51
|
Ren J, Tsilafakis K, Chen L, Lekkos K, Kostavasili I, Varela A, Cokkinos DV, Davos CH, Sun X, Song J, Mavroidis M. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021; 11:5939-5954. [PMID: 33897891 PMCID: PMC8058736 DOI: 10.7150/thno.58160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Konstantinos Lekkos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiaogang Sun
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
52
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Early Complement-Dependent Events Are Important for DC Migration and Protection During Mouse Lung Infection. Front Immunol 2021; 12:580594. [PMID: 33767691 PMCID: PMC7986412 DOI: 10.3389/fimmu.2021.580594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/10/2021] [Indexed: 11/24/2022] Open
Abstract
The zoonotic intracellular bacterium Chlamydia psittaci causes life-threatening pneumonia in humans. During mouse lung infection, complement factor C3 and the anaphylatoxin C3a augment protection against C. psittaci by a so far unknown mechanism. To clarify how complement contributes to the early, innate and the late, specific immune response and resulting protection, this study addresses the amount of C3, the timing when its presence is required as well as the anaphylatoxin receptor(s) mediating its effects and the complement-dependent migration of dendritic cells. Challenge experiments with C. psittaci on various complement KO mice were combined with transient decomplementation by pharmacological treatment, as well as the analysis of in vivo dendritic cells migration. Our findings reveal that a plasma concentration of C3 close to wildtype levels was required to achieve full protection. The diminished levels of C3 of heterozygote C3+/- mice permitted already relative effective protection and improved survival as compared to C3-/- mice, but overall recovery of these animals was delayed. Complement was in particular required during the first days of infection. However, additionally, it seems to support protection at later stages. Migration of CD103+ dendritic cells from the infected lung to the draining lymph node-as prerequisite of antigen presentation-depended on C3 and C3aR and/or C5aR. Our results provide unique mechanistic insight in various aspects of complement-dependent immune responses under almost identical, rather physiological experimental conditions. Our study contributes to an improved understanding of the role of complement, and C3a in particular, in infections by intracellular bacteria.
Collapse
Affiliation(s)
- Martin Kohn
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Lanfermann
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Robert Laudeley
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Silke Glage
- Medical School Hannover, Institute for Laboratory Animal Science, Hannover, Germany
| | - Claudia Rheinheimer
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Andreas Klos
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| |
Collapse
|
53
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Non-Myeloid-Derived C3 Predominantly Induces Protective Adaptive Immune Responses in Mouse Lung Infection. Front Immunol 2021; 12:626627. [PMID: 33746963 PMCID: PMC7969653 DOI: 10.3389/fimmu.2021.626627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in complement research have revolutionized our understanding of its role in immune responses. The immunomodulatory features of complement in infections by intracellular pathogens, e.g., viruses, are attracting increasing attention. Thereby, local production and activation of complement by myeloid-derived cells seem to be crucial. We could recently show that C3, a key player of the complement cascade, is required for effective defense against the intracellular bacterium Chlamydia psittaci. Avian zoonotic strains of this pathogen cause life-threatening pneumonia with systemic spread in humans; closely related non-avian strains are responsible for less severe diseases of domestic animals with economic loss. To clarify how far myeloid- and non-myeloid cell-derived complement contributes to immune response and resulting protection against C. psittaci, adoptive bone marrow transfer experiments focusing on C3 were combined with challenge experiments using a non-avian (BSL 2) strain of this intracellular bacterium. Surprisingly, our data prove that for C. psittaci-induced pneumonia in mice, non-myeloid-derived, circulating/systemic C3 has a leading role in protection, in particular on the development of pathogen-specific T- and B- cell responses. In contrast, myeloid-derived and most likely locally produced C3 plays only a minor, mainly fine-tuning role. The work we present here describes authentic, although less pronounced, antigen directed immune responses.
Collapse
Affiliation(s)
- Martin Kohn
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Christian Lanfermann
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Robert Laudeley
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Medical School Hannover, Hannover, Germany
| | - Claudia Rheinheimer
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
54
|
van Zanden JE, Jager NM, Seelen MA, Daha MR, Veldhuis ZJ, Leuvenink HG, Erasmus ME. Brain death-induced lung injury is complement dependent, with a primary role for the classical/lectin pathway. Am J Transplant 2021; 21:993-1002. [PMID: 32743873 PMCID: PMC7984080 DOI: 10.1111/ajt.16231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
In brain-dead donors immunological activation occurs, which deteriorates donor lung quality. Whether the complement system is activated and which pathways are herein involved, remain unknown. We aimed to investigate whether brain death (BD)-induced lung injury is complement dependent and dissected the contribution of the complement activation pathways. BD was induced and sustained for 3 hours in wild-type (WT) and complement deficient mice. C3-/- mice represented total complement deficiency, C4-/- mice represented deficiency of the classical and lectin pathway, and factor properdin (P)-/- mice represented alternative pathway deficiency. Systemic and local complement levels, histological lung injury, and pulmonary inflammation were assessed. Systemic and local complement levels were reduced in C3-/- mice. In addition, histological lung injury and inflammation were attenuated, as corroborated by influx of neutrophils and gene expressions of interleukin (IL)-6, IL-8-like KC, TNF-α, E-selectin, and MCP-1. In C4-/- mice, complement was reduced on both systemic and local levels and histological lung injury and inflammatory status were ameliorated. In P-/- mice, histological lung injury was attenuated, though systemic and local complement levels, IL-6 and KC gene expressions, and neutrophil influx were not affected. We demonstrated that BD-induced lung injury is complement dependent, with a primary role for the classical/lectin activation pathway.
Collapse
Affiliation(s)
- Judith E. van Zanden
- Department of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Neeltina M. Jager
- Department of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Marc A. Seelen
- Division of NephrologyDepartment of Internal MedicineUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Mohamed R. Daha
- Division of NephrologyDepartment of Internal MedicineUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Department of NephrologyLeiden University Medical CenterLeidenthe Netherlands
| | - Zwanida J. Veldhuis
- Department of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Henri G.D. Leuvenink
- Department of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Michiel E. Erasmus
- Department of Cardiothoracic SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
55
|
Jackson WD, Gulino A, Fossati-Jimack L, Castro Seoane R, Tian K, Best K, Köhl J, Belmonte B, Strid J, Botto M. C3 Drives Inflammatory Skin Carcinogenesis Independently of C5. J Invest Dermatol 2021; 141:404-414.e6. [PMID: 32682912 PMCID: PMC8150327 DOI: 10.1016/j.jid.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022]
Abstract
Nonmelanoma skin cancer such as cutaneous squamous cell carcinoma (cSCC) is the most common form of cancer and can occur as a consequence of DNA damage to the epithelium by UVR or chemical carcinogens. There is growing evidence that the complement system is involved in cancer immune surveillance; however, its role in cSCC remains unclear. Here, we show that complement genes are expressed in tissue from patients with cSCC, and C3 activation fragments are present in cSCC biopsies, indicating complement activation. Using a range of complement-deficient mice in a two-stage mouse model of chemically-induced cSCC, where a subclinical dose of 7,12-dimethylbenz[a]anthracene causes oncogenic mutations in epithelial cells and 12-O-tetradecanoylphorbol-13-acetate promotes the outgrowth of these cells, we found that C3-deficient mice displayed a significantly reduced tumor burden, whereas an opposite phenotype was observed in mice lacking C5aR1, C5aR2, and C3a receptor. In addition, in mice unable to form the membrane attack complex, the tumor progression was unaltered. C3 deficiency did not affect the cancer response to 7,12-dimethylbenz[a]anthracene treatment alone but reduced the epidermal hyperplasia during 12-O-tetradecanoylphorbol-13-acetate-induced inflammation. Collectively, these data indicate that C3 drives tumorigenesis during chronic skin inflammation, independently of the downstream generation of C5a or membrane attack complex.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Carcinogens/administration & dosage
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Complement Activation/genetics
- Complement Activation/immunology
- Complement C3/genetics
- Complement C3/metabolism
- Complement C5/metabolism
- Complement Membrane Attack Complex/metabolism
- Disease Models, Animal
- Disease Progression
- Humans
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Skin Neoplasms/chemically induced
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Escape
Collapse
Affiliation(s)
- William D Jackson
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Liliane Fossati-Jimack
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Rocio Castro Seoane
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Kunyuan Tian
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| | - Katie Best
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Jessica Strid
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom.
