51
|
Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Oyarce KA, Carril CA, García-Robles MA. The role of tanycytes in hypothalamic glucosensing. J Cell Mol Med 2015; 19:1471-82. [PMID: 26081217 PMCID: PMC4511346 DOI: 10.1111/jcmm.12590] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022] Open
Abstract
Tanycytes are elongated hypothalamic glial cells that cover the basal walls of the third ventricle; their apical regions contact the cerebrospinal fluid (CSF), and their processes reach hypothalamic neuronal nuclei that control the energy status of an organism. These nuclei maintain the balance between energy expenditure and intake, integrating several peripheral signals and triggering cellular responses that modify the feeding behaviour and peripheral glucose homeostasis. One of the most important and well-studied signals that control this process is glucose; however, the mechanism by which this molecule is sensed remains unknown. We along with others have proposed that tanycytes play a key role in this process, transducing changes in CSF glucose concentration to the neurons that control energy status. Recent studies have demonstrated the expression and function of monocarboxylate transporters and canonical pancreatic β cell glucose sensing molecules, including glucose transporter 2 and glucokinase, in tanycytes. These and other data, which will be discussed in this review, suggest that hypothalamic glucosensing is mediated through a metabolic interaction between tanycytes and neurons through lactate. This article will summarize the recent evidence that supports the importance of tanycytes in hypothalamic glucosensing, and discuss the possible mechanisms involved in this process. Finally, it is important to highlight that a detailed analysis of this mechanism could represent an opportunity to understand the evolution of associated pathologies, including diabetes and obesity, and identify new candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Maria J Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina A Oyarce
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio A Carril
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maria A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
52
|
Donelan W, Li S, Wang H, Lu S, Xie C, Tang D, Chang LJ, Yang LJ. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (HNF1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res 2015; 7:995-1008. [PMID: 26279745 PMCID: PMC4532734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Ectopic expression of Pdx1 triggers rapid hepatocyte dedifferentiation by down-regulating liver-enriched transcription factors and liver-specific functional genes such as hepatic nuclear factor-1α (HNF1α), albumin, and AAT. However, the links between Pdx1 over-expression and hepatic gene down-regulation are incompletely understood. HNF1α and HNF4α are important transcription factors that establish and maintain the hepatocyte phenotype. The human HNF4α gene contains two promoters (P1 and P2) that drive expression of P1-(HNF4α 1-6) or P2-(HNF4α 7-9)-derived isoforms, which are used in different tissues and at different times during development. We hypothesized that the relative expression of HNF1α and HNF4α following ectopic Pdx1 expression may promote hepatic cell dedifferentiation and transdifferentiation toward pancreatic beta-cells. We produced lentiviruses expressing Pdx1, Pdx1-VP16, and Ngn3, along with dual-color reporter genes to indicate hepatic and pancreatic beta-cell phenotype changes. Using these PTF alone or in combinations, we demonstrated that Pdx1 not only activates specific beta-cell genes but down-regulates HNF1α. Pdx1-mediated reduction of HNF1α is accompanied by altered expression of its major activator, HNF4α isoforms, down-regulating hepatic genes ALB and AAT. Pdx1 up-regulates HNF4α via the P2 promoter. These P2-driven isoforms compete with P1-driven isoforms to suppress target gene transcription. In Huh7 cells, the AF-1 activation domain is more important for transactivation, whereas in INS1 cells, the F inhibitory domain is more important. The loss and gain of functional activity strongly suggests that Pdx1 plays a central role in reprogramming hepatocytes into beta-cells by suppressing the hepatic phenotype.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shiwu Li
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Hai Wang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shun Lu
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Chao Xie
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Dongqi Tang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Lung-Ji Chang
- Department of Molecular Genetics & Microbiology, University of Florida College of MedicineGainesville, Florida 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| |
Collapse
|
53
|
Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 2015; 466:203-18. [PMID: 25697093 DOI: 10.1042/bj20141384] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin release from pancreatic β-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of β-cells is responsible for Type 1 diabetes (T1D), both lowered β-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature β-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-β to β-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature β-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of β-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to β-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.
Collapse
|
54
|
Roles of hepatic glucokinase in intertissue metabolic communication: Examination of novel liver-specific glucokinase knockout mice. Biochem Biophys Res Commun 2015; 460:727-32. [PMID: 25817793 DOI: 10.1016/j.bbrc.2015.03.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
Abstract
Glucokinase is expressed principally in pancreatic β-cells and hepatocytes, and catalyzes the phosphorylation of glucose to glucose-6-phosphate, a rate-limiting step of glycolysis. To better understand the roles of hepatic glucokinase, we generated Gck knockout mice by ablating liver-specific exon 1b. The knockout mice exhibited impaired glucose tolerance, decreased hepatic glycogen content, and reduced Pklr and Fas gene expression in the liver, indicating that hepatic glucokinase plays important roles in glucose metabolism. It has also been reported that hepatic glucokinase regulates the expression of thermogenesis-related genes in brown adipose tissue (BAT) and insulin secretion in response to glucose. However, the liver-specific Gck knockout mice displayed neither altered expression of thermogenesis-related genes in BAT nor impaired insulin secretion by β-cells under a normal chow diet. These results suggest that chronic suppression of hepatic glucokinase has a small influence on intertissue (liver-to-BAT as well as liver-to-β-cell) metabolic communication.
Collapse
|
55
|
Advanced enzymology, expression profile and immune response of Clonorchis sinensis hexokinase show its application potential for prevention and control of clonorchiasis. PLoS Negl Trop Dis 2015; 9:e0003641. [PMID: 25799453 PMCID: PMC4370448 DOI: 10.1371/journal.pntd.0003641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic pathway, was investigated in the current study. PRINCIPAL FINDINGS There were differences in spatial structure and affinities for hexoses and phosphate donors between CsHK and HKs from humans or rats, the definitive hosts of C. sinensis. Effectors (AMP, PEP, and citrate) and a small molecular inhibitor regulated the enzymatic activity of rCsHK, and various allosteric systems were detected. CsHK was distributed in the worm extensively as well as in liver tissue and serum from C. sinensis infected rats. Furthermore, high-level specific IgG1 and IgG2a were induced in rats by immunization with rCsHK. The enzymatic activity of CsHK was suppressed by the antibody in vitro. Additionally, the survival of C. sinensis was inhibited by the antibody in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE Due to differences in putative spatial structure and enzymology between CsHK and HK from the host, its extensive distribution in adult worms, and its expression profile as a component of excretory/secretory products, together with its good immunogenicity and immunoreactivity, as a key glycolytic enzyme, CsHK shows potential as a vaccine and as a promising drug target for Clonorchiasis.
