consortium
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.,Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| |
Collapse
|
84
|
Zhu Z, Zhang S, Wang P, Chen X, Bi J, Cheng L, Zhang X. A comprehensive review of the analysis and integration of omics data for SARS-CoV-2 and COVID-19. Brief Bioinform 2021; 23:6412396. [PMID: 34718395 PMCID: PMC8574485 DOI: 10.1093/bib/bbab446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first report of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, over 100 million people have been infected by COVID-19, millions of whom have died. In the latest year, a large number of omics data have sprung up and helped researchers broadly study the sequence, chemical structure and function of SARS-CoV-2, as well as molecular abnormal mechanisms of COVID-19 patients. Though some successes have been achieved in these areas, it is necessary to analyze and mine omics data for comprehensively understanding SARS-CoV-2 and COVID-19. Hence, we reviewed the current advantages and limitations of the integration of omics data herein. Firstly, we sorted out the sequence resources and database resources of SARS-CoV-2, including protein chemical structure, potential drug information and research literature resources. Next, we collected omics data of the COVID-19 hosts, including genomics, transcriptomics, microbiology and potential drug information data. And subsequently, based on the integration of omics data, we summarized the existing data analysis methods and the related research results of COVID-19 multi-omics data in recent years. Finally, we put forward SARS-CoV-2 (COVID-19) multi-omics data integration research direction and gave a case study to mine deeper for the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Jianxing Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China, 150081.,NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China, 150028.,McKusick-Zhang Center for Genetic Medicine, Peking Union Medical College, Beijing, China, 100005
| |
Collapse
|
85
|
Saxenhofer M, Labutin A, White TA, Heckel G. Host genetic factors associated with the range limit of a European hantavirus. Mol Ecol 2021; 31:252-265. [PMID: 34614264 PMCID: PMC9298007 DOI: 10.1111/mec.16211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV‐infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1–0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade‐specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.
Collapse
Affiliation(s)
- Moritz Saxenhofer
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| | - Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Thomas A White
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| |
Collapse
|
86
|
Zarei M, Rahimi K, Hassanzadeh K, Abdi M, Hosseini V, Fathi A, Kakaei K. From the environment to the cells: An overview on pivotal factors which affect spreading and infection in COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2021; 201:111555. [PMID: 34197816 PMCID: PMC8236413 DOI: 10.1016/j.envres.2021.111555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Several factors ranging from environmental risks to the genetics of the virus and that of the hosts, affect the spread of COVID-19. The impact of physicochemical variables on virus vitality and spread should be taken into account in experimental and clinical studies. Another avenue to explore is the effect of diet and its interaction with the immune system on SARS-CoV-2 infection and mortality rate. Past year have witnessed extensive studies on virus and pathophysiology of the COVID-19 disease and the cellular mechanisms of virus spreading. However, our knowledge has not reached a level where we plan an efficient therapeutic approach to prevent the virus entry to the cells or decreasing the spreading and morbidity in severe cases of disease. The risk of infection directly correlates with the control of virus spreading via droplets and aerosol transmission, as well as patient immune system response. A key goal in virus restriction and transmission rate is to understand the physicochemical structure of aerosol and droplet formation, and the parameters that affect the droplet-borne and airborne in different environmental conditions. The lifetime of droplets on different surfaces is described based on the contact angle. Hereby, we recommend regular use of high-quality face masks in high temperature and low humidity conditions. However, in humid and cold weather conditions, wearing gloves and frequently hand washing, gain a higher priority. Additionally, social distancing rules should be respected in all aforementioned conditions. We will also discuss different routes of SARS-CoV-2 entry into the cells and how multiple genetic factors play a role in the spread of the virus. Given the role of environmental and nutritional factors, we discuss and recommend some strategies to prevent the disease and protect the population against COVID-19. Since an effective vaccine can prevent the transmission of communicable diseases and abolish pandemics, we added a brief review of candidate SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark
| | - Kambiz Hassanzadeh
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Mohammad Abdi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Fathi
- FUJIFILM Cellular Dynamics, Inc., Madison, WI, USA.
