51
|
Zhang C, Dong W, Huang ZA, Cho M, Yu Q, Wu C, Yu C. Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper (Capsicum annuum L.) under various abiotic stresses and hormone treatments. Genome 2018; 61:121-130. [PMID: 29304291 DOI: 10.1139/gen-2017-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.
Collapse
Affiliation(s)
- Chenghao Zhang
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenqi Dong
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zong-An Huang
- b Institute of Vegetable Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou Vocational College of Science and Technology, Key Lab of Crop breeding in South Zhejiang Wenzhou 325014, China
| | - MyeongCheoul Cho
- c Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon 440-706, Republic of Korea
| | - Qingcang Yu
- d College of Faculty of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuanyu Wu
- d College of Faculty of Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenliang Yu
- a Vegetable Research Institute, Key Labortatory of Creative Agricultrue, Ministry of Agricultrue, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
52
|
Nadzieja M, Kelly S, Stougaard J, Reid D. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:101-111. [PMID: 29676826 DOI: 10.1111/tpj.13934] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Symbiotic nitrogen fixation in legumes requires nodule organogenesis to be coordinated with infection by rhizobia. The plant hormone auxin influences symbiotic infection, but the precise timing of auxin accumulation and the genetic network governing it remain unclear. We used a Lotus japonicus optimised variant of the DII-based auxin accumulation sensor and identified a rapid accumulation of auxin in the epidermis, specifically in the root hair cells. This auxin accumulation occurs in the infected root hairs during rhizobia invasion, while Nod factor application induces this response across a broader range of root hairs. Using the DR5 auxin responsive promoter, we demonstrate that activation of auxin signalling also occurs specifically in infected root hairs. Analysis of root hair transcriptome data identified induction of an auxin biosynthesis gene of the Tryptophan Amino-transferase Related (LjTar1) family following both bacteria inoculation and Nod factor treatment. Genetic analysis showed that both expression of the LjTar1 biosynthesis gene and the auxin response requires Nod factor perception, while common symbiotic pathway transcription factors are only partially required or act redundantly to initiate auxin accumulation. Using a chemical genetics approach, we confirmed that auxin biosynthesis has a functional role in promoting symbiotic infection events in the epidermis.
Collapse
Affiliation(s)
- Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| |
Collapse
|
53
|
Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. PLANT, CELL & ENVIRONMENT 2018; 41:936-946. [PMID: 28337744 DOI: 10.1111/pce.12947] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 02/19/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Khirod Kumar Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ritesh Kumar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Brijesh Kumar Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
54
|
Lee S, I. Sergeeva L, Vreugdenhil D. Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:292-309. [PMID: 29205819 PMCID: PMC5947113 DOI: 10.1111/jipb.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three-fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length-related traits-lateral root length and total root length-showed larger variations than lateral root number-related ones. For root architecture, antagonistic interactions between hormones, for example, indole-3-acetic acid to trans-zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible.
Collapse
Affiliation(s)
- Sangseok Lee
- Laboratory of Plant PhysiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Gyeongsangbuk‐Do Agricultural Research & Extension Services Centre136 Gil‐14Chilgokjungang‐daeroDaeguSouth Korea
| | - Lidiya I. Sergeeva
- Laboratory of Plant PhysiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Dick Vreugdenhil
- Laboratory of Plant PhysiologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| |
Collapse
|
55
|
Gelová Z, Ten Hoopen P, Novák O, Motyka V, Pernisová M, Dabravolski S, Didi V, Tillack I, Okleštková J, Strnad M, Hause B, Haruštiaková D, Conrad U, Janda L, Hejátko J. Antibody-mediated modulation of cytokinins in tobacco: organ-specific changes in cytokinin homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:441-454. [PMID: 29294075 DOI: 10.1093/jxb/erx426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/06/2017] [Indexed: 05/20/2023]
Abstract
Cytokinins comprise a group of phytohormones with an organ-specific mode of action. Although the mechanisms controlling the complex networks of cytokinin metabolism are partially known, the role of individual cytokinin types in the maintenance of cytokinin homeostasis remains unclear. Utilizing the overproduction of single-chain Fv antibodies selected for their ability to bind trans-zeatin riboside and targeted to the endoplasmic reticulum, we post-synthetically modulated cytokinin ribosides, the proposed transport forms of cytokinins. We observed asymmetric activity of cytokinin biosynthetic genes and cytokinin distribution in wild-type tobacco seedlings with higher cytokinin abundance in the root than in the shoot. Antibody-mediated modulation of cytokinin ribosides further enhanced the relative cytokinin abundance in the roots and induced cytokinin-related phenotypes in an organ-specific manner. The activity of cytokinin oxidase/dehydrogenase in the roots was strongly up-regulated in response to antibody-mediated formation of the cytokinin pool in the endoplasmic reticulum. However, we only detected a slight decrease in the root cytokinin levels. In contrast, a significant decrease of cytokinins occurred in the shoot. We suggest the roots as the main site of cytokinin biosynthesis in tobacco seedlings. Conversely, cytokinin levels in the shoot seem to depend largely on long-range transport of cytokinin ribosides from the root and their subsequent metabolic activation.
