51
|
Quintero M, Bangi E. Disruptions in cell fate decisions and transformed enteroendocrine cells drive intestinal tumorigenesis in Drosophila. Cell Rep 2023; 42:113370. [PMID: 37924517 PMCID: PMC10841758 DOI: 10.1016/j.celrep.2023.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Most epithelial tissues are maintained by stem cells that produce the different cell lineages required for proper tissue function. Constant communication between different cell types ensures precise regulation of stem cell behavior and cell fate decisions. These cell-cell interactions are often disrupted during tumorigenesis, but mechanisms by which they are co-opted to support tumor growth in different genetic contexts are poorly understood. Here, we introduce PromoterSwitch, a genetic platform we established to generate large, transformed clones derived from individual adult Drosophila intestinal stem/progenitor cells. We show that cancer-driving genetic alterations representing common colon tumor genome landscapes disrupt cell fate decisions within transformed tissue and result in the emergence of abnormal cell fates. We also show that transformed enteroendocrine cells, a differentiated, hormone-secreting cell lineage, support tumor growth by regulating intestinal stem cell proliferation through multiple genotype-dependent mechanisms, which represent potential vulnerabilities that could be exploited for therapy.
Collapse
Affiliation(s)
- Maria Quintero
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
52
|
Fuse N, Hashiba H, Ishibashi K, Suzuki T, Nguyen QD, Fujii K, Ikeda-Ohtsubo W, Kitazawa H, Tanimoto H, Kurata S. Neural control of redox response and microbiota-triggered inflammation in Drosophila gut. Front Immunol 2023; 14:1268611. [PMID: 37965334 PMCID: PMC10642236 DOI: 10.3389/fimmu.2023.1268611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Background The neural system plays a critical role in controlling gut immunity, and the gut microbiota contributes to this process. However, the roles and mechanisms of gut-brain-microbiota interactions remain unclear. To address this issue, we employed Drosophila as a model organism. We have previously shown that NP3253 neurons, which are connected to the brain and gut, are essential for resistance to oral bacterial infections. Here, we aimed to investigate the role of NP3253 neurons in the regulation of gut immunity. Methods We performed RNA-seq analysis of the adult Drosophila gut after genetically inactivating the NP3253 neurons. Flies were reared under oral bacterial infection and normal feeding conditions. In addition, we prepared samples under germ-free conditions to evaluate the role of the microbiota in gut gene expression. We knocked down the genes regulated by NP3253 neurons and examined their susceptibility to oral bacterial infections. Results We found that immune-related gene expression was upregulated in NP3253 neuron-inactivated flies compared to the control. However, this upregulation was abolished in axenic flies, suggesting that the immune response was abnormally activated by the microbiota in NP3253 neuron-inactivated flies. In addition, redox-related gene expression was downregulated in NP3253 neuron-inactivated flies, and this downregulation was also observed in axenic flies. Certain redox-related genes were required for resistance to oral bacterial infections, suggesting that NP3253 neurons regulate the redox responses for gut immunity in a microbiota-independent manner. Conclusion These results show that NP3253 neurons regulate the appropriate gene expression patterns in the gut and contribute to maintain homeostasis during oral infections.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruka Hashiba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ishibashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuro Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Quang-Dat Nguyen
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kiho Fujii
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
53
|
Keyan KS, Salim S, Gowda S, Abdelrahman D, Amir SS, Islam Z, Vargas C, Bengoechea-Alonso MT, Alwa A, Dahal S, Kolatkar PR, Da'as S, Torrisani J, Ericsson J, Mohammad F, Khan OM. Control of TGFβ signalling by ubiquitination independent function of E3 ubiquitin ligase TRIP12. Cell Death Dis 2023; 14:692. [PMID: 37863914 PMCID: PMC10589240 DOI: 10.1038/s41419-023-06215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Transforming growth factor β (TGFβ) pathway is a master regulator of cell proliferation, differentiation, and death. Deregulation of TGFβ signalling is well established in several human diseases including autoimmune disorders and cancer. Thus, understanding molecular pathways governing TGFβ signalling may help better understand the underlying causes of some of those conditions. Here, we show that a HECT domain E3 ubiquitin ligase TRIP12 controls TGFβ signalling in multiple models. Interestingly, TRIP12 control of TGFβ signalling is completely independent of its E3 ubiquitin ligase activity. Instead, TRIP12 recruits SMURF2 to SMAD4, which is most likely responsible for inhibitory monoubiquitination of SMAD4, since SMAD4 monoubiquitination and its interaction with SMURF2 were dramatically downregulated in TRIP12-/- cells. Additionally, genetic inhibition of TRIP12 in human and murine cells leads to robust activation of TGFβ signalling which was rescued by re-introducing wildtype TRIP12 or a catalytically inactive C1959A mutant. Importantly, TRIP12 control of TGFβ signalling is evolutionary conserved. Indeed, genetic inhibition of Drosophila TRIP12 orthologue, ctrip, in gut leads to a reduced number of intestinal stem cells which was compensated by the increase in differentiated enteroendocrine cells. These effects were completely normalised in Drosophila strain where ctrip was co-inhibited together with Drosophila SMAD4 orthologue, Medea. Similarly, in murine 3D intestinal organoids, CRISPR/Cas9 mediated genetic targeting of Trip12 enhances TGFβ mediated proliferation arrest and cell death. Finally, CRISPR/Cas9 mediated genetic targeting of TRIP12 in MDA-MB-231 breast cancer cells enhances the TGFβ induced migratory capacity of these cells which was rescued to the wildtype level by re-introducing wildtype TRIP12. Our work establishes TRIP12 as an evolutionary conserved modulator of TGFβ signalling in health and disease.