Collapse
|
56
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
57
|
Esquiaveto-Aun AM, De Mello MP, Paulino MFVM, Minicucci WJ, Guerra-Júnior G, De Lemos-Marini SHV. A new compound heterozygosis for inactivating mutations in the glucokinase gene as cause of permanent neonatal diabetes mellitus (PNDM) in double-first cousins. Diabetol Metab Syndr 2015; 7:101. [PMID: 26587058 PMCID: PMC4652399 DOI: 10.1186/s13098-015-0101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Permanent neonatal diabetes mellitus (PNDM) is a rare disorder, characterized by uncontrolled hyperglycemia diagnosed during the first 6 months of life. In general, PNDM has a genetic origin and most frequently it results from heterozygous mutations in KCNJ11, INS and ABCC8 genes. Homozygous or compound heterozygous inactivating mutations in GCK gene as cause of PNDM are rare. In contrast, heterozygosis for GCK inactivating mutations is frequent and results in the maturity-onset diabetes of young (MODY), manifested by a mild fasting hyperglycemia usually detected later in life. Therefore, as an autosomal recessive disorder, GCK-PNDM should be considered in families with history of glucose intolerance or MODY in first relatives, especially when consanguinity is suspected. RESULTS Here we describe two patients born from non-consanguineous parents within a family. They presented low birth weight with persistent hyperglycemia during the first month of life. Molecular analyses for KCNJ11, INS, ABCC8 did not show any mutation. GCK gene sequencing, however, revealed that both patients were compound heterozygous for two missense combined in a novel GCK-PNDM genotype. The p.Asn254His and p.Arg447Gly mutations had been inherited from their mothers and fathers, respectively, as their mothers are sisters and their fathers are brothers. Parents had been later diagnosed as having GCK-MODY. CONCLUSIONS Mutations' in silico analysis was carried out to elucidate the role of the amino acid changes on the enzyme structure. Both p.Asn254His and p.Arg447Gly mutations appeared to be quite damaging. This is the first report of GCK-PNDM in a Brazilian family.
Collapse
Affiliation(s)
- Adriana Mangue Esquiaveto-Aun
- />Department of Pediatrics, School of Medical Sciences (FCM), State University of Campinas (UNICAMP), Campinas, SP Brazil
- />Center of Molecular Biology and Genetic Engineering (CBMEG), UNICAMP, Campinas, Brazil
- />Center for Investigation in Pediatrics (CIPED), FCM, UNICAMP, Campinas, Brazil
| | | | | | - Walter José Minicucci
- />Division of Endocrinology, Department of Clinical Medicine, FCM, UNICAMP, Campinas, Brazil
| | - Gil Guerra-Júnior
- />Department of Pediatrics, School of Medical Sciences (FCM), State University of Campinas (UNICAMP), Campinas, SP Brazil
- />Center for Investigation in Pediatrics (CIPED), FCM, UNICAMP, Campinas, Brazil
| | - Sofia Helena Valente De Lemos-Marini
- />Department of Pediatrics, School of Medical Sciences (FCM), State University of Campinas (UNICAMP), Campinas, SP Brazil
- />Center for Investigation in Pediatrics (CIPED), FCM, UNICAMP, Campinas, Brazil
| |
Collapse
|
58
|
Piccand J, Strasser P, Hodson DJ, Meunier A, Ye T, Keime C, Birling MC, Rutter GA, Gradwohl G. Rfx6 maintains the functional identity of adult pancreatic β cells. Cell Rep 2014; 9:2219-32. [PMID: 25497096 PMCID: PMC4542305 DOI: 10.1016/j.celrep.2014.11.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/27/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca(2+) channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of "disallowed" genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Perrine Strasser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France
| | | | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, UK
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch 67404, France.
| |
Collapse
|
59
|
Dai W, Panserat S, Terrier F, Seiliez I, Skiba-Cassy S. Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2014; 307:R1231-8. [DOI: 10.1152/ajpregu.00166.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout.
Collapse
Affiliation(s)
- Weiwei Dai
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Frédéric Terrier
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
60
|
Jin J, Panserat S, Kamalam BS, Aguirre P, Véron V, Médale F. Insulin regulates lipid and glucose metabolism similarly in two lines of rainbow trout divergently selected for muscle fat content. Gen Comp Endocrinol 2014; 204:49-59. [PMID: 24830905 DOI: 10.1016/j.ygcen.2014.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Two experimental rainbow trout lines were developed through divergent selection for low (Lean 'L' line) or high (Fat 'F' line) muscle fat content. Previous nutritional studies suggested that these lines differed in their regulation of lipid and glucose metabolism. Since insulin acts as an anabolic hormone by regulating lipid and glucose metabolism, we put forward the hypothesis that F line might have a stronger sensitivity to insulin than L line. In order to test this hypothesis, bovine insulin was injected into rainbow trout of the two lines fasted for 48 h. As expected, insulin induced hypoglycemia and activated Akt-TOR signaling both in the liver and muscle of the two lines. We demonstrate that this was coupled with increased expression of insulin dependent glucose transporter (GLUT4) and transcription factors of fatty acid anabolism (LXR and SREBP1c) in the muscle and liver, respectively, and lower mRNA levels of fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) in the white muscle of both lines. Regarding the genotype effect, TOR signaling response to insulin was stronger in F line as reflected by the higher phosphorylation of S6 protein and elevated mRNA levels of lipogenic enzyme (FAS) in the liver of F line. This observation was concordant with the higher plasma concentrations of free fatty acids and triglycerides in F line. Moreover, mRNA levels of hepatic gluconeogenic enzymes (G6Pase2, FBPase and PEPCK) and muscle fatty acid oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were higher in the F line. However, very few insulin-genotype interactions were detected, indicating that insulin induced similar changes in lipid and glucose metabolism in both lines.
Collapse
Affiliation(s)
- Junyan Jin
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France.
| | - Biju Sam Kamalam
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France
| | - Peyo Aguirre
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
61
|
Arslan D, Merdin A, Tural D, Temizel M, Akın O, Gündüz S, Tatlı AM, Avcı F, Uysal M. The effect of autoimmunity on the development time of microvascular complications in patients with type 1 diabetes mellitus. Med Sci Monit 2014; 20:1176-9. [PMID: 25007947 PMCID: PMC4103811 DOI: 10.12659/msm.890742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Type 1 diabetes mellitus (DM) is an autoimmune disease with chronic complications that is becoming more frequent as life expectancy of diabetics has increased owing to improved methods of detection and better management. In this study, we investigated whether the presence of autoimmunity can be used in predicting the development time of microvascular complications. Material/Methods Our study included 52 patients with type 1 diabetes mellitus (DM). The subjects had developed microvascular complications and they had been tested for anti-GAD (glutamic acid decarboxylase) antibodies and/or islet-cell antibodies (ICA). In the assessment of microvascular complications, we used ocular fundus examination, electromyography (EMG), and 24-h urine microalbuminuria tests. Results Of the patients included in the study, 30 were female and 22 were male. Of all patients characterized for the existence of diabetic complications, 36 of 52 had both diabetic retinopathy and diabetic nephropathy, 5 patients had diabetic neuropathy, and 11 patients had diabetic retinopathy only. At the diagnosis of diabetes, 20 in 52 patients tested negative for autoantibodies (anti-GAD and anti-ICA), while 32 of 52 tested positive for anti-GAD and/or anti-ICA. The mean HbA1C level of autoantibody-negative patients was 7.7%, while antibody-positive patients had slightly higher HbA1c levels (7.9%). However, this difference was not statistically significant (p>0.05). The mean development time of microvascular complications in autoantibody-positive patients was calculated as 11: 40±6.46 years, and in patients with negative autoimmunity results it was 10.91±6.70 years. Conclusions The presence of diabetes-related autoantibodies (DRAs) in patients with type 1 diabetes mellitus does not have a significant effect on the development time of diabetic microvascular complications.