| | - Marina Botto
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, United Kingdom
| |
Collapse
|
56
|
Park JW, Kim JE, Choi YJ, Kang MJ, Choi HJ, Bae SJ, Hong JT, Lee H, Hwang DY. Deficiency of complement component 3 may be linked to the development of constipation in FVB/N-C3 em1Hlee /Korl mice. FASEB J 2021; 35:e21221. [PMID: 33337564 DOI: 10.1096/fj.202000376r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Alterations in complement component 3 (C3) expression has been reported to be linked to several bowel diseases including Crohn's disease, inflammatory bowel disease, and ulcerative colitis; however, the association with constipation has never been investigated. In this study, we aimed to investigate the correlation between C3 regulation and constipation development using a C3 deficiency model. To achieve these, alterations in stool excretion, transverse colon histological structure, and mucin secretion were analyzed in FVB/N-C3em1Hlee /Korl (C3 knockout, C3 KO) mice with the deletion of 11 nucleotides in exon 2 of the C3 gene. The stool excretion parameters, gastrointestinal transit, and intestine length were remarkably decreased in C3 KO mice compared with wild-type (WT) mice, although there was no specific change in feeding behavior. Furthermore, C3 KO mice showed a decrease in mucosal and muscle layer thickness, alterations in crypt structure, irregular distribution of goblet cells, and an increase of mucin droplets in the transverse colon. Mucin secretion was suppressed, and they accumulated in the crypts of C3 KO mice. In addition, the constipation phenotypes detected during C3 deficiency were confirmed in FVB/N mice treated with C3 convertase inhibitor (rosmarinic acid (RA)). Similar phenotypes were observed with respect to stool excretion parameters, gastrointestinal transit, intestine length, alterations in crypt structure, and mucin secretion in RA-treated FVB/N mice. Therefore, the results of the present study provide the first scientific evidence that C3 deficiency may play an important role in the development of constipation phenotypes in C3 KO mice.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
57
|
Devalaraja-Narashimha K, Meagher K, Luo Y, Huang C, Kaplan T, Muthuswamy A, Halasz G, Casanova S, O'Brien J, Peyser Boiarsky R, McWhirter J, Gartner H, Bai Y, MacDonnell S, Liu C, Hu Y, Latuszek A, Wei Y, Prasad S, Huang T, Yancopoulos G, Murphy A, Olson W, Zambrowicz B, Macdonald L, Morton LG. Humanized C3 Mouse: A Novel Accelerated Model of C3 Glomerulopathy. J Am Soc Nephrol 2021; 32:99-114. [PMID: 33288630 PMCID: PMC7894673 DOI: 10.1681/asn.2020050698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.
Collapse
|
58
|
Malsy J, Alvarado AC, Lamontagne JO, Strittmatter K, Marneros AG. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization. eLife 2020; 9:60194. [PMID: 33305736 PMCID: PMC7732340 DOI: 10.7554/elife.60194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
NLRP3 inflammasome activation and complement-mediated inflammation have been implicated in promoting choroidal neovascularization (CNV) in age-related macular degeneration (AMD), but central questions regarding their contributions to AMD pathogenesis remain unanswered. Key open questions are (1) whether NLRP3 inflammasome activation mainly in retinal pigment epithelium (RPE) or rather in non-RPE cells promotes CNV, (2) whether inflammasome activation in CNV occurs via NLRP3 or also through NLRP3-independent mechanisms, and (3) whether complement activation induces inflammasome activation in CNV. Here we show in a neovascular AMD mouse model that NLRP3 inflammasome activation in non-RPE cells but not in RPE cells promotes CNV. We demonstrate that both NLRP3-dependent and NLRP3-independent inflammasome activation mechanisms induce CNV. Finally, we find that complement and inflammasomes promote CNV through independent mechanisms. Our findings uncover an unexpected role of non-NLRP3 inflammasomes for CNV and suggest that combination therapies targeting inflammasomes and complement may offer synergistic benefits to inhibit CNV.
Collapse
Affiliation(s)
- Jakob Malsy
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States.,Department of Ophthalmology, University of Halle, Halle, Germany
| | - Andrea C Alvarado
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Joseph O Lamontagne
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
59
|
Gordan S, Albert H, Danzer H, Lux A, Biburger M, Nimmerjahn F. The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Rep 2020; 29:3033-3046.e4. [PMID: 31801071 DOI: 10.1016/j.celrep.2019.10.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic immunoglobulin G antibodies are an essential component of therapeutic approaches aimed at depleting self-reactive or malignant cells. More recent evidence suggests that the tissue in which the target cell resides influences the underlying molecular and cellular pathways responsible for cytotoxic antibody activity. By studying cytotoxic IgG activity directed against natural killer cells in primary and secondary immunological organs, we show that distinct organ-specific effector pathways are responsible for target cell depletion. While in the bone marrow, the classical complement pathway and the high-affinity Fcγ-receptor I expressed on organ-resident macrophages were both involved in removing opsonized target cells; in the spleen and blood, all activating FcγRs but not the classical complement pathway were critical for target cell killing. Our study suggests that future strategies aimed at optimizing overall cytotoxic antibody activity may need to consider organ-specific pathways to achieve a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sina Gordan
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Albert
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Danzer
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
60
|
Manne K, Chattopadhyay D, Agarwal V, Blom AM, Khare B, Chakravarthy S, Chang C, Ton-That H, Narayana SVL. Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin. Acta Crystallogr D Struct Biol 2020; 76:759-770. [PMID: 32744258 PMCID: PMC7397492 DOI: 10.1107/s2059798320008116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BibA, a group B streptococcus (GBS) surface protein, has been shown to protect the pathogen from phagocytic killing by sequestering a complement inhibitor: C4b-binding protein (C4BP). Here, the X-ray crystallographic structure of a GBS BibA fragment (BibA126-398) and a low-resolution small-angle X-ray scattering (SAXS) structure of the full-length N-terminal domain (BibA34-400) are described. The BibA126-398 fragment crystal structure displayed a novel and predominantly helical structure. The tertiary arrangement of helices forms four antiparallel three-helix-bundle-motif repeats, with one long helix from a bundle extending into the next. Multiple mutations on recombinant BibA34-400 delayed the degradation of the protein, and circular dichroism spectroscopy of BibA34-400 suggested a similar secondary-structure composition to that observed in the crystallized BibA126-398 fragment. A model was generated for the 92 N-terminal residues (BibA34-125) using structural similarity prediction programs, and a BibA34-400 model was generated by combining the coordinates of BibA34-126 and BibA126-398. The X-ray structure of BibA126-398 and the model of BibA34-400 fitted well into the calculated SAXS envelope. One possible binding site for the BibA N-terminal domain was localized to the N-terminal CCP (complement-control protein) domains of the C4BP α-chain, as indicated by the decreased binding of BibA to a ΔCCP1 C4BP α-chain mutant. In summary, it is suggested that the GBS surface protein BibA, which consists of three antiparallel α-helical-bundle motifs, is unique and belongs to a new class of Gram-positive surface adhesins.
Collapse
Affiliation(s)
- Kartik Manne
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| | | | - Vaibhav Agarwal
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Sthanam V. L. Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| |
Collapse
|
61
|
Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, Luo S, Ma SA, Li Y, Gelbard HA. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun 2020; 87:739-750. [PMID: 32151684 PMCID: PMC8698220 DOI: 10.1016/j.bbi.2020.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease of the CNS characterized by both grey and white matter injury. Microglial activation and a reduction in synaptic density are key features of grey matter pathology that can be modeled with MOG35-55 experimental autoimmune encephalomyelitis (EAE). Complement deposition combined with microglial engulfment has been shown during normal development and in disease as a mechanism for pruning synapses. We tested whether there is excess complement production in the EAE hippocampus and whether complement-dependent synapse loss is a source of degeneration in EAE using C1qa and C3 knockout mice. We found that C1q and C3 protein and mRNA levels were elevated in EAE mice. Genetic loss of C3 protected mice from EAE-induced synapse loss, reduced microglial activation, decreased the severity of the EAE clinical score, and protected memory/freezing behavior after contextual fear conditioning. C1qa KO mice with EAE showed little to no change on these measurements compared to WT EAE mice. Thus, pathologic expression and activation of the early complement pathway, specifically at the level of C3, contributes to hippocampal grey matter pathology in the EAE.