Collapse
Affiliation(s)
- Kripa S Keyan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Safa Salim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Swetha Gowda
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Syeda Sakina Amir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Claire Vargas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Amira Alwa
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Subrat Dahal
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Sahar Da'as
- Department of Research, Sidra Medicine, Doha, Qatar
| | - Jerome Torrisani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Johan Ericsson
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Omar M Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
54
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
55
|
Nagai H, Nagai LAE, Tasaki S, Nakato R, Umetsu D, Kuranaga E, Miura M, Nakajima Y. Nutrient-driven dedifferentiation of enteroendocrine cells promotes adaptive intestinal growth in Drosophila. Dev Cell 2023; 58:1764-1781.e10. [PMID: 37689060 DOI: 10.1016/j.devcel.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/05/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Post-developmental organ resizing improves organismal fitness under constantly changing nutrient environments. Although stem cell abundance is a fundamental determinant of adaptive resizing, our understanding of its underlying mechanisms remains primarily limited to the regulation of stem cell division. Here, we demonstrate that nutrient fluctuation induces dedifferentiation in the Drosophila adult midgut to drive adaptive intestinal growth. From lineage tracing and single-cell RNA sequencing, we identify a subpopulation of enteroendocrine (EE) cells that convert into functional intestinal stem cells (ISCs) in response to dietary glucose and amino acids by activating the JAK-STAT pathway. Genetic ablation of EE-derived ISCs severely impairs ISC expansion and midgut growth despite the retention of resident ISCs, and in silico modeling further indicates that EE dedifferentiation enables an efficient increase in the midgut cell number while maintaining epithelial cell composition. Our findings identify a physiologically induced dedifferentiation that ensures ISC expansion during adaptive organ growth in concert with nutrient conditions.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| | | | - Sohei Tasaki
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
56
|
Toyam T, Yamagishi T, Sato R. The roles of enteroendocrine cell distribution and gustatory receptor expression in regulating peptide hormone secretion in the midgut of Bombyx mori larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22032. [PMID: 37424326 DOI: 10.1002/arch.22032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
To regulate physiological homeostasis and behavior in Bombyx mori, more than 20 peptide hormones in the midgut of larvae are secreted upon detection of food substances at the lumen. Although it is logical to assume that the timings of peptide hormone secretions are regulated, little is known about the mechanisms. In this study, the distributions of enteroendocrine cells (EECs) producing five peptide hormones and EECs expressing gustatory receptors (Grs), as candidate receptors for luminal food substances and nutrients, were examined via immunostaining in B. mori larvae. Three patterns of peptide hormone distribution were observed. Tachykinin (Tk)- and K5-producing EECs were located throughout the midgut; myosuppressin-producing EECs were located in the middle-to-posterior midgut; and allatostatin C- and CCHamide-2-producing EECs were located in the anterior-to-middle midgut. BmGr4 was expressed in some Tk-producing EECs in the anterior midgut, where food and its digestive products arrived 5 min after feeding began. Enzyme-linked immunosorbent assay (ELISA) revealed secretion of Tk starting approximately 5 min after feeding began, suggesting that food sensing by BmGr4 may regulate Tk secretion. BmGr6 was expressed in a few Tk-producing EECs in the middle-to-posterior midgut, although its significance was unclear. BmGr6 was also expressed in many myosuppressin-producing EECs in the middle midgut, where food and its digestive products arrived 60 min after feeding began. ELISA revealed secretion of myosuppressin starting approximately 60 min after feeding began, suggesting that food sensing by BmGr6 may regulate myosuppressin secretion. Finally, BmGr9 was expressed in many BmK5-producing EECs throughout the midgut, suggesting that BmGr9 may function as a sensor for the secretion of BmK5.
Collapse
Affiliation(s)
- Tomoko Toyam
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
57
|
Petsakou A, Liu Y, Liu Y, Comjean A, Hu Y, Perrimon N. Epithelial Ca 2+ waves triggered by enteric neurons heal the gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553227. [PMID: 37645990 PMCID: PMC10461974 DOI: 10.1101/2023.08.14.553227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer. We used the Drosophila midgut to investigate this question and discovered that during regeneration a subpopulation of cholinergic enteric neurons triggers Ca2+ currents among enterocytes to promote return of the epithelium to homeostasis. Specifically, we found that down-regulation of the cholinergic enzyme Acetylcholinesterase in the epithelium enables acetylcholine from defined enteric neurons, referred as ARCENs, to activate nicotinic receptors in enterocytes found near ARCEN-innervations. This activation triggers high Ca2+ influx that spreads in the epithelium through Inx2/Inx7 gap junctions promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki activation and increase of inflammatory cytokines together with hyperplasia, reminiscent of inflammatory bowel diseases. Altogether, we found that during gut regeneration the conserved cholinergic pathway facilitates epithelial Ca2+ waves that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric-dependent intestinal regeneration which advance the current understanding of how a tissue returns to its homeostatic state after injury and could ultimately help existing therapeutics.
Collapse
Affiliation(s)
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Ying Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Aram Comjean
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, USA
- Howard Hughes Medical Institute, Boston, USA
| |
Collapse
|
58
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
59
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
60
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
61
|
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, Berger B, White BH, Perrimon N. split-intein Gal4 provides intersectional genetic labeling that is repressible by Gal80. Proc Natl Acad Sci U S A 2023; 120:e2304730120. [PMID: 37276389 PMCID: PMC10268248 DOI: 10.1073/pnas.2304730120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
The split-Gal4 system allows for intersectional genetic labeling of highly specific cell types and tissues in Drosophila. However, the existing split-Gal4 system, unlike the standard Gal4 system, cannot be repressed by Gal80, and therefore cannot be controlled temporally. This lack of temporal control precludes split-Gal4 experiments in which a genetic manipulation must be restricted to specific timepoints. Here, we describe a split-Gal4 system based on a self-excising split-intein, which drives transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is repressible by Gal80. We demonstrate the potent inducibility of "split-intein Gal4" in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch system, providing an independent method for intersectional labeling with inducible control. We also show that the split-intein Gal4 system can be used to generate highly cell type-specific genetic drivers based on in silico predictions generated by single-cell RNAseq (scRNAseq) datasets, and we describe an algorithm ("Two Against Background" or TAB) to predict cluster-specific gene pairs across multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create split-intein Gal4 drivers based on either CRISPR knock-ins to target genes or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Rohit Singh
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02143
| | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Boston, MA02115
| |
Collapse
|
62
|
Gong J, Nirala NK, Chen J, Wang F, Gu P, Wen Q, Ip YT, Xiang Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. SCIENCE ADVANCES 2023; 9:eadc9660. [PMID: 37224252 PMCID: PMC10208578 DOI: 10.1126/sciadv.adc9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
63
|
Li Y, Zhou X, Cheng C, Ding G, Zhao P, Tan K, Chen L, Perrimon N, Veenstra JA, Zhang L, Song W. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov 2023; 9:49. [PMID: 37221172 DOI: 10.1038/s41421-023-00541-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023] Open
Abstract
Severe sleep deprivation (SD) has been highly associated with systemic energy wasting, such as lipid loss and glycogen depletion. Despite immune dysregulation and neurotoxicity observed in SD animals, whether and how the gut-secreted hormones participate in SD-induced disruption of energy homeostasis remains largely unknown. Using Drosophila as a conserved model organism, we characterize that production of intestinal Allatostatin A (AstA), a major gut-peptide hormone, is robustly increased in adult flies bearing severe SD. Interestingly, the removal of AstA production in the gut using specific drivers significantly improves lipid loss and glycogen depletion in SD flies without affecting sleep homeostasis. We reveal the molecular mechanisms whereby gut AstA promotes the release of an adipokinetic hormone (Akh), an insulin counter-regulatory hormone functionally equivalent to mammalian glucagon, to mobilize systemic energy reserves by remotely targeting its receptor AstA-R2 in Akh-producing cells. Similar regulation of glucagon secretion and energy wasting by AstA/galanin is also observed in SD mice. Further, integrating single-cell RNA sequencing and genetic validation, we uncover that severe SD results in ROS accumulation in the gut to augment AstA production via TrpA1. Altogether, our results demonstrate the essential roles of the gut-peptide hormone AstA in mediating SD-associated energy wasting.