Collapse
Affiliation(s)
- Deniz Arslan
- Department of Internal Medicine, Ministry of Health Okmeydanı Training and Research Hospital, İstanbul, Turkey
| | - Alparslan Merdin
- Department of Internal Medicine, Akdeniz University Hospital, Antalya, Turkey
| | - Deniz Tural
- Department of Oncology, Akdeniz University Hospital, Antalya, Turkey
| | - Mustafa Temizel
- Department of Internal Medicine, Ministry of Health Okmeydanı Training and Research Hospital, İstanbul, Turkey
| | - Olgun Akın
- Department of Nephrology, Akdeniz University Hospital, Antalya, Turkey
| | - Seyda Gündüz
- Department of Oncology, Akdeniz University Hospital, Antalya, Turkey
| | - Ali Murat Tatlı
- Department of Oncology, Akdeniz University Hospital, Antalya, Turkey
| | - Fatma Avcı
- Department of Internal Medicine, Akdeniz University Hospital, Antalya, Turkey
| | - Mükremin Uysal
- Department of Oncology, Akdeniz University Hospital, Antalya, Turkey
| |
Collapse
|
62
|
Tang L, Ye H, Hong Q, Wang L, Wang Q, Wang H, Xu L, Bu S, Zhang L, Cheng J, Liu P, Le Y, Ye M, Mai Y, Duan S. Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes in Chinese males. Gene 2014; 547:329-33. [PMID: 24992032 DOI: 10.1016/j.gene.2014.06.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND The GCK gene encodes hexokinase 4, which catalyzes the first step in most glucose metabolism pathways. The purpose of our study is to assess the contribution of GCK methylation to type 2 diabetes (T2D). METHODS AND RESULTS GCK methylation was evaluated in 48 T2D cases and 48 age- and gender-matched controls using the bisulphite pyrosequencing technology. Among the four CpG sites in the methylation assay, CpG4 and the other three CpGs (CpG1-3) were not in high correlation (r<0.5). Significantly elevated methylation levels of GCK CpG4 methylation were observed in T2D patients than in the healthy controls (P=0.004). A breakdown analysis by gender indicated that the association between CpG4 methylation and T2D was specific to males (P=0.002). It is intriguing that another significant male-specific association was also found between GCK CpG4 methylation and total cholesterol (TC) concentration (r=0.304, P=0.036). CONCLUSION Our results showed that elevated GCK CpG4 methylation might suggest a risk of T2D in Chinese males. Gender disparity in GCK CpG4 methylation might provide a clue to elaborate the pathogenesis of T2D.
Collapse
Affiliation(s)
- Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingxiao Hong
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, China
| | - Qinwen Wang
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongwei Wang
- Section of Endocrinology, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Leiting Xu
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lina Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Cheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Panpan Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanping Le
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Meng Ye
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Yifeng Mai
- The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China; The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
63
|
Salgado M, Tarifeño-Saldivia E, Ordenes P, Millán C, Yañez MJ, Llanos P, Villagra M, Elizondo-Vega R, Martínez F, Nualart F, Uribe E, de los Angeles García-Robles M. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS One 2014; 9:e94035. [PMID: 24739934 PMCID: PMC3989220 DOI: 10.1371/journal.pone.0094035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.
Collapse
Affiliation(s)
- Magdiel Salgado
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Estefanía Tarifeño-Saldivia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Millán
- Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña del Mar, Chile
| | - María José Yañez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcos Villagra
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fernando Martínez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
64
|
Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71:1453-67. [PMID: 24196749 PMCID: PMC11114046 DOI: 10.1007/s00018-013-1505-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.
Collapse
Affiliation(s)
- Maaike H. Oosterveer
- Department of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
65
|
Kaminski MT, Schultz J, Waterstradt R, Tiedge M, Lenzen S, Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:554-64. [DOI: 10.1016/j.bbamcr.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/18/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
|
66
|
George DCP, Chakraborty C, Haneef SAS, NagaSundaram N, Chen L, Zhu H. Evolution- and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2). Theranostics 2014; 4:366-85. [PMID: 24578721 PMCID: PMC3936290 DOI: 10.7150/thno.7473] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/03/2014] [Indexed: 11/05/2022] Open
Abstract
Heterozygous mutations in the central glycolytic enzyme glucokinase (GCK) can result in an autosomal dominant inherited disease, namely maturity-onset diabetes of the young, type 2 (MODY 2). MODY 2 is characterised by early onset: it usually appears before 25 years of age and presents as a mild form of hyperglycaemia. In recent years, the number of known GCK mutations has markedly increased. As a result, interpreting which mutations cause a disease or confer susceptibility to a disease and characterising these deleterious mutations can be a difficult task in large-scale analyses and may be impossible when using a structural perspective. The laborious and time-consuming nature of the experimental analysis led us to attempt to develop a cost-effective computational pipeline for diabetic research that is based on the fundamentals of protein biophysics and that facilitates our understanding of the relationship between phenotypic effects and evolutionary processes. In this study, we investigate missense mutations in the GCK gene by using a wide array of evolution- and structure-based computational methods, such as SIFT, PolyPhen2, PhD-SNP, SNAP, SNPs&GO, fathmm, and Align GVGD. Based on the computational prediction scores obtained using these methods, three mutations, namely E70K, A188T, and W257R, were identified as highly deleterious on the basis of their effects on protein structure and function. Using the evolutionary conservation predictors Consurf and Scorecons, we further demonstrated that most of the predicted deleterious mutations, including E70K, A188T, and W257R, occur in highly conserved regions of GCK. The effects of the mutations on protein stability were computed using PoPMusic 2.1, I-mutant 3.0, and Dmutant. We also conducted molecular dynamics (MD) simulation analysis through in silico modelling to investigate the conformational differences between the native and the mutant proteins and found that the identified deleterious mutations alter the stability, flexibility, and solvent-accessible surface area of the protein. Furthermore, the functional role of each SNP in GCK was identified and characterised using SNPeffect 4.0, F-SNP, and FASTSNP. We hope that the observed results aid in the identification of disease-associated mutations that affect protein structure and function. Our in silico findings provide a new perspective on the role of GCK mutations in MODY2 from an evolution-based structure-centric point of view. The computational architecture described in this paper can be used to predict the most appropriate disease phenotypes for large-genome sequencing projects and to provide individualised drug therapy for complex diseases such as diabetes.