Collapse
Affiliation(s)
- Jennetta W. Hammond
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Correspondence: Jennetta W. Hammond,
University of Rochester, Center for Neurotherapeutics Discovery, 601 Elmwood
Avenue, Box 645, Rochester, NY 14642, USA,
, Phone:
1-585-273-2872
| | - Matthew J. Bellizzi
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Caroline Ware
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Wen Q. Qiu
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Priyanka Saminathan
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Microbiology and Immunology, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Herman Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Shaopeiwen Luo
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Stefanie A. Ma
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Yuanhao Li
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642
| | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery, University of
Rochester Medical Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neurology, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642.,Department of Neuroscience, University of Rochester Medical
Center, 601 Elmwood Avenue, Rochester NY 14642
| |
Collapse
|
62
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
63
|
Halkjær L, Troldborg A, Pedersen H, Jensen L, Hansen AG, Hansen TK, Bjerre M, Østergaard JA, Thiel S. Complement Receptor 2 Based Immunoassay Measuring Activation of the Complement System at C3-Level in Plasma Samples From Mice and Humans. Front Immunol 2020; 11:774. [PMID: 32431705 PMCID: PMC7214740 DOI: 10.3389/fimmu.2020.00774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
We aimed at establishing a sensitive and robust assay for estimation of systemic complement activation at complement component C3 level in mouse and human plasma samples. In order to capture the activation products iC3b and C3dg in a specific and physiological relevant manner we utilized a construct consisting of the iC3b/C3dg-binding site of human complement receptor 2 (CR2) attached to an Fc-part of mouse IgG. This construct binds C3dg and iC3b from both mice and humans. We purified the CR2-IgG construct from mouse B myeloma cell line supernatants, J558L-CR2-IgG, by protein G affinity chromatography. The CR2-IgG construct was used for capturing C3 fragments in microtiter wells and an anti-mouse or an anti-human-C3 antibody was used for detection of bound C3 fragments. Initially we tested the specificity of the assays with the use of purified C3 fragments. Further, with the use of the CR2-based assay, we measured an up to three-fold higher signal in activated mouse serum as compared to non-activated mouse serum, whereas activated serum from a C3 knock-out mouse gave no signal. We tested in vivo generated samples from a mouse experiment; complement activation was induced by injecting cobra venom factor or heat aggregated IgG into C57bl6 mice, followed by withdrawal of EDTA blood samples at different time points and measurement of iC3b/C3dg. We observed a clear time-dependent distinction in signals between samples with expected high and low complement activation. Furthermore, with the use of the assay for human C3 fragments, we observed that patients with systemic lupus erythematosus (SLE) (n = 144) had significantly higher iC3b/C3dg levels as compared to healthy individuals (n = 144) (p < 0.0001). We present two functional immunoassays, that are able to measure systemic levels of the C3-activation products iC3b and C3dg in mice and humans. To our knowledge, these are the first assays for complement activation that use a physiological relevant capture construct such as CR2. These assays will be a relevant tool when investigating mouse models and human diseases involving the complement system.
Collapse
Affiliation(s)
- Lene Halkjær
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | | | - Mette Bjerre
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
64
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
65
|
Muenstermann M, Strobel L, Klos A, Wetsel RA, Woodruff TM, Köhl J, Johswich KO. Distinct roles of the anaphylatoxin receptors C3aR, C5aR1 and C5aR2 in experimental meningococcal infections. Virulence 2019; 10:677-694. [PMID: 31274379 PMCID: PMC6650196 DOI: 10.1080/21505594.2019.1640035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
The complement system is pivotal in the defense against invasive disease caused by Neisseria meningitidis (Nme, meningococcus), particularly via the membrane attack complex. Complement activation liberates the anaphylatoxins C3a and C5a, which activate three distinct G-protein coupled receptors, C3aR, C5aR1 and C5aR2 (anaphylatoxin receptors, ATRs). We recently discovered that C5aR1 exacerbates the course of the disease, revealing a downside of complement in Nme sepsis. Here, we compared the roles of all three ATRs during mouse nasal colonization, intraperitoneal infection and human whole blood infection with Nme. Deficiency of complement or ATRs did not alter nasal colonization, but significantly affected invasive disease: Compared to WT mice, the disease was aggravated in C3ar-/- mice, whereas C5ar1-/- and C5ar2-/- mice showed increased resistance to meningococcal sepsis. Surprisingly, deletion of either of the ATRs resulted in lower cytokine/chemokine responses, irrespective of the different susceptibilities of the mice. This was similar in ex vivo human whole blood infection using ATR inhibitors. Neutrophil responses to Nme were reduced in C5ar1-/- mouse blood. Upon stimulation with C5a plus Nme, mouse macrophages displayed reduced phosphorylation of ERK1/2, when C5aR1 or C5aR2 were ablated or inhibited, suggesting that both C5a-receptors prime an initial macrophage response to Nme. Finally, in vivo blockade of C5aR1 alone (PMX205) or along with C5aR2 (A8Δ71-73) resulted in ameliorated disease, whereas neither antagonizing C3aR (SB290157) nor its activation with a "super-agonist" peptide (WWGKKYRASKLGLAR) demonstrated a benefit. Thus, C5aR1 and C5aR2 augment disease pathology and are interesting targets for treatment, whereas C3aR is protective in experimental meningococcal sepsis.
Collapse
Affiliation(s)
- Marcel Muenstermann
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Lea Strobel
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Andreas Klos
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rick A. Wetsel
- Institute of Molecular Medicine Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center, Houston, TX, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kay O. Johswich
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
66
|
Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, Ruckert C, Ebel GD, Morrison TE. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. eLife 2019; 8:e49163. [PMID: 31596239 PMCID: PMC6839921 DOI: 10.7554/elife.49163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Bennett J Davenport
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Kelsey C Haist
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Mary K McCarthy
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Nicholas A May
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Alexis Robison
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Claudia Ruckert
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Thomas E Morrison
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
67
|
Gendrin C, Merillat S, Vornhagen J, Coleman M, Armistead B, Ngo L, Aggarwal A, Quach P, Berrigan J, Rajagopal L. Diminished Capsule Exacerbates Virulence, Blood-Brain Barrier Penetration, Intracellular Persistence, and Antibiotic Evasion of Hyperhemolytic Group B Streptococci. J Infect Dis 2019; 217:1128-1138. [PMID: 29301010 DOI: 10.1093/infdis/jix684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Group B streptococci (GBS) are encapsulated, β-hemolytic bacteria that are a common cause of infections in human newborns and certain adults. Two factors important for GBS virulence are the sialic acid capsular polysaccharide that promotes immune evasion and the hemolytic pigment that induces host cell cytotoxcity. These virulence factors are often oppositely regulated by the CovR/CovS two-component system. Clinical GBS strains exhibiting hyperhemolysis and low capsule due to pathoadaptive covR/S mutations have been isolated from patients. Given the importance of capsule to GBS virulence, we predicted that a decrease or loss of capsule would attenuate the virulence of covR/S mutants. Surprisingly, hyperhemolytic GBS with low or no capsule exhibit increased virulence, intracellular persistence, and blood-brain barrier penetration, which was independent of a Trojan horse mechanism of barrier penetration. Additionally, intracellular persistence enabled both hemolytic and hyperhemolytic GBS to evade antibiotics routinely used to treat these infections. The finding that diminished capsule expression promotes GBS virulence, intracellular persistence, and antibiotic evasion has important implications for sustained antibiotic therapy and efficacy of capsule-based vaccines.