Collapse
Affiliation(s)
- Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
64
|
Xu C, Xu J, Tang HW, Ericsson M, Weng JH, DiRusso J, Hu Y, Ma W, Asara JM, Perrimon N. A phosphate-sensing organelle regulates phosphate and tissue homeostasis. Nature 2023; 617:798-806. [PMID: 37138087 PMCID: PMC10443203 DOI: 10.1038/s41586-023-06039-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY, USA.
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jui-Hsia Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jonathan DiRusso
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
65
|
Tang HW, Spirohn K, Hu Y, Hao T, Kovács IA, Gao Y, Binari R, Yang-Zhou D, Wan KH, Bader JS, Balcha D, Bian W, Booth BW, Coté AG, de Rouck S, Desbuleux A, Goh KY, Kim DK, Knapp JJ, Lee WX, Lemmens I, Li C, Li M, Li R, Lim HJ, Liu Y, Luck K, Markey D, Pollis C, Rangarajan S, Rodiger J, Schlabach S, Shen Y, Sheykhkarimli D, TeeKing B, Roth FP, Tavernier J, Calderwood MA, Hill DE, Celniker SE, Vidal M, Perrimon N, Mohr SE. Next-generation large-scale binary protein interaction network for Drosophila melanogaster. Nat Commun 2023; 14:2162. [PMID: 37061542 PMCID: PMC10105736 DOI: 10.1038/s41467-023-37876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Kerstin Spirohn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tong Hao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - István A Kovács
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Physics and Astronomy, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
- Northwestern Institute on Complex Systems, Chambers Hall, Northwestern University, 600 Foster St, Evanston, IL, 60208, USA
| | - Yue Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Donghui Yang-Zhou
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kenneth H Wan
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
- High-Throughput Biology Center, Institute of Basic Biological Sciences, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Dawit Balcha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Wenting Bian
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Benjamin W Booth
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Atina G Coté
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Steffi de Rouck
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Alice Desbuleux
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm St., Buffalo, NY, 14203, USA
| | - Jennifer J Knapp
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Irma Lemmens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Cathleen Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Mian Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Roujia Li
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Hyobin Julianne Lim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm St., Buffalo, NY, 14203, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Katja Luck
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Dylan Markey
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Carl Pollis
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Sudharshan Rangarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Sadie Schlabach
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Yun Shen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Dayag Sheykhkarimli
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
| | - Bridget TeeKing
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Frederick P Roth
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health, 600 University Ave, Toronto, ON, M5G 1×5, Canada
- Department of Computer Science, University of Toronto, 40 St George St, Toronto, ON, M5S 2E4, Canada
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Michael A Calderwood
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
66
|
Onuma T, Yamauchi T, Kosakamoto H, Kadoguchi H, Kuraishi T, Murakami T, Mori H, Miura M, Obata F. Recognition of commensal bacterial peptidoglycans defines Drosophila gut homeostasis and lifespan. PLoS Genet 2023; 19:e1010709. [PMID: 37023169 PMCID: PMC10112789 DOI: 10.1371/journal.pgen.1010709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/18/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Commensal microbes in animals have a profound impact on tissue homeostasis, stress resistance, and ageing. We previously showed in Drosophila melanogaster that Acetobacter persici is a member of the gut microbiota that promotes ageing and shortens fly lifespan. However, the molecular mechanism by which this specific bacterial species changes lifespan and physiology remains unclear. The difficulty in studying longevity using gnotobiotic flies is the high risk of contamination during ageing. To overcome this technical challenge, we used a bacteria-conditioned diet enriched with bacterial products and cell wall components. Here, we demonstrate that an A. persici-conditioned diet shortens lifespan and increases intestinal stem cell (ISC) proliferation. Feeding adult flies a diet conditioned with A. persici, but not with Lactiplantibacillus plantarum, can decrease lifespan but increase resistance to paraquat or oral infection of Pseudomonas entomophila, indicating that the bacterium alters the trade-off between lifespan and host defence. A transcriptomic analysis using fly intestine revealed that A. persici preferably induces antimicrobial peptides (AMPs), while L. plantarum upregulates amidase peptidoglycan recognition proteins (PGRPs). The specific induction of these Imd target genes by peptidoglycans from two bacterial species is due to the stimulation of the receptor PGRP-LC in the anterior midgut for AMPs or PGRP-LE from the posterior midgut for amidase PGRPs. Heat-killed A. persici also shortens lifespan and increases ISC proliferation via PGRP-LC, but it is not sufficient to alter the stress resistance. Our study emphasizes the significance of peptidoglycan specificity in determining the gut bacterial impact on healthspan. It also unveils the postbiotic effect of specific gut bacterial species, which turns flies into a "live fast, die young" lifestyle.
Collapse
Affiliation(s)
- Taro Onuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hibiki Kadoguchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
67
|
Fisher WW, Hammonds AS, Weiszmann R, Booth BW, Gevirtzman L, Patton JEJ, Kubo CA, Waterston RH, Celniker SE. A modERN resource: identification of Drosophila transcription factor candidate target genes using RNAi. Genetics 2023; 223:iyad004. [PMID: 36652461 PMCID: PMC10078917 DOI: 10.1093/genetics/iyad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.
Collapse
Affiliation(s)
- William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ann S Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin W Booth
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jaeda E J Patton
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
68
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
69
|
Spratt SJ, Mizuguchi T, Akaboshi H, Kosakamoto H, Okada R, Obata F, Ozeki Y. Imaging the uptake of deuterated methionine in Drosophila with stimulated Raman scattering. Front Chem 2023; 11:1141920. [PMID: 37065821 PMCID: PMC10090404 DOI: 10.3389/fchem.2023.1141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Visualizing small individual biomolecules at subcellular resolution in live cells and tissues can provide valuable insights into metabolic activity in heterogeneous cells, but is challenging.Methods: Here, we used stimulated Raman scattering (SRS) microscopy to image deuterated methionine (d-Met) incorporated into Drosophila tissues in vivo.Results: Our results demonstrate that SRS can detect a range of previously uncharacterized cell-to-cell differences in d-Met distribution within a tissue at the subcellular level.Discussion: These results demonstrate the potential of SRS microscopy for metabolic imaging of less abundant but important amino acids such as methionine in tissue.