Collapse
Affiliation(s)
- Doss C. Priya George
- 1. Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Chiranjib Chakraborty
- 2. Department of Computer Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- 3. Department of Bioinformatics, School of Computer and Information sciences, Galgotias University, India
| | - SA Syed Haneef
- 1. Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Nagarajan NagaSundaram
- 1. Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Luonan Chen
- 4. Key Laboratory of Systems Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China
| | - Hailong Zhu
- 2. Department of Computer Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
67
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
68
|
Could lncRNAs contribute to β-cell identity and its loss in Type 2 diabetes? Biochem Soc Trans 2013; 41:797-801. [PMID: 23697940 DOI: 10.1042/bst20120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The progression of Type 2 diabetes is accompanied by diminishing islet β-cell mass and function. It has been proposed that β-cells are lost not only through apoptosis, but also by dedifferentiating into progenitor-like cells. There is therefore much interest in the mechanisms which define and maintain β-cell identity. The advent of genome-wide analyses of chromatin modifications has highlighted the role of epigenetic factors in determining cell identity. There is also evidence from both human populations and animal models for an epigenetic component in susceptibility to Type 2 diabetes. The mechanisms responsible for defining the epigenetic landscape in individual cell types are poorly understood, but there is growing evidence of a role for lncRNAs (long non-coding RNAs) in this process. In the present paper, we discuss some of the mechanisms through which lncRNAs may contribute to β-cell identity and Type 2 diabetes risk.
Collapse
|
69
|
Castro MC, Francini F, Gagliardino JJ, Massa ML. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: role of oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1145-51. [PMID: 24361606 DOI: 10.1016/j.bbagen.2013.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/29/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes. METHODS Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35mg/kg, i.p.) (control+L and fructose+L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration. RESULTS Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91(phox) and p22(phox)) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration. CONCLUSIONS Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration. GENERAL SIGNIFICANCE Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes.
Collapse
Affiliation(s)
- María C Castro
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Flavio Francini
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Juan J Gagliardino
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - María L Massa
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina.
| |
Collapse
|
70
|
Bogacka I, Roane DS, Xi X, Zhou J, Li B, Ryan DH, Martin RJ. Expression Levels of Genes Likely Involved in Glucose-sensing in the Obese Zucker Rat Brain. Nutr Neurosci 2013; 7:67-74. [PMID: 15279492 DOI: 10.1080/10284150410001710401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has been suggested that certain cells in the brain, like pancreatic beta-cells, use glucose transporter-2 (GLUT-2), glucokinase and glucagon-like peptide-1 receptor (GLP-1R) to sense glucose in the service of multiple aspects of energy balance. The obese Zucker rat displays numerous disturbances in energy homeostasis and may provide a model of dysfunctional expression of genes related to nutrient control systems. Using real-time RT-PCR we measured gene expression for three of the pancreatic glucose-sensing markers and neuropeptide Y (NPY) in the medial, lateral hypothalamus and hindbrain of lean and obese Zucker rats of both genders. Additionally, we measured circulating levels of glucose, leptin, insulin, corticosterone and glucagon. The results indicate that GLUT-2 mRNA expression is decreased, whereas glucokinase is increased in the hindbrain of obese rats. NPY mRNA level is significantly higher, whereas GLP-1R is significantly lower in the medial hypothalamus in obese individuals. Gender-related differences were found in the hindbrain and medial hypothalamus for GLUT-2 and in the lateral hypothalamus for GLP-1R and they may be related to the fact that the female Zucker rats do not develop diabetes as readily as males. Furthermore, the hindbrain may be an important site for glucose-sensing where major phenotypic changes occur for glucose-sensing genes expression.
Collapse
Affiliation(s)
- Iwona Bogacka
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 2013; 504:437-40. [PMID: 24226772 DOI: 10.1038/nature12724] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022]
Abstract
Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.
Collapse
|
72
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
73
|
Evolution of glucose utilization: glucokinase and glucokinase regulator protein. Mol Phylogenet Evol 2013; 70:195-203. [PMID: 24075984 DOI: 10.1016/j.ympev.2013.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
Abstract
Glucose is an essential nutrient that must be distributed throughout the body to provide energy to sustain physiological functions. Glucose is delivered to distant tissues via be blood stream, and complex systems have evolved to maintain the levels of glucose within a narrow physiological range. Phosphorylation of glucose, by glucokinase, is an essential component of glucose homeostasis, both from the regulatory and metabolic point-of-view. Here we review the evolution of glucose utilization from the perspective of glucokinase. We discuss the origin of glucokinase, its evolution within the hexokinase gene family, and the evolution of its interacting regulatory partner, glucokinase regulatory protein (GCKR). Evolution of the structure and sequence of both glucokinase and GCKR have been necessary to optimize glucokinase in its role in glucose metabolism.
Collapse
|
74
|
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab 2013; 15:503-12. [PMID: 23121289 DOI: 10.1111/dom.12029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 12/15/2022]
Abstract
Outside of the biological arena the term 'repression' often has a negative connotation. However, in the pancreatic β-cell a small group of genes, which are abundantly expressed in most if not all other mammalian tissues, are highly selectively repressed, with likely functional consequences. The two 'founder' members of this group, lactate dehydrogenase A (Ldha) and monocarboxylate transporter-1 (MCT-1/Slc16a1), are inactivated by multiple mechanisms including histone modifications and microRNA-mediated silencing. Their inactivation ensures that pyruvate and lactate, derived from muscle during exercise, do not stimulate insulin release inappropriately. Correspondingly, activating mutations in the MCT-1 promoter underlie 'exercise-induced hyperinsulinism' (EIHI) in man, a condition mimicked by forced over-expression of MCT-1 in the β-cell in mice. Furthermore, LDHA expression in the β-cell is upregulated in both human type 2 diabetes and in rodent models of the disease. Recent work by us and by others has identified a further ∼60 genes which are selectively inactivated in the β-cell, a list which we refine here up to seven by detailed comparison of the two studies. These genes include key regulators of cell proliferation and stimulus-secretion coupling. The present, and our earlier results, thus highlight the probable importance of shutting down a subset of 'disallowed' genes for the differentiated function of β-cells, and implicate previously unsuspected signalling pathways in the control of β-cell expansion and insulin secretion. Targeting of deregulated 'disallowed' genes in these cells may thus, in the future, provide new therapeutic avenues for type 2 diabetes.
Collapse
Affiliation(s)
- T J Pullen
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
75
|
Wang ZY, Jin L, Tan H, Irwin DM. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR). PLoS One 2013; 8:e60896. [PMID: 23573289 PMCID: PMC3613411 DOI: 10.1371/journal.pone.0060896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR) is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity. METHODOLOGY/PRINCIPAL FINDINGS GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified. CONCLUSIONS/SIGNIFICANCE GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard) or mutated (mammals) GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.