Collapse
Affiliation(s)
- Zuzana Gelová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Ten Hoopen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Václav Motyka
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Pernisová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Siarhei Dabravolski
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vojtech Didi
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Isolde Tillack
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Stadt Seeland, Germany
| | - Jana Okleštková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Danka Haruštiaková
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Stadt Seeland, Germany
| | - Lubomír Janda
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hejátko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
56
|
Pernisova M, Grochova M, Konecny T, Plackova L, Harustiakova D, Kakimoto T, Heisler MG, Novak O, Hejatko J. Cytokinin signalling regulates organ identity via AHK4 receptor in Arabidopsis. Development 2018; 145:dev.163907. [DOI: 10.1242/dev.163907] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/22/2018] [Indexed: 01/19/2023]
Abstract
Mutual interactions of the phytohormones cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding to the role of hormonal metabolism and perception during early stages of cell fate reprograming is still elusive.
In the hypocotyl explant assay, auxin activated root formation while cytokinins mediated early loss of the root identity, primordia disorganization and initiation of shoot development. Exogenous but also endogenous cytokinins influenced the initiation of newly formed organs as well as the pace of organ developmental sequence. The process of de novo shoot apical meristem establishment was accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of shoot-specific homeodomain regulator WUSCHEL. The latter associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulated root stem cell organizer WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role of endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo induced organ identity.
Collapse
Affiliation(s)
- Marketa Pernisova
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martina Grochova
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomas Konecny
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Plackova
- Laboratory of Growth Regulators, CRH, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Danka Harustiakova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tatsuo Kakimoto
- Department of Biological Science, Graduate School of Science, Osaka University, Osaka, Japan
| | | | - Ondrej Novak
- Laboratory of Growth Regulators, CRH, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
57
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
58
|
Tian X, Zou P, Miao M, Ning Z, Liao J. RNA-Seq analysis reveals the distinctive adaxial-abaxial polarity in the asymmetric one-theca stamen of Canna indica. Mol Genet Genomics 2017; 293:391-400. [PMID: 29138931 DOI: 10.1007/s00438-017-1392-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Proper establishment of adaxial-abaxial polarity is essential for the development of lateral organs, while former researches were mostly focused on the polarity regulation in leaves, and little is known in stamens, especially in the asymmetric ones. Canna indica (Zingiberales: Cannaceae) is a widely cultivated ornamental plant and the representative species to study the evolutionary development of Zingiberales. The androecium of Canna indica comprises 3-4 petaloid staminodes and a fertile stamen (FS), which consists of a one-theca anther and a petaloid appendage. The partially petaloid stamen is considered as an intermediate state organ from a two-thecae stamen to a completely petaloid staminode. Using RNA-Seq, we quantified the expressions of the transcripts in anther and petaloid appendage, and detected 64,430 and 57,041 unigenes in these two organs, respectively. 4574 unigenes were down-regulated, and 3525 were up-regulated in petaloid appendage compared with those in anther. GO enrichment analysis indicated that the function of cytokinin is more related to cell differentiation in anther, while auxin is more to cell division in petaloid appendage. B- and C-class floral homeotic genes were expressed in these two androecium parts. Most of the class III HD-ZIP family members, which specify adaxial identity, were expressed lower in petaloid appendage than in anther; while KANADIs and YABBYs, which promote abaxial identity, exhibited opposite expression patterns. In situ hybridization showed that the adaxial marker gene was mainly expressed in the region between the two protrusions of the anther, while the abaxial marker was mainly expressed in petaloid appendage. We hypothesize that the adaxial-abaxial polarity participates in the distinctive anther-petaloid appendage patterning within the asymmetric FS of Canna indica.
Collapse
Affiliation(s)
- Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Pu Zou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Mingzhi Miao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.,Guiyang University, Jianlongdong Road 103, Nanming District, Guiyang, 550005, China
| | - Zulin Ning
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
59
|
Müller CJ, Larsson E, Spíchal L, Sundberg E. Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning. PLANT PHYSIOLOGY 2017; 175:1144-1157. [PMID: 28894023 PMCID: PMC5664465 DOI: 10.1104/pp.17.00805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/05/2017] [Indexed: 05/23/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) gynoecium consists of two congenitally fused carpels made up of two lateral valve domains and two medial domains, which retain meristematic properties and later fuse to produce the female reproductive structures vital for fertilization. Polar auxin transport (PAT) is important for setting up distinct apical auxin signaling domains in the early floral meristem remnants allowing for lateral domain identity and outgrowth. Crosstalk between auxin and cytokinin plays an important role in the development of other meristematic tissues, but hormone interaction studies to date have focused on more accessible later-stage gynoecia and the spatiotemporal interactions pivotal for patterning of early gynoecium primordia remain unknown. Focusing on the earliest stages, we propose a cytokinin-auxin feedback model during early gynoecium patterning and hormone homeostasis. Our results suggest that cytokinin positively regulates auxin signaling in the incipient gynoecial primordium and strengthen the concept that cytokinin regulates auxin homeostasis during gynoecium development. Specifically, medial cytokinin promotes auxin biosynthesis components [YUCCA1/4 (YUC1/4)] in, and PINFORMED7 (PIN7)-mediated auxin efflux from, the medial domain. The resulting laterally focused auxin signaling triggers ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN6 (AHP6), which then represses cytokinin signaling in a PAT-dependent feedback. Cytokinin also down-regulates PIN3, promoting auxin accumulation in the apex. The yuc1, yuc4, and ahp6 mutants are hypersensitive to exogenous cytokinin and 1-napthylphthalamic acid (NPA), highlighting their role in mediolateral gynoecium patterning. In summary, these mechanisms self-regulate cytokinin and auxin signaling domains, ensuring correct domain specification and gynoecium development.