Collapse
Affiliation(s)
- Claire Gendrin
- Department of Pediatrics, University of Washington.,Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Sean Merillat
- Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Jay Vornhagen
- Department of Pediatrics, University of Washington.,Center for Global Infections Disease Research, Seattle Children's Research Institute.,Department of Global Health, University of Washington, Seattle
| | - Michelle Coleman
- Department of Pediatrics, University of Washington.,Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Blair Armistead
- Department of Pediatrics, University of Washington.,Center for Global Infections Disease Research, Seattle Children's Research Institute.,Department of Global Health, University of Washington, Seattle
| | - Lisa Ngo
- Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Anjali Aggarwal
- Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Phoenicia Quach
- Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Jacob Berrigan
- Center for Global Infections Disease Research, Seattle Children's Research Institute
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington.,Center for Global Infections Disease Research, Seattle Children's Research Institute.,Department of Global Health, University of Washington, Seattle
| |
Collapse
|
68
|
Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta SK, Tillman H, Walker PD, Vogel P, Häcker H. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest 2019; 129:2251-2265. [PMID: 31033479 DOI: 10.1172/jci125116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/12/2019] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with genetic and environmental contributions. Hallmarks of the disease are the appearance of immune complexes (IC) containing autoreactive Abs and TLR-activating nucleic acids, whose deposition in kidney glomeruli is suspected to promote tissue injury and glomerulonephritis (GN). Here, using a mouse model based on the human SLE susceptibility locus TNFAIP3-interacting protein 1 (TNIP1, also known as ABIN1), we investigated the pathogenesis of GN. We found that GN was driven by TLRs but, remarkably, proceeded independently of ICs. Rather, disease in 3 different mouse models and patients with SLE was characterized by glomerular accumulation of patrolling monocytes (PMos), a cell type with an emerging key function in vascular inflammation. Consistent with such function in GN, monocyte-specific deletion of ABIN1 promoted kidney disease, whereas selective elimination of PMos provided protection. In contrast to GN, PMo elimination did not protect from reduced survival or disease symptoms such as IC generation and splenomegaly, suggesting that GN and other inflammatory processes are governed by distinct pathogenic mechanisms. These data identify TLR-activated PMos as the principal component of an intravascular process that contributes to glomerular inflammation and kidney injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
69
|
Yang Y, Back CR, Gräwert MA, Wahid AA, Denton H, Kildani R, Paulin J, Wörner K, Kaiser W, Svergun DI, Sartbaeva A, Watts AG, Marchbank KJ, van den Elsen JMH. Utilization of Staphylococcal Immune Evasion Protein Sbi as a Novel Vaccine Adjuvant. Front Immunol 2019; 9:3139. [PMID: 30687332 PMCID: PMC6336717 DOI: 10.3389/fimmu.2018.03139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Co-ligation of the B cell antigen receptor with complement receptor 2 on B-cells via a C3d-opsonised antigen complex significantly lowers the threshold required for B cell activation. Consequently, fusions of antigens with C3d polymers have shown great potential in vaccine design. However, these linear arrays of C3d multimers do not mimic the natural opsonisation of antigens with C3d. Here we investigate the potential of using the unique complement activating characteristics of Staphylococcal immune-evasion protein Sbi to develop a pro-vaccine approach that spontaneously coats antigens with C3 degradation products in a natural way. We show that Sbi rapidly triggers the alternative complement pathway through recruitment of complement regulators, forming tripartite complexes that act as competitive antagonists of factor H, resulting in enhanced complement consumption. These functional results are corroborated by the structure of the complement activating Sbi-III-IV:C3d:FHR-1 complex. Finally, we demonstrate that Sbi, fused with Mycobacterium tuberculosis antigen Ag85b, causes efficient opsonisation with C3 fragments, thereby enhancing the immune response significantly beyond that of Ag85b alone, providing proof of concept for our pro-vaccine approach.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Catherine R Back
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Melissa A Gräwert
- Hamburg Unit, European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Ayla A Wahid
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Harriet Denton
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Rebecca Kildani
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joshua Paulin
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | - Dmitri I Svergun
- Hamburg Unit, European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Asel Sartbaeva
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | |
Collapse
|
70
|
King BC, Kulak K, Krus U, Rosberg R, Golec E, Wozniak K, Gomez MF, Zhang E, O'Connell DJ, Renström E, Blom AM. Complement Component C3 Is Highly Expressed in Human Pancreatic Islets and Prevents β Cell Death via ATG16L1 Interaction and Autophagy Regulation. Cell Metab 2019; 29:202-210.e6. [PMID: 30293775 DOI: 10.1016/j.cmet.2018.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023]
Abstract
We show here that human pancreatic islets highly express C3, which is both secreted and present in the cytosol. Within isolated human islets, C3 expression correlates with type 2 diabetes (T2D) donor status, HbA1c, and inflammation. Islet C3 expression is also upregulated in several rodent diabetes models. C3 interacts with ATG16L1, which is essential for autophagy. Autophagy relieves cellular stresses faced by β cells during T2D and maintains cellular homeostasis. C3 knockout in clonal β cells impaired autophagy and led to increased apoptosis after exposure of cells to palmitic acid and IAPP. In the absence of C3, autophagosomes do not undergo fusion with lysosomes. Thus, C3 may be upregulated in islets during T2D as a cytoprotective factor against β cell dysfunction caused by impaired autophagy. Therefore, we revealed a previously undescribed intracellular function for C3, connecting the complement system directly to autophagy, with a broad potential importance in other diseases and cell types.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Rebecca Rosberg
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Katarzyna Wozniak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Maria F Gomez
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Enming Zhang
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - David J O'Connell
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Erik Renström
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden.
| |
Collapse
|
71
|
Aliprandini E, Tavares J, Panatieri RH, Thiberge S, Yamamoto MM, Silvie O, Ishino T, Yuda M, Dartevelle S, Traincard F, Boscardin SB, Amino R. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat Microbiol 2018; 3:1224-1233. [PMID: 30349082 DOI: 10.1038/s41564-018-0254-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.
Collapse
Affiliation(s)
| | - Joana Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Raquel Hoffmann Panatieri
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabine Thiberge
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Centre de Production et d'Infection des Anophèles, Institut Pasteur, Paris, France
| | - Marcio Massao Yamamoto
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Tomoko Ishino
- Department of Molecular Parasitology, Ehime University, Ehime, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Japan
| | - Sylvie Dartevelle
- Plateforme d'Ingénierie des Anticorps, Institut Pasteur, Paris, France
| | | | - Silvia Beatriz Boscardin
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.
| |
Collapse
|
72
|
Ulloa-Morales AJ, Goodyear CS, Silverman GJ. Essential Domain-Dependent Roles Within Soluble IgG for in vivo Superantigen Properties of Staphylococcal Protein A: Resolving the B-Cell Superantigen Paradox. Front Immunol 2018; 9:2011. [PMID: 30283436 PMCID: PMC6156153 DOI: 10.3389/fimmu.2018.02011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a common commensal and frequent opportunistic pathogen that causes invasive infections that often recur. Co-evolution with the host has led to the development of toxins that affect diverse immune cell types. Recent reports have highlighted the contributions of staphylococcal protein A (SpA). This small oligomeric secreted protein contains 4–5 homologous domains with two distinct immunoglobulin-binding sites; one for IgG Fc domains, while a separate site binds an evolutionarily conserved surface on Fab encoded by VHIII clan related genes. The Fab-binding site has been implicated in in vivo supraclonal VHIII-BCR targeted B-cell depletion by an activation induced death pathway. Yet the concept of a superantigen for B lymphocytes poses a seeming paradox. Unlike TCR that are expressed only in a membrane-associated form, BCR are expressed in both a membrane BCR form and in secreted Ig forms, which permeate virtually every part of the body at high levels. We therefore asked, why circulating immunoglobulin do not block the superantigen properties of SpA? Herein, we show that soluble IgG molecules are not in vivo inhibitors of these B-cell superantigen effects but are instead essential for potentiating these properties. We also show that the Fc subclass of circulating IgG is an indirect critical determinant of the B-cell superantigen effect. In contrast, host FcγR and complement are not required for SpA mediated in vivo B-cell depletion. Unexpectedly, after VHIII-IgG2a pretreatment SpA challenge resulted in fatal anaphylactic reactions, which we speculate may have involved FcγR interactions with mast cells and basophils. Cumulatively, our findings illuminate a cunning and potent molecular strategy by which a bacterial toxin effectively confounds the contributions of host B-lymphocytes to immune defenses.
Collapse
Affiliation(s)
- Alejandro J Ulloa-Morales
- Laboratory of B-cell Immunobiology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gregg J Silverman
- Laboratory of B-cell Immunobiology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
73
|
Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, Steinbach K, Vincenti I, Klimek B, Lingner T, Salinas G, Lin-Marq N, Staszewski O, Costa Jordão MJ, Wagner I, Egervari K, Mack M, Bellone C, Blümcke I, Prinz M, Pinschewer DD, Merkler D. Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell 2018; 175:458-471.e19. [PMID: 30173917 DOI: 10.1016/j.cell.2018.07.049] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen's encephalitis patients. In this devastating CD8+ T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | | | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Stefano Musardo
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute for Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nathalie Lin-Marq
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1205 Geneva, Switzerland
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
74
|
Ling GS, Crawford G, Buang N, Bartok I, Tian K, Thielens NM, Bally I, Harker JA, Ashton-Rickardt PG, Rutschmann S, Strid J, Botto M. C1q restrains autoimmunity and viral infection by regulating CD8 + T cell metabolism. Science 2018; 360:558-563. [PMID: 29724957 DOI: 10.1126/science.aao4555] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Deficiency of C1q, the initiator of the complement classical pathway, is associated with the development of systemic lupus erythematosus (SLE). Explaining this association in terms of abnormalities in the classical pathway alone remains problematic because C3 deficiency does not predispose to SLE. Here, using a mouse model of SLE, we demonstrate that C1q, but not C3, restrains the response to self-antigens by modulating the mitochondrial metabolism of CD8+ T cells, which can themselves propagate autoimmunity. C1q deficiency also triggers an exuberant effector CD8+ T cell response to chronic viral infection leading to lethal immunopathology. These data establish a link between C1q and CD8+ T cell metabolism and may explain how C1q protects against lupus, with implications for the role of viral infections in the perpetuation of autoimmunity.
