51
|
Fioravanti J, Medina-Echeverz J, Berraondo P. Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy 2011; 3:395-406. [DOI: 10.2217/imt.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) is a crucial molecule in lipid metabolism, since the interaction of high-density lipoproteins (HDLs) with SR-BI is involved in reverse cholesterol transport and cholesterol efflux. Recent findings also underscore a critical role of SR-BI in antimicrobial and immune responses. SR-BI is not only highly expressed in liver and steroidogenic glands, but also in endothelial cells, macrophages and dendritic cells. SR-BI mainly mediates anti-inflammatory responses, which may be altered by dysfunctional HDLs produced in several diseases. Moreover, SR-BI has been involved in the capture and cross-presentation of antigens from viruses, bacteria and parasites. It thus works as a pattern-recognition receptor that interacts with both damage-associated molecular patterns and pathogen-associated molecular patterns. These new findings in the microbiology and immunology fields present SR-BI as an unexplored therapeutic target that warrants further basic and applied research.
Collapse
Affiliation(s)
- Jessica Fioravanti
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | - José Medina-Echeverz
- Division of Hepatology & Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | | |
Collapse
|
52
|
Nieland TJF, Xu S, Penman M, Krieger M. Negatively cooperative binding of high-density lipoprotein to the HDL receptor SR-BI. Biochemistry 2011. [PMID: 21254782 DOI: 10.1021/bi1011657j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Scavenger receptor class B, type I (SR-BI), is a high-density lipoprotein (HDL) receptor, which also binds low-density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a coreceptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high-affinity binding sites (one site model). We have reinvestigated the ligand concentration dependence of (125)I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [(3)H]CE from [(3)H]CE-HDL using an expanded range of ligand concentrations (<1 μg of protein/mL, lower than previously reported). Scatchard and nonlinear least-squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects ("lattice model"). Similar results were observed for LDL. Application of the "infinite dilution" dissociation rate method established that the binding of (125)I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport, and cell signaling.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
53
|
Syder AJ, Lee H, Zeisel MB, Grove J, Soulier E, Macdonald J, Chow S, Chang J, Baumert TF, McKeating JA, McKelvy J, Wong-Staal F. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol 2011; 54:48-55. [PMID: 20932595 DOI: 10.1016/j.jhep.2010.06.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.
Collapse
Affiliation(s)
- Andrew J Syder
- iTherX Pharmaceuticals, Inc., San Diego, CA 92191-0530, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Korporaal SJA, Meurs I, Hauer AD, Hildebrand RB, Hoekstra M, Cate HT, Praticò D, Akkerman JWN, Van Berkel TJC, Kuiper J, Van Eck M. Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol. Arterioscler Thromb Vasc Biol 2010; 31:34-42. [PMID: 21051668 DOI: 10.1161/atvbaha.110.210252] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Scavenger receptor BI (SR-BI) is a cell surface receptor that promotes the selective uptake of cholesteryl esters from high-density lipoprotein (HDL) by the liver. In mice, SR-BI deficiency results in increased plasma HDL cholesterol levels and enhanced susceptibility to atherosclerosis. The aim of this study was to investigate the role of SR-BI deficiency on platelet function. METHODS AND RESULTS SR-BI-deficient mice were thrombocytopenic, and their platelets were abnormally large, probably because of an increased cholesterol content. The FeCl(3) acute injury model to study arterial thrombosis susceptibility showed that SR-BI wild-type mice developed total arterial occlusion after 24±2 minutes. In SR-BI-deficient mice, however, the time to occlusion was reduced to 13±1 minutes (P=0.02). Correspondingly, in SR-BI-deficient mice, platelets circulated in an activated state and showed increased adherence to immobilized fibrinogen. In contrast, platelet-specific disruption of SR-BI by bone marrow transplantation in wild-type mice did not alter plasma cholesterol levels or affect platelet count, size, cholesterol content, or reactivity, suggesting that changes in plasma cholesterol levels were responsible for the altered responsiveness of platelets in SR-BI-deficient mice. CONCLUSIONS The function of SR-BI in HDL cholesterol homeostasis and prevention of atherosclerosis is indirectly also essential for maintaining normal platelet function and prevention of thrombosis.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Leiden/Amsterdam Center for Drug Research, Division of Biopharmaceutics, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
56
|
Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells. Proc Natl Acad Sci U S A 2010; 107:17176-81. [PMID: 20855621 DOI: 10.1073/pnas.1009445107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pressing need for broad-spectrum antivirals could be met by targeting host rather than viral processes. Cholesterol biosynthesis within the infected cell is one promising target for a large number of viral systems, including hepatitis C virus (HCV), hepatitis B virus (HBV) and HIV. Liposomes developed for intracellular, endoplasmic reticulum (ER)-targeted in vivo drug delivery have been modified to include polyunsaturated fatty acids that exert an independent antiviral activity through the reduction of cellular cholesterol. These polyunsaturated ER liposomes (PERLs) have greater activity than lovastatin (Mevacor, Altoprev), which is clinically approved for lowering cholesterol and preventing cardiovascular disease. Treatment of HCV, HBV, and HIV infections with PERLs significantly decreased viral secretion and infectivity, and pretreatment of naïve cells reduced the ability of both HCV and HIV to establish infections because of the decreased levels of plasma membrane cholesterol. Direct competition for cellular receptors was an added effect of PERLs against HCV infections. The greatest antiviral activity in all three systems was the inhibition of viral infectivity through the reduction of virus-associated cholesterol. Our study demonstrates that PERLs are a broadly effective antiviral therapy and should be developed further in combination with encapsulated drug mixtures for enhanced in vivo efficacy.
Collapse
|
57
|
Twiddy AL, Leon CG, Wasan KM. Cholesterol as a Potential Target for Castration-Resistant Prostate Cancer. Pharm Res 2010; 28:423-37. [DOI: 10.1007/s11095-010-0210-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/28/2010] [Indexed: 01/15/2023]
|
58
|
Mavridou S, Venihaki M, Rassouli O, Tsatsanis C, Kardassis D. Feedback inhibition of human scavenger receptor class B type I gene expression by glucocorticoid in adrenal and ovarian cells. Endocrinology 2010; 151:3214-24. [PMID: 20463057 DOI: 10.1210/en.2009-1302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh(-/-) mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides -201 and -62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.
Collapse
Affiliation(s)
- Sofia Mavridou
- Department of Basic Sciences, Foundation of Research and Technology-Hellas, Heraklion 71003, Greece
| | | | | | | | | |
Collapse
|
59
|
Rosenblat M, Volkova N, Aviram M. Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2. Atherosclerosis 2010; 212:86-92. [PMID: 20537330 DOI: 10.1016/j.atherosclerosis.2010.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/14/2010] [Accepted: 04/29/2010] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To examine whether the beneficial effects of PJ consumption by mice on their macrophages are mediated via PJ-induced increment in serum paraoxonase 1 (PON1) activity and/or in macrophage PON2 expression. METHODS AND RESULTS We performed studies in peritoneal macrophages (MPM) from C57BL/6 control mice, or from PON1KO mice, or from PON2KO mice that consumed PJ (200 microg of gallic acid equivalents/mouse/day, for 1 month period). PJ consumption by C57BL/6 mice resulted in a significant increment, by 36% in serum PON1 catalytic activities, and upregulated MPM PON2 expression. In MPM from C57BL/6 or from PON1KO mice that consumed PJ, the extent of cell-mediated LDL oxidation was decreased by 22%, and that of cellular superoxide release by 20-26%. In contrast, PJ consumption by PON2KO mice resulted in a minimal inhibitory effect on macrophage oxidative stress by only 4-9%. Unlike PJ antioxidative effects in MPM, PJ anti-atherogenic effects on MPM cholesterol and triglyceride metabolism were similar in all mice groups that consumed PJ. After PJ consumption, cellular cholesterol content was decreased by 14-19%, and this could be attributed to a significant inhibition in MPM cholesterol biosynthesis rate by 20-32%, and/or to stimulation of HDL-mediated cholesterol efflux from the cells by 22-37%. Similarly, MPM triglyceride content and triglyceride biosynthesis rate were both significantly decreased after PJ consumption, by 16-27% and by 22-28%, respectively. CONCLUSION PJ consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2 expression. Serum PON1 stimulation by PJ consumption, however, was not involved in PJ-induced effects on macrophages.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | | | | |
Collapse
|
60
|
Yue P, Chen Z, Nassir F, Bernal-Mizrachi C, Finck B, Azhar S, Abumrad NA. Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid in CD36 null mice. PLoS One 2010; 5:e9906. [PMID: 20360851 PMCID: PMC2845618 DOI: 10.1371/journal.pone.0009906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/02/2010] [Indexed: 11/19/2022] Open
Abstract
CD36 facilitates oxidized low density lipoprotein uptake and is implicated in development of atherosclerotic lesions. CD36 also binds unmodified high and very low density lipoproteins (HDL, VLDL) but its role in the metabolism of these particles is unclear. Several polymorphisms in the CD36 gene were recently shown to associate with serum HDL cholesterol. To gain insight into potential mechanisms for these associations we examined HDL metabolism in CD36 null (CD36−/−) mice. Feeding CD36−/− mice a high cholesterol diet significantly increased serum HDL, cholesterol and phospholipids, as compared to wild type mice. HDL apolipoproteins apoA-I and apoA-IV were increased and shifted to higher density HDL fractions suggesting altered particle maturation. Clearance of dual-labeled HDL was unchanged in CD36−/− mice and cholesterol uptake from HDL or LDL by isolated CD36−/− hepatocytes was unaltered. However, CD36−/− hepatocytes had higher cholesterol and phospholipid efflux rates. In addition, expression and secretion of apoA-I and apoA-IV were increased reflecting enhanced PXR. Similar to hepatocytes, cholesterol and phospholipid efflux were enhanced in CD36−/− macrophages without changes in protein levels of ABCA1, ABCG1 or SR-B1. However, biotinylation assays showed increased surface ABCA1 localization in CD36−/− cells. In conclusion, CD36 influences reverse cholesterol transport and hepatic ApoA-I production. Both pathways are enhanced in CD36 deficiency, increasing HDL concentrations, which suggests the potential benefit of CD36 inhibition.
Collapse
Affiliation(s)
- Pin Yue
- Department of Medicine, Washington University School of Medicine, Center for Human Nutrition, St Louis, Missouri, United States of America.
| | | | | | | | | | | | | |
Collapse
|
61
|
Extracellular hydrophobic regions in scavenger receptor BI play a key role in mediating HDL-cholesterol transport. Arch Biochem Biophys 2010; 496:132-9. [PMID: 20219439 DOI: 10.1016/j.abb.2010.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/26/2023]
Abstract
The binding of high density lipoprotein (HDL) to scavenger receptor BI (SR-BI) is responsible for whole-body cholesterol disposal via reverse cholesterol transport. The extracellular domain of SR-BI is required for HDL binding and selective uptake of HDL-cholesterol. We identified six highly hydrophobic regions in this domain that may be important for receptor activity and performed site-directed mutagenesis to investigate the importance of these regions in SR-BI-mediated cholesterol transport. Non-conservative mutation of the regions encompassing V67, L140/L142, V164 or V221 reduced hydrophobicity and impaired the ability of SR-BI to bind HDL, mediate selective uptake of HDL-cholesterol, promote cholesterol efflux, and enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol. In contrast, conservative mutations at V67, V164 or V221 did not affect the hydrophobicity or these cholesterol transport activities. We conclude that the hydrophobicity of N-terminal extracellular regions of SR-BI is critical for cholesterol transport, possibly by mediating receptor-ligand and/or receptor-membrane interactions.
Collapse
|
62
|
Saddar S, Mineo C, Shaul PW. Signaling by the high-affinity HDL receptor scavenger receptor B type I. Arterioscler Thromb Vasc Biol 2010; 30:144-50. [PMID: 20089950 DOI: 10.1161/atvbaha.109.196170] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Scavenger receptor B type I (SR-BI) plays an important role in mediating cholesterol exchange between cells, high-density lipoprotein (HDL) cholesterol, and other lipoproteins. SR-BI in hepatocytes is essential for reverse cholesterol transport and biliary secretion of HDL cholesterol; thus, it is atheroprotective. More recently, it has been discovered that the HDL-SR-BI tandem serves other functions that also likely contribute to HDL-related cardiovascular protection. A number of the latter mechanisms, particularly in endothelial cells, involve unique direct signal initiation by SR-BI that leads to the activation of diverse kinase cascades. SR-BI signaling occurs in response to plasma membrane cholesterol flux. It requires the C-terminal PDZ-interacting domain of the receptor, which mediates direct interaction with the adaptor molecule PDZK1; and the C-terminal transmembrane domain, which directly binds membrane cholesterol. In endothelium, direct SR-BI signaling in response to HDL results in enhanced production of the antiatherogenic molecule nitric oxide; in a nitric oxide-independent manner, it serves to maintain endothelial monolayer integrity. The role of SR-BI signaling in the numerous other cellular targets of HDL, including hepatocytes, macrophages, and platelets, and the basis by which SR-BI senses plasma membrane cholesterol movement to modify cell behavior are unknown. Further understanding of signaling by SR-BI will optimize the capacity to harness the mechanisms of action of HDL-SR-BI for cardiovascular benefit.
Collapse
Affiliation(s)
- Sonika Saddar
- Division of Pulmonary and Vascular Biology, the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
63
|
Abstract
Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease.
Collapse
Affiliation(s)
| | - Liqing Yu
- Address correspondence to: Liqing Yu, M.D., Ph.D., Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1040, Tel: 336-716-0920, Fax: 336-716-6279,
| |
Collapse
|
64
|
Rosenblat M, Volkova N, Attias J, Mahamid R, Aviram M. Consumption of polyphenolic-rich beverages (mostly pomegranate and black currant juices) by healthy subjects for a short term increased serum antioxidant status, and the serum’s ability to attenuate macrophage cholesterol accumulation. Food Funct 2010; 1:99-109. [DOI: 10.1039/c0fo00011f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
65
|
Abstract
High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic alpha-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the alpha-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.
Collapse
|
66
|
Stylianou IM, Svenson KL, VanOrman SK, Langle Y, Millar JS, Paigen B, Rader DJ. Novel ENU-induced point mutation in scavenger receptor class B, member 1, results in liver specific loss of SCARB1 protein. PLoS One 2009; 4:e6521. [PMID: 19654867 PMCID: PMC2715880 DOI: 10.1371/journal.pone.0006521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/05/2009] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (∼90%), but not in steroidogenic tissues. This leads to ∼70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
67
|
Sabahi A. Hepatitis C Virus entry: the early steps in the viral replication cycle. Virol J 2009; 6:117. [PMID: 19643019 PMCID: PMC2726125 DOI: 10.1186/1743-422x-6-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023] Open
Abstract
Approximately 170 million are infected with the hepatitis C virus (HCV) world wide and an estimated 2.7 million are HCV RNA positive in the United States alone. The acute phase of the HCV infection, in majority of individuals, is asymptomatic. A large percentage of those infected with HCV are unable to clear the virus and become chronically infected. The study of the HCV replication cycle was hampered due to difficulties in growing and propagating the virus in an in vitro setting. The advent of the HCV pseudo particle (HCVpp) and HCV cell culture (HCVcc) systems have made possible the study of the HCV replication cycle, in vitro. Studies utilizing the HCVpp and HCVcc systems have increased our insight into the early steps of the viral replication cycle of HCV, such as the identification of cellular co-receptors for binding and entry. The aim of this article is to provide a review of the outstanding literature on HCV entry, specifically looking at cellular co-receptors involved and putting the data in the context of the systems used (purified viral envelope proteins, HCVpp system, HCVcc system and/or patient sera) and to also give a brief description of the cellular co-receptors themselves.