Collapse
Affiliation(s)
- Zhao Yang Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
76
|
Spégel P, Ekholm E, Tuomi T, Groop L, Mulder H, Filipsson K. Metabolite profiling reveals normal metabolic control in carriers of mutations in the glucokinase gene (MODY2). Diabetes 2013; 62:653-61. [PMID: 23139355 PMCID: PMC3554352 DOI: 10.2337/db12-0827] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the gene encoding glucokinase (GCK) cause a mild hereditary form of diabetes termed maturity-onset diabetes of the young (MODY)2 or GCK-MODY. The disease does not progress over time, and diabetes complications rarely develop. It has therefore been suggested that GCK-MODY represents a metabolically compensated condition, but experimental support for this notion is lacking. Here, we profiled metabolites in serum from patients with MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), and type 2 diabetes and from healthy individuals to characterize metabolic perturbations caused by specific mutations. Analysis of four GCK-MODY patients revealed a metabolite pattern similar to that of healthy individuals, while other forms of diabetes differed markedly in their metabolite profiles. Furthermore, despite elevated glucose concentrations, carriers of GCK mutations showed lower levels of free fatty acids and triglycerides than healthy control subjects. The metabolite profiling was confirmed by enzymatic assays and replicated in a cohort of 11 GCK-MODY patients. Elevated levels of fatty acids are known to associate with β-cell dysfunction, insulin resistance, and increased incidence of late complications. Our results show that GCK-MODY represents a metabolically normal condition, which may contribute to the lack of late complications and the nonprogressive nature of the disease.
Collapse
Affiliation(s)
- Peter Spégel
- Unit of Molecular Metabolism, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
77
|
Aukrust I, Bjørkhaug L, Negahdar M, Molnes J, Johansson BB, Müller Y, Haas W, Gygi SP, Søvik O, Flatmark T, Kulkarni RN, Njølstad PR. SUMOylation of pancreatic glucokinase regulates its cellular stability and activity. J Biol Chem 2013; 288:5951-62. [PMID: 23297408 DOI: 10.1074/jbc.m112.393769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells.
Collapse
Affiliation(s)
- Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, N-5020 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
McKerrecher D, Waring MJ. Property-based design in the optimisation of benzamide glucokinase activators: from hit to clinic. PROGRESS IN MEDICINAL CHEMISTRY 2013; 52:1-43. [PMID: 23384665 DOI: 10.1016/b978-0-444-62652-3.00001-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Darren McKerrecher
- Cardiovascular and Gastrointestinal Innovative Medicines, AstraZeneca, Macclesfield, UK
| | | |
Collapse
|
79
|
High-fat diet consumption during pregnancy and the early post-natal period leads to decreased α cell plasticity in the nonhuman primate. Mol Metab 2012; 2:10-22. [PMID: 24024126 DOI: 10.1016/j.molmet.2012.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/05/2012] [Accepted: 11/07/2012] [Indexed: 12/26/2022] Open
Abstract
We investigated the impact of poor maternal nutrition and metabolic health on the development of islets of the nonhuman primate (NHP). Interestingly, fetal offspring of high fat diet (HFD) fed animals had normal total islet and β cell mass; however, there was a significant reduction in α cell mass, and decreased expression of transcription factors involved in α cell differentiation. In juvenile animals all offspring maintained on a HFD during the postweaning period demonstrated increases in total islet mass, however, the control offspring displaying increased islet number, and HFD offspring displayed increased islet size. Finally, while control offspring had increases in α and β cells, the HFD offspring had increases only in β cell number. These studies indicate that consumption of a HFD diet during pregnancy in the NHP, independent of maternal metabolic health, causes long-term abnormalities in α cell plasticity that may contribute to chronic disease susceptibility.
Collapse
|
80
|
Doliba NM, Fenner D, Zelent B, Bass J, Sarabu R, Matschinsky FM. Repair of diverse diabetic defects of β-cells in man and mouse by pharmacological glucokinase activation. Diabetes Obes Metab 2012; 14 Suppl 3:109-19. [PMID: 22928571 PMCID: PMC4433321 DOI: 10.1111/j.1463-1326.2012.01652.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glucokinase activators (GKAs) are being developed and clinically tested for potential antidiabetic therapy. The potential benefits and limitations of this approach continue to be intensively debated. To contribute to the understanding of experimental pharmacology and therapeutics of GKAs, we have tested the efficacy of one of these agents (Piragliatin) in isolated islets from humans with type 2 diabetes mellitus (T2DM), from mice with glucokinase (GK) mutations induced by ethyl-nitroso-urea (ENU) as models of Maturity Onset Diabetes of the Young linked to GK and Permanent Neonatal Diabetes Mellitus linked to GK (PNDM-GK) and finally of islets rendered glucose insensitive by treatment with the sulphonyl urea compound glyburide in organ culture. We found that the GKA repaired the defect in all three instances as manifest in increased glucose-induced insulin release and elevated intracellular calcium responses. The results show the remarkable fact that acute pharmacological activation of GK reverses secretion defects of β-cells caused by molecular mechanism that differ vastly in nature, including the little understood multifactorial lesion of β-cells in T2DM of man, the complex GK mutations in mice resembling GK disease and acute sulphonylurea failure of mouse β-cells in tissue culture. The implications of these results are to be discussed on the theoretical basis underpinning the strategy of developing these drugs and in light of recent results of clinical trials with GKAs that failed for little understood reasons.
Collapse
|
81
|
Wang Y, Guo T, Zhao S, Li Z, Mao Y, Li H, Wang X, Wang R, Xu W, Song R, Jin L, Li X, Irwin DM, Niu G, Tan H. Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences. PLoS One 2012; 7:e45824. [PMID: 23029263 PMCID: PMC3447760 DOI: 10.1371/journal.pone.0045824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
Background Glucokinase plays important tissue-specific roles in human physiology, where it acts as a sensor of blood glucose levels in the pancreas, and a few other cells of the gut and brain, and as the rate-limiting step in glucose metabolism in the liver. Liver-specific expression is driven by one of the two tissue-specific promoters, and has an absolute requirement for insulin. The sequences that mediate regulation by insulin are incompletely understood. Methodology/Principal Findings To better understand the liver-specific expression of the human glucokinase gene we compared the structures of this gene from diverse mammals. Much of the sequence located between the 5′ pancreatic beta-cell-specific and downstream liver-specific promoters of the glucokinase genes is composed of repetitive DNA elements that were inserted in parallel on different mammalian lineages. The transcriptional activity of the liver-specific promoter 5′ flanking sequences were tested with and without downstream intronic sequences in two human liver cells lines, HepG2 and L-02. While glucokinase liver-specific 5′ flanking sequences support expression in liver cell lines, a sequence located about 2000 bases 3′ to the liver-specific mRNA start site represses gene expression. Enhanced reporter gene expression was observed in both cell lines when cells were treated with fetal calf serum, but only in the L-02 cells was expression enhanced by insulin. Conclusions/Significance Our results suggest that the normal liver L-02 cell line may be a better model to understand the regulation of the liver-specific expression of the human glucokinase gene. Our results also suggest that sequences downstream of the liver-specific mRNA start site have important roles in the regulation of liver-specific glucokinase gene expression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Tingting Guo
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Shuyong Zhao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Zhixin Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rong Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Wei Xu
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rongjing Song
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xiuli Li
- Department of Pharmacology, Chifeng College, Chifeng, China
| | - David M. Irwin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (HT); (DMI)
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- * E-mail: (HT); (DMI)
| |
Collapse
|
82
|
Characterization of the gene expression profile of heterozygous liver-specific glucokinase knockout mice at a young age. Biomed Pharmacother 2012; 66:587-96. [PMID: 23085254 DOI: 10.1016/j.biopha.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022] Open
Abstract
In the liver, glucokinase (GCK) facilitates hepatic glucose uptake during hyperglycemia and is essential for the regulation of a network of glucose-responsive genes involved in glycolysis, glycogen synthesis, and lipogenesis. To better understand the consequences of changes in response to a liver-specific deficiency of GCK function, we examined the expression profiles of genes involved in glucose metabolism in the liver, pancreas, muscle and adipose tissue in heterozygous liver-specific Gck knockout (Gck(w/-)) mice. Our results showed that with the development of a liver GCK deficiency, significant decreases in the mRNA levels for insulin receptor and Glut2 were observed in the liver, and HkII in muscle, while glucagon mRNA increased markedly in the pancreas. The levels of circulating glucagon hormone levels increased with increased mRNA levels. Depite a decrease in muscle HkII levels, the hexokinase activity level did not change. Our findings suggest that in liver-specific Gck(w/-) mice, peripheral tissues use different strategies to tackle with hyperglycemia even at a young age. By identifying the specific changes that occur in different tissues at an early stage of glucokinase deficiency, potentially we can develop interventions to prevent further progression to diabetes.