Collapse
Affiliation(s)
- Spencer J. Spratt
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Takaha Mizuguchi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Hikaru Akaboshi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
| | - Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rina Okada
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yasuyuki Ozeki,
| |
Collapse
|
70
|
Gui J, Samuels TJ, Grobicki KZA, Teixeira FK. Simultaneous activation of Tor and suppression of ribosome biogenesis by TRIM-NHL proteins promotes terminal differentiation. Cell Rep 2023; 42:112181. [PMID: 36870055 PMCID: PMC7617432 DOI: 10.1016/j.celrep.2023.112181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Tissue development and homeostasis depend on the balance between growth and terminal differentiation, but the mechanisms coordinating these processes remain elusive. Accumulating evidence indicates that ribosome biogenesis (RiBi) and protein synthesis, two cellular processes sustaining growth, are tightly regulated and yet can be uncoupled during stem cell differentiation. Using the Drosophila adult female germline stem cell and larval neuroblast systems, we show that Mei-P26 and Brat, two Drosophila TRIM-NHL paralogs, are responsible for uncoupling RiBi and protein synthesis during differentiation. In differentiating cells, Mei-P26 and Brat activate the target of rapamycin (Tor) kinase to promote translation, while concomitantly repressing RiBi. Depletion of Mei-P26 or Brat results in defective terminal differentiation, which can be rescued by ectopic activation of Tor together with suppression of RiBi. Our results indicate that uncoupling RiBi and translation activities by TRIM-NHL activity creates the conditions required for terminal differentiation.
Collapse
Affiliation(s)
- Jinghua Gui
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tamsin J Samuels
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katarina Z A Grobicki
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
71
|
Ewen-Campen B, Luan H, Xu J, Singh R, Joshi N, Thakkar T, Berger B, White BH, Perrimon N. split-intein Gal4 provides intersectional genetic labeling that is fully repressible by Gal80. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534001. [PMID: 36993523 PMCID: PMC10055387 DOI: 10.1101/2023.03.24.534001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The split-Gal4 system allows for intersectional genetic labeling of highly specific cell-types and tissues in Drosophila . However, the existing split-Gal4 system, unlike the standard Gal4 system, cannot be repressed by Gal80, and therefore cannot be controlled temporally. This lack of temporal control precludes split-Gal4 experiments in which a genetic manipulation must be restricted to specific timepoints. Here, we describe a new split-Gal4 system based on a self-excising split-intein, which drives transgene expression as strongly as the current split-Gal4 system and Gal4 reagents, yet which is fully repressible by Gal80. We demonstrate the potent inducibility of "split-intein Gal4" in vivo using both fluorescent reporters and via reversible tumor induction in the gut. Further, we show that our split-intein Gal4 can be extended to the drug-inducible GeneSwitch system, providing an independent method for intersectional labeling with inducible control. We also show that the split-intein Gal4 system can be used to generate highly cell-type specific genetic drivers based on in silico predictions generated by single cell RNAseq (scRNAseq) datasets, and we describe a new algorithm ("Two Against Background" or TAB) to predict cluster-specific gene pairs across multiple tissue-specific scRNA datasets. We provide a plasmid toolkit to efficiently create split-intein Gal4 drivers based on either CRISPR knock-ins to target genes or using enhancer fragments. Altogether, the split-intein Gal4 system allows for the creation of highly specific intersectional genetic drivers that are inducible/repressible. Significance statement The split-Gal4 system allows Drosophila researchers to drive transgene expression with extraordinary cell type specificity. However, the existing split-Gal4 system cannot be controlled temporally, and therefore cannot be applied to many important areas of research. Here, we present a new split-Gal4 system based on a self-excising split-intein, which is fully controllable by Gal80, as well as a related drug-inducible split GeneSwitch system. This approach can both leverage and inform single-cell RNAseq datasets, and we introduce an algorithm to identify pairs of genes that precisely and narrowly mark a desired cell cluster. Our split-intein Gal4 system will be of value to the Drosophila research community, and allow for the creation of highly specific genetic drivers that are also inducible/repressible.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- These authors contributed equally
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Haojiang Luan
- These authors contributed equally
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Jun Xu
- These authors contributed equally
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, China
| | - Rohit Singh
- These authors contributed equally
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02143
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- HHMI, Boston, MA 02115, USA
| |
Collapse
|
72
|
Yu J, Fu Y, Li Z, Huang Q, Tang J, Sun C, Zhou P, He L, Sun F, Cheng X, Ji L, Yu H, Shi Y, Gu Z, Sun F, Zhao X. Single-cell RNA sequencing reveals cell landscape following antimony exposure during spermatogenesis in Drosophila testes. Cell Death Discov 2023; 9:86. [PMID: 36894529 PMCID: PMC9998446 DOI: 10.1038/s41420-023-01391-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antimony (Sb), is thought to induce testicular toxicity, although this remains controversial. This study investigated the effects of Sb exposure during spermatogenesis in the Drosophila testis and the underlying transcriptional regulatory mechanism at single-cell resolution. Firstly, we found that flies exposed to Sb for 10 days led to dose-dependent reproductive toxicity during spermatogenesis. Protein expression and RNA levels were measured by immunofluorescence and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing (scRNA-seq) was performed to characterize testicular cell composition and identify the transcriptional regulatory network after Sb exposure in Drosophila testes. scRNA-seq analysis revealed that Sb exposure influenced various testicular cell populations, especially in GSCs_to_Early_Spermatogonia and Spermatids clusters. Importantly, carbon metabolism was involved in GSCs/early spermatogonia maintenance and positively related with SCP-Containing Proteins, S-LAPs, and Mst84D signatures. Moreover, Seminal Fluid Proteins, Mst57D, and Serpin signatures were highly positively correlated with spermatid maturation. Pseudotime trajectory analysis revealed three novel states for the complexity of germ cell differentiation, and many novel genes (e.g., Dup98B) were found to be expressed in state-biased manners during spermatogenesis. Collectively, this study indicates that Sb exposure negatively impacts GSC maintenance and spermatid elongation, damaging spermatogenesis homeostasis via multiple signatures in Drosophila testes and therefore supporting Sb-mediated testicular toxicity.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Lei He
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
73
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
74
|
Martinez NP, Pinch M, Kandel Y, Hansen IA. Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti. INSECTS 2023; 14:50. [PMID: 36661978 PMCID: PMC9862990 DOI: 10.3390/insects14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA (nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2 in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2 mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results, coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein (YPP) synthesis and yolk deposition.