Collapse
Affiliation(s)
- Christina Joy Müller
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - Emma Larsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| |
Collapse
|
60
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
61
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
62
|
Dobisova T, Hrdinova V, Cuesta C, Michlickova S, Urbankova I, Hejatkova R, Zadnikova P, Pernisova M, Benkova E, Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. PLANT PHYSIOLOGY 2017; 174:387-404. [PMID: 28292856 PMCID: PMC5411129 DOI: 10.1104/pp.16.01964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 05/07/2023]
Abstract
In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Collapse
Affiliation(s)
- Tereza Dobisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Vendula Hrdinova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Candela Cuesta
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Sarka Michlickova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Ivana Urbankova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Romana Hejatkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Petra Zadnikova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Marketa Pernisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Eva Benkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| |
Collapse
|
63
|
Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, Herrera-Ubaldo H, Gonzalez-Aguilera KL, Ballester P, Ripoll JJ, Ezquer I, Paolo D, Heyl A, Colombo L, Yanofsky MF, Ferrandiz C, Marsch-Martínez N, de Folter S. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet 2017; 13:e1006726. [PMID: 28388635 PMCID: PMC5400277 DOI: 10.1371/journal.pgen.1006726] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/21/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The medial domain includes the carpel margin meristem (CMM) that is key for the production of the internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Interestingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral domain, where it is hardly detected. While it is known that cytokinin provides meristematic properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often connected to the auxin pathway, but we also lack knowledge about these connections in the young gynoecium. Our results reveal that cytokinin signaling, that can provide meristematic properties required for CMM activity and growth, is enabled by the transcription factor SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for gynoecium growth. This study provides novel insights in the spatiotemporal determination of the cytokinin signaling pattern and its connection to the auxin pathway in the young gynoecium.
Collapse
Affiliation(s)
- J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Víctor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Ricardo A. Chavez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Karla L. Gonzalez-Aguilera
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, Spain
| | - Juan José Ripoll
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Alexander Heyl
- Biology Department, Adelphi University, Garden City, New York, United States of America
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Martin F. Yanofsky
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Cristina Ferrandiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
64
|
Oles V, Panchenko A, Smertenko A. Modeling hormonal control of cambium proliferation. PLoS One 2017; 12:e0171927. [PMID: 28187161 PMCID: PMC5302410 DOI: 10.1371/journal.pone.0171927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/29/2017] [Indexed: 12/14/2022] Open
Abstract
Rise of atmospheric CO2 is one of the main causes of global warming. Catastrophic climate change can be avoided by reducing emissions and increasing sequestration of CO2. Trees are known to sequester CO2 during photosynthesis, and then store it as wood biomass. Thus, breeding of trees with higher wood yield would mitigate global warming as well as augment production of renewable construction materials, energy, and industrial feedstock. Wood is made of cellulose-rich xylem cells produced through proliferation of a specialized stem cell niche called cambium. Importance of cambium in xylem cells production makes it an ideal target for the tree breeding programs; however our knowledge about control of cambium proliferation remains limited. The morphology and regulation of cambium are different from those of stem cell niches that control axial growth. For this reason, translating the knowledge about axial growth to radial growth has limited use. Furthermore, genetic approaches cannot be easily applied because overlaying tissues conceal cambium from direct observation and complicate identification of mutants. To overcome the paucity of experimental tools in cambium biology, we constructed a Boolean network CARENET (CAmbium REgulation gene NETwork) for modelling cambium activity, which includes the key transcription factors WOX4 and HD-ZIP III as well as their potential regulators. Our simulations predict that: (1) auxin, cytokinin, gibberellin, and brassinosteroids act cooperatively in promoting transcription of WOX4 and HD-ZIP III; (2) auxin and cytokinin pathways negatively regulate each other; (3) hormonal pathways act redundantly in sustaining cambium activity; (4) individual cambium cells can have diverse molecular identities. CARENET can be extended to include components of other signalling pathways and be integrated with models of xylem and phloem differentiation. Such extended models would facilitate breeding trees with higher wood yield.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - Alexander Panchenko
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| |
Collapse
|
65
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
66
|
Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X, Zhao G, Lin F, Xia X, Xu G. OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:2001. [PMID: 28083013 PMCID: PMC5186801 DOI: 10.3389/fpls.2016.02001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/16/2016] [Indexed: 05/19/2023]
Abstract
Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. OsSGL was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing OsSGL conferred significantly improved drought tolerance in transgenic rice and Arabidopsis thaliana, respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which OsSGL confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems.