Collapse
|
83
|
Oosterveer MH, Mataki C, Yamamoto H, Harach T, Moullan N, van Dijk TH, Ayuso E, Bosch F, Postic C, Groen AK, Auwerx J, Schoonjans K. LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Invest 2012; 122:2817-26. [PMID: 22772466 DOI: 10.1172/jci62368] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/30/2012] [Indexed: 12/19/2022] Open
Abstract
Liver receptor homolog 1 (LRH-1), an established regulator of cholesterol and bile acid homeostasis, has recently emerged as a potential drug target for liver disease. Although LRH-1 activation may protect the liver against diet-induced steatosis and insulin resistance, little is known about how LRH-1 controls hepatic glucose and fatty acid metabolism under physiological conditions. We therefore assessed the role of LRH-1 in hepatic intermediary metabolism. In mice with conditional deletion of Lrh1 in liver, analysis of hepatic glucose fluxes revealed reduced glucokinase (GCK) and glycogen synthase fluxes as compared with those of wild-type littermates. These changes were attributed to direct transcriptional regulation of Gck by LRH-1. Impaired glucokinase-mediated glucose phosphorylation in LRH-1-deficient livers was also associated with reduced glycogen synthesis, glycolysis, and de novo lipogenesis in response to acute and prolonged glucose exposure. Accordingly, hepatic carbohydrate response element-binding protein activity was reduced in these animals. Cumulatively, these data identify LRH-1 as a key regulatory component of the hepatic glucose-sensing system required for proper integration of postprandial glucose and lipid metabolism.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Fang X, Gao G, Xue H, Zhang X, Wang H. Exposure of perfluorononanoic acid suppresses the hepatic insulin signal pathway and increases serum glucose in rats. Toxicology 2012; 294:109-15. [DOI: 10.1016/j.tox.2012.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 01/09/2023]
|
85
|
Zhao S, Li R, Li Y, Chen W, Zhang Y, Chen G. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol 2012; 90:142-52. [PMID: 22292422 DOI: 10.1139/o11-079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscle. It proposes a mechanism by which the dietary and hormonal signals converge on the promoter of sterol regulatory element-binding protein 1c gene to induce its expression, and in turn, the expression of lipogenic genes in hepatocytes. Future research projects relevant to the VA's roles in metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Shi Zhao
- The Diabetes Center, Wuhan Central Hospital, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
86
|
Ros S, García-Rocha M, Calbó J, Guinovart JJ. Restoration of hepatic glycogen deposition reduces hyperglycaemia, hyperphagia and gluconeogenic enzymes in a streptozotocin-induced model of diabetes in rats. Diabetologia 2011; 54:2639-48. [PMID: 21811873 DOI: 10.1007/s00125-011-2238-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/10/2011] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Glycogen deposition is impaired in diabetes, thus contributing to the development of hyperglycaemia. Several glucose-lowering strategies have attempted to increase liver glycogen deposition by modulating targets, which eventually trigger the activation of liver glycogen synthase (LGS). However, these targets also alter several other biological processes, and therefore their therapeutic use may be limited. Here we tested the approach of directly activating LGS and evaluated the potential of this strategy as a possible treatment for diabetes. METHODS In this study, we examined the efficacy of directly overproducing a constitutively active form of LGS in the liver to ameliorate streptozotocin-induced diabetes in rats. RESULTS Activated mutant LGS overproduction in the liver of streptozotocin-induced diabetic rats normalised liver glycogen content, despite low levels of glucokinase and circulating insulin. Moreover, this overproduction led to a decrease in food intake and in the production of the main gluconeogenic enzymes, glucose-6-phosphatase, fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase. The resulting combined effect was a reduction in hyperglycaemia. CONCLUSIONS/INTERPRETATION The restoration of liver glycogen ameliorated diabetes and therefore is considered a potential strategy for the treatment of this disease.
Collapse
Affiliation(s)
- S Ros
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
87
|
Ngubane PS, Masola B, Musabayane CT. The effects of Syzygium aromaticum-derived oleanolic acid on glycogenic enzymes in streptozotocin-induced diabetic rats. Ren Fail 2011; 33:434-9. [PMID: 21529273 DOI: 10.3109/0886022x.2011.568147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies indicate that the antihyperglycemic effects of Syzygium aromaticum-derived oleanolic acid (OA) are mediated in part through increased hepatic glycogen synthesis. Accordingly, this study assessed the influence of OA on the activity of glucokinase (GK) and hexokinase (HK) of skeletal muscle and liver tissues in streptozotocin (STZ)-induced diabetic rats. After 5 weeks of OA treatment, hepatic and gastrocnemius muscle glycogen concentrations and activities of GK and HK were measured spectrophotometrically in reactions where the oxidation of glucose-6-phosphate (G-6-PDH) formed was coupled to nicotinamide adenine dinucleotide phosphate (NADP+) reduction catalyzed by G-6-PDH dehydrogenase. Rats treated with deionized water or standard hypoglycemic drugs acted as untreated and treated positive controls, respectively. STZ-induced diabetic rats exhibited depleted glycogen levels and low activities of glycogenic enzymes in muscle and hepatic tissues. OA administration restored these biochemical alterations to near normalcy. The combination of OA and insulin did not significantly alter the activities of HK and GK of STZ-induced diabetic rats, suggesting that glycogen synthesis can also occur from precursors such as amino acids or fructose and lactate. The attenuation of the activities of glycogenic enzymes with concomitant increases of hepatic and muscle glycogen concentrations of STZ-induced diabetic rats provides a therapeutic strategy for diabetes treatment.