Collapse
Affiliation(s)
- Nathan P. Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
75
|
Abstract
The gut epithelia of virtually all animals harbor complex microbial communities that play an important role in maintaining immune and cellular homeostasis. Gut microbiota have evolutionarily adapted to the host gut environment, serving as key regulators of intestinal stem cells to promote a healthy gut barrier and modulate epithelial self-renewal. Disruption of these populations has been associated with inflammatory disorders or cancerous lesions of the intestine. However, the molecular mechanisms controlling gut-microbe interactions are only partially understood due to the high diversity and biologically dynamic nature of these microorganisms. This article reviews the current knowledge on Drosophila gut microbiota and its role in signaling pathways that are crucial for the induction of distinct homeostatic and immune responses. Thanks to the genetic tractability of Drosophila and its cultivable and simple microbiota, this association model offers new efficient tools for investigating the crosstalk between a host and its microbiota while providing a framework for a better understanding of the ecological and evolutionary roles of the microbiome.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, USA
| |
Collapse
|
76
|
Chen Z, Wang F, Wen D, Mu R. Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114285. [PMID: 36402076 DOI: 10.1016/j.ecoenv.2022.114285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Recently, the chemical compound Bisphenol A (BPA) has been attracting worldwide attention due to its various toxic effects in animals, including reprotoxicity, neurotoxicity, hepatoxicity, and nephrotoxicity. Here, the midgut of adult Drosophila melanogaster (D. melanogaster), an invertebrate model organism, was employed to investigate the gastrointestinal toxicity of BPA in D. melanogaster and explore its underlying mechanisms of action in insects. As a result, exposure of flies to 0.5 mM BPA resulted in a dramatic morphological alteration of D. melanogaster midgut and decrease in survival rates and climbing ability of flies. Further study indicated that BPA induced high levels of oxidative stress in D. melanogaster midgut due to the imbalance between the production of reactive oxygen species and the activities of cellular antioxidant enzymes, including glutathione-S-transferase, catalase and superoxide dismutase. Oxidative stress induced by BPA then caused intestinal epithelial cell death and gut barrier dysfunction and elevated gut permeability, leading to oxidative injury of midgut epithelium. Antioxidant vitamin E alleviated midgut injury induced by BPA. Subsequently, BPA-induced oxidative injury of midgut further stimulated the proliferation of intestinal stem cell (ISC) and ISC-mediated midgut regeneration, but did not alter cell fate determination of ISCs in Drosophila midgut. Meanwhile, activation of Jun N-terminal kinase signal pathway was found to be required for BPA-induced cell death and tissue regeneration in midgut. Collectively, the present study provided additional evidence from an invertebrate model organism that BPA exposure induced gastrointestinal toxicity in D. melanogaster and further extended our understanding of the molecular mechanisms mediating BPA toxicity in insects.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
77
|
Green L, Coronado-Zamora M, Radío S, Rech GE, Salces-Ortiz J, González J. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol 2022; 20:275. [PMID: 36482348 PMCID: PMC9733279 DOI: 10.1186/s12915-022-01479-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Escalation in industrialization and anthropogenic activity have resulted in an increase of pollutants released into the environment. Of these pollutants, heavy metals such as copper are particularly concerning due to their bio-accumulative nature. Due to its highly heterogeneous distribution and its dual nature as an essential micronutrient and toxic element, the genetic basis of copper tolerance is likely shaped by a complex interplay of genetic and environmental factors. RESULTS In this study, we utilized the natural variation present in multiple populations of Drosophila melanogaster collected across Europe to screen for variation in copper tolerance. We found that latitude and the degree of urbanization at the collection sites, rather than any other combination of environmental factors, were linked to copper tolerance. While previously identified copper-related genes were not differentially expressed in tolerant vs. sensitive strains, genes involved in metabolism, reproduction, and protease induction contributed to the differential stress response. Additionally, the greatest transcriptomic and physiological responses to copper toxicity were seen in the midgut, where we found that preservation of gut acidity is strongly linked to greater tolerance. Finally, we identified transposable element insertions likely to play a role in copper stress response. CONCLUSIONS Overall, by combining genome-wide approaches with environmental association analysis, and functional analysis of candidate genes, our study provides a unique perspective on the genetic and environmental factors that shape copper tolerance in natural D. melanogaster populations and identifies new genes, transposable elements, and physiological traits involved in this complex phenotype.
Collapse
Affiliation(s)
- Llewellyn Green
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Coronado-Zamora
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Radío
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E. Rech
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Judit Salces-Ortiz
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- grid.5612.00000 0001 2172 2676Institute of Evolutionary Biology, CSIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
78
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
79
|
Bioelectric regulation of intestinal stem cells. Trends Cell Biol 2022:S0962-8924(22)00234-3. [PMID: 36396487 PMCID: PMC10183058 DOI: 10.1016/j.tcb.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Proper regulation of ion balance across the intestinal epithelium is essential for physiological functions, while ion imbalance causes intestinal disorders with dire health consequences. Ion channels, pumps, and exchangers are vital for regulating ion movements (i.e., bioelectric currents) that control epithelial absorption and secretion. Recent in vivo studies used the Drosophila gut to identify conserved pathways that link regulators of Ca2+, Na+ and Cl- with intestinal stem cell (ISC) proliferation. These studies laid a foundation for using the Drosophila gut to identify conserved proliferative responses triggered by bioelectric regulators. Here, we review these studies, discuss their significance, as well as the advantages of using Drosophila to unravel conserved bioelectrically induced molecular pathways in the intestinal epithelium under physiological, pathophysiological, and regenerative conditions.
Collapse
|
80
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
81
|
Guo X, Zhang Y, Huang H, Xi R. A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila. Nat Commun 2022; 13:6525. [PMID: 36316343 PMCID: PMC9622890 DOI: 10.1038/s41467-022-34270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade". Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a "TF code" for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code-including as few as one distinct TF-allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.
Collapse
Affiliation(s)
- Xingting Guo
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Yongchao Zhang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Huanwei Huang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| | - Rongwen Xi
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, 102206 Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China
| |
Collapse
|
82
|
Yamagata N, Imanishi Y, Wu H, Kondo S, Sano H, Tanimoto H. Nutrient responding peptide hormone CCHamide-2 consolidates appetitive memory. Front Behav Neurosci 2022; 16:986064. [PMID: 36338876 PMCID: PMC9627028 DOI: 10.3389/fnbeh.2022.986064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
CCHamide-2 (CCHa2) is a protostome excitatory peptide ortholog known for various arthropod species. In fruit flies, CCHa2 plays a crucial role in the endocrine system, allowing peripheral tissue to communicate with the central nervous system to ensure proper development and the maintenance of energy homeostasis. Since the formation of odor-sugar associative long-term memory (LTM) depends on the nutrient status in an animal, CCHa2 may play an essential role in linking memory and metabolic systems. Here we show that CCHa2 signals are important for consolidating appetitive memory by acting on the rewarding dopamine neurons. Genetic disruption of CCHa2 using mutant strains abolished appetitive LTM but not short-term memory (STM). A post-learning thermal suppression of CCHa2 expressing cells impaired LTM. In contrast, a post-learning thermal activation of CCHa2 cells stabilized STM induced by non-nutritious sugar into LTM. The receptor of CCHa2, CCHa2-R, was expressed in a subset of dopamine neurons that mediate reward for LTM. In accordance, the receptor expression in these dopamine neurons was required for LTM specifically. We thus concluded that CCHa2 conveys a sugar nutrient signal to the dopamine neurons for memory consolidation. Our finding establishes a direct interplay between brain reward and the putative endocrine system for long-term energy homeostasis.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Nobuhiro Yamagata,
| | | | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
83
|
Tian A, Morejon V, Kohoutek S, Huang Y, Deng W, Jiang J. Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut. EMBO J 2022; 41:e110834. [PMID: 35950466 PMCID: PMC9531297 DOI: 10.15252/embj.2022110834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)-Ras signaling. We also show that ectopic activation of EGFR-Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR-Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Sarah Kohoutek
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Jin Jiang
- Department of Molecular Biology and Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
84
|
Shen Y, Zeng X, Chen G, Wu X. Comparative transcriptome analysis reveals regional specialization of gene expression in larval silkworm (Bombyx mori) midgut. INSECT SCIENCE 2022; 29:1329-1345. [PMID: 34997945 DOI: 10.1111/1744-7917.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Insect midgut plays a central role in food digestion and nutrition absorption. Larval silkworm midgut could be divided into 3 distinct regions based on their morphological colors. However, it remains rudimentary of regional gene expression and physiological function in larval silkworm midgut. Through transcriptome sequencing of 3 midgut compartments, a comprehensive analysis of gene expression atlas along the anterior-posterior axis was conducted. Posterior midgut was found transcriptionally divergent from anterior and middle midgut. Differentially expressed gene analysis revealed the regional specialization of digestive enzyme production, transmembrane transport, chitin metabolism, and hormone regulation in different midgut regions. In addition, gene subsets of pan-midgut and region-specific transcription factors (TFs) along the length of midgut were also identified. The results suggested that homeobox TFs might play an essential role in transcriptional variations across the midgut. Altogether, our study provided the first fundamental resource to investigate physiological function and regulation mechanism in larval midgut compartmentalization.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
85
|
Zhai J, Li W, Liu X, Wang D, Zhang D, Liu Y, Liang X, Chen Z. Tiny Drosophila intestinal stem cells, big power. Cell Biol Int 2022; 47:3-14. [PMID: 36177490 DOI: 10.1002/cbin.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.