Collapse
Affiliation(s)
- Yanchun Cui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Manling Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of China National Tobacco CorporationZhengzhou, China
| | - Mingjuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Lifang Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Xuming Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Guoqiang Zhao
- Postdoctoral Research Stations of Basic Medical Science, Zhengzhou UniversityZhengzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang UniversityHangzhou, China
| | - Xinjie Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco CorporationZhengzhou, China
- Postdoctoral Research Stations of Basic Medical Science, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
67
|
Deinum EE, Kohlen W, Geurts R. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux. BMC PLANT BIOLOGY 2016; 16:254. [PMID: 27846795 PMCID: PMC5109694 DOI: 10.1186/s12870-016-0935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rhizobium nitrogen fixation in legumes takes place in specialized organs called root nodules. The initiation of these symbiotic organs has two important components. First, symbiotic rhizobium bacteria are recognized at the epidermis through specific bacterially secreted lipo-chitooligosaccharides (LCOs). Second, signaling processes culminate in the formation of a local auxin maximum marking the site of cell divisions. Both processes are spatially separated. This separation is most pronounced in legumes forming indeterminate nodules, such as model organism Medicago truncatula, in which the nodule primordium is formed from pericycle to most inner cortical cell layers. RESULTS We used computer simulations of a simplified root of a legume that can form indeterminate nodules. A diffusive signal that inhibits auxin transport is produced in the epidermis, the site of rhizobium contact. In our model, all cells have the same response characteristics to the diffusive signal. Nevertheless, we observed the fastest and strongest auxin accumulation in the pericycle and inner cortex. The location of these auxin maxima correlates with the first dividing cells of future nodule primordia in M. truncatula. The model also predicts a transient reduction of the vascular auxin concentration rootward of the induction site as is experimentally observed. We use our model to investigate how competition for the vascular auxin source could contribute to the regulation of nodule number and spacing. CONCLUSION Our simulations show that the diffusive signal may invoke the strongest auxin accumulation response in the inner root layers, although the signal itself is strongest close to its production site.
Collapse
Affiliation(s)
- Eva E. Deinum
- Mathematical and Statistical methods group, Wageningen University, Droevendaalsesteeg 1PB, Wageningen, 6708 the Netherlands
- FOM institute AMOLF, Science Park 104XG, Amsterdam, 1098 the Netherlands
| | - Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| | - René Geurts
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| |
Collapse
|
68
|
Pernisova M, Prat T, Grones P, Harustiakova D, Matonohova M, Spichal L, Nodzynski T, Friml J, Hejatko J. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. THE NEW PHYTOLOGIST 2016; 212:497-509. [PMID: 27322763 DOI: 10.1111/nph.14049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 05/06/2023]
Abstract
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism.
Collapse
Affiliation(s)
- Marketa Pernisova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Tomas Prat
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Peter Grones
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Danka Harustiakova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Martina Matonohova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Lukas Spichal
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, CZ-78371, Czech Republic
| | - Tomasz Nodzynski
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jiri Friml
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic.
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
69
|
PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression. Sci Rep 2016; 6:32196. [PMID: 27553690 PMCID: PMC4995536 DOI: 10.1038/srep32196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/04/2016] [Indexed: 01/31/2023] Open
Abstract
Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular.
Collapse
|
70
|
Fang SC, Chen JC, Wei MJ. Protocorms and Protocorm-Like Bodies Are Molecularly Distinct from Zygotic Embryonic Tissues in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2016; 171:2682-700. [PMID: 27338813 PMCID: PMC4972297 DOI: 10.1104/pp.16.00841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 05/08/2023]
Abstract
The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan (S.-C.F., J.-C.C., M.-J.W.); andAgricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., J.-C.C., M.-J.W.)
| |
Collapse
|
71
|
Kou Y, Yuan C, Zhao Q, Liu G, Nie J, Ma Z, Cheng C, Teixeira da Silva JA, Zhao L. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate. FRONTIERS IN PLANT SCIENCE 2016; 7:557. [PMID: 27200031 PMCID: PMC4855734 DOI: 10.3389/fpls.2016.00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/11/2016] [Indexed: 05/23/2023]
Abstract
Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.
Collapse
Affiliation(s)
- Yaping Kou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Cunquan Yuan
- National Engineering Research Center for Floriculture, Beijing Forestry UniversityBeijing, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Zhimin Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Chenxia Cheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | | | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
- *Correspondence: Liangjun Zhao,
| |
Collapse
|
72
|
Šimášková M, O'Brien JA, Khan M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen JMA, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik K, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat Commun 2015; 6:8717. [PMID: 26541513 DOI: 10.1038/ncomms9717] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/24/2015] [Indexed: 01/22/2023] Open
Abstract
Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.
