51
|
Khan RS, Ordog T, Hong SD, Schmitz AH, Thattaliyath B, Sharathkumar AA. Evolution of Cardiovascular Findings in Multisystem Inflammatory Syndrome in Children (MIS-C) Across COVID-19 Variants: Common Trends and Unusual Presentations. Pediatr Cardiol 2024; 45:552-559. [PMID: 38261062 DOI: 10.1007/s00246-023-03397-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare condition following COVID-19 infection. Cardiac involvement is common and includes left ventricular systolic dysfunction, cardiac marker elevation, electrocardiogram (ECG) changes, and coronary artery dilation. This single-center retrospective cohort study compares cardiovascular disease between three major SARS-CoV-2 variants and describes the evolution of findings in medium-term follow-up. Of 69 total children (mean age 9.2 years, 58% male), 60 (87%) had cardiovascular involvement with the most common features being troponin elevation in 33 (47%) and left ventricular dysfunction in 22 (32%). Based on presumed infection timing, 61 patients were sorted into variant cohorts of Alpha, Delta, and Omicron. Hospitalization was longer for the Delta group (7.7 days) vs Alpha (5.1 days, p = 0.0065) and Omicron (4.9 days, p = 0.012). Troponin elevation was more common in Delta compared to Alpha (13/20 vs 7/25, p = 0.18), and cumulative evidence of cardiac injury (echocardiographic abnormality and/or troponin elevation) was more common in Delta (17/20) compared with Alpha (12/25, p = 0.013) or Omicron (8/16, p = 0.034). Forty-nine (77%) of the original cohort (n = 69) had no cardiac symptoms or findings beyond 3 months post-hospitalization. Cardiac MRI was performed in 28 patients (between 3 and 6 months post-hospitalization) and was normal in 25 patients (89%). The differences in the variant cohorts may be due to alteration of the immune landscape with higher severity of COVID-19 infection. Despite overall reassuring cardiac outcomes, it is important to note the variability of presentation and remain vigilant with future variants.
Collapse
Affiliation(s)
- Rabia S Khan
- Division of Pediatric Cardiology, Department of Pediatrics, UCLA Health Sciences, Los Angeles, CA, USA.
| | | | - Sandy D Hong
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Anna H Schmitz
- Division of Hospital Medicine, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Bijoy Thattaliyath
- Division of Pediatric Cardiology, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Anjali A Sharathkumar
- Division of Pediatric Hematology, Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
52
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
53
|
Parzen-Johnson S, Katz BZ. Navigating the Spectrum of Two Pediatric COVID-19 Complications: Multi-System Inflammatory Syndrome in Children and Post-Acute Sequelae of SARS-CoV-2 Infection. J Clin Med 2024; 13:1147. [PMID: 38398460 PMCID: PMC10889837 DOI: 10.3390/jcm13041147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE This review summarizes the current scope of understanding associated with two common post-infectious complications associated with COVID-19 infection: Multi-System Inflammatory Syndrome in Children (MIS-C) and Post-Acute Sequelae of SARS-CoV-2 infection (PASC). It identifies current gaps in the knowledge and issues that may limit the ability to fill these gaps. This review provides a framework to drive continued research. METHODS A comprehensive review of the current literature was performed, identifying seminal articles describing the emergence of MIS-C and PASC, and works from the literature focused on the clinical implications and pathophysiologic understanding of these disorders. FINDINGS Although pediatric patients experienced few severe cases of acute COVID-19 infection, the burden of disease from post-infectious sequelae is substantial. Mortality is low, but morbidity is significant. There are still numerous unknowns about the pathophysiology of both MIS-C and PASC; however, with widespread immunity developing after increased vaccination and prior infection, it may be difficult to perform adequate prospective studies to answer pathophysiologic questions. Long-term sequalae of MIS-C seem to be minimal whereas, by definition, PASC is an ongoing problem and may be severe. IMPLICATIONS The rapid sharing of information regarding novel conditions such as MIS-C and PASC are key to interventions related to future post-infectious sequelae outside of those stemming from COVID-19. Although MIS-C seems unlikely to return as a clinical condition in substantial numbers, there is still significant learning that can be gleaned from existing patients about general aspects of epidemiology, equity, and pathophysiology. There is significant morbidity associated with PASC and additional resources need to be dedicated to determining appropriate and effective therapies moving forward.
Collapse
Affiliation(s)
- Simon Parzen-Johnson
- Section of Infectious Diseases, Biological Sciences Division, University of Chicago, 5841 South Maryland Avenue, MC 6082, Chicago, IL 60637, USA
| | - Ben Z Katz
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, 225 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
54
|
Khan R, Ji W, Guzman-Rivera J, Madhvi A, Andrews T, Richlin B, Suarez C, Gaur S, Cuddy W, Singh AR, Bukulmez H, Kaelber D, Kimura Y, Ganapathi U, Michailidis IE, Ukey R, Moroso-Fela S, Kuster JK, Casseus M, Roy J, Kleinman LC, Horton DB, Lakhani SA, Gennaro ML. A genetically modulated Toll-like-receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24301686. [PMID: 38370700 PMCID: PMC10871447 DOI: 10.1101/2024.02.02.24301686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after SARS-CoV-2 exposure. To investigate innate immune functions in MIS-C, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in children enrolled months after MIS-C recovery. Moreover, cells from MIS-C children carrying rare genetic variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Our results strongly suggest that MIS-C hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands drive immune cells to a lasting refractory state. TLR hyporesponsiveness is likely beneficial, as suggested by excess lymphopenia among rare LYST variant carriers. Our findings point to cellular mechanisms underlying TLR hyporesponsiveness; identify genetic determinants that may explain the MIS-C clinical spectrum; suggest potential associations between innate refractory states and long COVID; and highlight the need to monitor long-term consequences of MIS-C.
Collapse
Affiliation(s)
- Rehan Khan
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Jeisac Guzman-Rivera
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Abhilasha Madhvi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Benjamin Richlin
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christian Suarez
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sunanda Gaur
- Department of Pediatrics, Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Aalok R Singh
- Maria Fareri Children's Hospital, Valhalla, NY
- New York Medical College, Valhalla, NY
| | - Hulya Bukulmez
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
| | - David Kaelber
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
- Center for Clinical Informatics Research and Education, MetroHealth System, Cleveland OH
- Department of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH
| | - Yukiko Kimura
- Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Usha Ganapathi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Ioannis E Michailidis
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Rahul Ukey
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Sandra Moroso-Fela
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - John K Kuster
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Myriam Casseus
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Lawrence C Kleinman
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Global Urban Health, Rutgers School of Public Health, Piscataway, NJ
| | - Daniel B Horton
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, NJ
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| |
Collapse
|
55
|
Butters C, Benede N, Moyo-Gwete T, Richardson SI, Rohlwink U, Shey M, Ayres F, Manamela NP, Makhado Z, Balla SR, Madzivhandila M, Ngomti A, Baguma R, Facey-Thomas H, Spracklen TF, Day J, van der Ross H, Riou C, Burgers WA, Scott C, Zühlke L, Moore PL, Keeton RS, Webb K. Comparing the immune abnormalities in MIS-C to healthy children and those with inflammatory disease reveals distinct inflammatory cytokine production and a monofunctional T cell response. Clin Immunol 2024; 259:109877. [PMID: 38141746 DOI: 10.1016/j.clim.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.
Collapse
Affiliation(s)
- Claire Butters
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Simone I Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| | - Muki Shey
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Department of Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Sashkia R Balla
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Mashudu Madzivhandila
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Timothy F Spracklen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Jonathan Day
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa
| | - Hamza van der Ross
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Christiaan Scott
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Clinical Research Centre, University of Cape Town, Groote Schuur Hospital, Observatory, 7935 Cape Town, South Africa.
| | - Liesl Zühlke
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; South African Medical Research Council, Francie Van Zijl Drive, Parow Valley, 7501 Cape Town, South Africa.
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Umbilo Road, 4001 Durban, South Africa.
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Kate Webb
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
56
|
Henderson LA. COVID-19-Related Multi-systemic Inflammatory Syndrome in Children (MIS-C). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:409-425. [PMID: 39117830 DOI: 10.1007/978-3-031-59815-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infections in children. This syndrome manifests about a month after the initial viral infection and is characterized by fever, multiorgan dysfunction, and systemic inflammation. This chapter will review the emergence, epidemiology, clinical characteristics, diagnosis, pathophysiology, immunomodulatory treatment, prognosis, outcomes, and prevention of MIS-C. While the pathophysiology of MIS-C remains to be defined, it is a post-infection, hyperinflammatory syndrome of childhood with elevated inflammatory cytokines.