Collapse
Affiliation(s)
- Phikelelani S Ngubane
- Department of Human PhysiologyFaculty of Health Science, School of Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | |
Collapse
|
88
|
Cappelli A, Silvestri S, Tumini S, Carinci S, Cipriano P, Massi L, Staffolani P, Pianese L. A new de novo mutation in the GCK gene causing MODY2. Diabetes Res Clin Pract 2011; 93:e41-3. [PMID: 21514682 DOI: 10.1016/j.diabres.2011.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/04/2011] [Indexed: 11/15/2022]
Abstract
Analysis of glucokinase (GCK) gene in a 15-year-old male identified a new frameshift mutation in exon 4 caused by a heterozygous guanine deletion at position 382 (c.382delG, p.E128Xfs). No mutation was detected in the parents. Polymorphic markers' study excluded false paternity indicating that c.382delG is a novel de novo mutation.
Collapse
Affiliation(s)
- Alessia Cappelli
- Scuola di Bioscienze e Biotecnologie, Università degli studi di Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Diep CH, Munoz RM, Choudhary A, Von Hoff DD, Han H. Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clin Cancer Res 2011; 17:2744-56. [PMID: 21385921 DOI: 10.1158/1078-0432.ccr-10-2214] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The combination of erlotinib and gemcitabine has shown a small but statistically significant survival advantage when compared with gemcitabine alone in patients with advanced pancreatic cancer. However, the overall survival rate with the erlotinib and gemcitabine combination is still low. In this study, we sought to identify gene targets that, when inhibited, would enhance the activity of epidermal growth factor receptor (EGFR)-targeted therapies in pancreatic cancer cells. EXPERIMENTAL DESIGN A high-throughput RNA interference (RNAi) screen was carried out to identify candidate genes. Selected gene hits were further confirmed and mechanisms of action were further investigated using various assays. RESULTS Six gene hits from siRNA screening were confirmed to significantly sensitize BxPC-3 pancreatic cancer cells to erlotinib. One of the hits, mitogen-activated protein kinase (MAPK) 1, was selected for further mechanistic studies. Combination treatments of erlotinib and two MAP kinase kinase (MEK) inhibitors, RDEA119 and AZD6244, showed significant synergistic effect for both combinations (RDEA119-erlotinib and AZD6244-erlotinib) compared with the corresponding single drug treatments in pancreatic cancer cell lines with wild-type KRAS (BxPC-3 and Hs 700T) but not in cell lines with mutant KRAS (MIA PaCa-2 and PANC-1). The enhanced antitumor activity of the combination treatment was further verified in the BxPC-3 and MIA PaCa-2 mouse xenograft model. Examination of the MAPK signaling pathway by Western blotting indicated effective inhibition of the EGFR signaling by the drug combination in KRAS wild-type cells but not in KRAS mutant cells. CONCLUSIONS Overall, our results suggest that combination therapy of an EGFR and MEK inhibitors may have enhanced efficacy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
90
|
Soñanez-Organis JG, Peregrino-Uriarte AB, Sotelo-Mundo RR, Forman HJ, Yepiz-Plascencia G. Hexokinase from the white shrimp Litopenaeus vannamei: cDNA sequence, structural protein model and regulation via HIF-1 in response to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:242-9. [DOI: 10.1016/j.cbpb.2010.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/28/2010] [Indexed: 11/27/2022]
|
91
|
Massa ML, Gagliardino JJ, Francini F. Liver glucokinase: An overview on the regulatory mechanisms of its activity. IUBMB Life 2011; 63:1-6. [PMID: 21280170 DOI: 10.1002/iub.411] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/29/2010] [Indexed: 11/09/2022]
Abstract
Blood glucose is the primary cellular substrate and in vivo must be tightly maintained. The liver plays a key role in glucose homeostasis increasing or decreasing glucose output and uptake during fasting and feeding. Glucokinase (GCK) is central to this process. Its activity is modulated in a coordinated manner via a complex set of mechanisms: in the postprandial period, the simultaneous rise in glucose and insulin increases GCK activity by enhanced gene expression, changes in cellular location, and interaction with regulatory proteins. Conversely, in the fasting state, the combined decrease in glucose and insulin concentrations and increase in glucagon concentrations, halt GCK activity. Herein we summarize the current knowledge regarding the regulation of hepatic GCK activity.
Collapse
Affiliation(s)
- María L Massa
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | | | | |
Collapse
|
92
|
Zhang Y, Chen W, Li R, Li Y, Ge Y, Chen G. Insulin-regulated Srebp-1c and Pck1 mRNA expression in primary hepatocytes from zucker fatty but not lean rats is affected by feeding conditions. PLoS One 2011; 6:e21342. [PMID: 21731709 PMCID: PMC3120864 DOI: 10.1371/journal.pone.0021342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/26/2011] [Indexed: 02/07/2023] Open
Abstract
Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yang Li
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yuebin Ge
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
- College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
93
|
Ge Y, Zhang Y, Li R, Chen W, Li Y, Chen G. Berberine regulated Gck, G6pc, Pck1 and Srebp-1c expression and activated AMP-activated protein kinase in primary rat hepatocytes. Int J Biol Sci 2011; 7:673-84. [PMID: 21647250 PMCID: PMC3107476 DOI: 10.7150/ijbs.7.673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023] Open
Abstract
The effects of hormonal and dietary stimuli on hepatic glucose and lipid homeostasis include regulation of gene expression. Berberine, an effective compound in certain Chinese medicinal herbs, has been reported to lower plasma glucose and lipid levels in diabetic and hypercholesterolemic patients. We hypothesized that it may affect the expression of hepatic genes involved in glucose and lipid metabolism. The effects of berberine hydrochloride on viability, gene expression, and activation of AMP activated protein kinase (AMPK) in primary hepatocytes from Sprague-Dawley (SD), Zucker lean (ZL) or fatty (ZF) rats were examined with MTT assay, real-time PCR, and western blotting, respectively. Berberine hydochloride at 50 µM or higher caused cytotoxic effects on hepatocytes. In SD and ZL hepatocytes, it induced Gck and suppressed G6pc expression at 10 and 25 µM, but not as potent as 1 nM insulin. Its effects on Pck1, and insulin-regulated Gck and G6pc expression depended on the hepatocyte sources and the dosage used. In ZF hepatocytes, it increased Gck, and suppressed Pck1 and G6pc expression without insulin. Its effects on Gck and G6pc, but not Pck1 expression, were additive with insulin. Berberine hydrochloride at 25 µM attenuated insulin-suppressed Pck1 (ZL/ZF cells), and insulin-induced Srebp-1c expression (SD/ZL/ZF cells), suggesting modulation of insulin action. Berberine hydrochloride did not alter these genes' mRNA stability. Its treatment caused a dose-dependent increase of phosphorylation of AMPKα, and its substrate, acetyl-CoA carboxylase, in primary hepatocytes. We conclude that berberine hydrochloride regulated the transcription of hepatic genes involved in glucose and fatty acid metabolism.