Collapse
Affiliation(s)
- Mária Šimášková
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - José Antonio O'Brien
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Mamoona Khan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giel Van Noorden
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Krisztina Ötvös
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anne Vieten
- Department of Developmental Genetics, Centre for Molecular Biology of Plants, University Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | - Candela Cuesta
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Klára Hoyerová
- Institute of Experimental Botany, ASCR, Rozvojová 263, 16502 Prague, Czech Republic
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Peter Marhavý
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Krzysztof Wabnik
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Moritz Nowack
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Angus Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
73
|
Ng JLP, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. THE PLANT CELL 2015; 27:2210-26. [PMID: 26253705 PMCID: PMC4568502 DOI: 10.1105/tpc.15.00231] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 05/18/2023]
Abstract
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Thy T Truong
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Charles H Hocart
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Carole Laffont
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
74
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
75
|
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. THE PLANT CELL 2015; 27:44-63. [PMID: 25604447 PMCID: PMC4330578 DOI: 10.1105/tpc.114.133595] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
76
|
Gao B, Wen C, Fan L, Kou Y, Ma N, Zhao L. A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation. PLANT MOLECULAR BIOLOGY 2014; 86:671-679. [PMID: 25301174 DOI: 10.1007/s11103-014-0255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
Collapse
Affiliation(s)
- Bin Gao
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
77
|
Ckurshumova W, Smirnova T, Marcos D, Zayed Y, Berleth T. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. THE NEW PHYTOLOGIST 2014; 204:556-566. [PMID: 25274430 DOI: 10.1111/nph.13014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 05/29/2023]
Abstract
In vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone-exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols. In this study, we show that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, an irrepressible variant of MP, MPΔ, is sufficient for promoting de novo shoot formation through pathways involving the genetically downstream functions of SHOOT MERISTEMLESS (STM) and CYTOKININ RESPONSE FACTOR2 (CRF2). We conclude that the MPΔ genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.
Collapse
Affiliation(s)
- Wenzislava Ckurshumova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Tatiana Smirnova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Danielle Marcos
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Yara Zayed
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
78
|
Kalousek P, Buchtová D, Balla J, Reinöhl V, Procházka S. Cytokinins and polar transport of auxin in axillary pea buds. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201058040079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
79
|
Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C. CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation. PLANT PHYSIOLOGY 2014; 165:1035-1046. [PMID: 24808099 PMCID: PMC4081320 DOI: 10.1104/pp.114.238584] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/03/2014] [Indexed: 05/17/2023]
Abstract
Crown roots constitute the majority of the rice (Oryza sativa) root system and play an important role in rice growth and development. However, the molecular mechanism of crown root formation in rice is not well understood. Here, we characterized a rice dominant mutant, root enhancer1 (ren1-D), which was observed to exhibit a more robust root system, increased crown root number, and reduced plant height. Molecular and genetic analyses revealed that these phenotypes are caused by the activation of a cytokinin oxidase/dehydrogenase (CKX) family gene, OsCKX4. Subcellular localization demonstrated that OsCKX4 is a cytosolic isoform of CKX. OsCKX4 is predominantly expressed in leaf blades and roots. It is the dominant CKX, preferentially expressed in the shoot base where crown root primordia are produced, underlining its role in root initiation. OsCKX4 is induced by exogenous auxin and cytokinin in the roots. Furthermore, one-hybrid assays revealed that OsCKX4 is a direct binding target of both the auxin response factor OsARF25 and the cytokinin response regulators OsRR2 and OsRR3. Overexpression and RNA interference of OsCKX4 confirmed that OsCKX4 plays a positive role in crown root formation. Moreover, expression analysis revealed a significant alteration in the expression of auxin-related genes in the ren1-D mutants, indicating that the OsCKX4 mediates crown root development by integrating the interaction between cytokinin and auxin. Transgenic plants harboring OsCKX4 under the control of the root-specific promoter RCc3 displayed enhanced root development without affecting their shoot parts, suggesting that this strategy could be a powerful tool in rice root engineering.
Collapse
Affiliation(s)
- Shaopei Gao
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Jun Fang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Fan Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Wei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Xiaohong Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Jinfang Chu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Baodong Cai
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Yuqi Feng
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| | - Chengcai Chu
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China (S.G.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (S.G., J.F., F.X., W.W., X.S., J.C., C.C.); andKey Laboratory of Analytical Chemistry for Biology and Medicine of the Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China (B.C., Y.F.)