Collapse
Affiliation(s)
- Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Xin Liu
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Di Wang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Dongli Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yanli Liu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiuwen Liang
- Hulunbuir City People's Hospital, Hulunbuir City, China
| | - Zeliang Chen
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
86
|
Suh GSB, Yu K, Kim YJ, Oh Y, Park JJ. History of Drosophila neurogenetic research in South Korea. J Neurogenet 2022:1-7. [PMID: 36165786 DOI: 10.1080/01677063.2022.2115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Neurogenetic research using the Drosophila model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of Drosophila genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of Drosophila neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how Drosophila system was first introduced to elevate neural developmental studies in 1990s. Establishing Drosophila-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea Drosophila Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.
Collapse
Affiliation(s)
- Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kweon Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Metabolism and Neurophysiology Research Group, Daejeon, Republic of Korea
| | - Young-Joon Kim
- Department of Biological Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yangkyun Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
87
|
Palli SR. Molecular genetics solutions to grand challenges in Entomology. FRONTIERS IN INSECT SCIENCE 2022; 2:999165. [PMID: 38468761 PMCID: PMC10926510 DOI: 10.3389/finsc.2022.999165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 03/13/2024]
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
88
|
Marchetti M, Zhang C, Edgar BA. An improved organ explant culture method reveals stem cell lineage dynamics in the adult Drosophila intestine. eLife 2022; 11:e76010. [PMID: 36005292 PMCID: PMC9578704 DOI: 10.7554/elife.76010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, live-imaging techniques have been developed for the adult midgut of Drosophila melanogaster that allow temporal characterization of key processes involved in stem cell and tissue homeostasis. However, these organ culture techniques have been limited to imaging sessions of <16 hours, an interval too short to track dynamic processes such as damage responses and regeneration, which can unfold over several days. Therefore, we developed an organ explant culture protocol capable of sustaining midguts ex vivo for up to 3 days. This was made possible by the formulation of a culture medium specifically designed for adult Drosophila tissues with an increased Na+/K+ ratio and trehalose concentration, and by placing midguts at an air-liquid interface for enhanced oxygenation. We show that midgut progenitor cells can respond to gut epithelial damage ex vivo, proliferating and differentiating to replace lost cells, but are quiescent in healthy intestines. Using ex vivo gene induction to promote stem cell proliferation using RasG12V or string and Cyclin E overexpression, we demonstrate that progenitor cell lineages can be traced through multiple cell divisions using live imaging. We show that the same culture set-up is useful for imaging adult renal tubules and ovaries for up to 3 days and hearts for up to 10 days. By enabling both long-term imaging and real-time ex vivo gene manipulation, our simple culture protocol provides a powerful tool for studies of epithelial biology and cell lineage behavior.
Collapse
Affiliation(s)
- Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Chenge Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Bruce A Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
89
|
Calderon D, Blecher-Gonen R, Huang X, Secchia S, Kentro J, Daza RM, Martin B, Dulja A, Schaub C, Trapnell C, Larschan E, O’Connor-Giles KM, Furlong EEM, Shendure J. The continuum of Drosophila embryonic development at single-cell resolution. Science 2022; 377:eabn5800. [PMID: 35926038 PMCID: PMC9371440 DOI: 10.1126/science.abn5800] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental asynchronicity within embryo collections, we applied deep neural networks to infer the age of each nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in enhancer usage, transcription factor (TF) expression, and the accessibility of TFs' cognate motifs. With these data, the dynamics of enhancer usage and gene expression can be explored within and across lineages at the scale of minutes, including for precise transitions like zygotic genome activation.
Collapse
Affiliation(s)
- Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- The Crown Genomics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - James Kentro
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Dulja
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Erica Larschan
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
90
|
Kim AA, Nguyen A, Marchetti M, Du X, Montell DJ, Pruitt BL, O'Brien LE. Independently paced Ca2+ oscillations in progenitor and differentiated cells in an ex vivo epithelial organ. J Cell Sci 2022; 135:jcs260249. [PMID: 35722729 PMCID: PMC9450890 DOI: 10.1242/jcs.260249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Ca2+ is a highly dynamic, tightly regulated and broadly conserved cellular signal. Ca2+ dynamics have been studied widely in cellular monocultures, yet organs in vivo comprise heterogeneous populations of stem and differentiated cells. Here, we examine Ca2+ dynamics in the adult Drosophila intestine, a self-renewing epithelial organ in which stem cells continuously produce daughters that differentiate into either enteroendocrine cells or enterocytes. Live imaging of whole organs ex vivo reveals that stem-cell daughters adopt strikingly distinct patterns of Ca2+ oscillations after differentiation: enteroendocrine cells exhibit single-cell Ca2+ oscillations, whereas enterocytes exhibit rhythmic, long-range Ca2+ waves. These multicellular waves do not propagate through immature progenitors (stem cells and enteroblasts), of which the oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates Ca2+ oscillations in all cell types - even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of Ca2+ dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.