Collapse
Affiliation(s)
- Guang Sheng Ling
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - Greg Crawford
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - Norzawani Buang
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - Istvan Bartok
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - Kunyuan Tian
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | | | - Isabelle Bally
- University Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - James A Harker
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | | | | | - Jessica Strid
- Faculty of Medicine, Imperial College London, London W12 ONN, UK
| | - Marina Botto
- Faculty of Medicine, Imperial College London, London W12 ONN, UK.
| |
Collapse
|
75
|
Mener A, Arthur CM, Patel SR, Liu J, Hendrickson JE, Stowell SR. Complement Component 3 Negatively Regulates Antibody Response by Modulation of Red Blood Cell Antigen. Front Immunol 2018; 9:676. [PMID: 29942300 PMCID: PMC6004516 DOI: 10.3389/fimmu.2018.00676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Red blood cell (RBC) alloimmunization can make it difficult to procure compatible RBCs for future transfusion, directly leading to increased morbidity and mortality in transfusion-dependent patients. However, the factors that regulate RBC alloimmunization remain incompletely understood. As complement has been shown to serve as a key adjuvant in the development of antibody (Ab) responses against microbes, we examined the impact of complement on RBC alloimmunization. In contrast to the impact of complement component 3 (C3) in the development of an immune response following microbial exposure, transfusion of C3 knockout (C3 KO) recipients with RBCs expressing KEL (KEL RBCs) actually resulted in an enhanced anti-KEL Ab response. The impact of C3 appeared to be specific to KEL, as transfusion of RBCs bearing another model antigen, the chimeric HOD antigen (hen egg lysozyme, ovalbumin and Duffy), into C3 KO recipients failed to result in a similar increase in Ab formation. KEL RBCs experienced enhanced C3 deposition and loss of detectable target antigen over time when compared to HOD RBCs, suggesting that C3 may inhibit Ab formation by impacting the accessibility of the target KEL antigen. Loss of detectable KEL on the RBC surface did not reflect antigen masking by C3, but instead appeared to result from actual removal of the KEL antigen, as western blot analysis demonstrated complete loss of detectable KEL protein. Consistent with this, exposure of wild-type B6 or C3 KO recipients to KEL RBCs with reduced levels of detectable KEL antigen resulted in a significantly reduced anti-KEL Ab response. These results suggest that C3 possesses a unique ability to actually suppress Ab formation following transfusion by reducing the availability of the target antigen on the RBC surface.
Collapse
Affiliation(s)
- Amanda Mener
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Seema R Patel
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
76
|
Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, Ram S, Kraiczy P, Lin YP. Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog 2018; 14:e1007106. [PMID: 29813137 PMCID: PMC5993331 DOI: 10.1371/journal.ppat.1007106] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Borrelia burgdorferi sensu lato (Bbsl), the causative agent of Lyme disease, establishes an initial infection in the host's skin following a tick bite, and then disseminates to distant organs, leading to multisystem manifestations. Tick-to-vertebrate host transmission requires that Bbsl survives during blood feeding. Complement is an important innate host defense in blood and interstitial fluid. Bbsl produces a polymorphic surface protein, CspA, that binds to a complement regulator, Factor H (FH) to block complement activation in vitro. However, the role that CspA plays in the Bbsl enzootic cycle remains unclear. In this study, we demonstrated that different CspA variants promote spirochete binding to FH to inactivate complement and promote serum resistance in a host-specific manner. Utilizing a tick-to-mouse transmission model, we observed that a cspA-knockout B. burgdorferi is eliminated from nymphal ticks in the first 24 hours of feeding and is unable to be transmitted to naïve mice. Conversely, ectopically producing CspA derived from B. burgdorferi or B. afzelii, but not B. garinii in a cspA-knockout strain restored spirochete survival in fed nymphs and tick-to-mouse transmission. Furthermore, a CspA point mutant, CspA-L246D that was defective in FH-binding, failed to survive in fed nymphs and at the inoculation site or bloodstream in mice. We also allowed those spirochete-infected nymphs to feed on C3-/- mice that lacked functional complement. The cspA-knockout B. burgdorferi or this mutant strain complemented with cspA variants or cspA-L246D was found at similar levels as wild type B. burgdorferi in the fed nymphs and mouse tissues. These novel findings suggest that the FH-binding activity of CspA protects spirochetes from complement-mediated killing in fed nymphal ticks, which ultimately allows Bbsl transmission to mammalian hosts.
Collapse
Affiliation(s)
- Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
| | - Ngoc Thien Thu Nguyen
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Departments of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Science, State University of New York at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
77
|
Immunity against the Obligate Intracellular Bacterial Pathogen Rickettsia australis Requires a Functional Complement System. Infect Immun 2018; 86:IAI.00139-18. [PMID: 29581196 PMCID: PMC5964522 DOI: 10.1128/iai.00139-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
The complement system has a well-defined role in deterring blood-borne infections. However, complement is not entirely efficacious, as several bacterial pathogens, including some obligate intracellular pathogens, have evolved mechanisms for resistance. It is presumed that obligate intracellular bacteria evade complement attack by residing within a host cell; however, recent studies have challenged this presumption. Here, we demonstrate that the complement system is activated during infection with the obligate intracellular bacterium Rickettsia australis and that genetic ablation of complement increases susceptibility to infection. Interaction of Rickettsia australis with serum-borne complement leads to activation of the complement cascade, producing three effector mechanisms that could negatively influence R. australis. The C9-dependent membrane attack complex can lead to deposition of a bacteriolytic membrane pore on the bacteria, but this system does not contribute to control of rickettsial infection. Similarly, complement receptor (CR1/2)-dependent opsonophagocytosis may lead to engulfment and killing of the bacteria, but this system is also dispensable for immunity. Nevertheless, intact complement is essential for naturally acquired and antibody-mediated immunity to Rickettsia infection. Comparison of infection in mice lacking the central complement protein C3 with infection in their wild-type counterparts demonstrated decreases in gamma interferon (IFN-γ) production, IgG secretion, and spleen hyperplasia in animals lacking complement. The correlation between loss of secondary immune functions and loss of complement indicates that the proinflammatory signaling components of the complement system, and not membrane attack complex or opsonophagocytosis, contribute to the immune response to this pathogen.
Collapse
|
78
|
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 2018; 9:9/392/eaaf6295. [PMID: 28566429 DOI: 10.1126/scitranslmed.aaf6295] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/01/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;C3 KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;C3 KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1;C3 KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;C3 KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.
Collapse
Affiliation(s)
- Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Saba Chowdhury
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Rong Ma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Soyon Hong
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA 02115, USA.,Harvard NeuroDiscovery Center NeuroBehavior Laboratory, Department of Neurology, Brigham and Women's Hospital, Harvard Institute of Medicine, Room 945, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA. .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
79
|
Shen L, Tenzer S, Storck W, Hobernik D, Raker VK, Fischer K, Decker S, Dzionek A, Krauthäuser S, Diken M, Nikolaev A, Maxeiner J, Schuster P, Kappel C, Verschoor A, Schild H, Grabbe S, Bros M. Protein corona-mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses. J Allergy Clin Immunol 2018; 142:1558-1570. [PMID: 29382591 DOI: 10.1016/j.jaci.2017.08.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/26/2017] [Accepted: 08/26/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Nanoparticle (NP)-based vaccines are attractive immunotherapy tools because of their capability to codeliver antigen and adjuvant to antigen-presenting cells. Their cellular distribution and serum protein interaction ("protein corona") after systemic administration and their effect on the functional properties of NPs is poorly understood. OBJECTIVES We analyzed the relevance of the protein corona on cell type-selective uptake of dextran-coated NPs and determined the outcome of vaccination with NPs that codeliver antigen and adjuvant in disease models of allergy. METHODS The role of protein corona constituents for cellular binding/uptake of dextran-coated ferrous nanoparticles (DEX-NPs) was analyzed both in vitro and in vivo. DEX-NPs conjugated with the model antigen ovalbumin (OVA) and immunostimulatory CpG-rich oligodeoxynucleotides were administered to monitor the induction of cellular and humoral immune responses. Therapeutic effects of this DEX-NP vaccine in mouse models of OVA-induced anaphylaxis and allergic asthma were assessed. RESULTS DEX-NPs triggered lectin-induced complement activation, yielding deposition of activated complement factor 3 on the DEX-NP surface. In the spleen DEX-NPs targeted predominantly B cells through complement receptors 1 and 2. The DEX-NP vaccine elicited much stronger OVA-specific IgG2a production than coadministered soluble OVA plus CpG oligodeoxynucleotides. B-cell binding of the DEX-NP vaccine was critical for IgG2a production. Treatment of OVA-sensitized mice with the DEX-NP vaccine prevented induction of anaphylactic shock and allergic asthma accompanied by IgE inhibition. CONCLUSIONS Opsonization of lectin-coated NPs by activated complement components results in selective B-cell targeting. The intrinsic B-cell targeting property of lectin-coated NPs can be exploited for treatment of allergic immune responses.