| |
Collapse
|
80
|
Chen JJ, Zhang J, He XQ. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration. PHYSIOLOGIA PLANTARUM 2014; 151:147-55. [PMID: 24111607 DOI: 10.1111/ppl.12112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/07/2013] [Accepted: 09/22/2013] [Indexed: 05/10/2023]
Abstract
Regeneration is a common strategy for plants to survive the intrinsic and extrinsic challenges they face through their life cycle, and it may occur upon wounding. Bark girdling is applied to improve fruit production or harvest bark as medicinal material. When tree bark is removed, the cambium and phloem will be peeled off. After a small strip of bark is removed from trees, newly formed periderm and wound cambium develop from the callus on the surface of the trunk, and new phloem is subsequently derived from the wound cambium. However, after large-scale girdling, the newly formed sieve elements (SEs) appear earlier than the regenerated cambium, and both of them derive from differentiating xylem cells rather than from callus. This secondary vascular tissue regeneration mainly involves three key stages: callus formation and xylem cell dedifferentiation; SEs appearance and wound cambium formation. The new bark is formed within 1 month in poplar, Eucommia; thus, it provides high temporal resolution of regenerated tissues at different stages. In this review, we will illustrate the morphology, gene expression and phytohormone regulation of vascular tissue regeneration after large-scale girdling in trees, and also discuss the potential utilization of the bark girdling system in studies of plant vascular development and tissue regeneration.
Collapse
Affiliation(s)
- Jia-Jia Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | | | | |
Collapse
|
81
|
Abstract
The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6−9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions.
Collapse
|
82
|
Ma Q, Robert S. Auxin biology revealed by small molecules. PHYSIOLOGIA PLANTARUM 2014; 151:25-42. [PMID: 24252105 DOI: 10.1111/ppl.12128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 05/08/2023]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development and unraveling its molecular and cellular modes of action is fundamental for plant biology research. Chemical genomics is the use of small molecules to modify protein functions. This approach currently rises as a powerful technology for basic research. Small compounds with auxin-like activities or affecting auxin-mediated biological processes have been widely used in auxin research. They can serve as a tool complementary to genetic and genomic methods, facilitating the identification of an array of components modulating auxin metabolism, transport and signaling. The employment of high-throughput screening technologies combined with informatics-based chemical design and organic chemical synthesis has since yielded many novel small molecules with more instantaneous, precise and specific functionalities. By applying those small molecules, novel molecular targets can be isolated to further understand and dissect auxin-related pathways and networks that otherwise are too complex to be elucidated only by gene-based methods. Here, we will review examples of recently characterized molecules used in auxin research, highlight the strategies of unraveling the mechanisms of these small molecules and discuss future perspectives of small molecule applications in auxin biology.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | | |
Collapse
|
83
|
|
84
|
Abstract
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755
| |
Collapse
|
85
|
Motte H, Vereecke D, Geelen D, Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol Adv 2014; 32:107-21. [DOI: 10.1016/j.biotechadv.2013.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/20/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
86
|
|
87
|
Su YH, Liu YB, Bai B, Zhang XS. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:792. [PMID: 25642237 PMCID: PMC4294322 DOI: 10.3389/fpls.2014.00792] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apical meristem (SAM) induction in cultured tissues. However, little is known about the role of these hormones in root apical meristem (RAM) initiation. Here, we found that the expression patterns of several regulatory genes critical for RAM formation were correlated with the establishment of the embryonic root meristem during somatic embryogenesis in Arabidopsis. Interestingly, the early expression of the WUS-RELATED HOMEOBOX 5 (WOX5) and WUSCHEL genes was induced and was nearly overlapped within the embryonic callus when somatic embryos (SEs) could not be identified morphologically. Their correct expression was essential for RAM and SAM initiation and embryonic shoot-root axis establishment. Furthermore, we analyzed the auxin and cytokinin response during SE initiation. Notably, cytokinin response signals were detected in specific regions that were correlated with induced WOX5 expression and subsequent SE formation. Overexpression of the ARABIDOPSIS RESPONSE REGULATOR genes ARR7 and ARR15 (feedback repressors of cytokinin signaling), disturbed RAM initiation and SE induction. These results provide new information on auxin and cytokinin-regulated apical-basal polarity formation of shoot-root axis during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | | | - Xian Sheng Zhang
- *Correspondence: Xian Sheng Zhang, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China e-mail:
| |
Collapse
|
88
|
Abstract
Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research.