Collapse
Affiliation(s)
- Anna A Kim
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Amanda Nguyen
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - XinXin Du
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Denise J Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
91
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
92
|
Ariyapala IS, Buddika K, Hundley HA, Calvi BR, Sokol NS. The RNA binding protein Swm is critical for Drosophila melanogaster intestinal progenitor cell maintenance. Genetics 2022; 222:6619166. [PMID: 35762963 DOI: 10.1093/genetics/iyac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing (Swm) is critical for Drosophila melanogaster intestinal stem cells (ISCs) and their daughter cells, enteroblasts (EBs), to maintain their progenitor cell properties and functions. Loss of swm causes ISCs and EBs to stop dividing and instead detach from the basement membrane, resulting in severe progenitor cell loss. swm loss is further characterized by nuclear accumulation of poly(A)+ RNA in progenitor cells. Swm associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm, while not generally affecting the levels of these Swm-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly ortholog of Filamin. Taken together, this study indicates a nuclear role for Swm in adult stem cell maintenance, raising the possibility that nuclear post-transcriptional regulation of mRNAs encoding cell adhesion proteins ensures proper attachment of progenitor cells.
Collapse
Affiliation(s)
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
93
|
Xu J, Liu Y, Li H, Tarashansky AJ, Kalicki CH, Hung RJ, Hu Y, Comjean A, Kolluru SS, Wang B, Quake SR, Luo L, McMahon AP, Dow JAT, Perrimon N. Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2022; 119:e2203179119. [PMID: 35696569 PMCID: PMC9231607 DOI: 10.1073/pnas.2203179119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Recent advances in single-cell sequencing provide a unique opportunity to gain novel insights into the diversity, lineage, and functions of cell types constituting a tissue/organ. Here, we performed a single-nucleus study of the adult Drosophila renal system, consisting of Malpighian tubules and nephrocytes, which shares similarities with the mammalian kidney. We identified 11 distinct clusters representing renal stem cells, stellate cells, regionally specific principal cells, garland nephrocyte cells, and pericardial nephrocytes. Characterization of the transcription factors specific to each cluster identified fruitless (fru) as playing a role in stem cell regeneration and Hepatocyte nuclear factor 4 (Hnf4) in regulating glycogen and triglyceride metabolism. In addition, we identified a number of genes, including Rho guanine nucleotide exchange factor at 64C (RhoGEF64c), Frequenin 2 (Frq2), Prip, and CG1093 that are involved in regulating the unusual star shape of stellate cells. Importantly, the single-nucleus dataset allows visualization of the expression at the organ level of genes involved in ion transport and junctional permeability, providing a systems-level view of the organization and physiological roles of the tubules. Finally, a cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia, knowledge that will help the generation of kidney disease models. Altogether, our study provides a comprehensive resource for studying the fly kidney.
Collapse
Affiliation(s)
- Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Hongjie Li
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Alexander J. Tarashansky
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Colin H. Kalicki
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
- HHMI, Harvard University, Boston, MA 02115
| |
Collapse
|
94
|
Ko T, Murakami H, Kamikouchi A, Ishimoto H. Biogenic action of Lactobacillus plantarum SBT2227 promotes sleep in Drosophila melanogaster. iScience 2022; 25:104626. [PMID: 35811846 PMCID: PMC9257349 DOI: 10.1016/j.isci.2022.104626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) influence multiple aspects of host brain function via the production of active metabolites in the gut, which is known as the pre/probiotic action. However, little is known about the biogenic effects of LAB on host brain function. Here, we reported that the Lactobacillus plantarum SBT2227 promoted sleep in Drosophila melanogaster. Administration of SBT2227 primarily increased the amount of sleep and decreased sleep latency at the beginning of night-time. The sleep-promoting effects of SBT2227 were independent of the existing gut flora. Furthermore, heat treatment or mechanical crushing of SBT2227 did not suppress the sleep-promoting effects, indicative of biogenic action. Transcriptome analysis and RNAi mini-screening for gut-derived peptide hormones revealed the requirement of neuropeptide F, a homolog of the mammalian neuropeptide Y, for the action of SBT2227. These biogenic effects of SBT2227 on the host sleep provide new insights into the interaction between the brain and gut bacteria. Lactobacillus plantarum SBT2227 promotes sleep at the onset of nighttime Existing intestinal microbes do not affect the SBT2227 sleep effect Heat-stable intracellular/intramembrane components are candidates for active substances Neuropeptide F is required for the sleep-promoting effect of SBT2227
Collapse
|
95
|
Holsopple JM, Cook KR, Popodi EM. Identification of novel split-GAL4 drivers for the characterization of enteroendocrine cells in the Drosophila melanogaster midgut. G3 (BETHESDA, MD.) 2022; 12:jkac102. [PMID: 35485968 PMCID: PMC9157172 DOI: 10.1093/g3journal/jkac102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 01/09/2023]
Abstract
The Drosophila melanogaster midgut is commonly studied as a model epithelial tissue for many reasons, one of which is the presence of a diverse population of secretory cells called enteroendocrine cells. Subpopulations of these cells secrete various combinations of peptide hormones which have systemic effects on the organism. Many of these hormones are also produced in the Drosophila brain. The split-GAL4 system has been useful for identifying and manipulating discrete groups of cells, but previously characterized split-GAL4 drivers have not driven expression in high proportions of enteroendocrine cells. In this study, we screened candidate split-GAL4 drivers for enteroendocrine cell expression using known reference drivers for this cell type and discovered a new split-GAL4 driver pair that confers expression in a greater number of enteroendocrine cells than previously characterized driver pairs. The new pair demonstrates less brain expression, thereby providing better tools for disentangling the physiological roles of gut- and brain-secreted peptides. We also identified additional split-GAL4 drivers that promote expression in discrete subpopulations of enteroendocrine cells. Overall, the tools reported here will help researchers better target enteroendocrine cell subpopulations.
Collapse
Affiliation(s)
- Jessica M Holsopple
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Cook
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| | - Ellen M Popodi
- Department of Biology, Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
96
|
Abstract
Many insect cells are encapsulated within the exoskeleton and cannot be dissociated intact, making them inaccessible to single-cell transcriptomic profiling. We have used single-nucleus RNA sequencing to extract transcriptomic information from multiple Drosophila tissues. Here, we describe procedures for the (1) dissociation of single nuclei, (2) isolation of single nuclei using two popular cell sorters, and (3) preparation of libraries for Smart-seq2 and 10× Genomics. This protocol enables generation of high-quality transcriptomes from single nuclei and can be applied to other species. For complete details on the use and execution of this protocol, please refer to McLaughlin et al. (2021) and Li et al. (2022).