Collapse
Affiliation(s)
- Limei Shen
- Department of Dermatology, University of Mainz Medical Center, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Wiebke Storck
- Institute for Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Dominika Hobernik
- Department of Dermatology, University of Mainz Medical Center, Mainz, Germany
| | | | - Karl Fischer
- Department of Physical Chemistry, University of Mainz, Mainz, Germany
| | - Sandra Decker
- Department of Physical Chemistry, University of Mainz, Mainz, Germany
| | | | | | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Alexej Nikolaev
- Institute for Molecular Medicine, University of Mainz Medical Center, Mainz, Germany
| | - Joachim Maxeiner
- Asthma Core Facility, Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Petra Schuster
- Asthma Core Facility, Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Cinja Kappel
- Department of Dermatology, University of Mainz Medical Center, Mainz, Germany
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, Lübeck, Germany
| | - Hansjörg Schild
- Institute for Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University of Mainz Medical Center, Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
80
|
Non-Invasive whole-body detection of complement activation using radionuclide imaging in a mouse model of myocardial ischaemia-reperfusion injury. Sci Rep 2017; 7:16090. [PMID: 29170426 PMCID: PMC5700950 DOI: 10.1038/s41598-017-16387-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022] Open
Abstract
Complement activation is a recognised mediator of myocardial ischaemia-reperfusion-injury (IRI) and cardiomyocytes are a known source of complement proteins including the central component C3, whose activation products can mediate tissue inflammation, cell death and profibrotic signalling. We investigated the potential to detect and quantify the stable covalently bound product C3d by external body imaging, as a marker of complement activation in heart muscle in a murine model of myocardial IRI. We used single-photon-emission-computed-tomography (SPECT) in conjunction with 99mTechnecium-labelled recombinant complement receptor 2 (99mTc-rCR2), which specifically detects C3d at the site of complement activation. Compared to control imaging with an inactive CR2 mutant (99mTc-K41E CR2) or an irrelevant protein (99mTc-PSMA) or using 99mTc-rCR2 in C3-deficient mice, the use of 99mTc-rCR2 in complement-intact mice gave specific uptake in the reperfused myocardium. The heart to skeletal muscle ratio of 99mTc-rCR2 was significantly higher than in the three control groups. Histological analysis confirmed specific uptake of 99mTc-rCR2. Following therapeutic inhibition of complement C3 activation, we found reduced myocardial uptake of 99mTc-rCR2. We conclude, therefore that 99mTc-rCR2 imaging can be used for non-invasive detection of activated complement and in future could be exploited to quantify the severity of myocardial damage due to complement activation.
Collapse
|
81
|
Hudson KE, de Wolski K, Kapp LM, Richards AL, Schniederjan MJ, Zimring JC. Antibodies to Senescent Antigen and C3 Are Not Required for Normal Red Blood Cell Lifespan in a Murine Model. Front Immunol 2017; 8:1425. [PMID: 29163500 PMCID: PMC5670101 DOI: 10.3389/fimmu.2017.01425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) have a well-defined lifespan, indicating a mechanism by which senescent cells of a certain age are removed from circulation. However, the specifics by which senescent cells are recognized and removed are poorly understood. There are multiple competing hypotheses for this process, perhaps the most commonly cited is that senescent RBCs expose neoantigens [or senescent antigen(s)] that are then recognized by naturally occurring antibodies, which opsonize the senescent cells and result in clearance from circulation. While there are a large volume of published data to indicate that older RBCs accumulate increased levels of antibody on their surface, to the best of our knowledge, the causal role of such antibodies in clearance has not been rigorously assessed. In the current report, we demonstrate that RBC lifespan and clearance patterns are not altered in mice deficient in antibodies, in C3 protein, or missing both. These data demonstrate that neither antibody nor C3 is required for clearance of senescent RBCs, and questions if they are even involved, in a murine model of RBC lifespan.
Collapse
Affiliation(s)
| | - Karen de Wolski
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Linda M Kapp
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | | | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA, United States.,Department of Laboratory Medicine, Division of Hematology, University of Washington, Seattle, WA, United States.,Department of Internal Medicine, Division of Hematology, University of Washington, Seattle, WA, United States
| |
Collapse
|
82
|
Degn SE, Alicot E, Carroll MC. B cell tolerance to epidermal ribonuclear-associated neo-autoantigen in vivo. Clin Exp Immunol 2017; 191:151-165. [PMID: 28984923 DOI: 10.1111/cei.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Defining how self-antigens are perceived by the immune system is pivotal to understand how tolerance is maintained under homeostatic conditions. Clinically relevant, natural autoantigens targeted by autoantibodies, in e.g. systemic lupus erythematosus (SLE), commonly have an intrinsic ability to engage not only the B cell receptor (BCR), but also a co-stimulatory pathway in B cells, such as the Toll-like receptor (TLR)-7 pathway. Here we developed a novel mouse model displaying inducible expression of a fluorescent epidermal neo-autoantigen carrying an OT-II T cell epitope, B cell antigen and associated ribonucleic acids capable of stimulating TLR-7. The neo-autoantigen was expressed in skin, but did not drain in intact form into draining lymph nodes, even after ultraviolet B (UVB)-stimulated induction of apoptosis in the basal layer. Adoptively transferred autoreactive B cells were excluded follicularly and perished at the T-B border in the spleen, preventing their recirculation and encounter with antigen peripherally. This transitional check-point was bypassed by crossing the reporter to a BCR knock-in line on a C4-deficient background. Adoptively transferred OT-II T cells homed rapidly into cutaneous lymph nodes and up-regulated CD69. Surprisingly, however, tolerance was not broken, as the T cells subsequently down-regulated activation markers and contracted. Our results highlight how sequestration of intracellular and peripheral antigen, the transitional B cell tolerance check-point and T cell regulation co-operate to maintain immunological tolerance in vivo.
Collapse
Affiliation(s)
- S E Degn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - E Alicot
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - M C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 2017; 8:777. [PMID: 28974673 PMCID: PMC5626760 DOI: 10.1038/s41467-017-00600-w] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
In vitro incubation of nanomaterials with plasma offer insights on biological interactions, but cannot fully explain the in vivo fate of nanomaterials. Here, we use a library of polymer nanoparticles to show how physicochemical characteristics influence blood circulation and early distribution. For particles with different diameters, surface hydrophilicity appears to mediate early clearance. Densities above a critical value of approximately 20 poly(ethylene glycol) chains (MW 5 kDa) per 100 nm2 prolong circulation times, irrespective of size. In knockout mice, clearance mechanisms are identified for nanoparticles with low and high steric protection. Studies in animals deficient in the C3 protein showed that complement activation could not explain differences in the clearance of nanoparticles. In nanoparticles with low poly(ethylene glycol) coverage, adsorption of apolipoproteins can prolong circulation times. In parallel, the low-density-lipoprotein receptor plays a predominant role in the clearance of nanoparticles, irrespective of poly(ethylene glycol) density. These results further our understanding of nanopharmacology. Understanding the interaction between nanoparticles and biomolecules is crucial for improving current drug-delivery systems. Here, the authors shed light on the essential role of the surface and other physicochemical properties of a library of nanoparticles on their in vivo pharmacokinetics.