Collapse
Affiliation(s)
- Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
89
|
Lee ST, Huang WL. Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. BOTANICAL STUDIES 2013; 54:5. [PMID: 28510848 PMCID: PMC5383921 DOI: 10.1186/1999-3110-54-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/09/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Shoot regeneration frequency in rice callus is still low and highly diverse among rice cultivars. This study aimed to investigate the association of plant hormone signaling and sucrose uptake and metabolism in rice during callus induction and early shoot organogenesis. The immatured seeds of two rice cultivars, Ai-Nan-Tsao 39 (ANT39) and Tainan 11 (TN11) are used in this study. RESULTS Callus formation is earlier, callus fresh weight is higher, but water content is significant lower in ANT39 than in TN11 while their explants are inoculated on callus induction medium (CIM). Besides, the regeneration frequency is prominently higher in ANT39 (~80%) compared to TN11 callus (0%). Levels of glucose, sucrose, and starch are all significant higher in ANT39 than in TN11 either at callus induction or early shoot organogenesis stage. Moreover, high expression levels of Cell wall-bound invertase 1, Sucrose transporter 1 (OsSUT1) and OsSUT2 are detected in ANT39 at the fourth-day in CIM but it cannot be detected in TN11 until the tenth-day. It suggested that ANT39 has higher callus growth rate and shoot regeneration ability may cause from higher activity of sucrose uptake and metabolism. As well, the expression levels of ORYZA SATIVA RESPONSE REGULATOR 1 (ORR1), PIN-formed 1 and Late embryogenesis-abundant 1, representing endogenous cytokinin, auxin and ABA signals, respectively, were also up-regulated in highly regenerable callus, ANT39, but only ORR1 was greatly enhanced in TN11 at the tenth-day in CIM. CONCLUSION Thus, phytohormone signals may affect sucrose metabolism to trigger callus initiation and further de novo shoot regeneration in rice culture.
Collapse
Affiliation(s)
- Shiang-Ting Lee
- Department of Agronomy, National Chiayi University, Chiayi City 600, Taiwan
| | - Wen-Lii Huang
- Department of Agronomy, National Chiayi University, Chiayi City 600, Taiwan
| |
Collapse
|
90
|
Della Rovere F, Fattorini L, D'Angeli S, Veloccia A, Falasca G, Altamura MM. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. ANNALS OF BOTANY 2013; 112:1395-407. [PMID: 24061489 PMCID: PMC3806543 DOI: 10.1093/aob/mct215] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/05/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Adventitious roots (ARs) are part of the root system in numerous plants, and are required for successful micropropagation. In the Arabidopsis thaliana primary root (PR) and lateral roots (LRs), the quiescent centre (QC) in the stem cell niche of the meristem controls apical growth with the involvement of auxin and cytokinin. In arabidopsis, ARs emerge in planta from the hypocotyl pericycle, and from different tissues in in vitro cultured explants, e.g. from the stem endodermis in thin cell layer (TCL) explants. The aim of this study was to investigate the establishment and maintenance of the QC in arabidopsis ARs, in planta and in TCL explants, because information about this process is still lacking, and it has potential use for biotechnological applications. METHODS Expression of PR/LR QC markers and auxin influx (LAX3)/efflux (PIN1) genes was investigated in the presence/absence of exogenous auxin and cytokinin. Auxin was monitored by the DR5::GUS system and cytokinin by immunolocalization. The expression of the auxin-biosynthetic YUCCA6 gene was also investigated by in situ hybridization in planta and in AR-forming TCLs from the indole acetic acid (IAA)-overproducing superroot2-1 mutant and its wild type. KEY RESULTS The accumulation of auxin and the expression of the QC marker WOX5 characterized the early derivatives of the AR founder cells, in planta and in in vitro cultured TCLs. By determination of PIN1 auxin efflux carrier and LAX3 auxin influx carrier activities, an auxin maximum was determined to occur at the AR tip, to which WOX5 expression was restricted, establishing the positioning of the QC. Cytokinin caused a restriction of LAX3 and PIN1 expression domains, and concomitantly the auxin biosynthesis YUCCA6 gene was expressed in the apex. CONCLUSIONS In ARs formed in planta and TCLs, the QC is established in a similar way, and auxin transport and biosynthesis are involved through cytokinin tuning.
Collapse
|
91
|
Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ. Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr Biol 2013; 23:1979-89. [PMID: 24120642 DOI: 10.1016/j.cub.2013.08.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/12/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND In the root apical meristem, which contains the stem cells that feed into root development, the phytohormones auxin and cytokinin play opposing roles, with auxin promoting cell division and cytokinin promoting cell differentiation. Cytokinin acts in the root tip in part by modulating auxin transport through regulation of the level of the PIN auxin efflux carriers. Auxin plays a key role in the specification of the quiescent center (QC), which is essential for maintaining the stem cell fate of the surrounding cells. RESULTS We demonstrate that cytokinin promotes cell division in the QC, which is generally mitotically inactive. Cytokinin downregulates the expression of several key regulatory genes in the root tip, including SCARECROW, WOX5, and the auxin influx carriers AUX1 and LAX2. The decrease in LAX2 expression in response to cytokinin requires ARR1 and ARR12, two type B ARRs that mediate the primary transcriptional response to cytokinin. ARR1 was found to bind directly to the LAX2 gene in vivo, which indicates that type B ARRs directly regulate genes that are repressed by cytokinin. Disruption of the LAX2 gene results in a phenotype similar to that observed in response to cytokinin, including increased division of the cells in the QC and decreased expression of WOX5 and the auxin response reporter DR5. CONCLUSIONS Cytokinin acts to regulate auxin distribution in the root apical meristem by regulating both the PINs and LAX2. This redistribution of auxin, potentially coupled with other auxin-independent effects of cytokinin, regulates the mitotic activity in the QC.