Collapse
Affiliation(s)
- Ali Sabahi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
68
|
He H, MacKinnon KM, Genovese KJ, Nerren JR, Swaggerty CL, Nisbet DJ, Kogut MH. Chicken scavenger receptors and their ligand-induced cellular immune responses. Mol Immunol 2009; 46:2218-25. [DOI: 10.1016/j.molimm.2009.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/07/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
69
|
Dreux M, Dao Thi VL, Fresquet J, Guérin M, Julia Z, Verney G, Durantel D, Zoulim F, Lavillette D, Cosset FL, Bartosch B. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog 2009; 5:e1000310. [PMID: 19229312 PMCID: PMC2636890 DOI: 10.1371/journal.ppat.1000310] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/23/2009] [Indexed: 12/11/2022] Open
Abstract
HCV entry into cells is a multi-step and slow process. It is believed that the
initial capture of HCV particles by glycosaminoglycans and/or lipoprotein
receptors is followed by coordinated interactions with the scavenger receptor
class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the
CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading
to uptake and cellular penetration of HCV via low-pH endosomes.
Several reports have indicated that HDL promotes HCV entry through interaction
with SR-BI. This pathway remains largely elusive, although it was shown that HDL
neither associates with HCV particles nor modulates HCV binding to SR-BI. In
contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed
indirectly because of lack of cells in which functional complementation assays
with mutant receptors could be performed. Here we identified for the first time
two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI
expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma
cells allowed unambiguous investigation of human SR-BI functions during HCV
entry. By expressing different SR-BI mutants in either cell line, our results
revealed features of SR-BI intracellular domains that influence HCV infectivity
without affecting receptor binding and stimulation of HCV entry induced by
HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain
that, by altering HCV binding, inhibit entry. Finally, we characterized
alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake
and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we
demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results
highlight specific SR-BI determinants required during HCV entry and
physiological lipid transfer functions hijacked by HCV to favor infection. More than 180 million people are chronically infected by hepatitis C virus (HCV),
a leading cause of liver failure and cancer, stimulating the need to fully
define the biology of HCV infection for developing novel and effective
therapeutics. During the first steps of infection, the virus is taken up and
penetrates hepatocytes. HCV entry is thought to be a coordinated multi-step
process mediated by specific factors, including CD81, Claudin-1, and the
scavenger receptor BI (SR-BI). Whereas the involvement of CD81 and Claudin-1 was
demonstrated by rendering susceptible cells that are otherwise refractory, SR-BI
complementation assays were lacking, raising questions as to its functions
during HCV entry. Here, we identify one hepatoma rat cell line, in which SR-BI
complementation assay and targeted mutagenesis could be performed. We therefore
demonstrate that SR-BI is an essential HCV entry factor. Our results shed light
on SR-BI intracellular domain functions in HCV entry, and, further, emphasize
the remarkable capacity of HCV to hijack the lipid transfer function of SR-BI,
hence favoring infection.
Collapse
Affiliation(s)
- Marlène Dreux
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Judith Fresquet
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | | | | | - Géraldine Verney
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - David Durantel
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Fabien Zoulim
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - François-Loïc Cosset
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Birke Bartosch
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
70
|
Macrophage paraoxonase 1 (PON1) binding sites. Biochem Biophys Res Commun 2008; 376:105-10. [DOI: 10.1016/j.bbrc.2008.08.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 11/19/2022]
|
71
|
Robichaud JC, Francis GA, Vance DE. A role for hepatic scavenger receptor class B, type I in decreasing high density lipoprotein levels in mice that lack phosphatidylethanolamine N-methyltransferase. J Biol Chem 2008; 283:35496-506. [PMID: 18842588 DOI: 10.1074/jbc.m807433200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) is a liver-specific enzyme that converts phosphatidylethanolamine to phosphatidylcholine (PC). Mice that lack PEMT have reduced plasma levels of PC and cholesterol in high density lipoproteins (HDL). We have investigated the mechanism responsible for this reduction with experiments designed to distinguish between a decreased formation of HDL particles by hepatocytes or an increased hepatic uptake of HDL lipids. Therefore, we analyzed lipid efflux to apoA-I and HDL lipid uptake using primary cultured hepatocytes isolated from Pemt(+/+) and Pemt(-/-) mice. Hepatic levels of the ATP-binding cassette transporter A1 are not significantly different between Pemt genotypes. Moreover, hepatocytes isolated from Pemt(-/-) mice released cholesterol and PC into the medium as efficiently as did hepatocytes from Pemt(+/+) mice. Immunoblotting of liver homogenates showed a 1.5-fold increase in the amount of the scavenger receptor, class B, type 1 (SR-BI) in Pemt(-/-) compared with Pemt(+/+) livers. In addition, there was a 1.5-fold increase in the SR-BI-interacting protein PDZK1. Lipid uptake experiments using radiolabeled HDL particles revealed a greater uptake of [(3)H]cholesteryl ethers and [(3)H]PC by hepatocytes derived from Pemt(-/-) compared with Pemt(+/+) mice. Furthermore, we observed an increased association of [(3)H]cholesteryl ethers in livers of Pemt(-/-) compared with Pemt(+/+) mice after tail vein injection of [(3)H]HDL. These results strongly suggest that PEMT is involved in the regulation of plasma HDL levels in mice, mainly via HDL lipid uptake by SR-BI.
Collapse
Affiliation(s)
- Julie C Robichaud
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
72
|
Influence of PDZK1 on lipoprotein metabolism and atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2008; 1782:310-6. [PMID: 18342019 DOI: 10.1016/j.bbadis.2008.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/15/2008] [Accepted: 02/01/2008] [Indexed: 11/23/2022]
Abstract
PDZK1 is a scaffold protein containing four PDZ protein interaction domains, which bind to the carboxy termini of a number of membrane transporter proteins, including ion channels (e.g., CFTR) and cell surface receptors. One of these, the HDL receptor, scavenger receptor class B type I (SR-BI), exhibits a striking, tissue-specific dependence on PDZK1 for its expression and activity. In PDZK1 knockout (KO) mice there is a marked reduction of SR-BI protein expression (approximately 95%) in the liver, but not in steroidogenic tissues or, as we show in this report, in bone marrow- or spleen-derived macrophages, or lung-derived endothelial cells. Because of hepatic SR-BI deficiency, PDZK1 KO mice exhibit dyslipidemia characterized by elevated plasma cholesterol carried in abnormally large HDL particles. Here, we show that inactivation of the PDZK1 gene promotes the development of aortic root atherosclerosis in apolipoprotein E (apoE) KO mice fed with a high fat/high cholesterol diet. However, unlike complete SR-BI-deficiency in SR-BI/apoE double KO mice, PDZK1 deficiency in PDZK1/apoE double knockout mice did not result in development of occlusive coronary artery disease or myocardial infarction, presumably because of their residual expression of SR-BI. These findings demonstrate that deficiency of an adaptor protein essential for normal expression of a lipoprotein receptor promotes atherosclerosis in a murine model. They also define PDZK1 as a member of the family of proteins that is instrumental in preventing cardiovascular disease by maintaining normal lipoprotein metabolism.
Collapse
|
73
|
Ashraf MZ, Kar NS, Chen X, Choi J, Salomon RG, Febbraio M, Podrez EA. Specific oxidized phospholipids inhibit scavenger receptor bi-mediated selective uptake of cholesteryl esters. J Biol Chem 2008; 283:10408-14. [PMID: 18285332 DOI: 10.1074/jbc.m710474200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that specific oxidized phospholipids (oxPC(CD36)) accumulate at sites of oxidative stress in vivo such as within atherosclerotic lesions, hyperlipidemic plasma, and plasma with low high-density lipoprotein levels. oxPC(CD36) serve as high affinity ligands for the scavenger receptor CD36, mediate uptake of oxidized low density lipoprotein by macrophages, and promote a pro-thrombotic state via platelet scavenger receptor CD36. We now report that oxPC(CD36) represent ligands for another member of the scavenger receptor class B, type I (SR-BI). oxPC(CD36) prevent binding to SR-BI of its physiological ligand, high density lipoprotein, because of the close proximity of the binding sites for these two ligands on SR-BI. Furthermore, oxPC(CD36) interfere with SR-BI-mediated selective uptake of cholesteryl esters in hepatocytes. Thus, oxidative stress and accumulation of specific oxidized phospholipids in plasma may have an inhibitory effect on reverse cholesterol transport.
Collapse
Affiliation(s)
- Mohammad Z Ashraf
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Yvan-Charvet L, Pagler TA, Wang N, Senokuchi T, Brundert M, Li H, Rinninger F, Tall AR. SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. J Lipid Res 2008; 49:107-14. [DOI: 10.1194/jlr.m700200-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
75
|
Zannis VI, Koukos G, Drosatos K, Vezeridis A, Zanni EE, Kypreos KE, Chroni A. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: lessons learned from gene transfer studies in different mouse models. Ann Med 2008; 40 Suppl 1:14-28. [PMID: 18246469 DOI: 10.1080/07853890701687219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using adenovirus-mediated gene transfer in apolipoprotein A-I (apoA-I)-deficient mice, we have established that apoA-I mutations inhibit discrete steps in a pathway that leads to the biogenesis and remodeling of high-density lipoprotein (HDL). To this point, five discrete categories of apoA-I mutants have been characterized that may affect the interactions of apoA-I with ATP-binding cassette superfamily A, member 1 (ABCA1) or lecithin:cholesterol acyl transferase (LCAT) or may influence the plasma phospholipid transfer protein activity or may cause various forms of dyslipidemia. Biogenesis of HDL is not a unique property of apoA-I. Using adenovirus-mediated gene transfer of apoE in apoA-I- or ABCA1-deficient mice, we have established that apolipoprotein E (apoE) also participates in a novel pathway of biogenesis of apoE-containing HDL particles. This process requires the functions of the ABCA1 lipid transporter and LCAT, and it is promoted by substitution of hydrophobic residues in the 261 to 269 region of apoE by Ala. The apoE-containing HDL particles formed in the circulation may have atheroprotective properties. ApoE-containing HDL may also have important biological functions in the brain that confer protection from Alzheimer's disease.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA 02118-2394, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Nieland TJF, Shaw JT, Jaipuri FA, Duffner JL, Koehler AN, Banakos S, Zannis VI, Kirchhausen T, Krieger M. Identification of the molecular target of small molecule inhibitors of HDL receptor SR-BI activity. Biochemistry 2007; 47:460-72. [PMID: 18067275 DOI: 10.1021/bi701277x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1-5) that inhibit SR-BI-dependent lipid transport from HDL, but do not block HDL binding to SR-BI on the cell surface. Although these BLTs are widely used to examine the diverse functions of SR-BI, their direct target(s), SR-BI itself or some other component of the SR-BI pathway, has not been identified. Here we show that SR-BI in the context of a membrane lipid environment is the target of BLT-1, -3, -4, and -5. The analysis using intact cells and an in vitro system of purified SR-BI reconstituted into liposomes was aided by information derived from structure-activity relationship (SAR) analysis of the most potent of these BLTs, the thiosemicarbazone BLT-1. We found that the sulfur atom of BLT-1 was crucially important for its inhibitory activity, because changing it to an oxygen atom resulted in the isostructural, but essentially inactive, semicarbazone derivative BLT-1sc. SAR analysis also established the importance of BLT-1's hydrophobic tail. BLTs and their corresponding inactive compounds can be used to explore the mechanism and function of SR-BI-mediated selective lipid uptake in diverse mammalian experimental models. Consequently, BLTs may help determine the therapeutic potential of SR-BI-targeted pharmaceutical drugs.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bukrinsky M, Sviridov D. Human immunodeficiency virus infection and macrophage cholesterol metabolism. J Leukoc Biol 2007; 80:1044-51. [PMID: 17056763 DOI: 10.1189/jlb.0206113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis and are also a host for a number of viruses, most importantly, HIV. Many viruses, including HIV, require cholesterol for their replication and as a structural element. Cholesterol also plays a pivotal role in innate antiviral immune responses. Although impairing innate immune response by increasing cell cholesterol content may be a deliberate strategy used by a pathogen to improve its infectivity, enhancing the risk of atherosclerosis is likely a byproduct. Consistent association between HIV infection and elevated risk of atherosclerosis suggested a connection between virus-induced changes in cholesterol metabolism and atherogenesis, but the mechanisms of such connection have not been identified. We describe in this review various mechanisms enabling viruses to exploit macrophage pathways of cholesterol metabolism, thus diverting cholesterol for a purpose of increasing viral replication and/or for altering innate immune responses. To alter the cellular cholesterol content, viruses "hijack" the pathways responsible for maintaining intracellular cholesterol metabolism. The damage to these pathways by viral infection may result in the inability of macrophages to control cholesterol accumulation and may lead to formation of foam cells, a characteristic feature of atherosclerosis. Further elucidation of the mechanisms connecting viral infection and macrophage cholesterol metabolism may be fruitful for developing approaches to treatment of atherosclerosis and viral diseases.
Collapse
Affiliation(s)
- Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, 2300 I St., N.W., Ross Hall, Rm. 234, Washington, DC 20037, USA.
| | | |
Collapse
|
78
|
Rosenblat M, Volkova N, Coleman R, Almagor Y, Aviram M. Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: enhanced macrophage cholesterol efflux. J Nutr Biochem 2007; 19:514-523. [PMID: 17904345 DOI: 10.1016/j.jnutbio.2007.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/29/2007] [Accepted: 06/13/2007] [Indexed: 02/06/2023]
Abstract
The antiatherogenic properties of extra virgin olive oil (EVOO) enriched with green tea polyphenols (GTPPs; hereafter called EVOO-GTPP), in comparison to EVOO, were studied in the atherosclerotic apolipoprotein-E-deficient (E0) mice. E0 mice (eight mice in each group) consumed EVOO or EVOO-GTPP (7 microl/mouse/day, for 2 months) by gavage feeding. The placebo group received only water. At the end of the study, blood samples, peritoneal macrophages and aortas were collected. Consumption of EVOO or EVOO-GTPP resulted in a minimal increase in serum total and high-density lipoprotein (HDL) cholesterol levels (by 12%) and in serum paraoxonase 1 activity (by 6% and 10%). EVOO-GTPP (but not EVOO) decreased the susceptibility of the mouse serum to AAPH-induced lipid peroxidation (by 18%), as compared to the placebo-treated mice. The major effect of both EVOO and EVOO-GTPP consumption was on HDL-mediated macrophage cholesterol efflux. Consumption of EVOO stimulated cholesterol efflux rate from mouse peritoneal macrophages (MPMs) by 42%, while EVOO-GTPP increased it by as much as 139%, as compared to MPMs from placebo-treated mice. Finally, the atherosclerotic lesion size of mice was significantly reduced by 11% or 20%, after consumption of EVOO or EVOO-GTPP, respectively. We thus conclude that EVOO possesses beneficial antiatherogenic effects, and its enrichment with GTPPs further improved these effects, leading to the attenuation of atherosclerosis development.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Raymond Coleman
- Department of Anatomy and Cell Biology, Technion Faculty of Medicine, Haifa 31096, Israel
| | - Yaron Almagor
- Department of Cardiology, Shaarei Zedek Medical Center, Jerusalem 91031, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| |
Collapse
|
79
|
Yamada H, Ohashi E, Abe T, Kusumi N, Li SAI, Yoshida Y, Watanabe M, Tomizawa K, Kashiwakura Y, Kumon H, Matsui H, Takei K. Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 2007; 18:4669-80. [PMID: 17855509 PMCID: PMC2043535 DOI: 10.1091/mbc.e07-04-0296] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (-/-) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate-induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kazuhito Tomizawa
- Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | - Yuji Kashiwakura
- Innovation Center Okayama for Nanobio-Targeted Therapy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | | | - Hideki Matsui
- Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; and
| | | |
Collapse
|
80
|
Nieland TJF, Shaw JT, Jaipuri FA, Maliga Z, Duffner JL, Koehler AN, Krieger M. Influence of HDL-cholesterol-elevating drugs on the in vitro activity of the HDL receptor SR-BI. J Lipid Res 2007; 48:1832-45. [PMID: 17533223 DOI: 10.1194/jlr.m700209-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of atherosclerotic disease often focuses on reducing plasma LDL-cholesterol or increasing plasma HDL-cholesterol. We examined in vitro the effects on HDL receptor [scavenger receptor class B type I (SR-BI)] activity of three classes of clinical and experimental plasma HDL-cholesterol-elevating compounds: niacin, fibrates, and HDL376. Fenofibrate (FF) and HDL376 were potent (IC(50) approximately 1 microM), direct inhibitors of SR-BI-mediated lipid transport in cells and in liposomes reconstituted with purified SR-BI. FF, a prodrug, was a more potent inhibitor of SR-BI than an activator of peroxisome proliferator-activated receptor alpha, a target of its active fenofibric acid (FFA) derivative. Nevertheless, FFA, four other fibrates (clofibrate, gemfibrozil, ciprofibrate, and bezafibrate), and niacin had little, if any, effect on SR-BI, suggesting that they do not directly target SR-BI in vivo. However, similarities of HDL376 treatment and SR-BI gene knockout on HDL metabolism in vivo (increased HDL-cholesterol and HDL particle sizes) and structure-activity relationship analysis suggest that SR-BI may be a target of HDL376 in vivo. HDL376 and other inhibitors may help elucidate SR-BI function in diverse mammalian models and determine the therapeutic potential of SR-BI-directed pharmaceuticals.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Pagler TA, Neuhofer A, Laggner H, Strobl W, Stangl H. Cholesterol efflux via HDL resecretion occurs when cholesterol transport out of the lysosome is impaired. J Lipid Res 2007; 48:2141-50. [PMID: 17620658 DOI: 10.1194/jlr.m700056-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we showed that holo HDL particle uptake and resecretion occur in physiologically relevant cell lines and that HDL uptake is mediated by scavenger receptor class B type I (SR-BI). Furthermore, we established that HDL resecretion is accompanied by [(3)H]cholesterol efflux. This study shows that HDL uptake and resecretion occur even when LDL uptake and cholesterol trafficking are disturbed. First, we used a set of inhibitors that block cholesterol transport out of the lysosome: chloroquine, imipramine, U18666A, and monensin. In all cases, HDL retroendocytosis occurred and HDL resecretion mediated [(3)H]cholesterol efflux, although to a lesser extent. Second, cell lines carrying somatic mutations in intracellular cholesterol transport were used: CHO 2-2 and CHO 3-6 cells accumulated LDL-derived lipid in the lysosome but showed all components of HDL retroendocytosis. SR-BI overexpression increased HDL uptake and resecretion and [(3)H]cholesterol efflux in these mutant cells. Finally, we used Niemann-Pick type C (NPC) patient fibroblast cells, which carry a defect in cholesterol transfer out of the lysosome. NPC fibroblast cells accumulate cholesterol in the lysosome as a result of a mutation in the NPC1 gene. Despite disturbed intracellular cholesterol transfer, NPC fibroblast cells exhibited HDL retroendocytosis and [(3)H]cholesterol efflux via HDL resecretion, although to a lesser extent. Thus, [(3)H]cholesterol efflux via HDL resecretion is independent of the cholesterol uptake pathway via the LDL receptor and may be an alternative way to remove excess cholesterol.
Collapse
Affiliation(s)
- Tamara A Pagler
- Center for Physiology and Pathophysiology, Department of Medical Chemistry, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | | | | |
Collapse
|
82
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
83
|
Catanese MT, Graziani R, von Hahn T, Moreau M, Huby T, Paonessa G, Santini C, Luzzago A, Rice CM, Cortese R, Vitelli A, Nicosia A. High-avidity monoclonal antibodies against the human scavenger class B type I receptor efficiently block hepatitis C virus infection in the presence of high-density lipoprotein. J Virol 2007; 81:8063-71. [PMID: 17507483 PMCID: PMC1951280 DOI: 10.1128/jvi.00193-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.
Collapse
Affiliation(s)
- Maria Teresa Catanese
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Marsche G, Frank S, Raynes J, Kozarsky K, Sattler W, Malle E. The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem J 2007; 402:117-24. [PMID: 17034364 PMCID: PMC1783981 DOI: 10.1042/bj20061406] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the acute-phase reaction, SAA (serum amyloid A) replaces apoA-I (apolipoprotein A-I) as the major HDL (high-density lipoprotein)-associated apolipoprotein. A remarkable portion of SAA exists in a lipid-free/lipid-poor form and promotes ABCA1 (ATP-binding cassette transporter A1)-dependent cellular cholesterol efflux. In contrast with lipid-free apoA-I and apoE, lipid-free SAA was recently reported to mobilize SR-BI (scavenger receptor class B, type I)-dependent cellular cholesterol efflux [Van der Westhuyzen, Cai, de Beer and de Beer (2005) J. Biol. Chem. 280, 35890-35895]. This unique property could strongly affect cellular cholesterol mobilization during inflammation. However, in the present study, we show that overexpression of SR-BI in HEK-293 cells (human embryonic kidney cells) (devoid of ABCA1) failed to mobilize cholesterol to lipid-free or lipid-poor SAA. Only reconstituted vesicles containing phospholipids and SAA promoted SR-BI-mediated cholesterol efflux. Cholesterol efflux from HEK-293 and HEK-293[SR-BI] cells to lipid-free and lipid-poor SAA was minimal, while efficient efflux was observed from fibroblasts and CHO cells (Chinese-hamster ovary cells) both expressing functional ABCA1. Overexpression of SR-BI in CHO cells strongly attenuated cholesterol efflux to lipid-free SAA even in the presence of an SR-BI-blocking IgG. This implies that SR-BI attenuates ABCA1-mediated cholesterol efflux in a way that is not dependent on SR-BI-mediated re-uptake of cholesterol. The present in vitro experiments demonstrate that the lipidation status of SAA is a critical factor governing cholesterol acceptor properties of this amphipathic apolipoprotein. In addition, we demonstrate that SAA mediates cellular cholesterol efflux via the ABCA1 and/or SR-BI pathway in a similar way to apoA-I.
Collapse
Affiliation(s)
- Gunther Marsche
- *Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Sǎsa Frank
- *Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - John G. Raynes
- †Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Karen F. Kozarsky
- ‡GlaxoSmithKline, 709 Swedeland Rd, King of Prussia, PA 19406, U.S.A
| | - Wolfgang Sattler
- *Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Ernst Malle
- *Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Austria
- To whom correspondence should be addressed (email )
| |
Collapse
|
85
|
Tréguier M, Moreau M, Sposito A, Chapman MJ, Huby T. LDL particle subspecies are distinct in their capacity to mediate free cholesterol efflux via the SR-BI/Cla-1 receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:129-38. [PMID: 17240192 DOI: 10.1016/j.bbalip.2006.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 11/25/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The human scavenger receptor SR-BI/Cla-1 promotes efflux of free cholesterol from cells to both high-density and low-density lipoproteins (HDL, LDL). SR-BI/Cla-1-mediated cholesterol efflux to HDL is dependent on particle size, lipid content and apolipoprotein conformation; in contrast, the capacity of LDL subspecies to accept cellular cholesterol via this receptor is indeterminate. Cholesterol efflux assays were performed with CHO cells stably transfected with Cla-1 cDNA. Expression of Cla-1 in CHO cells induced elevation in total cholesterol efflux to plasma, LDL and HDL. Such Cla-1-specific efflux was abrogated by addition of anti-Cla-1 antibody. LDL were fractionated into five subspecies either on the basis of hydrated density or size. Among LDL subfractions, small dense LDL (sdLDL) were 1.5-to 3-fold less active acceptors for Cla-1-mediated cellular cholesterol efflux. Equally, sdLDL markedly reduced Cla-1-specific cholesterol efflux to large buoyant LDL in a dose-dependent manner. Conversely, sdLDL did not influence efflux to HDL(2). These findings provide evidence that LDL particles are heterogeneous in their capacity to promote Cla-1-mediated cholesterol efflux. Relative to HDL(2), large buoyant LDL may constitute physiologically-relevant acceptors for cholesterol efflux via Cla-1.
Collapse
Affiliation(s)
- Morgan Tréguier
- INSERM U551, Dyslipoproteinemia and Atherosclerosis Research Unit, Hôpital de la Pitié, 83 Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
86
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
87
|
Lapointe J, Truong TQ, Falstrault L, Brissette L. Differential abilities of mouse liver parenchymal and nonparenchymal cells in HDL and LDL (native and oxidized) association and cholesterol efflux. Biochem Cell Biol 2006; 84:250-6. [PMID: 16609706 DOI: 10.1139/o05-172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to quantify the abilities of mouse liver parenchymal and nonparenchymal cells with respect to (i) cholesteryl ester (CE) selective uptake from low-density lipoproteins (LDL), oxidized LDL (OxLDL), and high-density lipoprotein (HDL); and (ii) their free cholesterol efflux to HDL. The preparations of cells were incubated with lipoproteins labelled either in protein with iodine-125 or in CE with 3H-cholesterol oleate, and lipoprotein-protein and lipoprotein-CE associations were measured. The associations of LDL-protein and LDL-CE with nonparenchymal cells were 5- and 2-fold greater, respectively, than with parenchymal cells. However, in terms of CE-selective uptake (CE association minus protein association) both types of cell were equivalent. Similar results were obtained with OxLDL, but both types of cell showed higher abilities in OxLDL-CE than in LDL-CE selective uptake (on average by 3.4-fold). The association of HDL-protein with nonparenchymal cells was 3x that with parenchymal cells; however, nonparenchymal cells associated 45% less HDL-CE. Contrary to parenchymal cells, nonparenchymal cells did not show HDL-CE selective uptake activity. Thus parenchymal cells selectively take CE from the 3 types of lipoproteins, whereas nonparenchymal cells exert this function only on LDL and OxLDL. Efflux was 3.5-fold more important in nonparenchymal than in parenchymal cells.
Collapse
Affiliation(s)
- Jany Lapointe
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
88
|
Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJC, Van Eck M. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett 2006; 580:5588-96. [PMID: 16935283 DOI: 10.1016/j.febslet.2006.08.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/28/2006] [Accepted: 08/06/2006] [Indexed: 11/25/2022]
Abstract
Foam cell formation due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. Macrophages cannot limit the uptake of cholesterol and therefore depend on cholesterol efflux pathways for preventing their transformation into foam cells. Several ABC-transporters, including ABCA1 and ABCG1, facilitate the efflux of cholesterol from macrophages. These transporters, however, also affect membrane lipid asymmetry which may have important implications for cellular endocytotic pathways. We propose that in addition to the generally accepted role of these ABC-transporters in the prevention of foam cell formation by induction of cholesterol efflux from macrophages, they also influence the macrophage endocytotic uptake.
Collapse
Affiliation(s)
- Marieke Pennings
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
89
|
Sun B, Eckhardt ERM, Shetty S, van der Westhuyzen DR, Webb NR. Quantitative analysis of SR-BI-dependent HDL retroendocytosis in hepatocytes and fibroblasts. J Lipid Res 2006; 47:1700-13. [PMID: 16705213 DOI: 10.1194/jlr.m500450-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous studies have suggested that HDL retroendocytosis may play a role in scavenger receptor class B type I (SR-BI)-dependent selective lipid uptake in a cell-specific manner. To investigate this possibility, we developed methods to quantitatively measure HDL uptake and resecretion in fibroblast (COS-7) and hepatocyte (HepG2) cells expressing exogenous SR-BI. Approximately 17% and 24% of HDL associated in an SR-BI-dependent manner with COS-7 and HepG2 cells, respectively, accumulates intracellularly after a 10 min incubation. To determine whether this intracellular HDL undergoes retroendocytosis, we developed a pulse-chase assay whereby internalized biotinylated (125)I-HDL(3) secreted from cells is quantitatively precipitated from cell supernatants using immobilized streptavidin. Our results show a rapid secretion of a portion of intracellular HDL from both cell types (representing 4-7% of the total cell-associated HDL) that is almost complete within 30 min (half-life approximately 10 min). In COS-7 cells, the calculated rate of HDL secretion ( approximately 0.5 ng HDL/mg/min) was >30-fold slower than the rate of SR-BI-dependent selective cholesteryl ester (CE) uptake ( approximately 17 ng HDL/mg/min), whereas the rate of release of HDL from the cell surface ( approximately 19 ng HDL/mg/min) was similar to the rate of selective CE uptake. Notably, the rate of SR-BI-dependent HDL resecretion in COS-7 and HepG2 cells was similar. BLT1, a compound that inhibits selective CE uptake, does not alter the amount of SR-BI-mediated HDL retroendocytosis in COS-7 cells. From these data, we conclude that HDL retroendocytosis in COS-7 and HepG2 cells is similar and that the vast majority of SR-BI-dependent selective uptake occurs at the cell surface in both cell types.
Collapse
Affiliation(s)
- Bing Sun
- Department of Internal Medicine, Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, 40536, USA
| | | | | | | | | |
Collapse
|
90
|
Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:655-66. [PMID: 16798073 DOI: 10.1016/j.bbalip.2006.04.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 11/23/2022]
Abstract
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?
Collapse
Affiliation(s)
- Clara Cavelier
- Institute of Clinical Chemistry, University Hospital Zurich, University Zurich, Rämistrasse 100, CH 8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
91
|
Lemieux C, Gélinas Y, Lalonde J, Labrie F, Richard D, Deshaies Y. Hypocholesterolemic action of the selective estrogen receptor modulator acolbifene in intact and ovariectomized rats with diet-induced hypercholesterolemia. Metabolism 2006; 55:605-13. [PMID: 16631436 DOI: 10.1016/j.metabol.2005.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 11/18/2005] [Indexed: 11/24/2022]
Abstract
Acolbifene (ACOL) is a fourth-generation selective estrogen receptor modulator (SERM) that has strong and pure antiestrogenic properties toward estrogen-sensitive cancers, but improves energy and lipid metabolism in an estrogen-like fashion in rodent models. The aim of this study was to determine the potency of ACOL to reduce cholesterolemia in a dietary model of hypercholesterolemia and to establish its mechanisms of action. Intact and ovariectomized (OVX) female rats were treated for 3 weeks with ACOL, and serum cholesterol and liver determinants of cholesterol metabolism were assessed. Acolbifene prevented both diet- and ovariectomy-induced weight gain and completely prevented diet-induced hypercholesterolemia. Relative to a reference chow diet, the high-cholesterol diet decreased the high-density lipoprotein (HDL) cholesterol fraction, which remained unaffected by ACOL, indicating that in hypercholesterolemic conditions, ACOL modulated only the non-HDL fraction. No impact of ACOL on determinants of liver cholesterol synthesis was observed. In contrast, ACOL increased hepatic low-density lipoprotein receptor protein in both intact and OVX rats, which was negatively correlated with serum total and non-HDL cholesterol (r=-0.59, P<.0001), suggesting a contribution of receptor-mediated hepatic uptake of cholesterol-rich lipoproteins to the hypocholesterolemic effect of ACOL. These findings establish that ACOL retains its powerful cholesterol-lowering action in diet-induced hypercholesterolemia and suggest that the SERM acts in such conditions through favoring hepatic low-density lipoprotein receptor-mediated uptake of cholesterol transported by non-HDL lipoprotein fractions.
Collapse
Affiliation(s)
- Christian Lemieux
- Laval Hospital Research Center, Department of Anatomy and Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
92
|
Yesilaltay A, Morales MG, Amigo L, Zanlungo S, Rigotti A, Karackattu SL, Donahee MH, Kozarsky KF, Krieger M. Effects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility. Endocrinology 2006; 147:1577-88. [PMID: 16410302 DOI: 10.1210/en.2005-1286] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiology of human female infertility is often uncertain. The sterility of high-density lipoprotein (HDL) receptor-negative (SR-BI(-/-)) female mice suggests a link between female infertility and abnormal lipoprotein metabolism. SR-BI(-/-) mice exhibit elevated plasma total cholesterol [with normal-sized and abnormally large HDL and high unesterified to total plasma cholesterol (UC:TC) ratio]. We explored the influence of hepatic SR-BI on female fertility by inducing hepatic SR-BI expression in SR-BI(-/-) animals by adenovirus transduction or stable transgenesis. For transgenes, we used both wild-type SR-BI and a double-point mutant, Q402R/Q418R (SR-BI-RR), which is unable to bind to and mediate lipid transfer from wild-type HDL normally, but retains virtually normal lipid transport activities with low-density lipoprotein. Essentially wild-type levels of hepatic SR-BI expression in SR-BI(-/-) mice restored to nearly normal the HDL size distribution and plasma UC:TC ratio, whereas approximately 7- to 40-fold overexpression dramatically lowered plasma TC and increased biliary cholesterol secretion. In contrast, SR-BI-RR overexpression had little effect on SR-BI(+/+) mice, but in SR-BI(-/-) mice, it substantially reduced levels of abnormally large HDL and normalized the UC:TC ratio. In all cases, hepatic transgenic expression restored female fertility. Overexpression in SR-BI(-/-) mice of lecithin:cholesterol acyl transferase, which esterifies plasma HDL cholesterol, did not normalize the UC:TC ratio, probably because the abnormal HDL was a poor substrate, and did not restore fertility. Thus, hepatic SR-BI-mediated lipoprotein metabolism influences murine female fertility, raising the possibility that dyslipidemia might contribute to human female infertility and that targeting lipoprotein metabolism might complement current assisted reproductive technologies.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006; 84:276-94. [PMID: 16501936 DOI: 10.1007/s00109-005-0030-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The concentration, composition, shape, and size of plasma high-density lipoprotein (HDL) are determined by numerous proteins that influence its biogenesis, remodeling, and catabolism. The discoveries of the HDL receptor (scavenger receptor class B type I, SR-BI) and the ABCA1 (ATP-binding cassette transporter A1) lipid transporter provided two missing links that were necessary to understand the biogenesis and some of the functions of HDL. Existing data indicate that functional interactions between apoA-I and ABCA1 are necessary for the initial lipidation of apoA-I. Through a series of intermediate steps, lipidated apoA-I proceeds to form discoidal HDL particles that can be converted to spherical particles by the action of lecithin:cholesterol acyltransferase (LCAT). Discoidal and spherical HDL can interact functionally with SR-BI and these interactions lead to selective lipid uptake and net efflux of cholesterol and thus remodel HDL. Defective apoA-I/ABCA1 interactions prevent lipidation of apoA-I that is necessary for the formation of HDL particles. In the same way, specific mutations in apoA-I or LCAT prevent the conversion of discoidal to spherical HDL particles. The interactions of lipid-bound apoA-I with SR-BI are affected in vitro by specific mutations in apoA-I or SR-BI. Furthermore, deficiency of SR-BI affects the lipid and apolipoprotein composition of HDL and is associated with increased susceptibility to atherosclerosis. Here we review the current status of the pathway of HDL biogenesis and mutations in apoA-I, ABCA1, and SR-BI that disrupt different steps of the pathway and may lead to dyslipidemia and atherosclerosis in mouse models. The phenotypes generated in experimental mouse models for apoA-I, ABCA1, LCAT, SR-BI, and other proteins of the HDL pathway may facilitate early diagnosis of similar phenotypes in the human population and provide guidance for proper treatment.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
94
|
Bourret G, Brodeur MR, Luangrath V, Lapointe J, Falstrault L, Brissette L. In vivo cholesteryl ester selective uptake of mildly and standardly oxidized LDL occurs by both parenchymal and nonparenchymal mouse hepatic cells but SR-BI is only responsible for standardly oxidized LDL selective uptake by nonparenchymal cells. Int J Biochem Cell Biol 2006; 38:1160-70. [PMID: 16427800 DOI: 10.1016/j.biocel.2005.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 11/15/2005] [Accepted: 12/11/2005] [Indexed: 11/29/2022]
Abstract
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.
Collapse
Affiliation(s)
- Geneviève Bourret
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Qué., Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
95
|
Takahashi Y, Zhu H, Xu W, Murakami T, Iwasaki T, Hattori H, Yoshimoto T. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase. Biochem Biophys Res Commun 2005; 338:128-35. [PMID: 16105647 DOI: 10.1016/j.bbrc.2005.07.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/30/2005] [Indexed: 01/08/2023]
Abstract
Oxidation of low density lipoprotein (LDL) is a critical step for atherogenesis, and the role of the 12/15-lipoxygenase (12/15-LOX) as well as LDL receptor-related protein (LRP) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like J774A.1 cells overexpressing 12/15-LOX was inhibited by an anti-LRP antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [3H]cholesteryl linoleate and [125I]apoB, association with the cells of [3H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [125I]apoB, indicating selective uptake of [3H]cholesteryl linoleate from LDL to these cells. An anti-LRP antibody inhibited the selective uptake of [3H]cholesteryl ester by 62% and 81% with the 12/15-LOX-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [3H]cholesteryl linoleate-labeled 12/15-LOX-expressing cells increased the release of [3H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [3H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-LRP antibody by 75%. These results strongly suggest that LRP contributes to the LDL oxidation by 12/15-LOX in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.
Collapse
Affiliation(s)
- Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan.
| | | | | | | | | | | | | |
Collapse
|
96
|
van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC. Serum Amyloid A Promotes Cholesterol Efflux Mediated by Scavenger Receptor B-I. J Biol Chem 2005; 280:35890-5. [PMID: 16120612 DOI: 10.1074/jbc.m505685200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.
Collapse
Affiliation(s)
- Deneys R van der Westhuyzen
- Department of Internal Medicine, Graduate Center for Nutrition Sciences, University of Kentucky Medical Center, Lexington, Kentucky 40536-0200, USA.
| | | | | | | |
Collapse
|
97
|
Lemieux C, Gélinas Y, Lalonde J, Labrie F, Richard D, Deshaies Y. The selective estrogen receptor modulator acolbifene reduces cholesterolemia independently of its anorectic action in control and cholesterol-fed rats. J Nutr 2005; 135:2225-9. [PMID: 16140902 DOI: 10.1093/jn/135.9.2225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cancer-preventing selective estrogen receptor modulator (SERM) acolbifene (ACOL) exerts a potent and pure antiestrogenic action in the mammary gland and uterus, yet it displays beneficial, estrogen-like actions on energy and lipid metabolism in rodents. The compound reduces food intake and strongly decreases cholesterolemia in rats fed a cholesterol-free diet. This study was designed to establish whether the anorectic effect of ACOL is involved in its cholesterol-lowering action, and whether the compound retains its ability to lower cholesterol concentrations in rats with diet-induced hypercholesterolemia. Female rats were fed a purified diet devoid of cholesterol (reference diet) or containing 2% cholesterol (C-diet); they were either not treated or treated daily with ACOL or not treated and pair-fed to the ACOL-treated rats. The C-diet did not affect food intake or weight and fat gains. ACOL reduced food intake (16%) and weight gain (45%, mainly fat) similarly in both dietary cohorts. ACOL, but not pair feeding, reduced cholesterolemia by 33% in rats fed the reference diet. As expected, the C-diet raised serum total cholesterol almost 3-fold and this increase was largely prevented by ACOL but not by pair feeding. Cholesterol was reduced by ACOL, mainly in the HDL fraction, in rats fed the reference diet, but only in the non-HDL fraction in those fed the C-diet. In livers of rats fed the reference diet, ACOL, but not pair feeding, increased protein abundance of the scavenger receptor, class B, type 1, and the LDL receptor, thought to be involved in ACOL-mediated cholesterol lowering. These findings demonstrate that the potent hypocholesterolemic action of ACOL is independent of the concomitant reduction in food intake and fat accretion, and that such action occurs in rats with overt diet-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Christian Lemieux
- Laval Hospital Research Center, Department of Anatomy and Physiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | | | | | | | | |
Collapse
|
98
|
Qian J, Morley S, Wilson K, Nava P, Atkinson J, Manor D. Intracellular trafficking of vitamin E in hepatocytes: the role of tocopherol transfer protein. J Lipid Res 2005; 46:2072-82. [PMID: 16024914 DOI: 10.1194/jlr.m500143-jlr200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The term vitamin E denotes a family of tocopherols and tocotrienols, plant lipids that are essential for vertebrate fertility and health. The principal form of vitamin E found in humans, RRR-alpha-tocopherol (TOH), is thought to protect cells by virtue of its ability to quench free radicals, and functions as the main lipid-soluble antioxidant. Regulation of vitamin E homeostasis occurs in the liver, where TOH is selectively retained while other forms of vitamin E are degraded. Through the action of tocopherol transfer protein (TTP), TOH is then secreted from the liver into circulating lipoproteins that deliver the vitamin to target tissues. Presently, very little is known regarding the intracellular transport of vitamin E. We utilized biochemical, pharmacological, and microscopic approaches to study this process in cultured hepatocytes. We observe that tocopherol-HDL complexes are efficiently internalized through scavenger receptor class B type I. Once internalized, tocopherol arrives within approximately 30 min at intracellular vesicular organelles, where it co-localizes with TTP, and with a marker of the lysosomal compartment (LAMP1), before being transported to the plasma membrane in a TTP-dependent manner. We further show that intracellular processing of tocopherol involves a functional interaction between TTP and an ABC-type transporter.
Collapse
Affiliation(s)
- Jinghui Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
99
|
Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH, Krieger M. Diet-Induced Occlusive Coronary Atherosclerosis, Myocardial Infarction, Cardiac Dysfunction, and Premature Death in Scavenger Receptor Class B Type I-Deficient, Hypomorphic Apolipoprotein ER61 Mice. Circulation 2005; 111:3457-64. [PMID: 15967843 DOI: 10.1161/circulationaha.104.523563] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Normal chow (low fat)–fed mice deficient in both the HDL receptor SR-BI and apolipoprotein E (SR-BI/apoE dKO) provide a distinctive model of coronary heart disease (CHD). They exhibit early-onset hypercholesterolemia characterized by unesterified cholesterol-rich abnormal lipoproteins (lamellar/vesicular and stacked discoidal particles), occlusive coronary atherosclerosis, spontaneous myocardial infarction, cardiac dysfunction, and premature death (≈6 weeks of age). Mice in which similar features of CHD could be induced with a lipid-rich diet would represent a powerful tool to study CHD.
Methods and Results—
To generate a diet-inducible model of CHD, we bred SR-BI-deficient (SR-BI KO) mice with hypomorphic apolipoprotein E mice (
ApoeR61
h/h
) that express reduced levels of an apoE4-like murine apoE isoform and exhibit diet-induced hypercholesterolemia. When fed a normal chow diet, SR-BI KO/
ApoeR61
h/h
mice did not exhibit early-onset atherosclerosis or CHD; the low expression level of the apoE4-like murine apoE was atheroprotective and cardioprotective. However, when fed an atherogenic diet rich in fat, cholesterol, and cholate, they rapidly developed hypercholesterolemia, atherosclerosis, and CHD, a response strikingly similar to that of SR-BI/apoE dKO mice fed a chow diet, and they died 32±6 days (50% mortality) after initiation of the high-fat feeding.
Conclusions—
The SR-BI KO/
ApoeR61
h/h
mouse is a new model of diet-induced occlusive coronary atherosclerosis and CHD (myocardial infarction, cardiac dysfunction and premature death), allowing control of the age of onset, duration, severity, and possibly regression of disease. Thus, SR-BI KO/
ApoeR61
h/h
mice have the potential to contribute to our understanding of CHD and its prevention and treatment.
Collapse
Affiliation(s)
- Songwen Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Van Eck M, Pennings M, Hoekstra M, Out R, Van Berkel TJ. Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 2005; 16:307-15. [PMID: 15891392 DOI: 10.1097/01.mol.0000169351.28019.04] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The appearance of scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in macrophages and liver implicates these transporters in different stages of reverse cholesterol transport. This review focuses on the role of SR-BI and ABCA1 in reverse cholesterol transport in the context of atherosclerotic lesion development. RECENT FINDINGS Recent studies indicate that hepatic expression of ABCA1 and SR-BI is important for the generation of nascent HDL and the delivery of HDL cholesteryl esters to the liver, respectively. Although macrophage SR-BI and ABCA1 do not contribute significantly to circulating HDL levels, the perpetual cycle of HDL lipidation and delipidation by the liver ensures the availability of acceptors for cholesterol efflux that maintain cholesterol homeostasis in arterial macrophages, thereby reducing atherogenesis. In addition to its established role in the selective uptake of HDL cholesteryl esters, there is now evidence that hepatic SR-BI facilitates postprandial lipid metabolism, and that hepatic secretion of VLDL is dependent on ABCA1-mediated nascent HDL formation. Thus, remnant and HDL metabolism are more intimately intertwined in hepatic lipid metabolism than has previously been appreciated. SUMMARY Recent advances in the understanding of the role of ABCA1 and SR-BI in HDL metabolism and their atheroprotective properties indicate the significant potential of modulating ABCA1 and SR-BI expression in both arterial wall macrophages and the liver for the treatment of atherosclerotic coronary artery disease.
Collapse
Affiliation(s)
- Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|