Collapse
|
97
|
Abstract
Adult tissues in Metazoa dynamically remodel their structures in response to environmental challenges including sudden injury, pathogen infection, and nutritional fluctuation, while maintaining quiescence under homoeostatic conditions. This characteristic, hereafter referred to as adult tissue plasticity, can prevent tissue dysfunction and improve the fitness of organisms in continuous and/or severe change of environments. With its relatively simple tissue structures and genetic tools, studies using the fruit fly Drosophila melanogaster have provided insights into molecular mechanisms that control cellular responses, particularly during regeneration and nutrient adaptation. In this review, we present the current understanding of cellular mechanisms, stem cell proliferation, polyploidization, and cell fate plasticity, all of which enable adult tissue plasticity in various Drosophila adult organs including the midgut, the brain, and the gonad, and discuss the organismal strategy in response to environmental changes and future directions of the research.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
98
|
Wang M, Hu Q, Lv T, Wang Y, Lan Q, Xiang R, Tu Z, Wei Y, Han K, Shi C, Guo J, Liu C, Yang T, Du W, An Y, Cheng M, Xu J, Lu H, Li W, Zhang S, Chen A, Chen W, Li Y, Wang X, Xu X, Hu Y, Liu L. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev Cell 2022; 57:1271-1283.e4. [PMID: 35512700 DOI: 10.1016/j.devcel.2022.04.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
Abstract
Drosophila has long been a successful model organism in multiple biomedical fields. Spatial gene expression patterns are critical for the understanding of complex pathways and interactions, whereas temporal gene expression changes are vital for studying highly dynamic physiological activities. Systematic studies in Drosophila are still impeded by the lack of spatiotemporal transcriptomic information. Here, utilizing spatial enhanced resolution omics-sequencing (Stereo-seq), we dissected the spatiotemporal transcriptomic changes of developing Drosophila with high resolution and sensitivity. We demonstrated that Stereo-seq data can be used for the 3D reconstruction of the spatial transcriptomes of Drosophila embryos and larvae. With these 3D models, we identified functional subregions in embryonic and larval midguts, uncovered spatial cell state dynamics of larval testis, and revealed known and potential regulons of transcription factors within their topographic background. Our data provide the Drosophila research community with useful resources of organism-wide spatiotemporally resolved transcriptomic information across developmental stages.
Collapse
Affiliation(s)
- Mingyue Wang
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qinan Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China
| | - Tianhang Lv
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Wang
- BGI-Shenzhen, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qing Lan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhencheng Tu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Wei
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Chang Shi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Junfu Guo
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tao Yang
- China National Gene Bank, BGI-Shenzhen, Shenzhen 518120, China
| | - Wensi Du
- China National Gene Bank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yanru An
- BGI-Shenzhen, Shenzhen 518083, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorong Lu
- China National Gene Bank, BGI-Shenzhen, Shenzhen 518120, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Wangsheng Li
- China National Gene Bank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shaofang Zhang
- China National Gene Bank, BGI-Shenzhen, Shenzhen 518120, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | | | | | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China.
| |
Collapse
|
99
|
Zipper L, Batchu S, Kaya NH, Antonello ZA, Reiff T. The MicroRNA miR-277 Controls Physiology and Pathology of the Adult Drosophila Midgut by Regulating the Expression of Fatty Acid β-Oxidation-Related Genes in Intestinal Stem Cells. Metabolites 2022; 12:315. [PMID: 35448502 PMCID: PMC9028014 DOI: 10.3390/metabo12040315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division, growth, and differentiation are energetically costly and dependent processes. In adult stem cell-based epithelia, cellular identity seems to be coupled with a cell's metabolic profile and vice versa. It is thus tempting to speculate that resident stem cells have a distinct metabolism, different from more committed progenitors and differentiated cells. Although investigated for many stem cell types in vitro, in vivo data of niche-residing stem cell metabolism is scarce. In adult epithelial tissues, stem cells, progenitor cells, and their progeny have very distinct functions and characteristics. In our study, we hypothesized and tested whether stem and progenitor cell types might have a distinctive metabolic profile in the intestinal lineage. Here, taking advantage of the genetically accessible adult Drosophila melanogaster intestine and the availability of ex vivo single cell sequencing data, we tested that hypothesis and investigated the metabolism of the intestinal lineage from stem cell (ISC) to differentiated epithelial cell in their native context under homeostatic conditions. Our initial in silico analysis of single cell RNAseq data and functional experiments identify the microRNA miR-277 as a posttranscriptional regulator of fatty acid β-oxidation (FAO) in the intestinal lineage. Low levels of miR-277 are detected in ISC and progressively rising miR-277 levels are found in progenitors during their growth and differentiation. Supporting this, miR-277-regulated fatty acid β-oxidation enzymes progressively declined from ISC towards more differentiated cells in our pseudotime single-cell RNAseq analysis and in functional assays on RNA and protein level. In addition, in silico clustering of single-cell RNAseq data based on metabolic genes validates that stem cells and progenitors belong to two independent clusters with well-defined metabolic characteristics. Furthermore, studying FAO genes in silico indicates that two populations of ISC exist that can be categorized in mitotically active and quiescent ISC, of which the latter relies on FAO genes. In line with an FAO dependency of ISC, forced expression of miR-277 phenocopies RNAi knockdown of FAO genes by reducing ISC size and subsequently resulting in stem cell death. We also investigated miR-277 effects on ISC in a benign and our newly developed CRISPR-Cas9-based colorectal cancer model and found effects on ISC survival, which as a consequence affects tumor growth, further underlining the importance of FAO in a pathological context. Taken together, our study provides new insights into the basal metabolic requirements of intestinal stem cell on β-oxidation of fatty acids evolutionarily implemented by a sole microRNA. Gaining knowledge about the metabolic differences and dependencies affecting the survival of two central and cancer-relevant cell populations in the fly and human intestine might reveal starting points for targeted combinatorial therapy in the hope for better treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lisa Zipper
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
| | - Nida Hatice Kaya
- Institute for Zoology and Organismic Interactions, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Zeus Andrea Antonello
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
- Cooper University Hospital, Cooper University Health Care, Cooper Medical School, Rowan University, Camden, NJ 08102, USA
| | - Tobias Reiff
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
100
|
Microbes affect gut epithelial cell composition through immune-dependent regulation of intestinal stem cell differentiation. Cell Rep 2022; 38:110572. [PMID: 35354023 PMCID: PMC9078081 DOI: 10.1016/j.celrep.2022.110572] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Gut microbes play important roles in host physiology; however, the mechanisms underlying their impact remain poorly characterized. Here, we demonstrate that microbes not only influence gut physiology but also alter its epithelial composition. The microbiota and pathogens both influence intestinal stem cell (ISC) differentiation. Intriguingly, while the microbiota promotes ISC differentiation into enterocytes (EC), pathogens stimulate enteroendocrine cell (EE) fate and long-term accumulation of EEs in the midgut epithelium. Importantly, the evolutionarily conserved Drosophila NFKB (Relish) pushes stem cell lineage specification toward ECs by directly regulating differentiation factors. Conversely, the JAK-STAT pathway promotes EE fate in response to infectious damage. We propose a model in which the balance of microbial pattern recognition pathways, such as Imd-Relish, and damage response pathways, such as JAK-STAT, influence ISC differentiation, epithelial composition, and gut physiology.
Collapse
|