Collapse
Affiliation(s)
- Wenjing Zhang
- Biology Department, University of North Carolina, CB#3280, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
92
|
RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis. PLoS One 2013; 8:e72914. [PMID: 24009713 PMCID: PMC3757009 DOI: 10.1371/journal.pone.0072914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022] Open
Abstract
In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.
Collapse
|
93
|
Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD. Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 2013; 8:e69261. [PMID: 23874927 PMCID: PMC3714258 DOI: 10.1371/journal.pone.0069261] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE.
Collapse
Affiliation(s)
- Marta Gliwicka
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, University of Silesia, Katowice, Poland
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
94
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
95
|
Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. THE NEW PHYTOLOGIST 2013; 198:1108-1120. [PMID: 23496288 DOI: 10.1111/nph.12217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/06/2013] [Indexed: 05/08/2023]
Abstract
· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.
Collapse
Affiliation(s)
- Stefania A Pasare
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Laurence J M Ducreux
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne L Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Raymond Campbell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sanjeev K Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Efstathios Roumeliotis
- Laboratory of Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Sander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Peter M Bramley
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Alison G Roberts
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Mark A Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
96
|
Nageswara-Rao M, Soneji JR, Kwit C, Stewart CN. Advances in biotechnology and genomics of switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:77. [PMID: 23663491 PMCID: PMC3662616 DOI: 10.1186/1754-6834-6-77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/08/2013] [Indexed: 05/02/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock.
Collapse
Affiliation(s)
- Madhugiri Nageswara-Rao
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
- Department of Biological Sciences, Polk State College, Winter Haven, FL 33881, USA
| | - Jaya R Soneji
- Department of Biological Sciences, Polk State College, Winter Haven, FL 33881, USA
| | - Charles Kwit
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
97
|
Wells DM, Laplaze L, Bennett MJ, Vernoux T. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. TRENDS IN PLANT SCIENCE 2013; 18:244-249. [PMID: 23291242 DOI: 10.1016/j.tplants.2012.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Fluorescent reporters are valuable tools for plant science research, particularly as sensors to monitor biological signals and developmental processes. Such biosensors are particularly useful to monitor the spatial and temporal distribution of small signalling molecules such as phytohormones. Knowledge of perception and signalling pathways can be exploited to design biosensors for estimating intracellular abundance of hormones. However, the nonlinear relationship between target molecule and reporter necessitates the development of parameterised mathematical models to quantitatively relate sensor fluorescence to hormone abundance. In this opinion article, we will discuss the use of transcriptional reporters, sensor design strategy, and the importance of mathematical modelling approaches and technological advances in the development of new techniques to allow truly quantitative analyses of hormone regulated processes.
Collapse
Affiliation(s)
- Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | | | | |
Collapse
|
98
|
Motte H, Galuszka P, Spíchal L, Tarkowski P, Plíhal O, Šmehilová M, Jaworek P, Vereecke D, Werbrouck S, Geelen D. Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. PLANT PHYSIOLOGY 2013; 161:1229-41. [PMID: 23288884 PMCID: PMC3585592 DOI: 10.1104/pp.112.210716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vitro shoot regeneration is implemented in basic plant research and commercial plant production, but for some plant species, it is still difficult to achieve by means of the currently available cytokinins and auxins. To identify novel compounds that promote shoot regeneration, we screened a library of 10,000 small molecules. The bioassay consisted of a two-step regeneration protocol adjusted and optimized for high-throughput manipulations of root explants of Arabidopsis (Arabidopsis thaliana) carrying the shoot regeneration marker LIGHT-DEPENDENT SHORT HYPOCOTYLS4. The screen revealed a single compound, the cytokinin-like phenyl-adenine (Phe-Ade), as a potent inducer of adventitious shoots. Although Phe-Ade triggered diverse cytokinin-dependent phenotypical responses, it did not inhibit shoot growth and was not cytotoxic at high concentrations. Transcript profiling of cytokinin-related genes revealed that Phe-Ade treatment established a typical cytokinin response. Moreover, Phe-Ade activated the cytokinin receptors ARABIDOPSIS HISTIDINE KINASE3 and ARABIDOPSIS HISTIDINE KINASE4 in a bacterial receptor assay, albeit at relatively high concentrations, illustrating that it exerts genuine but weak cytokinin activity. In addition, we demonstrated that Phe-Ade is a strong competitive inhibitor of CYTOKININ OXIDASE/DEHYDROGENASE enzymes, leading to an accumulation of endogenous cytokinins. Collectively, Phe-Ade exhibits a dual mode of action that results in a strong shoot-inducing activity.
Collapse
|
99
|
|
100
|
Žd'árská M, Zatloukalová P, Benítez M, Šedo O, Potěšil D, Novák O, Svačinová J, Pešek B, Malbeck J, Vašíčková J, Zdráhal Z, Hejátko J. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. PLANT PHYSIOLOGY 2013; 161:918-30. [PMID: 23209126 PMCID: PMC3561029 DOI: 10.1104/pp.112.202853] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
Collapse
|