Collapse
|
84
|
Kiang JG, Smith JT, Anderson MN, Elliott TB, Gupta P, Balakathiresan NS, Maheshwari RK, Knollmann-Ritschel B. Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury. PLoS One 2017; 12:e0184393. [PMID: 28934227 PMCID: PMC5608216 DOI: 10.1371/journal.pone.0184393] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Hemorrhage following whole-body γ-irradiation in a combined injury (CI) model increases mortality compared to whole-body γ-irradiation alone (RI). The decreased survival in CI is accompanied by increased bone marrow injury, decreased hematocrit, and alterations of miRNA in the kidney. In this study, our aim was to examine cytokine homeostasis, susceptibility to systemic bacterial infection, and intestinal injury. More specifically, we evaluated the interleukin-6 (IL-6)-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), Flt-3 ligand, and corticosterone. CD2F1 male mice received 8.75 Gy 60Co gamma photons (0.6 Gy/min, bilateral) which was followed by a hemorrhage of 20% of the blood volume. In serum, RI caused an increase of IL-1, IL-2, IL-3, IL-5, IL-6, IL-12, IL-13, IL-15, IL-17A, IL-18, G-CSF, CM-CSF, eotaxin, IFN-γ, MCP-1, MIP, RANTES, and TNF-α, which were all increased by hemorrhage alone, except IL-9, IL-17A, and MCP-1. Nevertheless, CI further elevated RI-induced increases of these cytokines except for G-CSF, IFN- γ and RANTES in serum. In the ileum, hemorrhage in the CI model significantly enhanced RI-induced IL-1β, IL-3, IL-6, IL-10, IL-12p70, IL-13, IL-18, and TNF-α concentrations. In addition, Proteus mirabilis Gram(-) was found in only 1 of 6 surviving RI mice on Day 15, whereas Streptococcus sanguinis Gram(+) and Sphingomonas paucimobilis Gram(-) were detected in 2 of 3 surviving CI mice (with 3 CI mice diseased due to inflammation and infection before day 15) at the same time point. Hemorrhage in the CI model enhanced the RI-induced increases in C3 and decreases in CRP concentrations. However, hemorrhage alone did not alter the basal levels, but hemorrhage in the CI model displayed similar increases in Flt-3 ligand levels as RI did. Hemorrhage alone altered the basal levels of corticosterone early after injury, which then returned to the baseline, but in RI mice and CI mice the increased corticosterone concentration remained elevated throughout the 15 day study. CI increased 8 miRNAs and decreased 10 miRNAs in serum, and increased 16 miRNA and decreased 6 miRNAs in ileum tissue. Among the altered miRNAs, CI increased miR-34 in the serum and ileum which targeted an increased phosphorylation of ERK, p38, and increased NF-κB, thereby leading to increased iNOS expression and activation of caspase-3 in the ileum. Further, let-7g/miR-98 targeted the increased phosphorylation of STAT3 in the ileum, which is known to bind to the iNOS gene. These changes may correlate with cell death in the ileum of CI mice. The histopathology displayed blunted villi and villus edema in RI and CI mice. Based on the in silico analysis, miR-15, miR-99, and miR-100 were predicted to regulate IL-6 and TNF. These results suggest that CI-induced alterations of cytokines/chemokines, CRP, and C3 cause a homeostatic imbalance and may contribute to the pathophysiology of the gastrointestinal injury. Inhibitory intervention in these responses may prove therapeutic for CI and improve recovery of the ileal morphologic damage.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Thomas B. Elliott
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nagaraja S. Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Radha K. Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
85
|
Generation of complement protein C3 deficient pigs by CRISPR/Cas9-mediated gene targeting. Sci Rep 2017; 7:5009. [PMID: 28694465 PMCID: PMC5503937 DOI: 10.1038/s41598-017-05400-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
Complement protein C3 is the pivotal component of the complement system. Previous studies have demonstrated that C3 has implications in various human diseases and exerts profound functions under certain conditions. However, the delineation of pathological and physiological roles of C3 has been hampered by the insufficiency of suitable animal models. In the present study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the C3 gene in porcine fetal fibroblasts. Our results indicated that CRISPR/Cas9 targeting efficiency was as high as 84.7%, and the biallelic mutation efficiency reached at 45.7%. The biallelic modified colonies were used as donor for somatic cell nuclear transfer (SCNT) technology to generate C3 targeted piglets. A total of 19 C3 knockout (KO) piglets were produced and their plasma C3 protein was undetectable by western blot analysis and ELISA. The hemolytic complement activity and complement-dependent cytotoxicity assay further confirmed that C3 was disrupted in these piglets. These C3 KO pigs could be utilized as a valuable large animal model for the elucidation of the roles of C3.
Collapse
|
86
|
Facciabene A, De Sanctis F, Pierini S, Reis ES, Balint K, Facciponte J, Rueter J, Kagabu M, Magotti P, Lanitis E, DeAngelis RA, Buckanovich RJ, Song WC, Lambris JD, Coukos G. Local endothelial complement activation reverses endothelial quiescence, enabling t-cell homing, and tumor control during t-cell immunotherapy. Oncoimmunology 2017; 6:e1326442. [PMID: 28932632 PMCID: PMC5599081 DOI: 10.1080/2162402x.2017.1326442] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy relies upon the ability of T cells to infiltrate tumors. The endothelium constitutes a barrier between the tumor and effector T cells, and the ability to manipulate local vascular permeability could be translated into effective immunotherapy. Here, we show that in the context of adoptive T cell therapy, antitumor T cells, delivered at high enough doses, can overcome the endothelial barrier and infiltrate tumors, a process that requires local production of C3, complement activation on tumor endothelium and release of C5a. C5a, in turn, acts on endothelial cells promoting the upregulation of adhesion molecules and T-cell homing. Genetic deletion of C3 or the C5a receptor 1 (C5aR1), and pharmacological blockade of C5aR1, impaired the ability of T cells to overcome the endothelial barrier, infiltrate tumors, and control tumor progression in vivo, while genetic chimera mice demonstrated that C3 and C5aR1 expression by tumor stroma, and not leukocytes, governs T cell homing, acting on the local endothelium. In vitro, endothelial C3 and C5a expressions were required for endothelial activation by type 1 cytokines. Our data indicate that effective immunotherapy is a consequence of successful homing of T cells in response to local complement activation, which disrupts the tumor endothelial barrier.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Francesco De Sanctis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Stefano Pierini
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klara Balint
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - John Facciponte
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Jens Rueter
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Masahiro Kagabu
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA
| | - Paola Magotti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evripidis Lanitis
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- Internal Medicine Division of Hematology Oncology Obstetrics and Gynecology Division of Gynecologic Oncology, University of Michigan, MI, USA
| | - Wenchao C Song
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Coukos
- Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania; Philadelphia, PA, USA.,Ludwig Institute of Cancer Research and Department of Oncology, University of Lausanne, Switzerland
| |
Collapse
|
87
|
Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017; 168:1101-1113.e13. [PMID: 28283064 DOI: 10.1016/j.cell.2017.02.025] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.
Collapse
Affiliation(s)
- Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Shieh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
88
|
Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, Buchanan RA, Smith RS, Libby RT, Howell GR, John SWM. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A 2017; 114:E3839-E3848. [PMID: 28446616 PMCID: PMC5441748 DOI: 10.1073/pnas.1608769114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.
Collapse
Affiliation(s)
| | | | | | - Xianjun Zhu
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | | | - Richard T Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642
| | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME 04609
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
89
|
Abstract
Virulence is a microbial property that is realized only in susceptible hosts. There is no absolute measurement for virulence, and consequently it is always measured relative to a standard, usually another microbe or host. This article introduces the concept of pathogenic potential, which provides a new approach to measuring the capacity of microbes for virulence. The pathogenic potential is proportional to the fraction of individuals who become symptomatic after infection with a defined inoculum and can include such attributes as mortality, communicability, and the time from infection to disease. The calculation of the pathogenic potential has significant advantages over the use of the lethal dose that kills 50% of infected individuals (LD50) and allows direct comparisons between individual microbes. An analysis of the pathogenic potential of several microbes for mice reveals a continuum, which in turn supports the view that there is no dividing line between pathogenic and nonpathogenic microbes.
Collapse
|
90
|
Yaseen S, Demopulos G, Dudler T, Yabuki M, Wood CL, Cummings WJ, Tjoelker LW, Fujita T, Sacks S, Garred P, Andrew P, Sim RB, Lachmann PJ, Wallis R, Lynch N, Schwaeble WJ. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2. FASEB J 2017; 31:2210-2219. [PMID: 28188176 DOI: 10.1096/fj.201601306r] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3, via formation of C3-activating enzymes (C3 convertases). The fourth complement component, C4, and the second component, C2, are indispensable constituents of the C3 convertase complex, C4bC2a, which is formed by both the CP and the LP. Whereas in the absence of C4, CP can no longer activate C3, LP retains a residual but physiologically critical capacity to convert native C3 into its activation fragments, C3a and C3b. This residual C4 and/or C2 bypass route is dependent on LP-specific mannan-binding lectin-associated serine protease-2. By using various serum sources with defined complement deficiencies, we demonstrate that, under physiologic conditions LP-specific C4 and/or C2 bypass activation of C3 is mediated by direct cleavage of native C3 by mannan-binding lectin-associated serine protease-2 bound to LP-activation complexes captured on ligand-coated surfaces.-Yaseen, S., Demopulos, G., Dudler, T., Yabuki, M., Wood, C. L., Cummings, W. J., Tjoelker, L. W., Fujita, T., Sacks, S., Garred, P., Andrew, P., Sim, R. B., Lachmann, P. J., Wallis, R., Lynch, N., Schwaeble, W. J. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2.