Collapse
Affiliation(s)
- Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Batu ED. Multisystem Inflammatory Syndrome in Children vs Kawasaki Disease: A Never-Ending Spectrum of Phenotypes. Can J Cardiol 2024; 40:73-76. [PMID: 37451612 DOI: 10.1016/j.cjca.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Ezgi Deniz Batu
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
58
|
Chen LN, Shou ZX, Jin X. Interaction Between Genetic Susceptibility and COVID-19 Pathogenesis in Pediatric Multisystem Inflammatory Disorders: The Role of Immune Responses. Viral Immunol 2024; 37:1-11. [PMID: 38271561 DOI: 10.1089/vim.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Numerous studies have highlighted the emergence of coronavirus disease (COVID-19) symptoms reminiscent of Kawasaki disease in children, including fever, heightened multisystem inflammation, and multiorgan involvement, posing a life-threatening complication. Consequently, extensive research endeavors in pediatric have aimed to elucidate the intricate relationship between COVID-19 infection and the immune system. COVID-19 profoundly impacts immune cells, culminating in a cytokine storm that particularly inflicts damage on the pulmonary system. The gravity and vulnerability to COVID-19 are closely intertwined with the vigor of the immune response. In this context, the human leukocyte antigen (HLA) molecule assumes pivotal significance in shaping immune responses. Genetic scrutiny of HLA has unveiled the presence of at least one deleterious allele in children afflicted with multisystem inflammatory syndrome in children (MIS-C). Furthermore, research has demonstrated that COVID-19 exploits the angiotensin-converting enzyme 2 (ACE-2) receptor, transmembrane serine protease type 2, and various other genes to gain entry into host cells, with individuals harboring ACE-2 polymorphisms being at higher risk. Pediatric studies have employed diverse genetic methodologies, such as genome-wide association studies (GWAS) and whole exome sequencing, to scrutinize target genes. These investigations have pinpointed two specific genomic loci linked to the severity and susceptibility of COVID-19, with the HLA locus emerging as a notable risk factor. In this comprehensive review article, we endeavor to assess the available evidence and consolidate data, offering insights into current clinical practices and delineating avenues for future research. Our objective is to advance early diagnosis, stabilization, and appropriate management strategies to mitigate genetic susceptibility's impact on the incidence of COVID-19 in pediatric patients with multisystem inflammation.
Collapse
Affiliation(s)
- Li-Na Chen
- Department of Pediatric, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhang-Xuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
59
|
Surma S, Lewek J, Banach M. Pediatric inflammatory multisystem syndrome and SARS-CoV-2. INTERNATIONAL AND LIFE COURSE ASPECTS OF COVID-19 2024:357-371. [DOI: 10.1016/b978-0-323-95648-2.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
60
|
Lee PY. Monocytic Phagocytes in the Immunopathogenesis of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:161-171. [PMID: 39117814 DOI: 10.1007/978-3-031-59815-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSSs) are caused by a dysregulated host immune response to an inciting systemic inflammatory trigger. This maladaptive and harmful immune response culminates in collateral damage to host tissues resulting in life-threatening multisystem organ failure. Knowledge of the various immune cells that contribute to CSS pathogenesis has improved dramatically in the past decade. Monocytes, dendritic cells, and macrophages, collective known as monocytic phagocytes, are well-positioned within the immune system hierarchy to make key contributions to the initiation, propagation, and amplification of the hyperinflammatory response in CSS. The plasticity of monocytic phagocytes also makes them prime candidates for mediating immunoregulatory and tissue-healing functions in patients who recover from cytokine storm-mediated immunopathology. Therefore, approaches to manipulate the myriad functions of monocytic phagocytes may improve the clinical outcome of CSS.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Xiao H, Rosen A, Chhibbar P, Moise L, Das J. From bench to bedside via bytes: Multi-omic immunoprofiling and integration using machine learning and network approaches. Hum Vaccin Immunother 2023; 19:2282803. [PMID: 38100557 PMCID: PMC10730168 DOI: 10.1080/21645515.2023.2282803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
A significant surge in research endeavors leverages the vast potential of high-throughput omic technology platforms for broad profiling of biological responses to vaccines and cutting-edge immunotherapies and stem-cell therapies under development. These profiles capture different aspects of core regulatory and functional processes at different scales of resolution from molecular and cellular to organismal. Systems approaches capture the complex and intricate interplay between these layers and scales. Here, we summarize experimental data modalities, for characterizing the genome, epigenome, transcriptome, proteome, metabolome, and antibody-ome, that enable us to generate large-scale immune profiles. We also discuss machine learning and network approaches that are commonly used to analyze and integrate these modalities, to gain insights into correlates and mechanisms of natural and vaccine-mediated immunity as well as therapy-induced immunomodulation.
Collapse
Affiliation(s)
- Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Rosen
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabal Chhibbar
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
62
|
Huang Z, Brodeur KE, Chen L, Du, Wobma H, Hsu EE, Liu M, Chang JC, Chang MH, Chou J, Day-Lewis M, Dedeoglu F, Halyabar O, Lederer JA, Li T, Lo MS, Lu M, Meidan E, Newburger JW, Randolph AG, Son MB, Sundel RP, Taylor ML, Wu H, Zhou Q, Canna SW, Wei K, Henderson LA, Nigrovic PA, Lee PY. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J Clin Invest 2023; 133:e165616. [PMID: 37751296 PMCID: PMC10645381 DOI: 10.1172/jci165616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.
Collapse
Affiliation(s)
- Zhengping Huang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Kailey E. Brodeur
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liang Chen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Du
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan E. Hsu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Liu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Joyce C. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meiping Lu
- Department of Rheumatology, Immunology and Allergy, Zhejiang University School of Medicine, Hangzhou, China
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Scott W. Canna
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Wu F, Lin C, Han Y, Zhou D, Chen K, Yang M, Xiao Q, Zhang H, Li W. Multi-omic analysis characterizes molecular susceptibility of receptors to SARS-CoV-2 spike protein. Comput Struct Biotechnol J 2023; 21:5583-5600. [PMID: 38034398 PMCID: PMC10681948 DOI: 10.1016/j.csbj.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
In the post COVID-19 era, new SARS-CoV-2 variant strains may continue emerging and long COVID is poised to be another public health challenge. Deciphering the molecular susceptibility of receptors to SARS-CoV-2 spike protein is critical for understanding the immune responses in COVID-19 and the rationale of multi-organ injuries. Currently, such systematic exploration remains limited. Here, we conduct multi-omic analysis of protein binding affinities, transcriptomic expressions, and single-cell atlases to characterize the molecular susceptibility of receptors to SARS-CoV-2 spike protein. Initial affinity analysis explains the domination of delta and omicron variants and demonstrates the strongest affinities between BSG (CD147) receptor and most variants. Further transcriptomic data analysis on 4100 experimental samples and single-cell atlases of 1.4 million cells suggest the potential involvement of BSG in multi-organ injuries and long COVID, and explain the high prevalence of COVID-19 in elders as well as the different risks for patients with underlying diseases. Correlation analysis validated moderate associations between BSG and viral RNA abundance in multiple cell types. Moreover, similar patterns were observed in primates and validated in proteomic expressions. Overall, our findings implicate important therapeutic targets for the development of receptor-specific vaccines and drugs for COVID-19.
Collapse
Affiliation(s)
- Fanjie Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenghao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yutong Han
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Dingli Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Minglei Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qinyuan Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyue Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weizhong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
64
|
Başkan S, Özer PK, Keskin GY, Gövdeli EA, Ömeroğlu RE. Subclinical myocardial assessment after BNT162b2 messenger RNA COVID-19 vaccination in adolescents with chronic heart disease: a speckle-tracking echocardiography study. Cardiol Young 2023; 33:2252-2257. [PMID: 36650738 DOI: 10.1017/s104795112200422x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Case reports of the development of perimyocarditis in adolescents and young adults after BNT162b2 messenger RNA (mRNA) COVID-19 vaccination have raised concerns about the cardiac side effects of the vaccine. The aim of the study was to evaluate clinical follow-up and subclinical myocardial function after mRNA COVID-19 vaccine in adolescents with chronic heart disease. METHODS Forty-one adolescents aged 12-18 who were followed up at paediatric cardiology clinic between December 2021 and May 2022, and who had received two doses of the Pfizer-BioNTech COVID-19 mRNA vaccine were included in the study. The patients were evaluated five times in total - before the vaccination, one week after receiving the first dose, one month after receiving the first dose, one week after receiving the second dose, and one month after receiving the second dose. Cardiac assessment for all patients included an electrocardiogram, transthoracic echocardiography, and two-dimensional speckle-tracking strain echocardiography for left ventricular subclinical myocardial function. RESULTS The mean age of the adolescents was 16.2 ± 1.5 years, and 56% (n = 23) were male. There was no statistically significant difference in patients' echocardiographic measurements including left ventricular global longitudinal strain and electrocardiogram parameters including PR, QRS, and QTc intervals through the follow-up. Seven patients reported cardiac complaints at post-vaccination follow-up visits, but laboratory and echocardiographic evidence of cardiac involvement was not observed. CONCLUSIONS Based on the results of our study, the mRNA COVID-19 vaccine did not cause impairment in subclinical myocardial function assessed by speckle-tracking echocardiography in adolescents with chronic heart disease.
Collapse
Affiliation(s)
- Serra Başkan
- Department of Pediatric Cardiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Pelin Karaca Özer
- Department of Cardiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gülperi Yağar Keskin
- Department of Pediatric Cardiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ayduk Gövdeli
- Department of Cardiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Rukiye Eker Ömeroğlu
- Department of Pediatric Cardiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
65
|
Cotugno N, Amodio D, Buonsenso D, Palma P. Susceptibility of SARS-CoV2 infection in children. Eur J Pediatr 2023; 182:4851-4857. [PMID: 37702769 PMCID: PMC10640404 DOI: 10.1007/s00431-023-05184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Coronavirus disease 2019 in children presents with distinct phenotype in comparison to adults. Overall, the pediatric infection with a generally milder clinical course of the acute infection compared to adults still faces several unknown aspects. Specifically, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), myocarditis, and long COVID in the period after infection suggests a particular susceptibility of some children upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Albeit peculiar complications such as long covid are less frequent in children compared to adults, research on the relationship between inflammatory syndromes and SARS-CoV-2 is rapidly evolving. Conclusions: new studies and findings continue to emerge, providing further insights into the underlying mechanisms and potential therapeutic strategies. In the present work, we revised current knowledge of the main factors accounting for such variability upon SARS-CoV-2 infection over the pediatric age group. What is Known: • COVID19 in children overall showed a milder course compared to adults during the acute phase of the infection. • Children showed to be susceptible to a wide range of post infectious complications including multisystem inflammatory syndrome in children (MIS-C), myocarditis, neuroinflammation, and long COVID. What is New: • Mechanisms underlying susceptibility to a severe course of the infection were recently shown to pertain to the host. • A specific combination of HLA was recently shown to be associated to higher susceptibility to MIS-C in children.
Collapse
Affiliation(s)
- Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Donato Amodio
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Centro di Salute Globale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
66
|
Andargie TE, Roznik K, Redekar N, Hill T, Zhou W, Apalara Z, Kong H, Gordon O, Meda R, Park W, Johnston TS, Wang Y, Brady S, Ji H, Yanovski JA, Jang MK, Lee CM, Karaba AH, Cox AL, Agbor-Enoh S. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e171729. [PMID: 37651206 PMCID: PMC10617770 DOI: 10.1172/jci171729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare but life-threatening hyperinflammatory condition induced by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes pediatric COVID-19 (pCOVID-19). The relationship of the systemic tissue injury to the pathophysiology of MIS-C is poorly defined. We leveraged the high sensitivity of epigenomics analyses of plasma cell-free DNA (cfDNA) and plasma cytokine measurements to identify the spectrum of tissue injury and glean mechanistic insights. Compared with pediatric healthy controls (pHCs) and patients with pCOVID-19, patients with MIS-C had higher levels of cfDNA primarily derived from innate immune cells, megakaryocyte-erythroid precursor cells, and nonhematopoietic tissues such as hepatocytes, cardiac myocytes, and kidney cells. Nonhematopoietic tissue cfDNA levels demonstrated significant interindividual variability, consistent with the heterogenous clinical presentation of MIS-C. In contrast, adaptive immune cell-derived cfDNA levels were comparable in MIS-C and pCOVID-19 patients. Indeed, the cfDNA of innate immune cells in patients with MIS-C correlated with the levels of innate immune inflammatory cytokines and nonhematopoietic tissue-derived cfDNA, suggesting a primarily innate immunity-mediated response to account for the multisystem pathology. These data provide insight into the pathogenesis of MIS-C and support the value of cfDNA as a sensitive biomarker to map tissue injury in MIS-C and likely other multiorgan inflammatory conditions.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Biology, Howard University, Washington DC, USA
| | - Katerina Roznik
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tom Hill
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zainab Apalara
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Oren Gordon
- Infectious Diseases Unit, Department of Pediatrics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rohan Meda
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Woojin Park
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Trevor S. Johnston
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yi Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Brady
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jack A. Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Moon K. Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington DC, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA. GFAfT is detailed in Supplemental Acknowledgments
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
67
|
Klocperk A, Bloomfield M, Parackova Z, Aillot L, Fremuth J, Sasek L, David J, Fencl F, Skotnicova A, Rejlova K, Magner M, Hrusak O, Sediva A. B cell phenotype and serum levels of interferons, BAFF, and APRIL in multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C). Mol Cell Pediatr 2023; 10:15. [PMID: 37891416 PMCID: PMC10611647 DOI: 10.1186/s40348-023-00169-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C) is a late complication of pediatric COVID-19, which follows weeks after the original SARS-CoV-2 infection, regardless of its severity. It is characterized by hyperinflammation, neutrophilia, lymphopenia, and activation of T cells with elevated IFN-γ. Observing the production of autoantibodies and parallels with systemic autoimmune disorders, such as systemic lupus erythematodes (SLE), we explored B cell phenotype and serum levels of type I, II, and III interferons, as well as the cytokines BAFF and APRIL in a cohort of MIS-C patients and healthy children after COVID-19. RESULTS We documented a significant elevation of IFN-γ, but not IFN-α and IFN-λ in MIS-C patients. BAFF was elevated in MIS-C patient sera and accompanied by decreased BAFFR expression on all B cell subtypes. The proportion of plasmablasts was significantly lower in patients compared to healthy post-COVID children. We noted the pre-IVIG presence of ENA Ro60 autoantibodies in 4/35 tested MIS-C patients. CONCLUSIONS Our work shows the involvement of humoral immunity in MIS-C and hints at parallels with the pathophysiology of SLE, with autoreactive B cells driven towards autoantibody production by elevated BAFF.
Collapse
Affiliation(s)
- Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic.
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
- Department of Paediatrics, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Ludovic Aillot
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, IOCB Gilead Research Center, Prague, Czech Republic
| | - Jiri Fremuth
- Department of Paediatrics - PICU, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lumir Sasek
- Department of Paediatrics - PICU, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan David
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Filip Fencl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Aneta Skotnicova
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Katerina Rejlova
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Martin Magner
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Hrusak
- Department of Pediatric Hematology, CLIP - Childhood Leukaemia Investigation Prague, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
68
|
Wang Y, Luu LDW, Liu S, Zhu X, Huang S, Li F, Huang X, Guo L, Zhang J, Ge H, Sun Y, Hui Y, Qu Y, Wang H, Wang X, Na W, Zhou J, Qu D, Tai J. Single-cell transcriptomic analysis reveals a systemic immune dysregulation in COVID-19-associated pediatric encephalopathy. Signal Transduct Target Ther 2023; 8:398. [PMID: 37848421 PMCID: PMC10582072 DOI: 10.1038/s41392-023-01641-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Unraveling the molecular mechanisms for COVID-19-associated encephalopathy and its immunopathology is crucial for developing effective treatments. Here, we utilized single-cell transcriptomic analysis and integrated clinical observations and laboratory examination to dissect the host immune responses and reveal pathological mechanisms in COVID-19-associated pediatric encephalopathy. We found that lymphopenia was a prominent characteristic of immune perturbation in COVID-19 patients with encephalopathy, especially those with acute necrotizing encephalopathy (AE). This was characterized a marked reduction of various lymphocytes (e.g., CD8+ T and CD4+ T cells) and significant increases in other inflammatory cells (e.g., monocytes). Further analysis revealed activation of multiple cell apoptosis pathways (e.g., granzyme/perforin-, FAS- and TNF-induced apoptosis) may be responsible for lymphopenia. A systemic S100A12 upregulation, primarily from classical monocytes, may have contributed to cytokine storms in patients with AE. A dysregulated type I interferon (IFN) response was observed which may have further exacerbated the S100A12-driven inflammation in patients with AE. In COVID-19 patients with AE, myeloid cells (e.g., monocytic myeloid-derived suppressor cells) were the likely contributors to immune paralysis. Finally, the immune landscape in COVID-19 patients with encephalopathy, especially for AE, were also characterized by NK and T cells with widespread exhaustion, higher cytotoxic scores and inflammatory response as well as a dysregulated B cell-mediated humoral immune response. Taken together, this comprehensive data provides a detailed resource for elucidating immunopathogenesis and will aid development of effective COVID-19-associated pediatric encephalopathy treatments, especially for those with AE.
Collapse
Affiliation(s)
- Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | | | - Shuang Liu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, 572000, P. R. China
| | - Siyuan Huang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Fang Li
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Linying Guo
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Jin Zhang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Haiyan Ge
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yuanyuan Sun
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yi Hui
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Yanning Qu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Huicong Wang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, 572000, P. R. China
| | - Weilan Na
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China
| | - Dong Qu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| |
Collapse
|
69
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff LE, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Nguyen TT, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth. Cell 2023; 186:4632-4651.e23. [PMID: 37776858 PMCID: PMC10724861 DOI: 10.1016/j.cell.2023.08.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; DFG Cluster of Excellence 2180 "Image-guided and Functional Instructed Tumor Therapy" (iFIT), University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Allison R Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsay E Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine C Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Tran T Nguyen
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Atlanta, GA 30024, USA; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mary A Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
70
|
Amodio D, Pascucci GR, Cotugno N, Rossetti C, Manno EC, Pighi C, Morrocchi E, D'Alessandro A, Perrone MA, Valentini A, Franceschini A, Chinali M, Deodati A, Azzari C, Rossi P, Cianfarani S, Andreani M, Porzio O, Palma P. Similarities and differences between myocarditis following COVID-19 mRNA vaccine and multiple inflammatory syndrome with cardiac involvement in children. Clin Immunol 2023; 255:109751. [PMID: 37660743 DOI: 10.1016/j.clim.2023.109751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Despite the multiple benefits of vaccination, cardiac adverse Events Following COVID-19 Immunization (c-AEFI) have been reported. These events as well as the severe cardiac involvement reported in Multisystem inflammatory syndrome in children (MIS-C) appear more frequent in young adult males. Herein, we firstly report on the inflammatory profiles of patients experiencing c-AEFI in comparison with age, pubertal age and gender matched MIS-C with cardiac involvement. Proteins related to systemic inflammation were found higher in MIS-C compared to c-AEFI, whereas a higher level in proteins related to myocardial injury was found in c-AEFI. In addition, higher levels of DHEAS, DHEA, and cortisone were found in c-AEFI which persisted at follow-up. No anti-heart muscle and anti-endothelial cell antibodies have been detected. Overall current comparative data showed a distinct inflammatory and androgens profile in c-AEFI patients which results to be well restricted on heart and to persist months after the acute event.
Collapse
Affiliation(s)
- Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emma Concetta Manno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Annamaria D'Alessandro
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy
| | - Marco Alfonso Perrone
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy; Division of Cardiology and CardioLab, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Alessandra Valentini
- Department of laboratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Alessio Franceschini
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marcello Chinali
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy
| | - Chiara Azzari
- Department of Health Sciences, Section of Pediatrics, University of Florence, Florence, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy; Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Andreani
- Transplantation Immunogenetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy; Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
71
|
Constantin T, Pék T, Horváth Z, Garan D, Szabó AJ. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacology 2023; 31:2221-2236. [PMID: 37460909 PMCID: PMC10518292 DOI: 10.1007/s10787-023-01272-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic caused by the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) has significantly affected people around the world, leading to substantial morbidity and mortality. Although the pandemic has affected people of all ages, there is increasing evidence that children are less susceptible to SARS-CoV-2 infection and are more likely to experience milder symptoms than adults. However, children with COVID-19 can still develop serious complications, such as multisystem inflammatory syndrome in children (MIS-C). This narrative review of the literature provides an overview of the epidemiology and immune pathology of SARS-CoV-2 infection and MIS-C in children. The review also examines the genetics of COVID-19 and MIS-C in children, including the genetic factors that can influence the susceptibility and severity of the diseases and their implications for personalized medicine and vaccination strategies. By examining current evidence and insights from the literature, this review aims to contribute to the development of effective prevention and treatment strategies for COVID-19, MIS-C, and long COVID syndromes in children.
Collapse
Affiliation(s)
- Tamás Constantin
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary.
| | - Tamás Pék
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Zsuzsanna Horváth
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Diána Garan
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Attila J Szabó
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| |
Collapse
|
72
|
Burns MD, Bartsch YC, Davis JP, Boribong BP, Loiselle M, Kang J, Kane AS, Edlow AG, Fasano A, Alter G, Yonker LM. Long-term humoral signatures following acute pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children. Pediatr Res 2023; 94:1327-1334. [PMID: 37173406 PMCID: PMC10176275 DOI: 10.1038/s41390-023-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness. METHODS Children 2 months-20 years of age presenting with either acute COVID-19 (n = 9) or MIS-C (n = 12) were enrolled in a Pediatric COVID-19 Biorepository at a single medical center. We deeply profiled humoral immune responses and circulating cytokines following pediatric COVID-19 and MIS-C. RESULTS Twenty-one children and young adults provided blood samples at both acute presentation and 6-month follow-up (mean: 6.5 months; standard deviation: 1.77 months). Pro-inflammatory cytokine elevations resolved after both acute COVID-19 and MIS-C. Humoral profiles continue to mature after acute COVID-19, displaying decreasing IgM and increasing IgG over time, as well as stronger effector functions, including antibody-dependent monocyte activation. In contrast, MIS-C immune signatures, especially anti-Spike IgG1, diminished over time. CONCLUSIONS Here, we show the mature immune signature after pediatric COVID-19 and MIS-C, displaying resolving inflammation with recalibration of the humoral responses. These humoral profiles highlight immune activation and vulnerabilities over time in these pediatric post-infectious cohorts. IMPACT The pediatric immune profile matures after both COVID-19 and MIS-C, suggesting a diversified anti-SARS-CoV-2 antibody response after resolution of acute illness. While pro-inflammatory cytokine responses resolve in the months following acute infection in both conditions, antibody-activated responses remain relatively heightened in convalescent COVID-19. These data may inform long-term immunoprotection from reinfection in children with past SARS-CoV-2 infections or MIS-C.
Collapse
Affiliation(s)
- Madeleine D Burns
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Yannic C Bartsch
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jameson P Davis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Brittany P Boribong
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maggie Loiselle
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Jaewon Kang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Abigail S Kane
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Andrea G Edlow
- Harvard Medical School, Boston, MA, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
73
|
Rodriguez-Frias F, Rando-Segura A, Quer J. Solved the enigma of pediatric severe acute hepatitis of unknown origin? Front Cell Infect Microbiol 2023; 13:1175996. [PMID: 37808908 PMCID: PMC10552268 DOI: 10.3389/fcimb.2023.1175996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatitis is an inflammation of the liver whose etiology is very heterogeneous. The most common cause of hepatitis is viral infections from hepatotropic viruses, including hepatitis A, B, C, D and E. However, other factors such as infections from other agents, metabolic disorders, or autoimmune reactions can also contribute to hepatitis, albeit to a lesser extent. On April 5, 2022, the United Kingdom Health Security Agency alerted the World Health Organization (WHO) on the increased incidence of severe acute hepatitis of unknown causes (not A-E) in previously healthy young children, with symptoms of liver failure that in some cases required liver transplantation. By July 2022, 1,296 cases were reported in 37 countries. Acute hepatitis of unknown causes is not an exceptional phenomenon: in fact, it represents more than 30% of cases of acute hepatitis in children, however in the present instance the large proportion of severe cases was surprising and alarming (6% of liver transplants and almost 3% mortality). Multiple hypotheses have been proposed to explain the etiology of such higher proportion of acute hepatitis, including their co-occurrence in the context of COVID-19 pandemic. This is a review of the history of a clinical threat that has put in check a world health care system highly sensitized by the current COVID-19 pandemics, and that it looks like has ended with the arguments that the severe acute pediatric hepatitis is caused by Adeno-associated virus 2 (AAV2) infection associated with a coinfection with a helper virus (human Adenovirus HAdV or human herpesvirus 6) in susceptible children carrying HLA-class II antigen HLA-DRB1*04:01.
Collapse
Affiliation(s)
- Francisco Rodriguez-Frias
- Clinical Biochemistry Department Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Basic Science Department, International University of Catalonia, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ariadna Rando-Segura
- Clinical Biochemistry Department Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Biochemistry and Molecular Biology Department, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
74
|
Vaňková L, Bufka J, Křížková V. Pathophysiological and clinical point of view on Kawasaki disease and MIS-C. Pediatr Neonatol 2023; 64:495-504. [PMID: 37453902 PMCID: PMC10286520 DOI: 10.1016/j.pedneo.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023] Open
Abstract
This article compares two important pathophysiological states, Kawasaki disease, and multisystem inflammatory syndrome, in children associated with COVID-19 (MIS-C). Both occur predominantly in children, have a temporal association with an infectious agent, and are associated with immune-system alteration and systemic inflammation under certain circumstances. The two share common pathophysiology, including enhancement of interleukin-1 neutrophils, activation of the inflammasome, pyroptosis, or NETosis. Moreover, the clinical presentation of the diseases overlaps. However, they are indeed two separate diseases, proven by the differences in the epidemiological and etiological aspects and the pathophysiological processes involved in the development and frequency of some clinical signs. This article highlights potentially exciting areas that have not yet been studied in detail, which could help better understand the development of these diseases.
Collapse
Affiliation(s)
- Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Czech Republic.
| | - Jiří Bufka
- Department of Pediatrics, Teaching Hospital in Pilsen, Czech Republic
| | - Věra Křížková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
75
|
Brodin P. Immune responses to SARS-CoV-2 infection and vaccination in children. Semin Immunol 2023; 69:101794. [PMID: 37536147 PMCID: PMC10281229 DOI: 10.1016/j.smim.2023.101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
During the three years since SARS-CoV-2 infections were first described a wealth of information has been gathered about viral variants and their changing properties, the disease presentations they elicit and how the many vaccines developed in record time protect from COVID-19 severe disease in different populations. A general theme throughout the pandemic has been the observation that children and young people in general fare well, with mild symptoms during acute infection and full recovery thereafter. It has also become clear that this is not universally true, as some children develop severe COVID-19 hypoxic pneumonia and even succumb to the infection, while another group of children develop a rare but serious multisystem inflammatory syndrome (MIS-C) and some other children experience prolonged illness following acute infection, post-COVID. Here I will discuss some of the findings made to explain these diverse disease manifestations in children and young people infected by SARS-CoV-2. I will also discuss the vaccines developed at record speed and their efficacy in protecting children from disease.
Collapse
Affiliation(s)
- Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden; Department of Immunology and Inflammation, Imperial College London, W12 0NN London, UK.
| |
Collapse
|
76
|
Licciardi F, Covizzi C, Dellepiane M, Olivini N, Mastrolia MV, Lo Vecchio A, Monno V, Tardi M, Mauro A, Alessio M, Filocamo G, Cattalini M, Taddio A, Caorsi R, Marseglia GL, La Torre F, Campana A, Simonini G, Ravelli A, Montin D. Outcomes of MIS-C patients treated with anakinra: a retrospective multicenter national study. Front Pediatr 2023; 11:1137051. [PMID: 37675397 PMCID: PMC10478576 DOI: 10.3389/fped.2023.1137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Background The treatment of multisystem inflammatory syndrome in children unresponsive to first-line therapies (IVIG and/or steroids) is challenging. The effectiveness of IL-1 receptor antagonist, anakinra, is debated. Patients and methods We conducted an anonymous retrospective multicenter study on MIS-C patients treated with anakinra in Italy from January 2020 to February 2021. Our study outcomes included the percentage of patients who required further therapeutic step-up, the percentage of patients who experienced fever resolution within 24 h and a reduction of CRP by half within 48 h, and the percentage of patients who developed Coronary Artery Anomalies (CAA) during follow-up. Results 35 cases of MIS-C were treated in 10 hospitals. Of these, 13 patients started anakinra while in the ICU, and 22 patients started anakinra in other wards. 25 patients (71.4%) were treated with corticosteroids at a starting dose 2-30 mg/Kg/day plus IVIG (2 g/Kg), 10 patients (28.6%) received only corticosteroids without IVIG. Anakinra was administered intravenously to all patients in Group A (mean dose 8 mg/Kg/day), and subcutaneously in Group B (mean dose 4 mg/Kg/day). Only two patients required further treatment step-up and no patients developed CAA after receiving anakinra. The most commonly observed side effect was an increase in ALT, occurring in 17.1% of patients. Conclusions In this retrospective cohort of severe MIS-C patients treated with anakinra we report favorable clinical outcomes with a low incidence of side effects. The simultaneous use of steroids ± IVIG in these patients hinders definitive conclusions regarding the need of IL-1 inhibition in MIS-C treatment.
Collapse
Affiliation(s)
- Francesco Licciardi
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Carlotta Covizzi
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Marta Dellepiane
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Nicole Olivini
- Pediatrics Unit, University Department of Pediatrics (DEAPG), Bambino Gesù Children’s Hospital—IRCCS, Rome, Italy
| | - Maria Vincenza Mastrolia
- Rheumatology Unit, Department of Paediatrics, Meyer Children’s Hospital, University of Florence, Florence, Italy
| | - Andrea Lo Vecchio
- Section of Paediatrics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Viviana Monno
- Pediatric Rheumatology Section, Department of Pediatrics, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - Maria Tardi
- Rheumatology Unit, Department of Pediatrics, Santobono Pausilipon Children Hospital, Naples, Italy
| | - Angela Mauro
- COVID Unit, Emergency Department, Santobono-Pausilipon Children Hospital, Naples, Italy
| | - Maria Alessio
- Section of Paediatrics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Filocamo
- Pediatric Rheumatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Cattalini
- Spedali Civili, Unità di Immunologia e Reumatologia Pediatrica, Clinica Pediatrica dell’Università di Brescia, Brescia, Italy
| | - Andrea Taddio
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Trieste and University of Trieste, Trieste, Italy
| | - Roberta Caorsi
- Clinica Pediatrica e Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic Foundation IRCCS Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | - Francesco La Torre
- Pediatric Rheumatology Section, Department of Pediatrics, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - Andrea Campana
- Pediatrics Unit, University Department of Pediatrics (DEAPG), Bambino Gesù Children’s Hospital—IRCCS, Rome, Italy
| | - Gabriele Simonini
- Rheumatology Unit, Department of Paediatrics, Meyer Children’s Hospital, University of Florence, Florence, Italy
| | - Angelo Ravelli
- Clinica Pediatrica e Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| |
Collapse
|
77
|
Subramanian D, Vittala A, Chen X, Julien C, Acosta S, Rusin C, Allen C, Rider N, Starosolski Z, Annapragada A, Devaraj S. Stratification of Pediatric COVID-19 Cases Using Inflammatory Biomarker Profiling and Machine Learning. J Clin Med 2023; 12:5435. [PMID: 37685502 PMCID: PMC10487951 DOI: 10.3390/jcm12175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
While pediatric COVID-19 is rarely severe, a small fraction of children infected with SARS-CoV-2 go on to develop multisystem inflammatory syndrome (MIS-C), with substantial morbidity. An objective method with high specificity and high sensitivity to identify current or imminent MIS-C in children infected with SARS-CoV-2 is highly desirable. The aim was to learn about an interpretable novel cytokine/chemokine assay panel providing such an objective classification. This retrospective study was conducted on four groups of pediatric patients seen at multiple sites of Texas Children's Hospital, Houston, TX who consented to provide blood samples to our COVID-19 Biorepository. Standard laboratory markers of inflammation and a novel cytokine/chemokine array were measured in blood samples of all patients. Group 1 consisted of 72 COVID-19, 70 MIS-C and 63 uninfected control patients seen between May 2020 and January 2021 and predominantly infected with pre-alpha variants. Group 2 consisted of 29 COVID-19 and 43 MIS-C patients seen between January and May 2021 infected predominantly with the alpha variant. Group 3 consisted of 30 COVID-19 and 32 MIS-C patients seen between August and October 2021 infected with alpha and/or delta variants. Group 4 consisted of 20 COVID-19 and 46 MIS-C patients seen between October 2021 andJanuary 2022 infected with delta and/or omicron variants. Group 1 was used to train an L1-regularized logistic regression model which was tested using five-fold cross validation, and then separately validated against the remaining naïve groups. The area under receiver operating curve (AUROC) and F1-score were used to quantify the performance of the cytokine/chemokine assay-based classifier. Standard laboratory markers predict MIS-C with a five-fold cross-validated AUROC of 0.86 ± 0.05 and an F1 score of 0.78 ± 0.07, while the cytokine/chemokine panel predicted MIS-C with a five-fold cross-validated AUROC of 0.95 ± 0.02 and an F1 score of 0.91 ± 0.04, with only sixteen of the forty-five cytokines/chemokines sufficient to achieve this performance. Tested on Group 2 the cytokine/chemokine panel yielded AUROC = 0.98 and F1 = 0.93, on Group 3 it yielded AUROC = 0.89 and F1 = 0.89, and on Group 4 AUROC = 0.99 and F1 = 0.97. Adding standard laboratory markers to the cytokine/chemokine panel did not improve performance. A top-10 subset of these 16 cytokines achieves equivalent performance on the validation data sets. Our findings demonstrate that a sixteen-cytokine/chemokine panel as well as the top ten subset provides a highly sensitive, and specific method to identify MIS-C in patients infected with SARS-CoV-2 of all the major variants identified to date.
Collapse
Affiliation(s)
- Devika Subramanian
- Department of Computer Science, Rice University, 6100 Main St. MS 132, Houston, TX 77005, USA
| | - Aadith Vittala
- Department of Computer Science, Rice University, 6100 Main St. MS 132, Houston, TX 77005, USA
| | - Xinpu Chen
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Christopher Julien
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Sebastian Acosta
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Craig Rusin
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Carl Allen
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Nicholas Rider
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Zbigniew Starosolski
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Ananth Annapragada
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| | - Sridevi Devaraj
- Texas Children's Hospital/Baylor College of Medicine, 6621 Fannin Street, WB110.06, Houston, TX 77030, USA
| |
Collapse
|
78
|
Rybkina K, Bell JN, Bradley MC, Wohlbold T, Scafuro M, Meng W, Korenberg RC, Davis-Porada J, Anderson BR, Weller RJ, Milner JD, Moscona A, Porotto M, Luning Prak ET, Pethe K, Connors TJ, Farber DL. SARS-CoV-2 infection and recovery in children: Distinct T cell responses in MIS-C compared to COVID-19. J Exp Med 2023; 220:e20221518. [PMID: 37133746 PMCID: PMC10163842 DOI: 10.1084/jem.20221518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/09/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023] Open
Abstract
SARS-CoV-2 infection for most children results in mild or minimal symptoms, though in rare cases severe disease can develop, including a multisystem inflammatory syndrome (MIS-C) with myocarditis. Here, we present longitudinal profiling of immune responses during acute disease and following recovery in children who developed MIS-C, relative to children who experienced more typical symptoms of COVID-19. T cells in acute MIS-C exhibited transient signatures of activation, inflammation, and tissue residency which correlated with cardiac disease severity, while T cells in acute COVID-19 upregulated markers of follicular helper T cells for promoting antibody production. The resultant memory immune response in recovery showed increased frequencies of virus-specific memory T cells with pro-inflammatory functions in children with prior MIS-C compared to COVID-19 while both cohorts generated comparable antibody responses. Together our results reveal distinct effector and memory T cell responses in pediatric SARS-CoV-2 infection delineated by clinical syndrome, and a potential role for tissue-derived T cells in the immune pathology of systemic disease.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph N. Bell
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marissa C. Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Teddy Wohlbold
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marika Scafuro
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca C. Korenberg
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Julia Davis-Porada
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Brett R. Anderson
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rachel J. Weller
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Joshua D. Milner
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anne Moscona
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia Irving University Medical Center, New York, NY, USA
| |
Collapse
|
79
|
Mansfield LM, Lapidus SK, Romero SN, Moorthy LN, Adler-Shohet FC, Hollander M, Cherian J, Twilt M, Lionetti G, Mohan S, DeLaMora PA, Durrant KL, Muskardin TW, Correia Marques M, Onel KB, Dedeoglu F, Gutierrez MJ, Schulert G. Increase in pediatric recurrent fever evaluations during the first year of the COVID-19 pandemic in North America. Front Pediatr 2023; 11:1240242. [PMID: 37601132 PMCID: PMC10435740 DOI: 10.3389/fped.2023.1240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The impact of the COVID-19 pandemic on new diagnoses of recurrent fevers and autoinflammatory diseases is largely unknown. The Childhood Arthritis and Rheumatology Research Alliance (CARRA) PFAPA/AID Working Group aimed to investigate the impact of the COVID-19 pandemic on the number of pediatric patients evaluated for recurrent fevers and autoinflammatory diseases in North America. The absolute number of new outpatient visits and the proportion of these visits attributed to recurrent fever diagnoses during the pre-pandemic period (1 March 2019-29 February 2020) and the first year of the COVID-19 pandemic (1 March 2020-28 February 2021) were examined. Data were collected from 27 sites in the United States and Canada. Our results showed an increase in the absolute number of new visits for recurrent fever evaluations in 21 of 27 sites during the COVID-19 pandemic compared to the pre-pandemic period. The increase was observed across different geographic regions in North America. Additionally, the proportion of new visits to these centers for recurrent fever in relation to all new patient evaluations was significantly higher during the first year of the pandemic, increasing from 7.8% before the pandemic to 10.9% during the pandemic year (p < 0.001). Our findings showed that the first year of the COVID-19 pandemic was associated with a higher number of evaluations by pediatric subspecialists for recurrent fevers. Further research is needed to understand the reasons behind these findings and to explore non-infectious triggers for recurrent fevers in children.
Collapse
Affiliation(s)
- Leanne M. Mansfield
- Department of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, United States
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sivia K. Lapidus
- Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center and Hackensack Meridian Health, Hackensack, NJ, United States
| | - Samira Nazzar Romero
- Department of Rheumatology, Nemours Children’s Hospital, Orlando, FL, United States
| | - Lakshmi N. Moorthy
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | | | - Matthew Hollander
- Department of Pediatrics, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Julie Cherian
- Department of Pediatrics, Stony Brook Children's Hospital, Stony Brook, NY, United States
| | - Marinka Twilt
- Alberta Children’s Hospital, University of Calgary, Calgary, AB, Canada
| | - Geraldina Lionetti
- Department of Pediatrics, University of California San Francisco, Benioff Children's Hospitals, San Francisco, CA, United States
| | - Smriti Mohan
- Department of Pediatrics, University of Michigan, CS Mott Children’s Hospital, Ann Arbor, MI, United States
| | | | | | | | - Mariana Correia Marques
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen B. Onel
- Department of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, United States
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Fatma Dedeoglu
- Division of Immunology, Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maria J. Gutierrez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Grant Schulert
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
80
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
81
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
82
|
Reis BCSD, Soares Faccion R, de Carvalho FAA, Moore DCBC, Zuma MCC, Plaça DR, Salerno Filgueiras I, Leandro Mathias Fonseca D, Cabral-Marques O, Bonomo AC, Savino W, Freitas FCDP, Faoro H, Passetti F, Robaina JR, de Oliveira FRC, Novaes Bellinat AP, Zeitel RDS, Salú MDS, de Oliveira MBG, Rodrigues-Santos G, Prata-Barbosa A, de Vasconcelos ZFM. Rare genetic variants involved in multisystem inflammatory syndrome in children: a multicenter Brazilian cohort study. Front Cell Infect Microbiol 2023; 13:1182257. [PMID: 37588055 PMCID: PMC10426286 DOI: 10.3389/fcimb.2023.1182257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. Methods To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. Discussion These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.
Collapse
Affiliation(s)
- Bárbara Carvalho Santos Dos Reis
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Roberta Soares Faccion
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Daniella Campelo Batalha Cox Moore
- Unidade de Pacientes Graves, Departamento de Pediatria, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Maria Celia Chaves Zuma
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Desirée Rodrigues Plaça
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia), FCF, USP, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
| | - Dennyson Leandro Mathias Fonseca
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Adriana Cesar Bonomo
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Wilson Savino
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Helisson Faoro
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | - Fabio Passetti
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | | | | | | | - Raquel de Seixas Zeitel
- Pediatric Intensive Care Unit, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Pediatric Intensive Care Unit, Hospital Martagão Gesteira, Salvador, BA, Brazil
| | | | | | - Arnaldo Prata-Barbosa
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
- Pediatric Intensive Care Unit, Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
83
|
Castaldo P, d’Alanno G, Biserni GB, Moratti M, Conti F, Fabi M, Lanari M. Exploring Factors Influencing Changes in Incidence and Severity of Multisystem Inflammatory Syndrome in Children. Pathogens 2023; 12:997. [PMID: 37623957 PMCID: PMC10458149 DOI: 10.3390/pathogens12080997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Multisystem inflammatory syndrome (MIS-C) is a rare condition associated with COVID-19 affecting children, characterized by severe and aberrant systemic inflammation leading to nonspecific symptoms, such as gastrointestinal, cardiac, respiratory, hematological, and neurological disorders. In the last year, we have experienced a progressive reduction in the incidence and severity of MIS-C, reflecting the worldwide trend. Thus, starting from the overall trend in the disease in different continents, we reviewed the literature, hypothesizing the potential influencing factors contributing to the reduction in cases and the severity of MIS-C, particularly the vaccination campaign, the spread of different SARS-CoV-2 variants (VOCs), and the changes in human immunological response. The decrease in the severity of MIS-C and its incidence seem to be related to a combination of different factors rather than a single cause. Maturation of an immunological memory to SARS-CoV-2 over time, the implication of mutations of key amino acids of S protein in VOCs, and the overall immune response elicited by vaccination over the loss of neutralization of vaccines to VOCs seem to play an important role in this change.
Collapse
Affiliation(s)
- Pasquale Castaldo
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (P.C.); (G.d.); (M.M.)
| | - Gabriele d’Alanno
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (P.C.); (G.d.); (M.M.)
| | | | - Mattia Moratti
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (P.C.); (G.d.); (M.M.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (M.F.); (M.L.)
| |
Collapse
|
84
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
85
|
Martino L, Morello R, De Rose C, Buonsenso D. Persistent respiratory symptoms associated with post-Covid condition (Long Covid) in children: a systematic review and analysis of current gaps and future perspectives. Expert Rev Respir Med 2023; 17:837-852. [PMID: 37844017 DOI: 10.1080/17476348.2023.2271836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION There is increasing evidence that also children can develop Long Covid. However, there are no specific reviews providing a clear description of reported respiratory symptoms and potential diagnostics. AREAS COVERED We performed on PubMed a systematic search of studies conducted on children aged less than 18 years with previous SARS-CoV-2 infection complaining about persistent respiratory symptoms; the aim of our review is to characterize the incidence, pattern and duration of respiratory symptoms after the acute infection in pediatric population. EXPERT OPINION Children can develop persisting respiratory symptoms, as documented by several follow-up studies both including or not control groups of non-infected children. However, the methodological variabilities of the analyzed studies does not allow to provide firm conclusions about the rate, type and best diagnostics for children with persistent respiratory symptoms. Future studies should investigate on larger pediatric cohorts the role of noninvasive diagnostics and new biomarkers as well as investigating therapeutic options both during acute infection or when Long Covid has been diagnosed.
Collapse
Affiliation(s)
- Laura Martino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rosa Morello
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina De Rose
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Centro di Salute Globale, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
86
|
Jackson HR, Miglietta L, Habgood-Coote D, D’Souza G, Shah P, Nichols S, Vito O, Powell O, Davidson MS, Shimizu C, Agyeman PKA, Beudeker CR, Brengel-Pesce K, Carrol ED, Carter MJ, De T, Eleftheriou I, Emonts M, Epalza C, Georgiou P, De Groot R, Fidler K, Fink C, van Keulen D, Kuijpers T, Moll H, Papatheodorou I, Paulus S, Pokorn M, Pollard AJ, Rivero-Calle I, Rojo P, Secka F, Schlapbach LJ, Tremoulet AH, Tsolia M, Usuf E, Van Der Flier M, Von Both U, Vermont C, Yeung S, Zavadska D, Zenz W, Coin LJM, Cunnington A, Burns JC, Wright V, Martinon-Torres F, Herberg JA, Rodriguez-Manzano J, Kaforou M, Levin M. Diagnosis of Multisystem Inflammatory Syndrome in Children by a Whole-Blood Transcriptional Signature. J Pediatric Infect Dis Soc 2023; 12:322-331. [PMID: 37255317 PMCID: PMC10312302 DOI: 10.1093/jpids/piad035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.
Collapse
Affiliation(s)
- Heather R Jackson
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Luca Miglietta
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Dominic Habgood-Coote
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Giselle D’Souza
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Priyen Shah
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Samuel Nichols
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Ortensia Vito
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Oliver Powell
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Maisey Salina Davidson
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Chisato Shimizu
- Department of Pediatrics, Rady Children’s Hospital and University of California San Diego, La Jolla, California, USA
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coco R Beudeker
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France
| | - Enitan D Carrol
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Michael J Carter
- Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Tisham De
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Irini Eleftheriou
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children’s Hospital, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Cristina Epalza
- Pediatric Infectious Diseases Unit, Pediatric Department, Hospital Doce de Octubre, Madrid, Spain
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Ronald De Groot
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology and Laboratory of Infectious Diseases, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Katy Fidler
- Academic Department of Paediatrics, Royal Alexandra Children’s Hospital, University Hospitals Sussex, Brighton, UK
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, UK
| | | | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Sanquin Research, Department of Blood Cell Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Henriette Moll
- Department of Pediatrics, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Irene Papatheodorou
- Gene Expression Team, European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Stephane Paulus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marko Pokorn
- Division of Pediatrics, University Medical Centre Ljubljana and Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Irene Rivero-Calle
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain
- Genetics–Vaccines–Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit, Pediatric Department, Hospital Doce de Octubre, Madrid, Spain
| | - Fatou Secka
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children’s Research Center, University Children`s Hospital Zurich, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children’s Hospital and University of California San Diego, La Jolla, California, USA
| | - Maria Tsolia
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Effua Usuf
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Michiel Van Der Flier
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ulrich Von Both
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Dr von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Clementien Vermont
- Department of Paediatric Infectious Diseases and Immunology, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Shunmay Yeung
- Clinical Research Department, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - Dace Zavadska
- Department of Pediatrics, Children’s Clinical University Hospital, Rīga, Latvia
| | - Werner Zenz
- Department of General Paediatrics, University Clinic of Paediatrics and Adolescent Medicine, Medical University Graz, Austria
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Jane C Burns
- Department of Pediatrics, Rady Children’s Hospital and University of California San Diego, La Jolla, California, USA
| | - Victoria Wright
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Federico Martinon-Torres
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain
- Genetics–Vaccines–Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Jethro A Herberg
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | | | - Myrsini Kaforou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| | - Michael Levin
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
87
|
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023; 11:1686. [PMID: 37512859 PMCID: PMC10384367 DOI: 10.3390/microorganisms11071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals. METHODS The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource. Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC-ligand assays without MHC restriction were searched and analyzed. HLA disease associations were screened on the HLA-SPREAD platform by selecting only positive markers. RESULTS By 7 May 2023, a total of 5693 epitopes corresponding to 21 viral but also human proteins were found. The latter included CHL1, ENTPD1, MEAF6, SLC35G2, and ZFHX2. Importantly, some autoepitopes may be presented by HLA alleles positively associated with various immunological diseases. CONCLUSIONS The protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals through a molecular mimicry mechanism. Genotyping for HLA alleles may help identify individuals at risk. However, further wet-lab studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
88
|
Silva Luz M, Lemos FFB, Rocha Pinheiro SL, Marques HS, de Oliveira Silva LG, Calmon MS, da Costa Evangelista K, Freire de Melo F. Pediatric multisystem inflammatory syndrome associated with COVID-19: Insights in pathogenesis and clinical management. World J Virol 2023; 12:193-203. [PMID: 37396702 PMCID: PMC10311577 DOI: 10.5501/wjv.v12.i3.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major challenge to be faced in recent years. While adults suffered the highest morbidity and mortality rates of coronavirus disease 2019, children were thought to be exclusively asymptomatic or to present with mild conditions. However, around April 2020, there was an outbreak of a new clinical syndrome related to SARS-CoV-2 in children - multisystemic inflammatory syndrome in children (MIS-C) - which comprises a severe and uncon-trolled hyperinflammatory response with multiorgan involvement. The Centers for Disease Control and Prevention considers a suspected case of MIS-C an individual aged < 21 years presenting with fever, high inflammatory markers levels, and evidence of clinically severe illness, with multisystem (> 2) organ involvement, no alternative plausible diagnoses, and positive for recent SARS-CoV-2 infection. Despite its severity, there are no definitive disease management guidelines for this condition. Conversely, the complex pathogenesis of MIS-C is still not completely understood, although it seems to rely upon immune dysregulation. Hence, in this study, we aim to bring together current evidence regarding the pathogenic mechanisms of MIS-C, clinical picture and management, in order to provide insights for clinical practice and implications for future research directions.
Collapse
Affiliation(s)
- Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
89
|
Kane AS, Boribong BP, Loiselle M, Chitnis AP, Chavez H, Moldawer LL, Larson SD, Badaki-Makun O, Irimia D, Yonker LM. Monocyte anisocytosis corresponds with increasing severity of COVID-19 in children. Front Pediatr 2023; 11:1177048. [PMID: 37425266 PMCID: PMC10326545 DOI: 10.3389/fped.2023.1177048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.
Collapse
Affiliation(s)
- Abigail S. Kane
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Brittany P. Boribong
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maggie Loiselle
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anagha P. Chitnis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Hector Chavez
- Department of Pediatrics, Jackson Memorial Hospital, Miami, FL, United States
- Department of Pediatric Emergency Medicine, Holtz Children’s Hospital, Miami, FL, United States
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Shawn D. Larson
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Oluwakemi Badaki-Makun
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Center for Data Science in Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel Irimia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Shriners Burn Hospital, Boston, MA, United States
| | - Lael M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
90
|
Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, Bhattacharya S, Williams ME, Cheng AP, Bliss A, Saldhi P, Brazer N, Streithorst J, Suslovic W, Hsieh CJ, Bahar B, Wood N, Foresythe A, Gliwa A, Bhakta K, Perez MA, Hussaini L, Anderson EJ, Chahroudi A, Delaney M, Butte AJ, DeBiasi RL, Rostad CA, De Vlaminck I, Chiu CY. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. Cell Rep Med 2023; 4:101034. [PMID: 37279751 PMCID: PMC10121104 DOI: 10.1016/j.xcrm.2023.101034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023]
Abstract
Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexandre P Cheng
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Prachi Saldhi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte J Hsieh
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, Oakland, CA 94609
| | - Burak Bahar
- Children's National Hospital, Washington, DC 20010, USA
| | - Nathan Wood
- UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amelia Gliwa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kushmita Bhakta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Meghan Delaney
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberta L DeBiasi
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
91
|
Dotta L, Moratto D, Cattalini M, Brambilla S, Giustini V, Meini A, Girelli MF, Cortesi M, Timpano S, Galvagni A, Viola A, Crotti B, Manerba A, Pierelli G, Verzura G, Serana F, Brugnoni D, Garrafa E, Ricci F, Tomasi C, Chiarini M, Badolato R. Longitudinal Characterization of Immune Response in a Cohort of Children Hospitalized with Multisystem Inflammatory Syndrome. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1069. [PMID: 37371300 DOI: 10.3390/children10061069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection caused by hyperactivation of the immune system. METHODS this is a retrospective analysis of clinical data, biochemical parameters, and immune cell subsets in 40 MIS-C patients from hospital admission to outpatient long-term follow-up. RESULTS MIS-C patients had elevated inflammatory markers, associated with T- and NK-cell lymphopenia, a profound depletion of dendritic cells, and altered monocyte phenotype at disease onset, while the subacute phase of the disease was characterized by a significant increase in T- and B-cell counts and a rapid decline in activated T cells and terminally differentiated B cells. Most of the immunological parameters returned to values close to the normal range during the remission phase (20-60 days after hospital admission). Nevertheless, we observed a significantly reduced ratio between recently generated and more differentiated CD8+ T- and B-cell subsets, which partially settled at longer-term follow-up determinations. CONCLUSIONS The characterization of lymphocyte distribution in different phases of MIS-C may help to understand the course of diseases that are associated with dysregulated immune responses and to calibrate prompt and targeted treatments.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Marco Cattalini
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Sara Brambilla
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Viviana Giustini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Antonella Meini
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Maria Federica Girelli
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Manuela Cortesi
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Silviana Timpano
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Anna Galvagni
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Anna Viola
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Beatrice Crotti
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Alessandra Manerba
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgia Pierelli
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giulia Verzura
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Federico Serana
- Hematology Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Duilio Brugnoni
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Emirena Garrafa
- Laboratory of Clinical Chemistry, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Ricci
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
92
|
Basaran O, Batu ED, Kaya Akca U, Atalay E, Kasap Cuceoglu M, Sener S, Balık Z, Karabulut E, Kesici S, Karagoz T, Ozsurekci Y, Bilginer Y, Cengiz AB, Ozen S. The Effect of Biologics in the Treatment of Multisystem Inflammatory Syndrome in Children (Mis-C): A Single-Center Propensity-Score-Matched Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1045. [PMID: 37371276 DOI: 10.3390/children10061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a serious condition characterized by excessive inflammation that can arise as a complication of SARS-CoV-2 infection in children. While our understanding of COVID-19 and MIS-C has been advancing, there is still uncertainty regarding the optimal treatment for MIS-C. In this study, we aimed to compare the clinical and laboratory outcomes of MIS-C patients treated with IVIG plus corticosteroids (CS) to those treated with IVIG plus CS and an additional biologic drug. We used the propensity score (PS)-matching method to assess the relationships between initial treatment and outcomes. The primary outcome was a left ventricular ejection fraction of less than 55% on day 2 or beyond and/or the requirement of inotrope support on day 2 or beyond. We included 79 MIS-C patients (median age 8.51 years, 33 boys) followed in our center. Among them, 50 children (25 in each group) were allocated to the PS-matched cohort sample. The primary outcome was observed in none of the patients in the IVIG and CS group, while it occurred in eight patients in the IVIG plus CS and biologic group (p = 0.04). MIS-C is a disorder that may progress rapidly and calls for extensive care. For definitive recommendations, further studies, including randomized control trials, are required.
Collapse
Affiliation(s)
- Ozge Basaran
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Ummusen Kaya Akca
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Erdal Atalay
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Muserref Kasap Cuceoglu
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Seher Sener
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Zeynep Balık
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Selman Kesici
- Pediatric Intensive Care Medicine, Life Support Center, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Tevfik Karagoz
- Department of Pediatric Cardiology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Yelda Bilginer
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Ali Bulent Cengiz
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| |
Collapse
|
93
|
Diorio C, Teachey DT, Canna SW. Cytokine Storm Syndromes in Pediatric Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1636-1644. [PMID: 36990432 DOI: 10.1016/j.jaip.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Cytokine storm syndromes (CSS) represent a diverse group of disorders characterized by severe overactivation of the immune system. In the majority of patients, CSS arise from a combination of host factors, including genetic risk and predisposing conditions, and acute triggers such as infections. CSS present differently in adults than in children, who are more likely to present with monogenic forms of these disorders. Individual CSS are rare, but in aggregate represent an important cause of severe illness in both children and adults. We present 3 rare, illustrative cases of CSS in pediatric patients that describe the spectrum of CSS.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Scott W Canna
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| |
Collapse
|
94
|
Babu M, Snyder M. Multi-Omics Profiling for Health. Mol Cell Proteomics 2023; 22:100561. [PMID: 37119971 PMCID: PMC10220275 DOI: 10.1016/j.mcpro.2023.100561] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023] Open
Abstract
The world has witnessed a steady rise in both non-infectious and infectious chronic diseases, prompting a cross-disciplinary approach to understand and treating disease. Current medical care focuses on treating people after they become patients rather than preventing illness, leading to high costs in treating chronic and late-stage diseases. Additionally, a "one-size-fits all" approach to health care does not take into account individual differences in genetics, environment, or lifestyle factors, decreasing the number of people benefiting from interventions. Rapid advances in omics technologies and progress in computational capabilities have led to the development of multi-omics deep phenotyping, which profiles the interaction of multiple levels of biology over time and empowers precision health approaches. This review highlights current and emerging multi-omics modalities for precision health and discusses applications in the following areas: genetic variation, cardio-metabolic diseases, cancer, infectious diseases, organ transplantation, pregnancy, and longevity/aging. We will briefly discuss the potential of multi-omics approaches in disentangling host-microbe and host-environmental interactions. We will touch on emerging areas of electronic health record and clinical imaging integration with muti-omics for precision health. Finally, we will briefly discuss the challenges in the clinical implementation of multi-omics and its future prospects.
Collapse
Affiliation(s)
- Mohan Babu
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
95
|
Lin J, Harahsheh AS, Raghuveer G, Jain S, Choueiter NF, Garrido-Garcia LM, Dahdah N, Portman MA, Misra N, Khoury M, Fabi M, Elias MD, Dionne A, Lee S, Tierney ESS, Ballweg JA, Manlhiot C, McCrindle BW. Emerging Insights Into the Pathophysiology of Multisystem Inflammatory Syndrome Associated With COVID-19 in Children. Can J Cardiol 2023; 39:793-802. [PMID: 36626979 PMCID: PMC9824951 DOI: 10.1016/j.cjca.2023.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has emerged as a rare delayed hyperinflammatory response to SARS-CoV-2 infection and causes severe morbidity in the pediatric age group. Although MIS-C shares many clinical similarities to Kawasaki disease (KD), important differences in epidemiologic, clinical, immunologic, and potentially genetic factors exist and suggest potential differences in pathophysiology and points to be explored and explained. Epidemiologic features include male predominance, peak age of 6 to12 years, and specific racial or ethnicity predilections. MIS-C is characterized by fever, prominent gastrointestinal symptoms, mucocutaneous manifestations, respiratory symptoms, and neurologic complaints, and patients often present with shock. Cardiac complications are frequent and include ventricular dysfunction, valvular regurgitation, pericardial effusion, coronary artery dilation and aneurysms, conduction abnormalities, and arrhythmias. Emerging evidence regarding potential immunologic mechanisms suggest that an exaggerated T-cell response to a superantigen on the SARS-CoV-2 spike glycoprotein-as well as the formation of autoantibodies against cardiovascular, gastrointestinal, and endothelial antigens-are major contributors to the inflammatory milieu of MIS-C. Further studies are needed to determine both shared and distinct immunologic pathway(s) that underlie the pathogenesis of MIS-C vs both acute SARS-CoV-2 infection and KD. There is evidence to suggest that the rare risk of more benign mRNA vaccine-associated myopericarditis is outweighed by a reduced risk of more severe MIS-C. In the current review, we synthesize the published literature to describe associated factors and potential mechanisms regarding an increased risk of MIS-C and cardiac complications, provide insights into the underlying immunologic pathophysiology, and define similarities and differences with KD.
Collapse
Affiliation(s)
- Justin Lin
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ashraf S Harahsheh
- Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Supriya Jain
- Division of Pediatric Cardiology, Maria Fareri Children's Hospital of Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Nadine F Choueiter
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Nagib Dahdah
- Division of Pediatric Cardiology, Sainte Justine University Hospital Center, University of Montreal, Montréal, Québec, Canada
| | | | - Nilanjana Misra
- Cohen Children's Medical Center of New York, Northwell Health, New York, New York, USA
| | - Michael Khoury
- Stollery Children's Hospital, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matthew D Elias
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Lee
- Children's Nationwide Hospital, Columbus, Ohio, USA
| | - Elif Seda Selamet Tierney
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jean A Ballweg
- Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Cedric Manlhiot
- Johns Hopkins University School of Medicine, Division of Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W McCrindle
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
96
|
Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, Portman MA, Gennaro M, Rehman J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86014. [PMID: 37233729 PMCID: PMC10219649 DOI: 10.7554/elife.86014] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashingtonUnited States
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Erin Quinlan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Michael A Portman
- Seattle Children’s Hospital, Division of Pediatric Cardiology, Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Marila Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of MedicineChicagoUnited States
| |
Collapse
|
97
|
Luo J, Wang X, Zou Y, Chen L, Liu W, Zhang W, Li SC. Quantitative annotations of T-Cell repertoire specificity. Brief Bioinform 2023; 24:bbad175. [PMID: 37150761 DOI: 10.1093/bib/bbad175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The specificity of a T-cell receptor (TCR) repertoire determines personalized immune capacity. Existing methods have modeled the qualitative aspects of TCR specificity, while the quantitative aspects remained unaddressed. We developed a package, TCRanno, to quantify the specificity of TCR repertoires. We created deep-learning-based, epitope-aware vector embeddings to infer individual TCR specificity. Then we aggregated clonotype frequencies of TCRs to obtain a quantitative profile of repertoire specificity at epitope, antigen and organism levels. Applying TCRanno to 4195 TCR repertoires revealed quantitative changes in repertoire specificity upon infections, autoimmunity and cancers. Specifically, TCRanno found cytomegalovirus-specific TCRs in seronegative healthy individuals, supporting the possibility of abortive infections. TCRanno discovered age-accumulated fraction of severe acute respiratory syndrome coronavirus 2 specific TCRs in pre-pandemic samples, which may explain the aggressive symptoms and age-related severity of coronavirus disease 2019. TCRanno also identified the encounter of Hepatitis B antigens as a potential trigger of systemic lupus erythematosus. TCRanno annotations showed capability in distinguishing TCR repertoires of healthy and cancers including melanoma, lung and breast cancers. TCRanno also demonstrated usefulness to single-cell TCRseq+gene expression data analyses by isolating T-cells with the specificity of interest.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Yiping Zou
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Wei Zhang
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Tree Ave, Kowloon Tong, Hong Kong, China
| |
Collapse
|
98
|
Barmada A, Klein J, Ramaswamy A, Brodsky NN, Jaycox JR, Sheikha H, Jones KM, Habet V, Campbell M, Sumida TS, Kontorovich A, Bogunovic D, Oliveira CR, Steele J, Hall EK, Pena-Hernandez M, Monteiro V, Lucas C, Ring AM, Omer SB, Iwasaki A, Yildirim I, Lucas CL. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8:eadh3455. [PMID: 37146127 PMCID: PMC10468758 DOI: 10.1126/sciimmunol.adh3455] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1β, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
Collapse
Affiliation(s)
- Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nina N. Brodsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jillian R. Jaycox
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M. Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria Habet
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S. Sumida
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Kontorovich
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Inborn Errors of Immunity; Precision Immunology Institute; Mindich Child Health and Development Institute; Department of Pediatrics; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos R. Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Steele
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - E. Kevin Hall
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Pena-Hernandez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Valter Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B. Omer
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Inci Yildirim
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
99
|
Vodovotz Y. Towards systems immunology of critical illness at scale: from single cell 'omics to digital twins. Trends Immunol 2023; 44:345-355. [PMID: 36967340 PMCID: PMC10147586 DOI: 10.1016/j.it.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Single-cell 'omics methodology has yielded unprecedented insights based largely on data-centric informatics for reducing, and thus interpreting, massive datasets. In parallel, parsimonious mathematical modeling based on abstractions of pathobiology has also yielded major insights into inflammation and immunity, with these models being extended to describe multi-organ disease pathophysiology as the basis of 'digital twins' and in silico clinical trials. The integration of these distinct methods at scale can drive both basic and translational advances, especially in the context of critical illness, including diseases such as COVID-19. Here, I explore achievements and argue the challenges that are inherent to the integration of data-driven and mechanistic modeling approaches, highlighting the potential of modeling-based strategies for rational immune system reprogramming.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
100
|
Abdulaziz-Opiela G, Sobieraj A, Sibrecht G, Bajdor J, Mroziński B, Kozłowska Z, Iciek R, Wróblewska-Seniuk K, Wender-Ożegowska E, Szczapa T. Prenatal and Neonatal Pulmonary Thrombosis as a Potential Complication of SARS-CoV-2 Infection in Late Pregnancy. Int J Mol Sci 2023; 24:ijms24087629. [PMID: 37108791 PMCID: PMC10146603 DOI: 10.3390/ijms24087629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Neonatal venous thrombosis is a rare condition that can be iatrogenic or occur due to viral infections or genetic mutations. Thromboembolic complications are also commonly observed as a result of SARS-CoV-2 infections. They can affect pediatric patients, especially the ones suffering from multisystem inflammatory syndrome in children (MIS-C) or multisystem inflammatory syndrome in neonates (MIS-N). The question remains whether the maternal SARS-CoV-2 infection during pregnancy can lead to thromboembolic complications in fetuses and neonates. We report on a patient born with an embolism in the arterial duct, left pulmonary artery, and pulmonary trunk, who presented several characteristic features of MIS-N, suspecting that the cause might have been the maternal SARS-CoV2 infection in late pregnancy. Multiple genetic and laboratory tests were performed. The neonate presented only with a positive result of IgG antibodies against SARS-CoV-2. He was treated with low molecular weight heparin. Subsequent echocardiographic tests showed that the embolism dissolved. More research is necessary to evaluate the possible neonatal complications of maternal SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Anna Sobieraj
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Greta Sibrecht
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Julia Bajdor
- Department of Radiology, Nicolaus Copernicus Hospital, 80-803 Gdansk, Poland
| | - Bartłomiej Mroziński
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zuzanna Kozłowska
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Rafał Iciek
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Ewa Wender-Ożegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Szczapa
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|