Collapse
Affiliation(s)
- Yuebin Ge
- 1. College of Pharmacy, South-Central University for Nationalities, #708 Minyuan Road, Wuhan, Hubei 430073, China,
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Yan Zhang
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Rui Li
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Wei Chen
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Yang Li
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Guoxun Chen
- 2. Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- ✉ Corresponding author: Guoxun Chen, Ph.D., 229 Jessie Harris Building, 1215 West Cumberland Avenue, Knoxville, Tennessee 37996, Fax: 865-974-3491, E-mail:
| |
Collapse
|
94
|
|
95
|
Matschinsky FM, Zelent B, Doliba NM, Kaestner KH, Vanderkooi JM, Grimsby J, Berthel SJ, Sarabu R. Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handb Exp Pharmacol 2011:357-401. [PMID: 21484579 DOI: 10.1007/978-3-642-17214-4_15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucokinase Glucokinase (GK GK ; EC 2.7.1.1.) phosphorylates and regulates glucose metabolism in insulin-producing pancreatic beta-cells, hepatocytes, and certain cells of the endocrine and nervous systems allowing it to play a central role in glucose homeostasis glucose homeostasis . Most importantly, it serves as glucose sensor glucose sensor in pancreatic beta-cells mediating glucose-stimulated insulin biosynthesis and release and it governs the capacity of the liver to convert glucose to glycogen. Activating and inactivating mutations of the glucokinase gene cause autosomal dominant hyperinsulinemic hypoglycemia and hypoinsulinemic hyperglycemia in humans, respectively, illustrating the preeminent role of glucokinase in the regulation of blood glucose and also identifying the enzyme as a potential target for developing antidiabetic drugs antidiabetic drugs . Small molecules called glucokinase activators (GKAs) glucokinase activators (GKAs) which bind to an allosteric activator allosteric activator site of the enzyme have indeed been discovered and hold great promise as new antidiabetic agents. GKAs increase the enzyme's affinity for glucose and also its maximal catalytic rate. Consequently, they stimulate insulin biosynthesis and secretion, enhance hepatic glucose uptake, and augment glucose metabolism and related processes in other glucokinase-expressing cells. Manifestations of these effects, most prominently a lowering of blood glucose, are observed in normal laboratory animals and man but also in animal models of diabetes and patients with type 2 diabetes mellitus (T2DM T2DM ) type 2 diabetes mellitus (T2DM) . These compelling concepts and results sustain a strong R&D effort by many pharmaceutical companies to generate GKAs with characteristics allowing for a novel drug treatment of T2DM.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Institute for Diabetes, Obesity and Metabolism, 415 Curie Blvd, 605 CRB, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Muñoz S, Franckhauser S, Elias I, Ferré T, Hidalgo A, Monteys AM, Molas M, Cerdán S, Pujol A, Ruberte J, Bosch F. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse. Diabetologia 2010; 53:2417-30. [PMID: 20623219 DOI: 10.1007/s00125-010-1840-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. METHODS To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. RESULTS Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. CONCLUSIONS/INTERPRETATIONS These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.
Collapse
Affiliation(s)
- S Muñoz
- Center of Animal Biotechnology and Gene Therapy, Edifici H, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish (Carassius auratus L.) and the effect of cold acclimation. Biosci Rep 2010; 30:413-23. [DOI: 10.1042/bsr20090128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK. In this study, we report that HK activity is predominantly localized in the mitochondrial fraction [NC-HK (non-cytosolic HK)] in goldfish white muscle. Studies of the kinetic parameters revealed that the Km (Michaelis–Menten constant) for glucose was 0.41±0.03 mM and that for mannose was 3-fold lower, whereas the affinity for fructose was too low to be measured. The Km for ATP was 0.88±0.05 mM, whereas no activity was observed when either GTP or ITP was used as a phosphate donor. A moderate inhibition (20–40%) was found for ADP and AMP. Similar to mammalian HK, G6P and glucose analogues were able to promote an inhibition of between 85 and 100% of activity. Here, we found that acclimation of goldfish at 5°C promoted a 2.5-fold increase in NC-HK compared with its counterpart acclimated at 25°C. However, cytosolic HK activity was not altered after thermal acclimation. In summary, our results suggest that the goldfish has a constitutive NC-HK that shows some similarities to mammalian HK-II and, curiously, may play a role in the broad metabolic changes required during the cold acclimation process.
Collapse
|
98
|
Hussain K. Mutations in pancreatic ß-cell Glucokinase as a cause of hyperinsulinaemic hypoglycaemia and neonatal diabetes mellitus. Rev Endocr Metab Disord 2010; 11:179-83. [PMID: 20878480 DOI: 10.1007/s11154-010-9147-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucokinase is a key enzyme involved in regulating insulin secretion from the pancreatic ß-cell. The unique role of glucokinase in human glucose physiology is illustrated by the fact that genetic mutations in glucokinase can either cause hyperglycaemia or hypoglycaemia. Heterozygous inactivating mutations in glucokinase cause maturity-onset diabetes of the young (MODY), homozygous inactivating in glucokinase mutations result in permanent neonatal diabetes whereas heterozygous activating glucokinase mutations cause hyperinsulinaemic hypoglycaemia.
Collapse
Affiliation(s)
- Khalid Hussain
- Clinical and Molecular Genetics Unit, The Developmental Endocrinology Research Group, Institute of Child Health, Hospital for Children NHS Trust, University College London, Great Ormond Street, London, UK.
| |
Collapse
|
99
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
100
|
Lucia M, André JM, Gonzalez P, Baudrimont M, Bernadet MD, Gontier K, Maury-Brachet R, Guy G, Davail S. Effect of dietary cadmium on lipid metabolism and storage of aquatic bird Cairina moschata. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:163-170. [PMID: 19685183 DOI: 10.1007/s10646-009-0401-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
In environment, birds often fast in connection with breeding, migration or drastic climatic conditions and need to mobilize lipid reserves during these periods. The impairment of lipid metabolism by cadmium (Cd; 1 mg kg(-1) added in diet) was investigated on palmiped Cairina moschata. Expression levels of genes involved in lipid metabolism, mitochondrial metabolism and detoxification were investigated in liver and muscle of ducks. Lipid content in muscle and liver were analysed and plasma triglycerides were quantified. After 20 days, ducks exposed to Cd displayed a lower body weight and lower lipid content in liver than controls. In muscle, the increase of lipid content was only significant for control ducks but not for exposed ducks. Exposed ducks appeared unable to sufficiently transport and store lipids into peripheral tissues. Cd impairs lipid metabolism by several ways. First, Cd triggered the down-regulation of fatty acids synthesis in liver even if the NADPH production and the mitochondrial metabolism are enhanced, suggesting a stronger energy needs. Secondly, the associated decrease of plasma triglycerides and lipoprotein lipase activity with Cd are consistent with impairment of lipids storage in peripheral tissues.
Collapse
Affiliation(s)
- Magali Lucia
- IPREM-EEM (Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, Equipe Environnement et Microbiologie), UMR 5254, IUT des Pays de l'Adour, BP 201, 40004 Mont de Marsan Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|