Collapse
Affiliation(s)
- Sadam Yaseen
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom.,Omeros Corporation, Seattle, Washington, USA.,Department of Biology, University of Mosul, Mosul, Iraq
| | | | | | | | | | | | | | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima Medical University, Fukushima City, Japan
| | - Steven Sacks
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Campus, London, United Kingdom
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Andrew
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Robert B Sim
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Peter J Lachmann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Russell Wallis
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Nicholas Lynch
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Wilhelm J Schwaeble
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom;
| |
Collapse
|
91
|
Freeley SJ, Popat RJ, Parmar K, Kolev M, Hunt BJ, Stover CM, Schwaeble W, Kemper C, Robson MG. Experimentally-induced anti-myeloperoxidase vasculitis does not require properdin, MASP-2 or bone marrow-derived C5. J Pathol 2016; 240:61-71. [PMID: 27235854 PMCID: PMC4996338 DOI: 10.1002/path.4754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
Abstract
Anti-neutrophil cytoplasmic antibody vasculitis is a systemic autoimmune disease with glomerulonephritis and pulmonary haemorrhage as major clinical manifestations. The name reflects the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind to both neutrophils and monocytes. Evidence of the pathogenicity of these autoantibodies is provided by the observation that injection of anti-myeloperoxidase antibodies into mice causes a pauci-immune focal segmental necrotizing glomerulonephritis which is histologically similar to the changes seen on renal biopsy in patients. Previous studies in this model have implicated the alternative pathway of complement activation and the anaphylatoxin C5a. Despite this progress, the factors that initiate complement activation have not been defined. In addition, the relative importance of bone marrow-derived and circulating C5 is not known. This is of interest given the recently identified roles for complement within leukocytes. We induced anti-myeloperoxidase vasculitis in mice and confirmed a role for complement activation by demonstrating protection in C3-deficient mice. We showed that neither MASP-2- nor properdin-deficient mice were protected, suggesting that alternative pathway activation does not require properdin or the lectin pathway. We induced disease in bone marrow chimaeric mice and found that circulating and not bone marrow-derived C5 was required for disease. We have therefore excluded properdin and the lectin pathway as initiators of complement activation and this means that future work should be directed at other potential factors within diseased tissue. In addition, in view of our finding that circulating and not bone marrow-derived C5 mediates disease, therapies that decrease hepatic C5 secretion may be considered as an alternative to those that target C5 and C5a. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon J Freeley
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Reena J Popat
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kiran Parmar
- Thrombosis and Vascular Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Martin Kolev
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Beverley J Hunt
- Thrombosis and Vascular Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cordula M Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Willhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Claudia Kemper
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Michael G Robson
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
92
|
Doerner SK, Reis ES, Leung ES, Ko JS, Heaney JD, Berger NA, Lambris JD, Nadeau JH. High-Fat Diet-Induced Complement Activation Mediates Intestinal Inflammation and Neoplasia, Independent of Obesity. Mol Cancer Res 2016; 14:953-965. [PMID: 27535705 DOI: 10.1158/1541-7786.mcr-16-0153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/24/2016] [Indexed: 12/18/2022]
Abstract
Obesity and related metabolic disturbances are closely associated with pathologies that represent a significant burden to global health. Epidemiological and molecular evidence links obesity and metabolic status with inflammation and increased risk of cancer. Here, using a mouse model of intestinal neoplasia and strains that are susceptible or resistant to diet-induced obesity, it is demonstrated that high-fat diet-induced inflammation, rather than obesity or metabolic status, is associated with increased intestinal neoplasia. The complement fragment C5a acts as the trigger for inflammation and intestinal tumorigenesis. High-fat diet induces complement activation and generation of C5a, which in turn induces the production of proinflammatory cytokines and expression of proto-oncogenes. Pharmacological and genetic targeting of the C5a receptor reduced both inflammation and intestinal polyposis, suggesting the use of complement inhibitors for preventing diet-induced neoplasia. IMPLICATIONS This study characterizes the relations between diet and metabolic conditions on risk for a common cancer and identifies complement activation as a novel target for cancer prevention. Mol Cancer Res; 14(10); 953-65. ©2016 AACR.
Collapse
Affiliation(s)
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine S Leung
- Pacific Northwest Research Institute, Seattle, Washington
| | - Justine S Ko
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas. Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Nathan A Berger
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio. Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Nadeau
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio. Pacific Northwest Research Institute, Seattle, Washington.
| |
Collapse
|
93
|
Broadley S, Plaumann A, Coletti R, Lehmann C, Wanisch A, Seidlmeier A, Esser K, Luo S, Rämer P, Massberg S, Busch D, van Lookeren Campagne M, Verschoor A. Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity. Cell Host Microbe 2016; 20:36-48. [DOI: 10.1016/j.chom.2016.05.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
94
|
Wang Y, Sun SN, Liu Q, Yu YY, Guo J, Wang K, Xing BC, Zheng QF, Campa MJ, Patz EF, Li SY, He YW. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression. Cancer Discov 2016; 6:1022-35. [PMID: 27297552 DOI: 10.1158/2159-8290.cd-15-1412] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. SIGNIFICANCE Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Sheng-Nan Sun
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Qing Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yang-Yang Yu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Bao-Cai Xing
- Hepatopancreatobiliary Surgery Department, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Qing-Feng Zheng
- Thoracic Surgery Department, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Michael J Campa
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Edward F Patz
- Department of Radiology, Duke University Medical Center, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Shi-You Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
95
|
Larkin PB, Muchowski PJ. Genetic Deficiency of Complement Component 3 Does Not Alter Disease Progression in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2016; 1:107-18. [PMID: 23097680 DOI: 10.3233/jhd-2012-120021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD.
Collapse
Affiliation(s)
- Paul B Larkin
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
| | | |
Collapse
|
96
|
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352:712-716. [PMID: 27033548 PMCID: PMC5094372 DOI: 10.1126/science.aad8373] [Citation(s) in RCA: 2218] [Impact Index Per Article: 246.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Synapse loss in Alzheimer's disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3, or the microglial complement receptor CR3 reduces the number of phagocytic microglia, as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble β-amyloid (Aβ) oligomers on synapses and hippocampal long-term potentiation. Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aβ oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.
Collapse
Affiliation(s)
- Soyon Hong
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Victoria F Beja-Glasser
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bianca M Nfonoyim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arnaud Frouin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Saranya Ramakrishnan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katherine M Merry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arnon Rosenthal
- Alector Inc., 953 Indiana St, San Francisco, California 94107, USA
- Annexon Biosciences, 280 Utah Avenue Suite 110, South San Francisco, California 94080, USA
- Department of Anatomy, University of California San Francisco, California 94143, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Prothena Biosciences, Dublin, Ireland
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
97
|
Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, Zhou W, Sacks SH. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest 2016; 126:1911-25. [PMID: 27088797 DOI: 10.1172/jci83000] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway-associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand-CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade.
Collapse
|
98
|
Carlucci F, Ishaque A, Ling GS, Szajna M, Sandison A, Donatien P, Cook HT, Botto M. C1q Modulates the Response to TLR7 Stimulation by Pristane-Primed Macrophages: Implications for Pristane-Induced Lupus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:1488-94. [PMID: 26773156 PMCID: PMC4745139 DOI: 10.4049/jimmunol.1401009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Abstract
The complement component C1q is known to play a controversial role in the pathogenesis of systemic lupus erythematosus, but the underlying mechanisms remain poorly understood. Intraperitoneal injection of pristane induces a lupus-like syndrome whose pathogenesis implicates the secretion of type I IFN by CD11b(+) Ly6C(high) inflammatory monocytes in a TLR7-dependent fashion. C1q was also shown to influence the secretion of IFN-α. In this study, we explored whether C1q deficiency could affect pristane-induced lupus. Surprisingly, C1qa(-/-) mice developed lower titers of circulating Abs and milder arthritis compared with the controls. In keeping with the clinical scores, 2 wk after pristane injection the peritoneal recruitment of CD11b(+) Ly6C(high) inflammatory monocytes in C1qa(-/-) mice was impaired. Furthermore, C1q-deficient pristane-primed resident peritoneal macrophages secreted significantly less CCL3, CCL2, CXCL1, and IL-6 when stimulated in vitro with TLR7 ligand. Replenishing C1q in vivo during the pristane-priming phase rectified this defect. Conversely, pristane-primed macrophages from C3-deficient mice did not show impaired cytokine production. These findings demonstrate that C1q deficiency impairs the TLR7-dependent chemokine production by pristane-primed peritoneal macrophages and suggest that C1q, and not C3, is involved in the handling of pristane by phagocytic cells, which is required to trigger disease in this model.
Collapse
Affiliation(s)
- Francesco Carlucci
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom; and
| | - Attia Ishaque
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Guang Sheng Ling
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Szajna
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Ann Sandison
- Department of Histopathology, Imperial College Healthcare National Health Service Trust, Charing Cross Hospital, London W6 8RP, United Kingdom
| | - Philippe Donatien
- Department of Histopathology, Imperial College Healthcare National Health Service Trust, Charing Cross Hospital, London W6 8RP, United Kingdom
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marina Botto
- Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
99
|
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun 2016; 7:10346. [PMID: 26831747 PMCID: PMC4740357 DOI: 10.1038/ncomms10346] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. C1q is known to initiate the activation of the complement classical pathway. Here, the authors show the C1q is expressed in the tumour microenvironment and can promote cancer cell migration and adhesion in a complement activation-independent manner.
Collapse
|
100
|
Abstract
The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on learning and memory tests than aged WT mice. Our results suggest that complement C3, or its downstream signaling, is detrimental to synapses during aging.
Collapse
|