| | - Karim Kakaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
87
|
A Host of Host Assays: The Clinical Accuracy of Two Host Gene Expression Assays in Acute Infection. Crit Care Med 2021; 49:1812-1814. [PMID: 34529611 DOI: 10.1097/ccm.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6:344. [PMID: 34545062 PMCID: PMC8450706 DOI: 10.1038/s41392-021-00736-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
- Disease Genome Research Center, Central South University, Changsha, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Yan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
89
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
90
|
Hook JS, Patel PA, O'Malley A, Xie L, Kavanaugh JS, Horswill AR, Moreland JG. Lipoproteins from Staphylococcus aureus Drive Neutrophil Extracellular Trap Formation in a TLR2/1- and PAD-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 207:966-973. [PMID: 34290104 DOI: 10.4049/jimmunol.2100283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Neutrophils, polymorphonuclear leukocytes (PMN), play a critical role in the innate immune response to Staphylococcus aureus, a pathogen that continues to be associated with significant morbidity and mortality. Neutrophil extracellular trap (NET) formation is involved in ensnaring and killing of S. aureus, but this host-pathogen interaction also leads to host tissue damage. Importantly, NET components including neutrophil proteases are under consideration as therapeutic targets in a variety of disease processes. Although S. aureus lipoproteins are recognized to activate cells via TLRs, specific mechanisms of interaction with neutrophils are poorly delineated. We hypothesized that a lipoprotein-containing cell membrane preparation from methicillin-resistant S. aureus (MRSA-CMP) would elicit PMN activation, including NET formation. We investigated MRSA-CMP-elicited NET formation, regulated elastase release, and IL-8 production in human neutrophils. We studied PMN from healthy donors with or without a common single-nucleotide polymorphism in TLR1, previously demonstrated to impact TLR2/1 signaling, and used cell membrane preparation from both wild-type methicillin-resistant S. aureus and a mutant lacking palmitoylated lipoproteins (lgt). MRSA-CMP elicited NET formation, elastase release, and IL-8 production in a lipoprotein-dependent manner. TLR2/1 signaling was involved in NET formation and IL-8 production, but not elastase release, suggesting that MRSA-CMP-elicited elastase release is not mediated by triacylated lipoproteins. MRSA-CMP also primed neutrophils for enhanced NET formation in response to a subsequent stimulus. MRSA-CMP-elicited NET formation did not require Nox2-derived reactive oxygen species and was partially dependent on the activity of peptidyl arginine deiminase (PAD). In conclusion, lipoproteins from S. aureus mediate NET formation via TLR2/1 with clear implications for patients with sepsis.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Parth A Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aidan O'Malley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lihua Xie
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO.,Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO; and
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
91
|
Kulkeaw K, Pengsart W. Progress and Challenges in the Use of a Liver-on-a-Chip for Hepatotropic Infectious Diseases. MICROMACHINES 2021; 12:mi12070842. [PMID: 34357252 PMCID: PMC8306537 DOI: 10.3390/mi12070842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
The liver is a target organ of life-threatening pathogens and prominently contributes to the variation in drug responses and drug-induced liver injury among patients. Currently available drugs significantly decrease the morbidity and mortality of liver-dwelling pathogens worldwide; however, emerging clinical evidence reveals the importance of host factors in the design of safe and effective therapies for individuals, known as personalized medicine. Given the primary adherence of cells in conventional two-dimensional culture, the use of these one-size-fit-to-all models in preclinical drug development can lead to substantial failures in assessing therapeutic safety and efficacy. Advances in stem cell biology, bioengineering and material sciences allow us to develop a more physiologically relevant model that is capable of recapitulating the human liver. This report reviews the current use of liver-on-a-chip models of hepatotropic infectious diseases in the context of precision medicine including hepatitis virus and malaria parasites, assesses patient-specific responses to antiviral drugs, and designs personalized therapeutic treatments to address the need for a personalized liver-like model. Second, most organs-on-chips lack a monitoring system for cell functions in real time; thus, the review discusses recent advances and challenges in combining liver-on-a-chip technology with biosensors for assessing hepatocyte viability and functions. Prospectively, the biosensor-integrated liver-on-a-chip device would provide novel biological insights that could accelerate the development of novel therapeutic compounds.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-6468 (ext. 96484)
| | - Worakamol Pengsart
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
92
|
Thorball CW, Fellay J, Borghesi A. Immunological lessons from genome-wide association studies of infections. Curr Opin Immunol 2021; 72:87-93. [PMID: 33878603 DOI: 10.1016/j.coi.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Over the past few years, genome-wide association studies (GWAS) have been increasingly applied to identify host genetic factors influencing clinical and laboratory traits related to immunity and infection, and to understand the interplay between the host and the microbial genomes. By screening large cohorts of individuals suffering from various infectious diseases, GWAS explored resistance against infection, natural history of the disease, development of life-threatening clinical signs, and innate and adaptive immune responses. These efforts provided fundamental insight on the role of major genes in the interindividual variability in the response to infection and on the mechanisms of the immune response against human pathogens both at the individual and population levels.
Collapse
Affiliation(s)
- Christian W Thorball
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alessandro Borghesi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
93
|
Chen Y, Verhaar MC. Editorial for Special Issue on Drug and Disease Testing Model Systems. Tissue Eng Part C Methods 2021; 27:47-48. [PMID: 33617354 DOI: 10.1089/ten.tec.2021.29023.ych] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
94
|
Keij FM, Achten NB, Tramper-Stranders GA, Allegaert K, van Rossum AMC, Reiss IKM, Kornelisse RF. Stratified Management for Bacterial Infections in Late Preterm and Term Neonates: Current Strategies and Future Opportunities Toward Precision Medicine. Front Pediatr 2021; 9:590969. [PMID: 33869108 PMCID: PMC8049115 DOI: 10.3389/fped.2021.590969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a "one size fits all" approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.
Collapse
Affiliation(s)
- Fleur M Keij
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Niek B Achten
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie M C van Rossum
- Division of Infectious Diseases, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - René F Kornelisse
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|