51
|
Wu YT, Hu LM, Lee CW, Lee WC, Lin JR, Tsai HI, Yu HP. Low preoperative serum uric acid is associated with early acute kidney injury after living donor liver transplantation. J Chin Med Assoc 2024; 87:635-642. [PMID: 38690873 DOI: 10.1097/jcma.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Liver transplantation is treatment option for patients with end-stage liver disease and hepatocellular carcinoma. Renal function deterioration significantly impacts the survival rates of liver recipients, and serum uric acid (SUA) is associated with both acute and chronic renal function disorders. Thus, our study aimed to assess the relationship and predictive value of preoperative SUA level and postoperative acute kidney injury (AKI) in living donor liver transplantation (LDLT). METHODS We conducted a prospective observational study on 87 patients undergoing LDLT. Blood samples were collected immediately before LDLT, and renal function status was followed up for 3 consecutive days postoperatively. RESULTS Low SUA levels (cutoff value 4.15 mg/dL) were associated with a high risk of early posttransplantation AKI. The area under the curve was 0.73 (sensitivity, 79.2%; specificity, 59.4%). Although not statistically significant, there were no deaths in the non-AKI group but two in the early AKI group secondary to liver graft dysfunction in addition to early AKI within the first month after LDLT. CONCLUSION AKI after liver transplantation may lead to a deterioration of patient status and increased mortality rates. We determined low preoperative SUA levels as a possible risk factor for early postoperative AKI.
Collapse
Affiliation(s)
- Yueh-Tse Wu
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Li-Min Hu
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Division of Medical Education, Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chao-Wei Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of General Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Wei-Chen Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of General Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Department of Liver and Transplant Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Jr-Rung Lin
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Clinical Informatics and Medical Statistics Research Center and Graduate Institute of Clinical Medical Sciences, Department of Biomedical Sciences, Gung Gung University, Taoyuan, Taiwan, ROC
| | - Hsin-I Tsai
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Huang-Ping Yu
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
52
|
Wang Y, Zha Y, Liu L, Liao A, Dong Z, Roberts N, Li Y. Single photon emission computed tomography/computed tomography imaging of gouty arthritis: A new voice. J Transl Int Med 2024; 12:215-224. [PMID: 39081275 PMCID: PMC11284626 DOI: 10.2478/jtim-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Gouty arthritis, often referred to simply as gout, is a disorder of purine metabolism characterized by the deposition of monosodium urate monohydrate (MSU) crystals in multiple systems and organs, especially in joints and their surrounding soft tissue. Gout is a treatable chronic disease, and the main strategy for effective management is to reverse the deposition of MSU crystals by uric acid reduction, and to prevent gout attacks, tophi deposition and complications, and thereby improve the quality of life. However, the frequent association of gout with other conditions such as hypertension, obesity, cardiovascular disease, diabetes, dyslipidemia, chronic kidney disease (CKD) and kidney stones can complicate the treatment of gout and lead to premature death. Here, we review the use of medical imaging techniques for studying gouty arthritis with special interest in the potential role of single photon emission computed tomography (SPECT)/computed tomography (CT) in the clinical management of gout and complications (e.g., chronic kidney disease and cardiovascular disease).
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Yan Zha
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
- Departnent of Nephrology, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Lin Liu
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Ang Liao
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Ziqiang Dong
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Neil Roberts
- School of Clinical Sciences, The Queen’s Medical Research Institute, University of Edinburgh, EdinburghEH8 9YL , United Kingdom
| | - Yaying Li
- Department of Nuclear Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
53
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
54
|
Hehl L, Creasy KT, Vitali C, Scorletti E, Seeling KS, Vell MS, Rendel MD, Conlon D, Vujkovic M, Zandvakili I, Trautwein C, Schneider KM, Rader DJ, Schneider CV. A genome-first approach to variants in MLXIPL and their association with hepatic steatosis and plasma lipids. Hepatol Commun 2024; 8:e0427. [PMID: 38668731 DOI: 10.1097/hc9.0000000000000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Common variants of the max-like protein X (MLX)-interacting protein-like (MLXIPL) gene, encoding the transcription factor carbohydrate-responsive element-binding protein, have been shown to be associated with plasma triglyceride levels. However, the role of these variants in steatotic liver disease (SLD) is unclear. METHODS We used a genome-first approach to analyze a variety of metabolic phenotypes and clinical outcomes associated with a common missense variant in MLXIPL, Gln241His, in 2 large biobanks: the UK Biobank and the Penn Medicine Biobank. RESULTS Carriers of MLXIPL Gln241His were associated with significantly lower serum levels of triglycerides, apolipoprotein-B, gamma-glutamyl transferase, and alkaline phosphatase. Additionally, MLXIPL Gln241His carriers were associated with significantly higher serum levels of HDL cholesterol and alanine aminotransferase. Carriers homozygous for MLXIPL Gln241His showed a higher risk of SLD in 2 unrelated cohorts. Carriers of MLXIPL Gln241His were especially more likely to be diagnosed with SLD if they were female, obese, and/or also carried the PNPLA3 I148M variant. Furthermore, the heterozygous carriage of MLXIPL Gln241His was associated with significantly higher all-cause, liver-related, and cardiovascular mortality rates. Nuclear magnetic resonance metabolomics data indicated that carriage of MLXIPL Gln241His was significantly associated with lower serum levels of VLDL and increased serum levels of HDL cholesterol. CONCLUSIONS Analyses of the MLXIPL Gln241His polymorphism showed a significant association with a higher risk of SLD diagnosis and elevated serum alanine aminotransferase as well as significantly lower serum triglycerides and apolipoprotein-B levels. MLXIPL might, therefore, be a potential pharmacological target for the treatment of SLD and hyperlipidemia, notably for patients at risk. More mechanistic studies are needed to better understand the role of MLXIPL Gln241His on lipid metabolism and steatosis development.
Collapse
Affiliation(s)
- Leonida Hehl
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kate T Creasy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharina S Seeling
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Mara S Vell
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Miriam D Rendel
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Donna Conlon
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marijana Vujkovic
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Inuk Zandvakili
- Department of Medicine, Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Internal Medicine, Division of Digestive Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christian Trautwein
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kai M Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolin V Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
55
|
Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol 2024; 15:1375461. [PMID: 38711514 PMCID: PMC11070519 DOI: 10.3389/fimmu.2024.1375461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
56
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
57
|
Liu Y, Li S, Zhang X, Huang B, Fu Y, Li X, Cui J. Association between serum uric acid and deep venous thrombosis in European populations: A two-sample Mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:1021-1027. [PMID: 38402000 DOI: 10.1016/j.numecd.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/28/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND AIM Previous experimental and observational studies showed that serum uric acid (SUA) was associated with deep venous thrombosis (DVT), but the causal relationship is unclear. This study aimed to explore the potential causal association between SUA and DVT. METHODS AND RESULTS We designed a two-sample Mendelian randomization (MR) analysis by using summary-level data from large genome-wide association studies performed in European individuals. A total of 14 SUA-related single-nucleotide polymorphisms (SNPs) (P value < 5 × 10-8) were identified as instrumental variables. The inverse variance weighted method was used as the primary method to compute the odds ratios (ORs) and 95 % confidence intervals (95 % CIs) for per standard deviation increase in SUA. MR Egger, weighted median, weighted mode, and simple mode were also applied to test the robustness of the results. We found no significant causal effects of serum uric acid on deep venous thrombosis (odds ratio [OR]: 1.000, 95 % confidence interval [CI]: 0.998-1.002, p = 0.78) by using inverse variance weighted. MR analyses based on other methods showed similar results. CONCLUSIONS There was no potential causal associations between higher genetically predicted SUA levels and increased risk of deep venous thrombosis. Further, MR studies with more valid SNPs and more DVT cases are needed. Validation of the findings is also recommended.
Collapse
Affiliation(s)
- Yue Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiwei Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinxin Zhang
- Department of Nephropathy, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuhong Fu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
58
|
Wen S, Arakawa H, Tamai I. Uric acid in health and disease: From physiological functions to pathogenic mechanisms. Pharmacol Ther 2024; 256:108615. [PMID: 38382882 DOI: 10.1016/j.pharmthera.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
59
|
Huang H, Gu Q, Nie SM, Wang JD, Zhao H, Zhai BW, Zhang MY, Fu YJ. Untargeted metabolomics reveals the regulatory effect of geniposidic acid on lipid accumulation in HepG2 cells and Caenorhabditis elegans and validation in hyperlipidemic hamsters. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155295. [PMID: 38277945 DOI: 10.1016/j.phymed.2023.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Geniposidic acid (GPA) alleviates oxidative stress and inflammation in mice However, whether it can effectively regulate lipid accumulation and prevent hyperlipidemia requires further investigation. PURPOSE This study combined the untargeted metabolomics of cells and a Caenorhabditis elegans model to evaluate the anti-hyperlipidemic potential of GPA by modulating oxidative stress and regulating lipid metabolism. A golden hamster model of hyperlipidemia was used to further validate the lipid-lowering effect and mechanism of action of GPA. METHODS Chemical staining, immunofluorescence, and flow cytometry were performed to examine the effects of GPA on lipid accumulation and oxidative stress. Untargeted metabolomic analysis of cells and C. elegans was performed using ultra-performance liquid chromatography coupled with quadrupole electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap MS) to identify biomarkers altered by GPA action, analyze the affected metabolic pathways, and validate the mechanisms by which GPA regulates lipid metabolism and oxidative stress. A golden hamster model of hyperlipidemia was established to test the lipid-lowering effects of GPA. Body weight, biochemical markers, rate-limiting enzymes, and key proteins were assessed. Hematoxylin and eosin (H&E) and Oil Red O staining were performed. RESULTS Phenotypic data showed that GPA decreased free fatty acid (FFA)-induced lipid buildup and high reactive oxygen species (ROS) levels, reversed the decrease in mitochondrial membrane potential (MMP), and increased the cellular reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio. GPA also reduces high glucose-induced lipid build-up and ROS production in C. elegans. Metabolomic analysis showed that GPA affected purine, lipid, and amino acid metabolism. Moreover, GPA inhibited xanthine oxidase (XOD), glutamate dehydrogenase (GLDH), fatty acid synthase (FAS), phosphorylation of P38 MAPK, and upregulated the expression of SIRT3 and CPT1A protein production to control lipid metabolism and produce antioxidant benefits in cells and golden hamsters. CONCLUSION Current evidence suggests that GPA can effectively regulate lipid metabolism and the oxidative stress response, and has the potential to prevent hyperlipidemia. This study also provided an effective method for evaluating the mechanism of action of GPA.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Mao-Yu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
60
|
Chen H, Shi D, Guo C, Zhang W, Guo Y, Yang F, Wang R, Zhang J, Fang Z, Yan Y, Mao S, Yao X. Can uric acid affect the immune microenvironment in bladder cancer? A single-center multi-omics study. Mol Carcinog 2024; 63:461-478. [PMID: 38018692 DOI: 10.1002/mc.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Metabolic abnormalities are one of the important factors in bladder cancer (BCa) progression and microenvironmental disturbance. As an important product of purine metabolism, uric acid's (UA) role in BCa metabolism and immunotherapy remains unclear. In this study, we conducted a retrospective analysis of a cohort comprising 39 BCa patients treated with PD-1 and 169 patients who underwent radical cystectomy at Shanghai Tenth People's Hospital. Kaplan-Meier curves and Cox regression analysis showed that the prognosis of patients with high UA is worse (p = 0.007), and high UA is an independent risk factor for cancer specific survival in patients with BCa (p = 0.025). We established a hyperuricemia mouse model with BCa subcutaneous xenografts in vivo. The results revealed that the subcutaneous tumors of hyperuricemia mice had a greater weight and volume in comparison with the control group. Through flow cytometric analysis, the proportion of CD8+ and CD4+ T cells in these subcutaneous tumors was seen to decline significantly. We also evaluated the relationship of UA and BCa by muti-omic analysis. UA related genes were significantly increased in the CD8+ T cell of non-responders to immunotherapy by single-cell sequencing. An 11-gene UA related signature was constructed and the risk score negatively correlated with various immune cells and immune checkpoints. Finally, a nomogram was established using a UA related signature to forecast the survival rate of patients with BCa. Collectively, this study demonstrated that UA was an independent prognostic biomarker for BCa and was associated with worse immunotherapy response.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Donghui Shi
- Department of Urology, Suzhou Wuzhong People's Hospital, Wuzhong, China
| | - Changfeng Guo
- Department of Logistic Support, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zujun Fang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
61
|
Hegazi OE, Alalalmeh SO, Shahwan M, Jairoun AA, Alourfi MM, Bokhari GA, Alkhattabi A, Alsharif S, Aljehani MA, Alsabban AM, Almtrafi M, Zakri YA, AlMahmoud A, Alghamdi KM, Ashour AM, Alorfi NM. Exploring Promising Therapies for Non-Alcoholic Fatty Liver Disease: A ClinicalTrials.gov Analysis. Diabetes Metab Syndr Obes 2024; 17:545-561. [PMID: 38327733 PMCID: PMC10847589 DOI: 10.2147/dmso.s448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common disease and has been increasing in recent years. To date, no FDA-approved drug specifically targets NAFLD. Methods The terms "Non-alcoholic Fatty Liver Disease" and "NAFLD" were used in a search of ClinicalTrials.gov on August 24, 2023. Two evaluators independently examined the trials using predetermined eligibility criteria. Studies had to be interventional, NAFLD focused, in Phase IV, and completed to be eligible for this review. Results The ClinicalTrials.gov database was searched for trials examining pharmacotherapeutics in NAFLD. The search revealed 1364 trials, with 31 meeting the inclusion criteria. Out of these, 19 were finalized for evaluation. The dominant intervention model was Parallel. The most prevalent studies were in Korea (26.3%) and China (21.1%). The most common intervention was metformin (12.1%), with others like Exenatide and Pioglitazone accounting for 9.1%. Conclusion Therapeutics used to manage NAFLD are limited. However, various medications offer potential benefits. Further investigations are definitely warranted.
Collapse
Affiliation(s)
- Omar E Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mansour M Alourfi
- Internal medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Department of gastroenterology, East Jeddah hospital, Jeddah, Saudi Arabia
| | | | | | - Saeed Alsharif
- Gastroenterology Department, Armed force Hospital of southern region, Khamis Mushait, Saudi Arabia
| | - Mohannad Abdulrahman Aljehani
- Division of Gastroenterology, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Mohammad Almtrafi
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ysear Abdulaziz Zakri
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdullah AlMahmoud
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Khalid Mohammed Alghamdi
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
62
|
Andreozzi F, Mancuso E, Mazza E, Mannino GC, Fiorentino TV, Arturi F, Succurro E, Perticone M, Sciacqua A, Montalcini T, Pujia A, Sesti G. One-hour post-load glucose levels are associated with hepatic steatosis assessed by transient elastography. Diabetes Obes Metab 2024; 26:682-689. [PMID: 37953652 DOI: 10.1111/dom.15358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
AIM To examine the association between 1-hour plasma glucose (PG) concentration and markers of non-alcoholic fatty liver disease (NAFLD) assessed by transient elastography (TE). METHODS We performed TE in 107 metabolically well-characterized non-diabetic White individuals. Controlled attenuation parameter (CAP) was used to quantify liver steatosis, while liver stiffness marker (LS) was used to evaluate fibrosis. RESULTS Controlled attenuation parameter correlated significantly with 1-hour PG (r = 0.301, P < 0.01), fasting insulin (r = 0.285, P < 0.01), 2-hour insulin (r = 0.257, P < 0.02), homeostasis model assessment index of insulin resistance (r = 0.252, P < 0.01), high-density lipoprotein cholesterol (r = -0.252, P < 0.02), body mass index (BMI; r = 0.248, P < 0.02) and age (r = 0.212, P < 0.03), after correction for age, sex and BMI. In a multivariable linear regression analysis, 1-hour PG (β = 0.274, P = 0.008) and fasting insulin levels (β = 0.225, P = 0.029) were found to be independent predictors of CAP. After excluding subjects with prediabetes, 1-hour PG was the sole predictor of CAP variation (β = 0.442, P < 0.001). In a logistic regression model, we observed that the group with 1-hour PG ≥ 8.6 mmol/L (155 mg/dL) had a significantly higher risk of steatosis (odds ratio 3.98, 95% confidence interval 1.43-11.13; P = 0.008) than individuals with 1-hour PG < 8.6 mmol/L, after correction for potential confounders. No association was observed between 1-hour PG and LS. CONCLUSION Our data confirm that 1-hour PG ≥ 8.6 mmol/L is associated with higher signs of NAFLD, even among individuals with normal glucose tolerance, categorized as low risk by canonical diagnostic standards. TE is a safe low-impact approach that could be employed for stratifying the risk profile in these patients, with a high level of accuracy.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
- Department of Clinical and Experimental Medicine, University Magna Greaecia of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
63
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
64
|
Wang Y, Xu Y, Hu T, Xiao Y, Wang Y, Ma X, Yu H, Bao Y. Associations of Serum Uric Acid to High-Density Lipoprotein Cholesterol Ratio with Trunk Fat Mass and Visceral Fat Accumulation. Diabetes Metab Syndr Obes 2024; 17:121-129. [PMID: 38222036 PMCID: PMC10787549 DOI: 10.2147/dmso.s444142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background It has been reported recently that the ratio of uric acid to high-density lipoprotein cholesterol (UHR) is correlated with several metabolic disorders. The present study aimed to investigate the associations of UHR with body fat content and distribution. Methods This study enrolled 300 participants (58 men and 242 women) aged 18 to 65 years. The levels of serum uric acid and high-density lipoprotein cholesterol were measured by standard enzymatic methods. The overall fat content and segmental fat distribution were assessed with an automatic bioelectrical impedance analyzer. In the population with obesity, the visceral fat area (VFA) and subcutaneous fat area (SFA) were measured using magnetic resonance imaging. Results Among the study population, 219 individuals (73.0%) were with obesity. The median level of UHR in individuals with obesity was 33.7% (26.2% - 45.9%), which was significantly higher than that in those without obesity [22.6% (17.0% - 34.4%), P < 0.01]. UHR was positively associated with overall fat content and segmental fat distribution parameters (all P < 0.01). In multivariate linear regression analysis, compared with body mass index, waist circumference was more closely associated with UHR (standardized β = 0.427, P < 0.001) after adjusting for confounding factors. Additionally, total fat mass (standardized β = 0.225, P = 0.002) and trunk fat mass (standardized β = 0.296, P = 0.036) were more closely linked to UHR than total fat-free mass and leg fat mass, respectively. In the population with obesity, VFA was independently correlated with UHR (P < 0.01), while SFA was not associated with UHR. Conclusion UHR was significantly associated with overall fat content and trunk fat accumulation. In the population with obesity, UHR was positively associated with VFA. Attention should be paid to the role of excessive trunk fat mass in the relationship between UHR and metabolic disorders.
Collapse
Affiliation(s)
- Yansu Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Yiting Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Tingting Hu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Yunfeng Xiao
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| |
Collapse
|
65
|
Kuwabara M, Nakai M, Sumita Y, Iwanaga Y, Ae R, Kodama T, Hisatome I, Kamatani N. Xanthine oxidase inhibitors treatment or discontinuation effects on mortality: evidence of xanthine oxidase inhibitors withdrawal syndrome. Front Pharmacol 2024; 14:1289386. [PMID: 38259292 PMCID: PMC10800388 DOI: 10.3389/fphar.2023.1289386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives: This study investigates the impact of xanthine oxidase inhibitors (XOI) on mortality in patients with cardiovascular diseases. XOI withdrawal has been reported to increased mortality risk due to rapid adenosine triphosphate (ATP) deficiency. This study aims to determine whether XOI treatment reduces mortality and whether XOI withdrawal increases mortality. Methods: This is a real-world database study using the Japanese Registry of All Cardiac and Vascular Diseases (J-ROAD). We analyzed 1,648,891 hospitalized patients aged 20-90 with acute coronary syndrome or heart failure. In the first study, mortality rates were compared between patients without urate-lowering agents (n = 1,292,486) and those with XOI agents (n = 315,388, excluding 41,017 on other urate-lowering agents). In the second study, mortality rates were compared between the XOI continuous medication group (n = 226,261) and the XOI withdrawal group (n = 89,127). Results: After multiple adjustments, XOI treatment group showed significantly lower mortality compared with that without any urate-lowering agent (odds ratio (OR), 0.576, 95% confidence interval (CI), 0.567-0.587, p < .001). In the sub-analysis, the group with allopurinol (OR, 0.578; 95% CI, 0.557-0.600), febuxostat (OR, 0.610; 95% CI, 0.599-0.622), and topiroxostat (HR, 0.545; 95% CI, 0.473-0.628) showed lower OR of mortality compared with that without any urate-lowering agent. XOI withdrawal group led to significantly higher death rates compared to XOI continuous group (19.8% vs. 0.03%; p < .001). Conclusion: XOI treatment for patients with cardiovascular diseases is associated with reduced mortality. Conversely, XOI withdrawal is linked to elevated mortality risk. This emphasizes the importance of both prescribing and discontinuing XOI carefully to optimize patient outcomes.
Collapse
Affiliation(s)
- Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo, Japan
- National Cerebral and Cardiovascular Center, Suita, Japan
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | - Yoko Sumita
- National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | - Ichiro Hisatome
- National Hospital Organization, Yonago Medical Center, Yonago, Japan
| | | |
Collapse
|
66
|
Kityo A, Lee SA. Longitudinal changes in high sensitivity C-reactive protein associated with serum uric acid in the Korean Genome and Epidemiology Study. Sci Rep 2024; 14:374. [PMID: 38172510 PMCID: PMC10764782 DOI: 10.1038/s41598-023-50951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Cross-sectional studies support the role of serum uric acid (SUA) in inflammation, but evidence from cohort studies is scarce. Longitudinal associations between SUA and high-sensitivity C-reactive protein (hs-CRP) were examined in the general population. Data for participants from the Health Examinees-Gem cohort (n = 50,028; 40-69 years; 67% women) who were examined between 2004 and 2013 and followed up until 2016 were analyzed. SUA and hs-CRP were measured at baseline and during follow-up. SUA was evaluated as a continuous variable and was also divided into sex-specific quartiles. Mean hs-CRP levels at follow-up were evaluated using multivariable proportional odds regression, with non-linear smoothed baseline hs-CRP levels serving as a covariate. Selected pathological markers were also examined in relation to hs-CRP. Increased levels of SUA at baseline were related to increased levels of hs-CRP at follow-up [regression coefficient per mg/dL increase in baseline SUA (β) = 0.08, 95% confidence interval (CI), 0.040-0.128]. A dose-response relationship was observed, (P for linear trend = 0.0015). The mean values of hs-CRP were highest among participants with the highest follow-up but lowest baseline SUA levels. Elevated hs-CRP levels at follow up (> 3 mg/L) were positively related to fasting blood glucose levels, triglycerides levels, liver enzymes, and blood pressure, but negatively related to high density lipoprotein cholesterol levels per unit increase in baseline hs-CRP. High SUA levels were associated with high hs-CRP levels, suggesting a potential role of SUA in inflammation. However, additional research is needed to confirm these findings.
Collapse
Affiliation(s)
- Anthony Kityo
- Department of Preventive Medicine, School of Medicine, Kangwon National University, Gangwon, 24341, Republic of Korea
| | - Sang-Ah Lee
- Department of Preventive Medicine, School of Medicine, Kangwon National University, Gangwon, 24341, Republic of Korea.
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
67
|
Almuqrin A, Alshuweishi YA, Alfaifi M, Daghistani H, Al-Sheikh YA, Alfhili MA. Prevalence and association of hyperuricemia with liver function in Saudi Arabia: a large cross-sectional study. Ann Saudi Med 2024; 44:18-25. [PMID: 38311853 PMCID: PMC10839458 DOI: 10.5144/0256-4947.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Hyperuricemia is linked to an increased risk of various chronic diseases, but data on the prevalence and association of hyperuricemia with liver function in Saudi Arabia are scarce. OBJECTIVES Evaluate the prevalence, association, and risk measures of hyperuricemia and liver function in the Saudi population. DESIGN Retrospective, cross-sectional analysis. SETTING Database on large portion of Saudi population. PATIENTS AND METHODS Laboratory data, age, and gender of the studied subjects were collected from Al Borg Diagnostics. Subjects were stratified, based on their uric acid (UA) levels, into three groups: hypouricemic, normouricemic, and hyperuricemic. The association of UA with liver enzymes was examined in all three groups. MAIN OUTCOME MEASURES Association of serum UA levels with alanine transaminase (ALT), aspartate transferase (AST), alkaline phosphatase (ALP), and total bilirubin (TB). SAMPLE SIZE 13 314 subjects. RESULTS Our study showed that the prevalence of hyperuricemia in the Saudi population is 17.3% (20.3% in males and 15.1% in females). We also found a positive correlation between ALT, AST, and TB with UA levels. The risk of being hyperuricemic was significantly increased in individuals with elevated ALT, AST, and TB. Individuals with elevated ALT, AST, and total TB had a higher chance of having hyperuricemia than those with normal activity. Notably, ALT, AST, and TB had good discriminating capacity for hyperuricemia. CONCLUSIONS Hyperuricemia is highly prevalent in the Saudi population and is associated with compromised liver function. However, further studies are needed to elucidate the mechanisms underlying these findings in large prospective cohort studies in different populations. LIMITATIONS Lack of data on other potential confounding variables.
Collapse
Affiliation(s)
- Abdulaziz Almuqrin
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yazeed Abdullah Alshuweishi
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alfaifi
- From the Department of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hussam Daghistani
- From the Department of Clinical Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yazeed A. Al-Sheikh
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alfhili
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
68
|
Tiwari R, Verma S, Verma N, Verma D, Narayan J. Correlation of serum uric acid levels with certain anthropometric parameters in prediabetic and drug-naive diabetic subjects. Ann Afr Med 2024; 23:13-18. [PMID: 38358165 PMCID: PMC10922179 DOI: 10.4103/aam.aam_40_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Uric acid is produced during the metabolism of nucleotide and adenosine triphosphate and contains the final product of human purine metabolism. It acts both as an antioxidant and pro-inflammatory marker and has a positive association with visceral fat in overweight subjects. The aim of the present study is to find an association of uric acid level with certain anthropometric parameters in subjects having type 2 diabetes. Materials and Methods The study included 124 urban drug-naive diabetic Indian subjects above 18 years of age from the general population of the city of North India. Uric acid concentrations were estimated by the uricase method. Fasting plasma glucose (FPG) concentrations were estimated by the glucose oxidase-peroxidase method. Anthropometric measurements and information on lifestyle factors and disease history were collected through in-person meeting. Results All participants of the study subjects had a body mass index (BMI) of more than 23.5. BMI, waist-to-hip ratio (WHR), waist-to-height ratio, waist circumference, neck circumference, weight, age, sagittal abdominal diameter (SAD), skinfold thickness, and body roundness index were positively correlated with the serum uric acid level. The correlation of weight, BMI, SAD, and WHR was statistically significant. Conclusion We found that serum uric acid level increases as body fat content increases. Statistical data show remarkable results for a significant correlation of uric acid level with BMI, WHR, SAD, and FPG. Hypertrophy occurs as a result of inflammatory processes and oxidative stress when the supply of energy starts to exceed the storage capacity of adipocytes, as a result, adipokines such as interleukin (IL)-1, IL-6, and tumor-necrosis factor-alpha are released more frequently which lead to low-grade chronic inflammation. Uric acid levels are much lean toward visceral obesity than overall body fat content.
Collapse
Affiliation(s)
- Ritu Tiwari
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Shivam Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Narsingh Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Dileep Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Jagdish Narayan
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
69
|
Johnson RJ, Sánchez-Lozada LG, Lanaspa MA. The fructose survival hypothesis as a mechanism for unifying the various obesity hypotheses. Obesity (Silver Spring) 2024; 32:12-22. [PMID: 37846155 DOI: 10.1002/oby.23920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
The pathogenesis of obesity remains contested. Although genetics is important, the rapid rise in obesity with Western culture and diet suggests an environmental component. Today, some of the major hypotheses for obesity include the energy balance hypothesis, the carbohydrate-insulin model, the protein-leverage hypothesis, and the seed oil hypothesis. Each hypothesis has its own support, creating controversy over their respective roles in driving obesity. Here we propose that all hypotheses are largely correct and can be unified by another dietary hypothesis, the fructose survival hypothesis. Fructose is unique in resetting ATP levels to a lower level in the cell as a consequence of suppressing mitochondrial function, while blocking the replacement of ATP from fat. The low intracellular ATP levels result in carbohydrate-dependent hunger, impaired satiety (leptin resistance), and metabolic effects that result in the increased intake of energy-dense fats. This hypothesis emphasizes the unique role of carbohydrates in stimulating intake while fat provides the main source of energy. Thus, obesity is a disorder of energy metabolism, in which there is low usable energy (ATP) in the setting of elevated total energy. This leads to metabolic effects independent of excess energy while the excess energy drives weight gain.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
70
|
Zhang B, Di H, Zhang Y, Han X, Yin Y, Han Y, Cao Y, Zeng X. Time- and Concentration-Dependent Stimulation of Oxidative Stress in Chondrocytes by Intracellular Soluble Urate. Curr Mol Med 2024; 24:233-243. [PMID: 36578257 DOI: 10.2174/1566524023666221227102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Gout could result in irreversible bone erosion, and chondrocyte might be involved in the process. Increased soluble urate is the early stage of gout and is strongly oxidative. OBJECTIVE To explore the effect of intracellular urate on the oxidative status of chondrocytes. METHODS A chondrocyte model was used. Serial concentrations of exogenous urate were incubated with chondrocytes for increasing amounts of time. Reactive oxygen species (ROS), oxidant, and anti-oxidant molecules were measured with biochemical assays, rt-PCR, and western blot. A urate transport inhibitor and oxidative inhibitors were used to confirm the effect of exogenous urate. RESULTS All concentrations of exogenous urate stimulated the production of ROS in a time- and concentration-dependent manner, as well as oxidant molecules, including hydrogen peroxide (H2O2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide (NO) inducible nitric oxide synthase (iNOS), and these effects, could be inhibited by oxidant inhibitors. However, anti-oxidant molecules, including acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), ataxia-telangiectasia mutated (ATM), heme oxygenase-1 (HO-1), and the transcription factor nuclear factor erythroid 2 (NF-E2)-related (Nrf2), was decreased by high concentrations of exogenous urate after prolonged incubation, but not by low to medium concentrations of exogenous urate. By inhibiting soluble urate trafficking, benzbromarone significantly suppressed the effect of urate stimulus on the oxidant and anti-oxidant molecules. CONCLUSION Intracellular soluble urate could regulate chondrocyte redox balance in a time and concentration-dependent manner, and would be a target for regulating and protecting chondrocyte function in the early gout stage.
Collapse
Affiliation(s)
- Bingqing Zhang
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Di
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yun Zhang
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinxin Han
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Yin
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingdong Han
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuejun Zeng
- Department of General Internal Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
71
|
Liu Z, Huang H, Xie J, Hou L, Xu C. Different dietary carbohydrate component intakes and long-term outcomes in patients with NAFLD: results of longitudinal analysis from the UK Biobank. Nutr J 2023; 22:67. [PMID: 38062487 PMCID: PMC10704713 DOI: 10.1186/s12937-023-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND This study aimed to investigate the association between the intake of different dietary carbohydrate components and the long-term outcomes of non-alcoholic fatty liver disease (NAFLD). METHODS We used prospective data from 26,729 NAFLD participants from the UK Biobank cohort study. Dietary information was recorded by online 24-hour questionnaires (Oxford WebQ). Consumption of different carbohydrate components was calculated by the UK Nutrient Databank Food Composition Table. Cox proportional hazards models were used to estimate the adjusted hazard ratio (HR) and 95% confidence interval (CI). A substitution model was used to estimate the associations of hypothetical substitution for free sugars. RESULTS During a median of 10.5 (IQR: 10.2-11.2) years and a total of 280,135 person-years of follow-up, 310 incident end-stage liver disease (ESLD) and 1750 deaths were recorded. Compared with the lowest quartile, the multi-adjusted HRs (95% CI) of incident ESLD in the highest quartile were 1.65 (1.14-2.39) for free sugars, 0.51 (0.35-0.74) for non-free sugars, and 0.55 (0.36-0.83) for fiber. For overall mortality, the multi-adjusted HRs (95% CI) in the highest quartile were 1.21 (1.04-1.39) for free sugars, 0.79 (0.68-0.92) for non-free sugars, and 0.79 (0.67-0.94) for fiber. Substituting free sugars with equal amounts of non-free sugars, starch or fiber was associated with a lower risk of incident ESLD and overall mortality. CONCLUSIONS A lower intake of free sugars and a higher intake of fiber are associated with a lower incidence of ESLD and overall mortality in NAFLD patients. These findings support the important role of the quality of dietary carbohydrates in preventing ESLD and overall mortality in NAFLD patients.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Hangkai Huang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiarong Xie
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, 315010, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, 310003, China
| | - Linxiao Hou
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, 310003, China.
| |
Collapse
|
72
|
Özdede M, Guven AT. Machine Learning Insights Into Uric Acid Elevation With Thiazide Therapy Commencement and Intensification. Cureus 2023; 15:e51109. [PMID: 38274913 PMCID: PMC10809736 DOI: 10.7759/cureus.51109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/27/2024] Open
Abstract
Background Elevated serum uric acid, associated with cardiovascular conditions such as atherosclerotic heart disease, hypertension, and heart failure, can be elevated by thiazide or thiazide-like drugs (THZ), essential in hypertension management. Identifying clinical determinants affecting THZ-related uric acid elevation is critical. Methods In this retrospective cross-sectional study, we explored the clinical determinants influencing uric acid elevation related to THZ, focusing on patients where THZ was initiated or the dose escalated. A cohort of 143 patients was analyzed, collecting baseline and control uric acid levels, alongside basic biochemical studies and clinical data. Feature selection was conducted utilizing criteria based on mean squared error increase and enhancement in node purity. Four machine learning algorithms - Random Forest, Neural Network, Support Vector Machine, and Gradient Boosting regressions - were applied to pinpoint clinical influencers. Results Significant features include uncontrolled diabetes, index estimated Glomerular Filtration Rate (eGFR) level, absence of insulin, action of indapamide, and absence of statin treatment, with absence of Sodium-glucose cotransporter 2 inhibitors (SGLT2i), low dose aspirin exposure, and older age also being noteworthy. Among the applied models, the Gradient Boosting regression model outperformed the others, exhibiting the lowest Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) values, and the highest R2 value (0.779). While Random Forest and Neural Network regression models were able to fit the data adequately, the Support Vector Machine demonstrated inferior metrics. Conclusions Machine learning algorithms are adept at accurately identifying the factors linked to uric acid fluctuations caused by THZ. This proficiency aids in customizing treatments more effectively, reducing the need to unnecessarily avoid THZ, and providing guidance on its use to prevent instances where uric acid levels could become problematic.
Collapse
Affiliation(s)
- Murat Özdede
- Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, TUR
| | - Alper T Guven
- Internal Medicine, Baskent University Faculty of Medicine, Ankara, TUR
| |
Collapse
|
73
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
74
|
Agraib LM, Al-Shami I, Alkhatib B, Al-Dalaeen AM. Do macronutrient intakes affect obesity indices in Jordanian adults? Am J Hum Biol 2023; 35:e23970. [PMID: 37506187 DOI: 10.1002/ajhb.23970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To determine whether macronutrient intake is associated with novel obesity indices, including the conicity index (CI), body adiposity index (BAI), abdominal volume index (AVI), body roundness index (BRI), and weight-adjusted-waist index (WWI). METHODOLOGY A cross-sectional survey was conducted with 491 adults (344 males and 147 females) working at different universities in Jordan (July-December 2019). Daily intake of energy (kcal), carbohydrates (g), protein (g), and fat (g) was obtained using 24-h recalls collected over 2 days. Additionally, obesity indices were calculated. RESULTS Regardless of sex, energy, and carbohydrate intakes had a moderately significant positive association, whereas protein and fat intakes had a weakly significant association with BAI, AVI, and BRI. CI and WWI showed a weakly significant association with all macronutrients in males, a moderate correlation with energy and carbohydrate intake, and a weak association with fat and protein intake in females. Male participants had significant increases in the CI (T1 = 1.29 ± 0.01 vs. T3 = 1.36 ± 0.01, p = .018), AVI (T1 = 17.96 ± 0.52 vs. T3 = 22.81 ± 0.57, p = .011), and WWI (T1 = 10.72 ± 0.11 vs. T3 = 11.29 ± 0.09, p = .047) indices scores through the carbohydrate intake tertiles. Additionally, there was a significant increase in scores of AVI (T1 = 18.60 ± 0.56 vs. T3 = 21.42 ± 0.46, p = .048) and an almost significant increase in CI (T1 = 1.30 ± 0.01vs. T3 = 1.33 ± 0.01, p = .056) through the tertiles of protein intake. CONCLUSION Macronutrients were significantly associated with all indices. The effect of macronutrients on obesity indices is sex-based. Among men, CI, AVI, and WWI were the indices most affected by carbohydrate and protein intakes. Future studies should further investigate food sources and macronutrient quality.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Islam Al-Shami
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Anfal M Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
75
|
Beiriger J, Chauhan K, Khan A, Shahzad T, Parra NS, Zhang P, Chen S, Nguyen A, Yan B, Bruckbauer J, Halegoua-DeMarzio D. Advancements in Understanding and Treating NAFLD: A Comprehensive Review of Metabolic-Associated Fatty Liver Disease and Emerging Therapies. LIVERS 2023; 3:637-656. [DOI: 10.3390/livers3040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This paper provides a comprehensive review of the current understanding of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH), focusing on key factors influencing its pathogenesis and emerging therapeutic strategies. This review highlights the growing prevalence of NAFLD and NASH, emphasizing their multifactorial nature. The manuscript identifies various contributors to NAFLD development, including genetic, dietary, and environmental factors, while examining the intricate interplay between these factors and their impact on hepatic lipid metabolism, inflammation, and insulin resistance. Genetic predisposition, dietary fat intake, and excessive fructose consumption are discussed as significant contributors to NAFLD progression. The article emphasizes the lack of a single therapeutic approach and underscores the need for combination strategies. Lifestyle interventions, particularly weight loss through diet and exercise, remain crucial, while pharmacological options like GLP-1 receptor agonists, obeticholic acid, lanifibranor, and resmetirom show promise but require further validation. Bariatric surgery and emerging endoscopic procedures offer potential in eligible patients. In sum, this article underscores the complexity of NAFLD and NASH, addresses key factors influencing pathogenesis, and discusses emerging therapies advocating for a multifaceted approach to this increasingly prevalent and clinically relevant condition.
Collapse
Affiliation(s)
- Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Taha Shahzad
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Natalia Salinas Parra
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Peter Zhang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Sarah Chen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Anh Nguyen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Brian Yan
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - John Bruckbauer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
76
|
Yang W, Jiang W, Guo S. Regulation of Macronutrients in Insulin Resistance and Glucose Homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023; 15:4671. [PMID: 37960324 PMCID: PMC10647592 DOI: 10.3390/nu15214671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (W.Y.); (W.J.)
| |
Collapse
|
77
|
Weiner J, Dommel S, Gebhardt C, Hanschkow M, Popkova Y, Krause K, Klöting N, Blüher M, Schiller J, Heiker JT. Differential expression of immunoregulatory cytokines in adipose tissue and liver in response to high fat and high sugar diets in female mice. Front Nutr 2023; 10:1275160. [PMID: 38024380 PMCID: PMC10655005 DOI: 10.3389/fnut.2023.1275160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
A comprehensive understanding of how dietary components impact immunoregulatory gene expression in adipose tissue (AT) and liver, and their respective contributions to metabolic health in mice, remains limited. The current study aimed to investigate the metabolic consequences of a high-sucrose diet (HSD) and a high-fat diet (HFD) in female mice with a focus on differential lipid- and sucrose-induced changes in immunoregulatory gene expression in AT and liver. Female C57BL/6 J mice were fed a purified and macronutrient matched high fat, high sugar, or control diets for 12 weeks. Mice were extensively phenotyped, including glucose and insulin tolerance tests, adipose and liver gene and protein expression analysis by qPCR and Western blot, tissue lipid analyses, as well as histological analyses. Compared to the control diet, HSD- and HFD-fed mice had significantly higher body weights, with pronounced obesity along with glucose intolerance and insulin resistance only in HFD-fed mice. HSD-fed mice exhibited an intermediate phenotype, with mild metabolic deterioration at the end of the study. AT lipid composition was significantly altered by both diets, and inflammatory gene expression was only significantly induced in HFD-fed mice. In the liver however, histological analysis revealed that both HSD- and HFD-fed mice had pronounced ectopic lipid deposition indicating hepatic steatosis, but more pronounced in HSD-fed mice. This was in line with significant induction of pro-inflammatory gene expression specifically in livers of HSD-fed mice. Overall, our findings suggest that HFD consumption in female mice induces more profound inflammation in AT with pronounced deterioration of metabolic health, whereas HSD induced more pronounced hepatic steatosis and inflammation without yet affecting glucose metabolism.
Collapse
Affiliation(s)
- Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Dommel
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
78
|
Li Y, Jiang T, Du M, He S, Huang N, Cheng B, Yan C, Tang W, Gao W, Guo H, Li Q, Wang Q. Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med 2023; 55:2417-2432. [PMID: 37907746 PMCID: PMC10689812 DOI: 10.1038/s12276-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.
Collapse
Affiliation(s)
- Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Ning Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
79
|
Huneault HE, Ramirez Tovar A, Sanchez-Torres C, Welsh JA, Vos MB. The Impact and Burden of Dietary Sugars on the Liver. Hepatol Commun 2023; 7:e0297. [PMID: 37930128 PMCID: PMC10629746 DOI: 10.1097/hc9.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
NAFLD, or metabolic dysfunction-associated steatotic liver disease, has increased in prevalence hand in hand with the rise in obesity and increased free sugars in the food supply. The causes of NAFLD are genetic in origin combined with environmental drivers of the disease phenotype. Dietary intake of added sugars has been shown to have a major role in the phenotypic onset and progression of the disease. Simple sugars are key drivers of steatosis, likely through fueling de novo lipogenesis, the conversion of excess carbohydrates into fatty acids, but also appear to upregulate lipogenic metabolism and trigger hyperinsulinemia, another driver. NAFLD carries a clinical burden as it is associated with obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Patient quality of life is also impacted, and there is an enormous economic burden due to healthcare use, which is likely to increase in the coming years. This review aims to discuss the role of dietary sugar in NAFLD pathogenesis, the health and economic burden, and the promising potential of sugar reduction to improve health outcomes for patients with this chronic liver disease.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ana Ramirez Tovar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Cristian Sanchez-Torres
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jean A. Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Miriam B. Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
80
|
Rupasinghe K, Hind J, Hegarty R. Updates in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Children. J Pediatr Gastroenterol Nutr 2023; 77:583-591. [PMID: 37592398 DOI: 10.1097/mpg.0000000000003919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The obesity epidemic is one of the major health concerns of the 21st century. Nonalcoholic fatty liver disease (NAFLD) is linked with the increased adiposity associated with obesity. NAFLD has become the most frequent cause of chronic liver disease in adults and children worldwide. Metabolic dysfunction-associated fatty liver disease (MAFLD) also known in children as pediatric fatty liver disease (PeFLD) type 2 has begun to supersede NAFLD as the preferred nomenclature in the pediatric population. Evidence suggests the etiology of MAFLD is multifactorial, related to the complex interplay of hormonal, nutritional, genetic, and environmental factors. Current limitations in accurate diagnostic biomarkers have rendered it a diagnosis of exclusion and it is important to exclude alternative or coexisting causes of PeFLD. Lifestyle changes and modifications remains the primary treatment modality in MAFLD in children. Weight loss of 7%-10% is described as reversing MAFLD in most patients. The Mediterranean diet also shows promise in reversing MAFLD. Pharmacological intervention is debatable in children, and though pediatric trials have not shown promise, other agents undergoing adult clinical trials show promise. This review outlines the latest evidence in pediatric MAFLD and its management.
Collapse
Affiliation(s)
- Kushila Rupasinghe
- From the Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
| | | | | |
Collapse
|
81
|
Rotaru L, Groppa L, Russu E, Chișlari L, Codreanu C, Spinei L, Arnaut O, Cornea C. Diabetes mellitus as a risk factor and comorbidity in gout. Folia Med (Plovdiv) 2023; 65:770-774. [PMID: 38351759 DOI: 10.3897/folmed.65.e91075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Metabolic disorders are a public health issue because of the complications they cause, but they are also a major risk factor for the onset of gout.
Collapse
Affiliation(s)
- Larisa Rotaru
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Liliana Groppa
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Eugeniu Russu
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Lia Chișlari
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Cătălin Codreanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Larisa Spinei
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Oleg Arnaut
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Cornelia Cornea
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| |
Collapse
|
82
|
Zhou F, He X, Liu D, Ye Y, Tian H, Tian L. Association between serum ferritin and uric acid levels and nonalcoholic fatty liver disease in the Chinese population. PeerJ 2023; 11:e16267. [PMID: 37904845 PMCID: PMC10613435 DOI: 10.7717/peerj.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
Background The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Accumulating evidence suggests that serum ferritin and uric acid (UA) are strongly associated with the risk of NAFLD, but no consensus has been reached. Objective We sought to demonstrate the association between serum ferritin, UA levels, and NAFLD risk in a large cohort study. Methods We separated 2,049 patients into non-NAFLD and NAFLD groups. The NAFLD group had four subgroups based on serum ferritin and four subgroups based on UA quartile levels. We used binary logistic regression to evaluate the correlation between serum ferritin, UA, and NAFLD. Additionally, an area under the curve (AUC) of receiver operating characteristic analysis (ROC) was used to predict the diagnostic value of combined serum ferritin and UA for NAFLD. Results Serum ferritin and UA levels were higher in the NAFLD group compared with the non-NAFLD group. Serum lipid and liver transaminase concentrations were elevated with the increase of serum ferritin and UA. The logistic regression results showed an independent correlation between serum ferritin, UA, and NAFLD. In the NAFLD group, the AUC value of serum ferritin and UA was 0.771. Conclusions Increased serum ferritin and UA levels are independent risk factors for NAFLD. Increased serum UA is a stronger risk factor for NAFLD than elevated serum ferritin. Serum ferritin and UA can be important predictors of NAFLD risk.
Collapse
Affiliation(s)
- Fangli Zhou
- West China Hospital, Sichuan University, Department of Endocrinology, Chengdu, Sichuan, China
| | - Xiaoli He
- West China Hospital, Sichuan University, Department of Outpatient, Chengdu, Sichuan, China
| | - Dan Liu
- West China Hospital, Sichuan University, Department of Endocrinology, Chengdu, Sichuan, China
| | - Yan Ye
- West China Fourth Hospital, Sichuan University, Department of Gastroenterology, Chengdu, Sichuan, China
| | - Haoming Tian
- West China Hospital, Sichuan University, Department of Endocrinology, Chengdu, Sichuan, China
| | - Li Tian
- West China Hospital, Sichuan University, Laboratory of Endocrinology and Metabolism, Department of Endocrinology, Chengdu, Sichuan, China
| |
Collapse
|
83
|
Arslanca SB, Caglar AT. Comprehensive analysis of macrosomia: exploring the association between first-trimester alanine aminotransferase and uric acid measurements in pregnant women. J Perinat Med 2023; 51:1040-1045. [PMID: 37490106 DOI: 10.1515/jpm-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Investigating the relationship between liver enzymes, uric acid (UA), and macrosomia will benefit physicians in the early detection of complications that may emerge during/after pregnancy. The study analyzed liver enzyme activity and UA levels in first-trimester pregnant for the risk of macrosomia. METHODS This retrospective cross-sectional research analyzed the data of pregnant women who gave birth between Jan 2021-2023. All data were extracted from medical records, and UA and AST-ALT were examined in all the participants. RESULTS Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were higher in the macrosomia (p<0.05). Similarly, UA levels were higher in the macrosomia (p<0.001). There was a moderate positive correlation between ALT and birth weight (r=0.168, p<0.01), while we found a strong positive correlation between UA and birth weight (r=0.355, p<0.01). In the ROC (receiver operating characteristic), Area Under the Curve (AUC) for ALT and UA was significant (p<0.0001) but not for AST (p=0.157). UA showed a predictive value for macrosomia with 68.1 % sensitivity and 63.8 % specificity at a 3.15 cut-off (AUC:0.689; p:0.0001; CI:0.644-0.725). CONCLUSIONS These results indicate that ALT and UA may be potentially important in determining the risk of macrosomia. The UA had a more potent marker for macrosomia than ALT. The occurrence of macrosomia might be more closely related to the mother's metabolic syndrome rather than NAFLD.
Collapse
|
84
|
Zhao L, Qiu X. Higher ratio of serum uric acid to serum creatinine (SUA/SCr) increases the risk of metabolic unhealthy phenotype. Nutr Metab Cardiovasc Dis 2023; 33:1981-1988. [PMID: 37544871 DOI: 10.1016/j.numecd.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND AND AIM It is very important to understand which factors play roles in switching from a healthy to an unhealthy metabolism. It is unclear if SUA/SCr is an independent risk factor for metabolic unhealthy phenotype. We examined whether SUA/SCr is associated with an increased risk for metabolic unhealthy phenotype in the Chinese population. METHODS AND RESULTS As many as 3158 subjects aged 25-75 years who had a metabolic healthy phenotype at baseline were included in the retrospective cohort study. They were assigned to four groups based on the quartile of SUA/SCr. We compared the demographic and clinical characteristics among the four groups. The correlation between SUA/SCr and the risk of metabolic unhealthy phenotype in the overall population and stratified by subgroups was examined by logistic regression analyses. Greater SUA/SCr values were correlated with greater BMI, systolic and diastolic BP, TC, TG, RBC, WBC, HB, ALT, SUA and eGFR. During the two-year follow-up, 632 of the study subjects (20.01%) developed new-onset metabolic unhealthy phenotype from the total of 3158 study subjects. A statistically significant increase in the rates of metabolic unhealthy phenotype was observed with increasing SUA/SCr levels within each group. After multivariate adjustment, the adjusted ORs and 95% CIs were 1.44 (1.03-2.00) and 2.11 (1.52-2.94) in the Q3 group and Q4 group, respectively. CONCLUSION SUA/SCr was positively related to the risk of metabolic unhealthy phenotype in the Chinese subjects, suggesting the potential of SUA/SCr to serve as an independent risk predictor in the development of metabolic unhealthy phenotype.
Collapse
Affiliation(s)
- Linlin Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xinjian Qiu
- Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
85
|
Tao M, Liu J, Chen X, Wang Q, He M, Chen W, Wang C, Zhang L. Correlation between serum uric acid and body fat distribution in patients with MAFLD. BMC Endocr Disord 2023; 23:204. [PMID: 37749567 PMCID: PMC10518962 DOI: 10.1186/s12902-023-01447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Metabolic dysfunction associated with fatty liver disease (MAFLD) is often correlated with obesity and hyperuricemia. The present study aimed to determine the association between serum uric acid (SUA) and central fat distribution in patients with MAFLD. METHODS A total of 485 patients were classified into the following groups: (1) controls without MAFLD and hyperuricemia (HUA), (2) MAFLD with normal SUA, and (3) MAFLD with HUA. DUALSCAN HDS-2000 was used to measure visceral fat (VAT) and subcutaneous fat (SAT). