51
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
52
|
Hosohata K. Biomarkers of high salt intake. Adv Clin Chem 2021; 104:71-106. [PMID: 34462058 DOI: 10.1016/bs.acc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High salt intake is associated with hypertension, which is a leading modifiable risk factor for cardiovascular disease (CVD) and chronic kidney disease (CKD). International Guidelines recommend a large reduction in the consumption of sodium to reduce blood pressure, organ damage, and mortality. In its early stages, the symptoms of CKD are generally not apparent. CKD proceeds in a "silent" manner, necessitating the need for urinary biomarkers to detect kidney damage at an early stage. Since traditional renal biomarkers, such as serum creatinine, are not sufficiently sensitive, difficulties are associated with detecting kidney damage induced by a high salt intake, particularly in normotensive individuals. Several new biomarkers for renal tubular damage, such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), vanin-1, liver-type fatty acid-binding protein (L-FABP), and monocyte chemotactic protein-1 (MCP-1), have recently been identified. However, few studies have investigated early biomarkers for CKD progression associated with a high salt diet. This chapter provides insights into novel biomarkers for CKD in normo- and hypertensive individuals with a high salt intake. Recent studies using spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) fed a high salt diet identified urinary vanin-1 and NGAL as early biomarkers for renal tubular damage in SHR and WKY, whereas urinary KIM-1 was a useful biomarker for salt-induced renal injury in SHR only. Clinical studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
53
|
Lei L, Zhao J, Liu XQ, Chen J, Qi XM, Xia LL, Wu YG. Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3131-3150. [PMID: 34295152 PMCID: PMC8291679 DOI: 10.2147/dddt.s310882] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Introduction Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. Materials and Methods STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2μM, 4μM, 8μM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. Results The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. Conclusion Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Jing Zhao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xue-Qi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Juan Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Xiang-Ming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Ling-Ling Xia
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yong-Gui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
54
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
55
|
Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis 2021; 28:378-390. [PMID: 34922694 DOI: 10.1053/j.ackd.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation, now coined by the new paradigm as "metaflammation" or "metainflammation", has been linked to chronic kidney disease and its progression. In diabetes, altered metabolism denotes factors associated with the metabolic syndrome and hyperglycemia, among others. The interplay among hyperglycemia, oxidative stress, and inflammation in the pathogenesis of diabetic kidney disease (DKD) has been broadly explored. Identification of mediators of inflammatory processes involving macrophage infiltration, production of inflammasomes, release of cytokines, and activation of pertinent signaling pathways including mitogen-activated protein kinase, Jun N-terminal kinase, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK/STAT), and apoptosis signal-regulating kinase 1 signaling mechanisms have enabled the development of therapeutic agents for DKD. This review describes the evidence supporting the contribution of the inflammatory response and fibrotic changes and focuses on selected, novel, promising drugs as well as repurposed drugs that have made it to phase 2, 3, or 4 of clinical trials in adults with type 2 diabetes mellitus and their potential to become an important part of our armamentarium to improve the management of DKD. Importantly, drugs that solely target inflammatory processes may be insufficient to fully optimize care of patients with DKD because of the complex nature of the disease.
Collapse
|
56
|
Abstract
Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
- Correspondence to Ju-Young Moon, M.D. Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Tel: +82-2-440-7064 Fax: +82-2-440-8150 E-mail:
| |
Collapse
|
57
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
58
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
59
|
Oliveira Júnior WVD, Turani SD, Marinho MAS, Pinto SWL, Otoni A, Figueiredo RC, Rios DRA. CA-125 and CCL2 may indicate inflammation in peritoneal dialysis patients. ACTA ACUST UNITED AC 2021; 43:502-509. [PMID: 34032817 PMCID: PMC8940104 DOI: 10.1590/2175-8239-jbn-2020-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Introduction: Progressive structural changes in the peritoneal membrane occur over the
course of treatment in peritoneal dialysis (PD), resulting in an increase in
cytokines such as CCL2 and structural changes in peritoneal membrane
triggering an increase in CA-125 in dialysate, which reflects a probable
local inflammatory process, with possible loss of mesothelial cells. Thus,
the current study aimed to evaluate the association between plasma and CCL2
and CA-125 dialysate levels in patients undergoing PD. Methods: Cross-sectional study was conducted with 41 patients undergoing PD. The
assessments of CA-125 and CCL2 levels were performed using a capture ELISA.
Correlations were estimated using Spearman's correlation and the
investigation of the association between the explanatory variables (CCL2)
and response variable (CA-125) was done for crude ratio of arithmetic means
and adjusted utilizing generalized linear models. Results: A moderate positive correlation was observed between the levels of CA-125 and
CCL2 in the dialysate (rho = 0.696). A statistically significant association
was found between the levels in the CCL2 and CA-125 dialysate (RoM=1.31; CI
= 1.20-1.43), which remained after adjustment for age (RoM = 1.31;
CI=1.19-1.44) and for time in months of PD (RoM=1.34, CI=1.22-1.48). Conclusion: The association of CA-125 levels with CCL2 in the dialysate may indicate that
the local inflammatory process leads to temporary or definitive changes in
peritoneal membrane. A better understanding of this pathogenesis could
contribute to the discovery of new inflammatory biomarkers.
Collapse
Affiliation(s)
| | - Sylvia Dias Turani
- Universidade Federal de São João Del Rei, Campus Centro Oeste, São João Del Rei, MG, Brasil
| | | | | | - Alba Otoni
- Universidade Federal de São João Del Rei, Campus Centro Oeste, São João Del Rei, MG, Brasil
| | | | | |
Collapse
|
60
|
Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int J Mol Sci 2021; 22:ijms22105089. [PMID: 34064989 PMCID: PMC8151056 DOI: 10.3390/ijms22105089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
SGLT2 inhibitor-related nephroprotection is—at least partially—mediated by anti-inflammatory drug effects, as previously demonstrated in diabetic animal and human studies, as well as hyperglycemic cell culture models. We recently presented first evidence for anti-inflammatory potential of empagliflozin (Empa) under normoglycemic conditions in human proximal tubular cells (HPTC) by demonstrating Empa-mediated inhibition of IL-1β-induced MCP-1/CCL2 and ET-1 expression on the mRNA and protein level. We now add corroborating evidence on a genome-wide level by demonstrating that Empa attenuates the expression of several inflammatory response genes in IL-1β-induced (10 ng/mL) normoglycemic HPTCs. Using microarray-hybridization analysis, 19 inflammatory response genes out of >30.000 human genes presented a consistent expression pattern, that is, inhibition of IL-1β (10 ng/mL)-stimulated gene expression by Empa (500 nM), in both HK-2 and RPTEC/TERT1 cells. Pathway enrichment analysis demonstrated statistically significant clustering of annotated pathways (enrichment score 3.64). Our transcriptomic approach reveals novel genes such as CXCL8/IL8, LOX, NOV, PTX3, and SGK1 that might be causally involved in glycemia-independent nephroprotection by SGLT2i.
Collapse
|
61
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
62
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
63
|
Pirklbauer M. Anti-inflammatory potential of Empagliflozin. Inflammopharmacology 2021; 29:573-576. [PMID: 33728540 PMCID: PMC7997819 DOI: 10.1007/s10787-021-00797-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Markus Pirklbauer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
64
|
van Aanhold CCL, Dijkstra KL, Bos M, Wolterbeek R, van den Berg BM, Bruijn JA, Bajema IM, Baelde HJ. Reduced Glomerular Endothelial Thrombomodulin Is Associated with Glomerular Macrophage Infiltration in Diabetic Nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:829-837. [PMID: 33617784 DOI: 10.1016/j.ajpath.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
The endothelial glycoprotein thrombomodulin regulates coagulation, inflammation, and apoptosis. In diabetic mice, reduced thrombomodulin function results in diabetic nephropathy (DN). Furthermore, thrombomodulin treatment reduces renal inflammation and fibrosis. Herein, thrombomodulin expression was examined in human kidney samples to investigate the possibility of targeting thrombomodulin in patients with DN. Glomerular thrombomodulin was analyzed together with the number of glomerular macrophages in 90 autopsied diabetic cases with DN, 55 autopsied diabetic cases without DN, and 37 autopsied cases without diabetes or kidney disease. Thrombomodulin mRNA was measured in glomeruli microdissected from renal biopsies from patients with DN and nondiabetic controls. Finally, glomerular thrombomodulin was measured in diabetic mice following treatment with the selective endothelin A receptor (ETAR) blocker, atrasentan. In diabetic patients, glomerular thrombomodulin expression was increased at the mRNA level, but decreased at the protein level, compared with nondiabetic controls. Reduced glomerular thrombomodulin was associated with an increased glomerular influx of macrophages. Blocking the ETAR with atrasentan restored glomerular thrombomodulin protein levels in diabetic mice to normal levels. The reduction in glomerular thrombomodulin in diabetes likely serves as an early proinflammatory step in the pathogenesis of DN. Thrombomodulin protein may be cleaved under diabetic conditions, leading to a compensatory increase in transcription. The nephroprotective effects of ETAR antagonists in diabetic patients may be attributed to the restoration of glomerular thrombomodulin.
Collapse
Affiliation(s)
- Cleo C L van Aanhold
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Manon Bos
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ron Wolterbeek
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- The Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ingeborg M Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
65
|
Srivastava A, Schmidt IM, Palsson R, Weins A, Bonventre JV, Sabbisetti V, Stillman IE, Rennke HG, Waikar SS. The Associations of Plasma Biomarkers of Inflammation With Histopathologic Lesions, Kidney Disease Progression, and Mortality-The Boston Kidney Biopsy Cohort Study. Kidney Int Rep 2021; 6:685-694. [PMID: 33732983 PMCID: PMC7938082 DOI: 10.1016/j.ekir.2020.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background Soluble tumor necrosis factor receptor (sTNFR)-1, sTNFR-2, YKL-40, monocyte chemoattractant protein (MCP)-1, and soluble urokinase plasminogen activator receptor (suPAR) have emerged as promising biomarkers of inflammation but have not been evaluated across diverse types of kidney diseases. Methods We measured these plasma biomarkers in 523 individuals enrolled into a prospective, observational cohort study of patients undergoing clinically indicated native kidney biopsy at 3 tertiary care hospitals. Two kidney pathologists adjudicated biopsy specimens for semiquantitative scores of histopathology. Proportional hazard models tested associations between biomarkers and risks of kidney disease progression (composite of ≥40% estimated glomerular filtration rate [eGFR] decline or end-stage kidney disease [ESKD]) and death. Results Mean eGFR was 56.4±36 ml/min per 1.73 m2 and the median proteinuria (interquartile range) was 1.6 (0.4, 3.9) g/g creatinine. The most common primary clinicopathologic diagnoses were proliferative glomerulonephritis (29.2%), nonproliferative glomerulopathy (18.1%), advanced glomerulosclerosis (11.3%), and diabetic kidney disease (11.1%). sTNFR-1, sTNFR-2, MCP-1, and suPAR were associated with tubulointerstitial and glomerular lesions. YKL-40 was not associated with any histopathologic lesions after multivariable adjustment. During a median follow-up of 65 months, 182 participants suffered kidney disease progression and 85 participants died. After multivariable adjustment, each doubling of sTNFR-1, sTNFR-2, YKL-40, and MCP-1 was associated with increased risks of kidney disease progression, with hazard ratios ranging from 1.21 to 1.47. Each doubling of sTNFR-2, YKL-40, and MCP-1 was associated with increased risks of death, with hazard ratios ranging from 1.33 to 1.45. suPAR was not significantly associated with kidney disease progression or death. Conclusions sTNFR-1, sTNFR-2, YKL-40, MCP-1, and suPAR are associated with underlying histopathologic lesions and adverse clinical outcomes across a diverse set of kidney diseases.
Collapse
Affiliation(s)
- Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Insa M. Schmidt
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Ragnar Palsson
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Division of Nephrology, Landspitali–The National University Hospital of Iceland, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Astrid Weins
- Pathology Department, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | | | | | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Helmut G. Rennke
- Pathology Department, Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Correspondence: Sushrut S. Waikar, Evans Biomedical Research Center, 650 Albany St, X504, Boston, Massachusetts 02118, USA.
| |
Collapse
|
66
|
Brennan E, Kantharidis P, Cooper ME, Godson C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 2021; 17:725-739. [PMID: 34282342 PMCID: PMC8287849 DOI: 10.1038/s41581-021-00454-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators - specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids - which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.
Collapse
Affiliation(s)
- Eoin Brennan
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Mark E. Cooper
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Catherine Godson
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
67
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
68
|
Zhou S, Yin X, Mayr M, Noor M, Hylands PJ, Xu Q. Proteomic landscape of TGF-β1-induced fibrogenesis in renal fibroblasts. Sci Rep 2020; 10:19054. [PMID: 33149203 PMCID: PMC7642370 DOI: 10.1038/s41598-020-75989-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) plays a premier role in fibrosis. To understand the molecular events underpinning TGF-β1-induced fibrogenesis, we examined the proteomic profiling of a TGF-β1-induced in vitro model of fibrosis in NRK-49F normal rat kidney fibroblasts. Mass spectrometric analysis indicated that 628 cell-lysate proteins enriched in 44 cellular component clusters, 24 biological processes and 27 molecular functions were regulated by TGF-β1. Cell-lysate proteins regulated by TGF-β1 were characterised by increased ribosomal proteins and dysregulated proteins involved in multiple metabolic pathways, including reduced Aldh3a1 and induced Enpp1 and Impdh2, which were validated by enzyme-linked immunosorbent assays (ELISA). In conditioned media, 62 proteins enriched in 20 cellular component clusters, 40 biological processes and 7 molecular functions were regulated by TGF-β1. Secretomic analysis and ELISA uncovered dysregulated collagen degradation regulators (induced PAI-1 and reduced Mmp3), collagen crosslinker (induced Plod2), signalling molecules (induced Ccn1, Ccn2 and Tsku, and reduced Ccn3) and chemokines (induced Ccl2 and Ccl7) in the TGF-β1 group. We conclude that TGF-β1-induced fibrogenesis in renal fibroblasts is an intracellular metabolic disorder and is inherently coupled with inflammation mediated by chemokines. Proteomic profiling established in this project may guide development of novel anti-fibrotic therapies in a network pharmacology approach.
Collapse
Affiliation(s)
- Shujun Zhou
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Xiaoke Yin
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Manuel Mayr
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Mazhar Noor
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Peter J Hylands
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Qihe Xu
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
69
|
Pirklbauer M, Bernd M, Fuchs L, Staudinger P, Corazza U, Leierer J, Mayer G, Schramek H. Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells. Int J Mol Sci 2020; 21:ijms21218189. [PMID: 33139635 PMCID: PMC7663377 DOI: 10.3390/ijms21218189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection.
Collapse
|
70
|
Conway BR, O'Sullivan ED, Cairns C, O'Sullivan J, Simpson DJ, Salzano A, Connor K, Ding P, Humphries D, Stewart K, Teenan O, Pius R, Henderson NC, Bénézech C, Ramachandran P, Ferenbach D, Hughes J, Chandra T, Denby L. Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. J Am Soc Nephrol 2020; 31:2833-2854. [PMID: 32978267 DOI: 10.1681/asn.2020060806] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Little is known about the roles of myeloid cell subsets in kidney injury and in the limited ability of the organ to repair itself. Characterizing these cells based only on surface markers using flow cytometry might not provide a full phenotypic picture. Defining these cells at the single-cell, transcriptomic level could reveal myeloid heterogeneity in the progression and regression of kidney disease. METHODS Integrated droplet- and plate-based single-cell RNA sequencing were used in the murine, reversible, unilateral ureteric obstruction model to dissect the transcriptomic landscape at the single-cell level during renal injury and the resolution of fibrosis. Paired blood exchange tracked the fate of monocytes recruited to the injured kidney. RESULTS A single-cell atlas of the kidney generated using transcriptomics revealed marked changes in the proportion and gene expression of renal cell types during injury and repair. Conventional flow cytometry markers would not have identified the 12 myeloid cell subsets. Monocytes recruited to the kidney early after injury rapidly adopt a proinflammatory, profibrotic phenotype that expresses Arg1, before transitioning to become Ccr2 + macrophages that accumulate in late injury. Conversely, a novel Mmp12 + macrophage subset acts during repair. CONCLUSIONS Complementary technologies identified novel myeloid subtypes, based on transcriptomics in single cells, that represent therapeutic targets to inhibit progression or promote regression of kidney disease.
Collapse
Affiliation(s)
- Bryan R Conway
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eoin D O'Sullivan
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - James O'Sullivan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel J Simpson
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Angela Salzano
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Connor
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peng Ding
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan Humphries
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Stewart
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Teenan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Riinu Pius
- Centre for Medical Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Ferenbach
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hughes
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Tamir Chandra
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
71
|
Cetin N, Kiraz ZK, Sav NM. Urine hepcidin, netrin-1, neutrophil gelatinase-associated lipocalin and C-C motif chemokine ligand 2 levels in multicystic dysplastic kidney. J Bras Nefrol 2020; 42:280-289. [PMID: 32818222 PMCID: PMC7657047 DOI: 10.1590/2175-8239-jbn-2019-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Glomerular hyperfiltration may lead to proteinuria and chronic kidney disease
in unilateral multicystic dysplastic kidney (MCDK). We aimed to investigate
the urine neutrophil-gelatinase-associated lipocalin (NGAL), netrin-1,
hepcidin, and C-C motif chemokine ligand-2 (MCP-1/CCL-2) levels in patients
with MCDK. Methods: Thirty-two patients and 25 controls were included. The urine hepcidin,
netrin-1, NGAL, and MCP-1/CCL-2 levels were determined by ELISA. Results: The
patients had higher serum creatinine
(Cr) levels, urine albumin, and netrin-1/
Cr ratio with lower GFR. There were
positive correlations between urine
protein/Cr, MCP-1/CCL-2/Cr, and
netrin-1 with NGAL (r = 0.397, p =
0.031; r = 0.437, p = 0.041, r = 0.323, p
= 0.042, respectively). Urine netrin-1/Cr
was positively correlated with MCP-1/
CCL-2/Cr (r = 0.356, p = 0.045). There
were positive associations between the
presence of proteinuria and netrin-1/
Cr, MCP-1/CCL-2/Cr, and NGAL/Cr
[Odds ratio (OR): 1.423, p = 0.037,
OR: 1.553, p = 0.033, OR: 2.112, p
= 0.027, respectively)]. ROC curve
analysis showed that netrin-1/Cr,
MCP-1/CCL-2/Cr, and NGAL/Cr had
high predictive values for determining
proteinuria p = 0.027, p = 0.041,
p = 0.035, respectively). Urine hepcidin/
Cr was negatively correlated with
tubular phosphorus reabsorption and
was positively correlated with urine
NGAL/Cr (r = -0.418, p = 0.019; r
= 0.682, p = 0.000; respectively). Conclusions: MCP-1/CCL-2 may play a role in the development of proteinuria in MCDK.
Netrin-1 may be a protective factor against proteinuria-induced renal
injury. Urine hepcidin/Cr may reflect proximal tubule damage in MCDK. Urine
NGAL/Cr may be a predictor of tubule damage by proteinuria.
Collapse
|
72
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
73
|
Guo S, Wang M, Yu Y, Yang Y, Zeng F, Sun F, Li Q, He M, Li Y, Wen J, Gong W, Zhang Z. The association of erythrocyte sedimentation rate, high-sensitivity C-reactive protein and diabetic kidney disease in patients with type 2 diabetes. BMC Endocr Disord 2020; 20:103. [PMID: 32660469 PMCID: PMC7358197 DOI: 10.1186/s12902-020-00584-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To evaluate the association between high-sensitivity C-reactive protein (hsCRP) and erythrocyte sedimentation rate (ESR), and diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). METHODS A cross-sectional study was conducted in 1210 patients with T2DM, among whom 265 had DKD. The severity of DKD was assessed by estimated-glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (ACR). The relationship between ESR, hsCRP and DKD was analyzed by multivariate logistic analysis. The relationship between ESR and eGFR, ESR or ACR was analyzed by multivariate linear regression. RESULTS ESR (23.0 [12.0 ~ 41.5] mm/h versus 12.0 [7.0 ~ 22.0] mm/h, P < 0.001) and hsCRP (3.60 [2.20 ~ 7.65] versus 2.90 [1.80 ~ 5.60] mg/L mg/L, P < 0.01) values were significantly higher in patients with DKD than those without. Patients with higher ESR or hsCRP had lower eGFR and higher ACR. After adjusted for gender, age, hemoglobin, plasma proteins, HbA1c, lipid profiles, and the usage of renin-angiotensin system inhibitors, ESR but not hsCRP was independently associated with the rate and severity of DKD in patients with T2DM. CONCLUSION ESR was independently associated with the rate and severity of DKD in patients with T2DM.
Collapse
Affiliation(s)
- Shizhe Guo
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yeping Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Fangfang Zeng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Fei Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Qin Li
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China
- Department of Endocrinology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
74
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
75
|
Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21114113. [PMID: 32526941 PMCID: PMC7312774 DOI: 10.3390/ijms21114113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is one of the fastest growing causes of death worldwide. Epigenetic regulators control gene expression and are potential therapeutic targets. There is functional interventional evidence for a role of DNA methylation and the histone post-translational modifications-histone methylation, acetylation and crotonylation-in the pathogenesis of kidney disease, including diabetic kidney disease. Readers of epigenetic marks, such as bromodomain and extra terminal (BET) proteins, are also therapeutic targets. Thus, the BD2 selective BET inhibitor apabetalone was the first epigenetic regulator to undergo phase-3 clinical trials in diabetic kidney disease with an endpoint of kidney function. The direct therapeutic modulation of epigenetic features is possible through pharmacological modulators of the specific enzymes involved and through the therapeutic use of the required substrates. Of further interest is the characterization of potential indirect effects of nephroprotective drugs on epigenetic regulation. Thus, SGLT2 inhibitors increase the circulating and tissue levels of β-hydroxybutyrate, a molecule that generates a specific histone modification, β-hydroxybutyrylation, which has been associated with the beneficial health effects of fasting. To what extent this impact on epigenetic regulation may underlie or contribute to the so-far unclear molecular mechanisms of cardio- and nephroprotection offered by SGLT2 inhibitors merits further in-depth studies.
Collapse
|
76
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
77
|
Abstract
The current unidimensional paradigm of kidney disease detection is incompatible with the complexity and heterogeneity of renal pathology. The diagnosis of kidney disease has largely focused on glomerular filtration, while assessment of kidney tubular health has notably been absent. Following insult, the kidney tubular cells undergo a cascade of cellular responses that result in the production and accumulation of low-molecular-weight proteins in the urine and systemic circulation. Modern advancements in molecular analysis and proteomics have allowed the identification and quantification of these proteins as biomarkers for assessing and characterizing kidney diseases. In this review, we highlight promising biomarkers of kidney tubular health that have strong underpinnings in the pathophysiology of kidney disease. These biomarkers have been applied to various specific clinical settings from the spectrum of acute to chronic kidney diseases, demonstrating the potential to improve patient care.
Collapse
Affiliation(s)
- William R Zhang
- Kidney Health Research Collaborative, University of California San Francisco School of Medicine, San Francisco, California 94121, USA
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| |
Collapse
|
78
|
Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21082806. [PMID: 32316547 PMCID: PMC7215738 DOI: 10.3390/ijms21082806] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores. However, whether or not Mφ polarization is involved in the progression of DN has not been adequately defined. The prevalence of the different phenotypes during the course of DN, the existence of hybrid phenotypes and the plasticity of these cells depending of the environment have led to inconclusive results. In the same sense the role of the different macrophage phenotype in fibrosis associated or not to DN warrants additional investigation into Mφ polarization and its role in fibrosis. Due to the association between fibrosis and the progressive decline of renal function in DN, and the role of the different phenotypes of Mφ in fibrosis, in this review we examine the role of macrophage phenotype control in DN and highlight the potential factors contributing to phenotype change and injury or repair in DN.
Collapse
|
79
|
IL-20 in Acute Kidney Injury: Role in Pathogenesis and Potential as a Therapeutic Target. Int J Mol Sci 2020; 21:ijms21031009. [PMID: 32028746 PMCID: PMC7037658 DOI: 10.3390/ijms21031009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.
Collapse
|
80
|
Xu BH, Sheng J, You YK, Huang XR, Ma RCW, Wang Q, Lan HY. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism 2020; 103:154013. [PMID: 31734275 DOI: 10.1016/j.metabol.2019.154013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β/Smad3 signaling is highly activated in kidneys of patients with type 2 diabetic nephropathy (T2DN), however, the precise role of Smad3 in the pathogenesis of diabetic nephropathy remains unclear. METHODS Smad3 knockout (KO)-db/db mice were generated by intercrossing of male and female double-heterozygous Smad3+/- db/m mice. Renal functions including urinary albumin excretion and serum creatinine were determined. Renal histological injury including renal fibrosis and inflammation were examined by periodic acid Schiff (PAS), periodic acid-silver methenamine (PASM), and immunohistochemistry (IHC) staining. RESULTS Smad3 knockout (KO)-db/db mice were protected from the development of diabetic kidney injury, characterized by the normal levels of urinary albumin excretion and serum creatinine without any evidence for renal fibrosis and inflammation. In contrast, Smad3 wild-type (WT) db/db and Smad3+/- db/db mice developed progressively decline in renal function over the 12 to 32-week time course, including increased microalbuminuria and elevated levels of serum creatinine. Pathologically, Smad3 WT db/db and Smad3+/- db/db mice exhibited a marked deposition of collagen-I (colI), collagen-IV(col-IV), and an increased infiltration of F4/80+ macrophages in kidney. Mechanistically, Smad3 deficiency decreased the lncRNA Erbb4-IR transcription, while increased miR-29b transcription and therefore protected the kidney from progressive renal injury in db/db mice. CONCLUSION Results from this study imply that Smad3 may represent as a novel and effective therapeutic target for T2DN.
Collapse
Affiliation(s)
- Bi-Hua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyi Sheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Ke You
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ronald C W Ma
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingwen Wang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China..
| | - Hui-Yao Lan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
81
|
Sugahara M, Tanaka S, Tanaka T, Saito H, Ishimoto Y, Wakashima T, Ueda M, Fukui K, Shimizu A, Inagi R, Yamauchi T, Kadowaki T, Nangaku M. Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. J Am Soc Nephrol 2020; 31:560-577. [PMID: 31996409 DOI: 10.1681/asn.2019060582] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prolyl hydroxylase domain (PHD) inhibitors, which stimulate erythropoietin production through the activation of hypoxia-inducible factor (HIF), are novel therapeutic agents used for treating renal anemia. Several PHD inhibitors, including enarodustat, are currently undergoing phase 2 or phase 3 clinical trials. Because HIF regulates a broad spectrum of genes, PHD inhibitors are expected to have other effects in addition to erythropoiesis, such as protection against metabolic disorders. However, whether such beneficial effects would extend to metabolic disorder-related kidney disease is largely unknown. METHODS We administered enarodustat or vehicle without enarodustat in feed to diabetic black and tan brachyury (BTBR) ob/ob mice from 4 to 22 weeks of age. To elucidate molecular changes induced by enarodustat, we performed transcriptome analysis of isolated glomeruli and in vitro experiments using murine mesangial cells. RESULTS Compared with BTBR ob/ob mice that received only vehicle, BTBR ob/ob mice treated with enarodustat displayed lower body weight, reduced blood glucose levels with improved insulin sensitivity, lower total cholesterol levels, higher adiponectin levels, and less adipose tissue, as well as a tendency for lower macrophage infiltration. Enarodustat-treated mice also exhibited reduced albuminuria and amelioration of glomerular epithelial and endothelial damage. Transcriptome analysis of isolated glomeruli revealed reduced expression of C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) in enarodustat-treated mice compared with the vehicle-only group, accompanied by reduced glomerular macrophage infiltration. In vitro experiments demonstrated that both local HIF-1 activation and restoration of adiponectin by enarodustat contributed to CCL2/MCP-1 reduction in mesangial cells. CONCLUSIONS These results indicate that the PHD inhibitor enarodustat has potential renoprotective effects in addition to its potential to protect against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Takeshi Wakashima
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Masatoshi Ueda
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Kenji Fukui
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, and
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
82
|
Citro A, Pellegrini S, Dugnani E, Eulberg D, Klussmann S, Piemonti L. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse. Am J Transplant 2019; 19:3131-3138. [PMID: 31267721 DOI: 10.1111/ajt.15518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
Abstract
The blockade of pro-inflammatory mediators is a successful approach to improve the engraftment after islet transplantation. L-aptamers are chemically synthesized, nonimmunogenic bio-stable oligonucleotides that bind and inhibit target molecules conceptually similar to antibodies. We aimed to evaluate if blockade-aptamer-based inhibitors of C-C Motif Chemokine Ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) and C-X-C Motif Chemokine Ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) are able to favor islet survival in mouse models for islet transplantation and for type 1 diabetes. We evaluated the efficacy of the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 on islet survival in a syngeneic mouse model of intraportal islet transplantation and in a multiple low doses of streptozotocin (MLD-STZ) diabetes induction model. Moreover, we characterized intrahepatic infiltrated leukocytes by flow cytometry before and 3 days after islet infusion in presence or absence of these inhibitors. The administration for 14 days of mNOX-E36 and NOX-A12 significantly improved islet engraftment, either compound alone or in combination. Intrahepatic islet transplantation recruited CD45+ leucocytes and more specifically CD45+/CD11b+ mono/macrophages; mNOX-E36 and NOX-A12 treatments significantly decreased the recruitment of inflammatory monocytes, CD11b+ /Ly6Chigh /CCR2+ and CD11b+ /Ly6Chigh /CXCR4+ cells, respectively. Additionally, both L-aptamers significantly attenuated diabetes progression in the MLD-STZ model. In conclusion, CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers is an efficient strategy to improve islet engraftment and survival.
Collapse
Affiliation(s)
- Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Dugnani
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sven Klussmann
- NOXXON Pharma AG, Berlin, Germany.,Aptarion Biotech AG, Berlin, Germany
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
83
|
Sinha SK, Nicholas SB, Sung JH, Correa A, Rajavashisth TB, Norris KC, Lee JE. hs-CRP Is Associated With Incident Diabetic Nephropathy: Findings From the Jackson Heart Study. Diabetes Care 2019; 42:2083-2089. [PMID: 31511234 PMCID: PMC6804609 DOI: 10.2337/dc18-2563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/14/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE African Americans (AA) suffer disproportionately from diabetic nephropathy (DN). C-reactive protein (CRP) has been associated with prevalent DN, but its association with incident DN in AA is unknown. We examined hs-CRP and incident DN in AA. RESEARCH DESIGN AND METHODS We conducted a longitudinal analysis of data from exams 1, 2, and 3 in 4,043 eligible Jackson Heart Study (JHS) participants. Participants with DN or without hs-CRP at exam 1 were excluded. Incident DN was defined as urinary albumin-to-creatinine ratio (ACR) >30 mg/g or self-reported dialysis/transplantation and type 2 diabetes mellitus (DM) or HbA1c >6.5% by exam 2 or 3 among participants free of DN at exam 1. Kaplan-Meier curves examined DN event-free survival probability by hs-CRP. With Cox proportional hazards regression we estimated hazard ratios (HRs) and 95% CI for DN by hs-CRP tertiles, adjusting for demographics and clinical and laboratory data. RESULTS During 7.8 years of median follow-up time, participants who developed DN had significantly higher baseline hs-CRP, age, fasting glucose, triglycerides, ACR, systolic blood pressure, waist circumference, and duration of DM (P < 0.05). The overall incident rate of DN was 7.9%. The mean time to incident DN was shorter for participants with hs-CRP in the high tertile (>4.24 mg/L) than in the low tertile (<1.46 mg/L); P < 0.001. Participants with high hs-CRP had higher incidence of DN (HR 2.34, 95% CI 1.04-5.24) versus the reference group. CONCLUSIONS Inflammation, as measured by hs-CRP levels, may be associated with incident DN in AA. Further studies are warranted to replicate and elucidate the basis for this association.
Collapse
Affiliation(s)
- Satyesh K Sinha
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Susanne B Nicholas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jung Hye Sung
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS
| | - Adolfo Correa
- Departments of Medicine and Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Tripathi B Rajavashisth
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keith C Norris
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jae Eun Lee
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS
| |
Collapse
|
84
|
Hong J, Li G, Zhang Q, Ritter J, Li W, Li PL. D-Ribose Induces Podocyte NLRP3 Inflammasome Activation and Glomerular Injury via AGEs/RAGE Pathway. Front Cell Dev Biol 2019; 7:259. [PMID: 31737627 PMCID: PMC6831643 DOI: 10.3389/fcell.2019.00259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
D-ribose levels are demonstrated to be increased in type II diabetes mellitus and increased blood D-ribose is involved in the development of diabetic complications such as diabetic encephalopathy and nephropathy. However, the mechanism mediating the pathogenic role of D-ribose in nephropathy remains poorly understood. Given that D-ribose was reported to induce advanced glycation end products (AGEs) formation, the present study tested whether D-ribose induces NLRP3 activation and associated glomerular injury via AGEs/receptor of AGEs (RAGE) signaling pathway. In vivo, C57BL/6J and Asc-/- mice were treated with D-ribose with or without AGEs inhibitor. Administration of D-ribose daily for 30 days was found to induce NLRP3 inflammasome formation in glomerular podocyte, as shown by increased co-localization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. This D-ribose-induced NLRP3 inflammasome formation was accompanied by its activation as evidenced by increased IL-1β production, a major product of NLRP3 inflammasome. Corresponding to NLRP3 inflammasome activation, D-ribose led to significant glomerular injury in mice. All these D-ribose-induced glomerular inflammasome and associated pathological changes were markedly attenuated by deletion of Asc gene. Furthermore, the accumulation of AGEs and RAGE was found increased in glomeruli of mice receiving D-ribose. In cell studies, we also confirmed that D-ribose induced NLRP3 inflammasome formation and activation in podocytes, which was significantly blocked by caspase-1 inhibitor, YvAD. Mechanically, AGEs formation inhibition and cleavage or silencing of RAGE gene were shown to suppress D-ribose-induced NLRP3 inflammasome formation and activation, as shown by significant reduction of NLRP3 inflammasome molecular aggregation, caspase-1 activity and IL-1β production. These results strongly suggest that relatively long term administration of D-ribose induces NLRP3 inflammasome formation and activation in podocytes via AGEs/RAGE signaling pathway, which may be one of important triggering mechanisms leading to diabetic nephropathy.
Collapse
Affiliation(s)
- Jinni Hong
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
- Department of Gynecology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Weiwei Li
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
85
|
Tesch GH, Pullen N, Jesson MI, Schlerman FJ, Nikolic-Paterson DJ. Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in Nos3-deficient mice. Am J Physiol Renal Physiol 2019; 317:F1439-F1449. [PMID: 31566438 DOI: 10.1152/ajprenal.00340.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophage-mediated renal injury promotes the development of diabetic nephropathy. Blockade of chemokine (C-C motif) receptor 2 (CCR2) inhibits kidney macrophage accumulation and early glomerular damage in diabetic animals. This study tested early and late interventions with a CCR2 antagonist (CCR2A) in a model of progressive diabetic glomerulosclerosis and determined whether CCR2A provides added benefit over conventional treatment with an angiotensin-converting enzyme inhibitor (ACEi). Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by administration of five low-dose streptozotocin (STZ) injections daily. Groups of diabetic Nos3-/- mice received a CCR2A (30 mg·kg-1·day-1 PF-04634817 in chow) as an early intervention (weeks 2-15 after STZ). The late intervention (weeks 8-15 after STZ) involved PF-04634817 alone, ACEi (captopril in water 10 mg·kg-1·day-1) alone, or combined ACEi + CCR2A. Control diabetic and nondiabetic Nos3-/- mice received normal chow and water. Early intervention with a CCR2A inhibited kidney inflammation and glomerulosclerosis, albuminuria, podocyte loss, and renal function impairment but not hypertension in diabetic Nos3-/- mice. Late intervention with a CCR2A also inhibited kidney inflammation, glomerulosclerosis, and renal dysfunction but did not affect albuminuria. ACEi alone suppressed hypertension and albuminuria and partially reduced podocyte loss and glomerulosclerosis but did not affect renal dysfunction. Compared with ACEi alone, the combined late intervention with ACEi + CCR2A provided better protection against kidney damage (inflammation, glomerulosclerosis, and renal function impairment) but not albuminuria. In conclusion, this study demonstrates that combining CCR2A and ACEi provides broader and superior renal protection than ACEi alone in a model of established diabetic glomerulosclerosis with hypertension.
Collapse
Affiliation(s)
- Gregory H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Monash University Centre for Inflammatory Diseases, Clayton, Victoria, Australia
| | - Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts
| | | | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.,Monash University Centre for Inflammatory Diseases, Clayton, Victoria, Australia
| |
Collapse
|
86
|
Lee CP, Nithiyanantham S, Hsu HT, Yeh KT, Kuo TM, Ko YC. ALPK1 regulates streptozotocin-induced nephropathy through CCL2 and CCL5 expressions. J Cell Mol Med 2019; 23:7699-7708. [PMID: 31557402 PMCID: PMC6815771 DOI: 10.1111/jcmm.14643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
ALPK1 is associated with chronic kidney disease, gout and type 2 diabetes mellitus. Raised renal ALPK1 level in patients with diabetes was reported. Accelerated fibrotic nephropathies were observed in hyperglycaemic mice with up-regulated ALPK1. The aim of this study was to identify the mediators contributing to ALPK1 effect involving in nephropathies induction. The haematoxylin and eosin staining, Masson's trichrome and immunohistochemical analysis of ALPK1, NFkB, CCL2 and CCL5 were performed in the mice kidney. Cytokine antibody array analysis was performed in streptozotocin-treated wild-type mice (WT-STZ) and streptozotocin-treated ALPK1 transgenic mice (TG-STZ). The ALPK1 levels were measured in mice kidney and in cultured cells. We found that the higher levels of renal CCL2/MCP-1, CCL5/Rantes and G-CSF expression in TG-STZ compared with the WT-STZ. Glucose increased ALPK1 expressions in monocytic THP1 and human kidney-2 cells. The protein expression of ALPK1, NFkB and lectin was up-regulated in glucose-treated HK-2 cells. Knockdown of ALPK1 reduced CCL2 and CCL5 mRNA levels, whereas overexpressed ALPK1 increased CCL2 and CCL5 in cultured kidney cells. Taken together, these results show that high glucose increases ALPK1 and chemokine levels in the kidney. Elevated ALPK1 expression enhances renal CCL2 and CCL5 expressions in vivo and in vitro. ALPK1 is a mediator for CCL2 and CCL5 chemokine up-regulation involving in diabetic nephropathies induction.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
87
|
Jha JC, Dai A, Holterman CE, Cooper ME, Touyz RM, Kennedy CR, Jandeleit-Dahm KAM. Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia 2019; 62:1712-1726. [PMID: 31222503 DOI: 10.1007/s00125-019-4924-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Excessive production of reactive oxygen species (ROS) plays a detrimental role in the progression of diabetic kidney disease (DKD). Renal oxidative stress activates proinflammatory cytokines, chemokines and profibrotic factors in DKD. Increased expression of the prooxidant enzyme NADPH oxidase (NOX) 5 in kidneys of diabetic individuals has been hypothesised to correlate with renal injury and progression of DKD. Since the gene encoding NOX5 is not expressed in the mouse genome, we examined the effect of inducible human NOX5 expression in renal cells, selectively in either endothelial cells or vascular smooth muscle cells (VSMCs)/mesangial cells in a model of insulin-deficient diabetes, the Akita mouse. METHODS Renal structural injury, including glomerulosclerosis, mesangial expansion and extracellular matrix protein accumulation, as well as renal inflammation, ROS formation and albuminuria, were examined in the NOX5 transgenic Akita mouse model of DKD. RESULTS Expression of NOX5 in either endothelial cells or VSMCs/mesangial cells in diabetic Akita mice was associated with increased renal inflammation (monocyte chemoattractant protein-1, NF-κB and toll-like receptor-4) and glomerulosclerosis, as well as upregulation of protein kinase C-α and increased expression of extracellular matrix genes (encoding collagen III, fibronectin and α-smooth muscle actin) and proteins (collagen IV), most likely mediated via enhanced renal ROS production. The effect of VSMC/mesangial cell-specific NOX5 expression resulted in more pronounced renal fibrosis in comparison with endothelial cell-specific NOX5 expression in diabetic mice. In addition, albuminuria was significantly increased in diabetic VEcad+NOX5+ mice (1192 ± 194 μg/24 h) when compared with diabetic VEcad+NOX5- mice (770 ± 98 μg/24 h). Furthermore, the regulatory components of NOX5 activation, including heat shock protein 90 and transient receptor potential cation channel subfamily C member 6, were upregulated only in the presence of both NOX5 and diabetes. CONCLUSIONS/INTERPRETATION The findings from this study highlight the importance of NOX5 in promoting diabetes-related renal injury and provide the rationale for the development of a selective NOX5 inhibitor for the prevention and/or treatment of DKD.
Collapse
Affiliation(s)
- Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Chet E Holterman
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Chris R Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia.
- German Diabetes Centre, Institute for Clinical Diabetology, Leibniz Centre for Diabetes Research, Heinrich-Heine University, Duesseldorf, Germany.
| |
Collapse
|
88
|
Lobry T, Miller R, Nevo N, Rocca CJ, Zhang J, Catz SD, Moore F, Thomas L, Pouly D, Bailleux A, Guerrera IC, Gubler MC, Cheung WW, Mak RH, Montier T, Antignac C, Cherqui S. Interaction between galectin-3 and cystinosin uncovers a pathogenic role of inflammation in kidney involvement of cystinosis. Kidney Int 2019; 96:350-362. [PMID: 30928021 PMCID: PMC7269416 DOI: 10.1016/j.kint.2019.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022]
Abstract
Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the β-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.
Collapse
Affiliation(s)
- Tatiana Lobry
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA; INSERM, U1078, Équipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, Brest, France, and CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, Brest, France
| | - Roy Miller
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Nathalie Nevo
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Celine J Rocca
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Fiona Moore
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Lucie Thomas
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Daniel Pouly
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Anne Bailleux
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Marie-Claire Gubler
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Wai W Cheung
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Robert H Mak
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Tristan Montier
- INSERM, U1078, Équipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, Brest, France, and CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, Brest, France
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Paris, France; Department of Genetics, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
89
|
Liang D, Song Z, Liang W, Li Y, Liu S. Metformin inhibits TGF-beta 1-induced MCP-1 expression through BAMBI-mediated suppression of MEK/ERK1/2 signalling. Nephrology (Carlton) 2019; 24:481-488. [PMID: 29934960 DOI: 10.1111/nep.13430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
AIMS Metformin is a biguanide derivative widely used for the treatment of type 2 diabetes mellitus. Recent evidence demonstrates that this anti-hyperglycaemic drug exerts renal protective effects, yet the mechanisms remain poorly understood. monocyte chemoattractant protein 1 (MCP-1) has been recognized as a key mediator of renal fibrosis in chronic kidney diseases, including diabetic nephropathy. This study aimed to investigate the effects of metformin on transforming growth factor beta 1 (TGF-β1)-induced MCP-1 expression and the underlying mechanisms in rat renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line NRK-52E cells were stimulated with TGF-β1 and/or metformin. The messenger RNA (mRNA) of MCP-1 and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) was evaluated by real-time quantitative polymerase chain reaction. MCP-1 protein was measured by enzyme linked immunosorbent assay (ELISA). Total and phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2) was evaluated by western blot. Down- and upregulation of BAMBI were achieved by RNA interference targeting BAMBI and lentiviral vector-mediated overexpression of the BAMBI gene, respectively. Cell viability was analysed using Cell Counting Kit 8 (CCK-8) reagents. RESULTS Stimulation with TGF-β1 resulted in the increased expression of MCP-1 and decreased expression of BAMBI in NRK-52E cells. Metformin inhibited the expression of MCP-1 in NRK-52E cells. Pretreatment with metformin suppressed upregulation of MCP-1 and downregulation of BAMBI, as well as phosphorylation of ERK1/2 induced by TGF-β1. U0126, a specific inhibitor for mitogen-activated and extracellular signal-regulated kinase kinases 1/2 (MEK-1/2), completely blocked TGF-β1-induced MCP-1 expression. Knockdown of the BAMBI gene promoted phosphorylation of ERK1/2 and TGF-β1-induced expression of MCP-1. Overexpression of BAMBI inhibited phosphorylation of ERK1/2 and TGF-β1-induced upregulation of MCP-1. CONCLUSION In rat renal tubular epithelial cells, metformin prevents TGF-β1-induced MCP-1 expression, in which BAMBI-mediated inhibition of MEK/ERK1/2 might be involved.
Collapse
Affiliation(s)
- Diefei Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijiao Song
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiwen Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanying Liu
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
90
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 556] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
91
|
Abstract
Significance: Obesity and type 2 diabetes mellitus are increasing globally. There is also increasing associated complications, such as non-alcoholic fatty liver disease (NAFLD) and vascular complications of diabetes. There is currently no licensed treatment for NAFLD and no recent treatments for diabetic complications. New approaches are required, particularly those addressing mechanism-based risk factors for health decline and disease progression. Recent Advances: Dicarbonyl stress is the abnormal accumulation of reactive dicarbonyl metabolites such as methylglyoxal (MG) leading to cell and tissue dysfunction. It is a potential driver of obesity, diabetes, and related complications that are unaddressed by current treatments. Increased formation of MG is linked to increased glyceroneogenesis and hyperglycemia in obesity and diabetes and also down-regulation of glyoxalase 1 (Glo1)-which provides the main enzymatic detoxification of MG. Glo1 functional genomics studies suggest that increasing Glo1 expression and activity alleviates dicarbonyl stress; slows development of obesity, related insulin resistance; and prevents development of diabetic nephropathy and other microvascular complications of diabetes. A new therapeutic approach constitutes small-molecule inducers of Glo1 expression-Glo1 inducers-exploiting a regulatory antioxidant response element in the GLO1 gene. A prototype Glo1 inducer, trans-resveratrol (tRES)-hesperetin (HESP) combination, in corrected insulin resistance, improved glycemic control and vascular inflammation in healthy overweight and obese subjects in clinical trial. Critical Issues: tRES and HESP synergize pharmacologically, and HESP likely overcomes the low bioavailability of tRES by inhibition of intestinal glucuronosyltransferases. Future Directions: Glo1 inducers may now be evaluated in Phase 2 clinical trials for treatment of NAFLD and vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- 1 Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital , Coventry, United Kingdom .,2 Warwick Systems Biology Centre, Senate House, University of Warwick , Coventry, United Kingdom
| | - Paul J Thornalley
- 1 Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital , Coventry, United Kingdom .,2 Warwick Systems Biology Centre, Senate House, University of Warwick , Coventry, United Kingdom
| |
Collapse
|
92
|
Yao L, Li J, Li L, Li X, Zhang R, Zhang Y, Mao X. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:14. [PMID: 30630477 PMCID: PMC6327481 DOI: 10.1186/s12906-018-2410-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coreopsis tinctoria Nutt is an ethnomedicine widely used in Xinjiang, China. It is consumed as a herbal tea by local Uyghur people to treat high blood pressure and diarrhea. Our previous study confirmed that the ethyl acetate extract of Coreopsis tinctoria (AC) had a protective effect on diabetic nephropathy (DN) in an in vivo experiment. Here we aim to elucidate the protective mechanism of AC and marein, the main ingredient in Coreopsis tinctoria on renal fibrosis and inflammation in vitro under high glucose (HG) conditions. METHODS A HG-induced barrier dysfunction model in rat mesangial cells (HBZY-1) was established. The cells were exposed to AC and marein and/or HG for 24 h. Then, the renal protective effects of AC and marein via transforming growth factor-β1 (TGF-β1)/Smads, AMP-activated kinase protein (AMPK), and nuclear factor kappa beta (NF-κB) signaling were assessed. RESULTS Both AC and marein suppressed rat mesangial cell hyperplasia and significantly attenuated the expression of HG-disrupted fibrotic and inflammatory proteins in HBZY-1 cells. It was also confirmed that AC and marein remarkably attenuated HG-induced renal inflammation and fibrosis by regulating the AMPK, TGF-β1/Smads, and NF-κB signaling pathways. CONCLUSION These results indicated that AC and marein may delay the progression of DN, at least in part, by suppressing HG-induced renal inflammation and fibrosis. Marein may be one of the bioactive compounds in AC.
Collapse
Affiliation(s)
- Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| | - Jie Li
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 Yuquan Road, Nankai District, Tianjing, 300000 China
| | - Linlin Li
- College of Basic Medicine, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Xinxia Li
- Center of Analysis and Test, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Rui Zhang
- College of Basic Medicine, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Yujie Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| | - Xinmin Mao
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| |
Collapse
|
93
|
Spensley KJ, Tam FWK. From Renal Biomarkers to Therapeutic Targets: The Use of Monocyte Chemoattractant Protein 1, Transforming Growth Factor-Beta, and Connective Tissue Growth Factor in Diabetic Nephropathy and Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10310232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In an ideal world, every condition would have a sensitive and specific marker that could be measured in a noninvasive or minimally invasive way. Instead, the medical community depends on invasive biomarkers, which carry inherent risks, to make a diagnosis and plan treatment. In this review article, the current state of research into biomarkers for a range of kidney diseases is discussed, beginning with those biomarkers that are already in clinical use and then moving to conditions for which no validated biomarker yet exists. This review focusses on diabetic nephropathy at the proteinuric end of the spectrum and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis at the nephritic end. An interesting feature is that the same biomarker, monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), has been identified as a potential target in both conditions, which suggests a shared pathogenic process that results in two very distinct clinical presentations. One of the major limiting features of research into this area, particularly for ANCA-associated vasculitis, is the recruitment of a sufficient number of patients to generate strong enough evidence to justify the biomarker’s routine use; this overlap in biomarkers may enable research in one condition to be applied more generally. In addition to their role as biomarkers, these molecules are also therapeutic targets, and some early research has been carried out to investigate this. Overall, this review brings together research from diverse fields to focus attention on the outstanding areas and the future areas that warrant further investigation.
Collapse
Affiliation(s)
- Katrina J. Spensley
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Frederick W. K. Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
94
|
Barutta F, Bellini S, Mastrocola R, Gambino R, Piscitelli F, di Marzo V, Corbetta B, Vemuri VK, Makriyannis A, Annaratone L, Bruno G, Gruden G. Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy. Br J Pharmacol 2018; 175:4371-4385. [PMID: 30184259 DOI: 10.1111/bph.14495] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 07/21/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (EC) system has been implicated in the pathogenesis of diabetic nephropathy (DN). We investigated the effects of peripheral blockade of the cannabinoid CB1 receptor as an add-on treatment to ACE-inhibition in type 1 diabetic mice (DM) with established albuminuria. EXPERIMENTAL APPROACH Renal functional parameters (albumin excretion rate, creatinine clearance), tubular injury, renal structure, both EC and CB receptor levels and markers of podocyte dysfunction, fibrosis and inflammation were studied in streptozotocin-induced DM treated for 14 weeks with vehicle, the ACE-inhibitor perindopril (2 mg·kg-1 ·day-1 ), peripherally-restricted CB1 receptor antagonist AM6545 (10 mg·kg-1 ·day-1 ) or both. Treatments began at 8 weeks after diabetes onset, when early DN is established. KEY RESULTS CB1 receptors were overexpressed in DM and neither perindopril nor AM6545 altered this effect, while both drugs abolished diabetes-induced overexpression of angiotensin AT1 receptors. Single treatment with either AM6545 or perindopril significantly reduced progression of albuminuria, down-regulation of nephrin and podocin, inflammation and expression of markers of fibrosis. However, reversal of albuminuria was only observed in mice administered both treatments. The ability of the combination therapy to completely abolish slit diaphragm protein loss, monocyte infiltration, overexpression of inflammatory markers and favour macrophage polarization towards an M2 phenotype may explain this greater efficacy. In vitro experiments confirmed that CB1 receptor activation directly inhibits retinoic acid-induced nephrin expression in podocytes and IL-4-induced M2 polarization in macrophages. CONCLUSION AND IMPLICATIONS Peripheral CB1 receptor blockade used as add-on treatment to ACE-inhibition reverses albuminuria, nephrin loss and inflammation in DM.
Collapse
Affiliation(s)
- F Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - R Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry - CNR, Pozzuoli, Italy
| | - V di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry - CNR, Pozzuoli, Italy
| | - B Corbetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - V K Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - A Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - L Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
95
|
Jiandong L, Yang Y, Peng J, Xiang M, Wang D, Xiong G, Li S. Trichosanthes kirilowii lectin ameliorates streptozocin-induced kidney injury via modulation of the balance between M1/M2 phenotype macrophage. Biomed Pharmacother 2018; 109:93-102. [PMID: 30396096 DOI: 10.1016/j.biopha.2018.10.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophage polarization has been reported to induce podocyte injury, which is a typical characteristic of diabetic nephropathy (DN). Trichosanthes kirilowii is an herb showing renal protective effect as well as immune-regulating effect. Therefore, it was hypothesized that the renal protective effect of Trichosanthes kirilowii was associated with its modulation on macrophage polarization. In the current study, we tested the hypothesis by subjecting DN rats to treatment of Trichosanthes kirilowii lectin (TKL), an active component of Trichosanthes kirilowii. METHOD DN was induced using streptozocin (STZ) method, and after 3 days, treatments were performed with different doses of TKL for eight weeks. The effect of TKL on the renal function, structure, and inflammation was assessed. To explain the pathway mediating the effect of TKL on renal tissues, the expressions of markers involved in macrophage polarization, podocyte proliferation, and Notch signaling were determined. Moreover, the DN rats were further administrated with Notch signaling inhibitor, Dibenzazepine (DIB), to verify the key role of Notch signaling in the renal protective effect of TKL. RESULTS STZ induced damages in renal function and structure, which was attenuated by TKL of different doses. Moreover, STZ also increased the production of TNF-α and iNOS while suppressed the production of IL-10 and arginase-1 (Arg-1). The induced inflammation by STZ was inhibited by TKL. The polarization of macrophage into M1 type during the development of DN was blocked by TKL, contributing to the increased proliferation potential of podocytes. Regarding Notch signaling, TKL administration inhibited the activation of the pathway by suppressing the expression of Notch1, NICD1, and Hes1. The administration of DIB had similar effect to that of TKL administration on renal function and structure. CONCLUSIONS The study for the first time showed that TKL attenuated deterioration in renal structure and function by increasing M2 macrophage proportion via inhibition of Notch signaling.
Collapse
Affiliation(s)
- Lu Jiandong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yilong Yang
- Geriatrics Department of Traditional Chinese Medicine, Shenzhen Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinting Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Min Xiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Dongcai Wang
- Centers for Disease Early Treatment, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
96
|
Grosjean F, Yubero-Serrano EM, Zheng F, Esposito V, Swamy S, Elliot SJ, Cai W, Vlassara H, Salem F, Striker GE. Pharmacologic control of oxidative stress and inflammation determines whether diabetic glomerulosclerosis progresses or decreases: A pilot study in sclerosis-prone mice. PLoS One 2018; 13:e0204366. [PMID: 30252878 PMCID: PMC6155507 DOI: 10.1371/journal.pone.0204366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is characterized by progressive glomerulosclerosis (GS). ROP mice have a sclerosis-prone phenotype. However, they develop severe, rapidly progressive GS when rendered diabetic. Since GS also develops in aged C57Bl6 mice, and can be reversed using bone marrow from young mice which have lower oxidative stress and inflammation (OS/Infl), we postulated that this might also apply to DKD. Therefore, this pilot study asked whether reducing OS/Infl in young adult sclerosis-prone (ROP) diabetic mice leads to resolution of existing GS in early DKD using safe, FDA-approved drugs.After 4 weeks of stable streptozotocin-induced hyperglycemia 8-12 week-old female mice were randomized and treated for 22 weeks as follows: 1) enalapril (EN) (n = 8); 2) pyridoxamine (PYR)+EN (n = 8); 3) pentosan polysulfate (PPS)+EN (n = 7) and 4) PPS+PYR+EN (n = 7). Controls were untreated (non-DB, n = 7) and hyperglycemic (DB, n = 8) littermates. PPS+PYR+EN reduced albuminuria and reversed GS in DB. Treatment effects: 1) Anti-OS/Infl defenses: a) PPS+PYR+EN increased the levels of SIRT1, Nrf2, estrogen receptor α (ERα) and advanced glycation endproduct-receptor1 (AGER1) levels; and b) PYR+EN increased ERα and AGER1 levels. 2) Pro-OS/Infl factors: a) PPS+PYR+EN reduced sTNFR1, b) all except EN reduced MCP1, c) RAGE was reduced by all treatments. In summary, PYR+PPS+EN modulated GS in sclerosis-prone hyperglycemic mice. PYR+PPS+EN also decreased albuminuria, OS/Infl and the sclerosis-prone phenotype. Thus, reducing OS/Infl may reverse GS in early diabetes in patients, and albuminuria may allow early detection of the sclerosis-prone phenotype.
Collapse
Affiliation(s)
- Fabrizio Grosjean
- Division of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| | - Feng Zheng
- Division of Nephrology and Basic Science Laboratory, Union Hospital Fujian Medical University, Fuzhou, Fujian, China
| | - Vittoria Esposito
- Unit of Nephrology and Dialysis, Fondazione IRCCS Salvatore Maugeri, Pavia, Italy
| | - Shobha Swamy
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Sharon J. Elliot
- Department of Surgery, School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Weijing Cai
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Annenberg 15–235, New York, New York, United States of America
| | - Gary E. Striker
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
97
|
Liu S, Chen J, Li Y. Clinical significance of serum interleukin-8 and soluble tumor necrosis factor-like weak inducer of apoptosis levels in patients with diabetic nephropathy. J Diabetes Investig 2018; 9:1182-1188. [PMID: 29489069 PMCID: PMC6123032 DOI: 10.1111/jdi.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/25/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Recent studies suggest that chronic inflammatory responses are important in the development of diabetic nephropathy (DN). Various inflammatory and angiogenesis molecules affect the pathogenesis and progression of DN. Inflammation damages the microcirculation and causes kidney damage. In the present study, we studied changes in interleukin-8 (IL-8) and soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) levels in patients with DN, and investigated the clinical significance of these two inflammatory factors. MATERIALS AND METHODS Participants were categorized into healthy controls (n = 30) and patients with type 2 diabetes mellitus (n = 124). The type 2 diabetes mellitus group was further subdivided into the normoalbuminuria (n = 34), microalbuminuria (MAU; n = 46,) and proteinuria (MaAU; n = 44,) groups. Patients with DN were included in the MAU and MaAU groups. Total cholesterol, triglyceride, low-density lipoprotein cholesterol, glycosylated hemoglobin, fasting blood glucose, 2-h postprandial blood glucose, blood urea nitrogen, serum creatinine, 24-h urine microalbumin, IL-8 and sTWEAK levels were measured. Logistic regression was used to analyze the factors associated with proteinuria. RESULTS In the healthy controls, normoalbuminuria, MAU and MaAU groups, we found that IL-8 levels increased, whereas sTWEAK levels decreased (P < 0.05). IL-8 might be an independent risk factor and serum sTWEAK a protective factor for MAU and MaAU. Serum levels of sTWEAK, IL-8 and microalbumin were significantly correlated in the MAU and MaAU groups. CONCLUSIONS Serum IL-8 and sTWEAK levels might be markers that can be used for an early diagnosis of DN.
Collapse
Affiliation(s)
- Shu‐yan Liu
- Department of EndocrinologyThe First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital)JiaozuoChina
| | - Jie Chen
- Department of EndocrinologyThe First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital)JiaozuoChina
| | - Yong‐feng Li
- Department of EndocrinologyThe First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital)JiaozuoChina
| |
Collapse
|
98
|
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018; 107:306-328. [PMID: 30098549 DOI: 10.1016/j.biopha.2018.07.157] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023] Open
Abstract
Chronic exposure of glucose rich environment creates several physiological and pathophysiological changes. There are several pathways by which hyperglycemia exacerbate its toxic effect on cells, tissues and organ systems. Hyperglycemia can induce oxidative stress, upsurge polyol pathway, activate protein kinase C (PKC), enhance hexosamine biosynthetic pathway (HBP), promote the formation of advanced glycation end-products (AGEs) and finally alters gene expressions. Prolonged hyperglycemic condition leads to severe diabetic condition by damaging the pancreatic β-cell and inducing insulin resistance. Numerous complications have been associated with diabetes, thus it has become a major health issue in the 21st century and has received serious attention. Dysregulation in the cardiovascular and reproductive systems along with nephropathy, retinopathy, neuropathy, diabetic foot ulcer may arise in the advanced stages of diabetes. High glucose level also encourages proliferation of cancer cells, development of osteoarthritis and potentiates a suitable environment for infections. This review culminates how elevated glucose level carries out its toxicity in cells, metabolic distortion along with organ dysfunction and elucidates the complications associated with chronic hyperglycemia.
Collapse
Affiliation(s)
- Biplab Giri
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Tanaya Das
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Mrinmoy Sarkar
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India.
| |
Collapse
|
99
|
Shukla R, Banerjee S, Tripathi YB. Pueraria tuberosa extract inhibits iNOS and IL-6 through suppression of PKC-α and NF-kB pathway in diabetes-induced nephropathy. ACTA ACUST UNITED AC 2018; 70:1102-1112. [PMID: 29770444 DOI: 10.1111/jphp.12931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to explore the anti-inflammatory role of PTY-2r (extracted from Pueraria tuberosa), on streptozotocin (STZ)-induced DN rats. METHODS Diabetes was induced by intraperitoneal injection of STZ (55mg/kg) in rats. After 60 days, the rats were randomly divided into three groups (n = 6/each group), namely DN control group 2, DN rats treated with PTY-2r at dose of 100 mg/100 g, group 3 and 50 mg/100 g, group 4, p.o for 20 days. The normal rats were chosen as a normal control (NC) group 1. KEY FINDINGS In DN rats, the expression of iNOS and inflammatory cytokines (IL-6 and TNF-α) was significantly increased. Raised expression of PKC-α was also found. As NF-kB is the main transcription factor for the inflammatory response-mediated progression of DN, variation in NF-kB expression and its activated phosphorylated derivative (pNF-kB) were also evaluated and increase in expression was obtained in the kidney of DN rats. PTY-2r treatment significantly reversed these changes in dose-dependent manner. CONCLUSIONS This study suggested that the nephroprotective effect of PTY-2r is possibly due to downregulation of PKC-α and NF-kB pathway and normalizing the expression of inflammatory cytokines and iNOS in the kidney of DN rats.
Collapse
Affiliation(s)
- Rashmi Shukla
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Somanshu Banerjee
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yamini B Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
100
|
Menne J, Eulberg D, Beyer D, Baumann M, Saudek F, Valkusz Z, Więcek A, Haller H. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant 2018; 32:307-315. [PMID: 28186566 PMCID: PMC5410979 DOI: 10.1093/ndt/gfv459] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023] Open
Abstract
Background Emapticap pegol (NOX-E36) is a Spiegelmer® that specifically binds and inhibits the pro-inflammatory chemokine C-C motif-ligand 2 (CCL2) (also called monocyte-chemotactic protein 1). The objective of this exploratory study was to evaluate the safety and tolerability as well as the renoprotective and anti-diabetic potential of emapticap in type 2 diabetic patients with albuminuria. Methods A randomized, double-blind, placebo-controlled Phase IIa study was initiated in 75 albuminuric type 2 diabetics. Emapticap at 0.5 mg/kg and placebo were administered subcutaneously twice weekly for 12 weeks to 50 and 25 patients, respectively, followed by a treatment-free phase of 12 weeks. Results Twice weekly subcutaneous treatment with emapticap over 3 months was generally safe and well tolerated and reduced the urinary albumin/creatinine ratio (ACR) from baseline to Week 12 by 29% (P < 0.05); versus placebo a non-significant ACR reduction of 15% was observed (P = 0.221). The maximum difference, 26% (P = 0.064) between emapticap and placebo, was seen 8 weeks after discontinuation of treatment. At Week 12, the HbA1c changed by −0.31% in the emapticap versus +0.05% in the placebo group (P = 0.146). The maximum difference for HbA1c was observed 4 weeks after the last dose with −0.35% for emapticap versus +0.12% for placebo (P = 0.026). No relevant change in blood pressure or estimated glomerular filtration rate was seen between the treatment groups throughout the study. A post hoc analysis with exclusion of patients with major protocol violations, dual RAS blockade or haematuria increased the ACR difference between the two treatment arms to 32% at Week 12 (P = 0.014) and 39% at Week 20 (P = 0.010). Conclusions Inhibition of the CCL2/CCL2 receptor axis with emapticap pegol was generally safe and well tolerated. Beneficial effects on ACR and HbA1c were observed in this exploratory study, which were maintained after cessation of treatment. Taken together, emapticap may have disease-modifying effects that warrant further investigation in adequately powered confirmatory studies.
Collapse
Affiliation(s)
- Jan Menne
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | | | | | | - Frantisek Saudek
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zsuzsanna Valkusz
- Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Andrzej Więcek
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice, Poland
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|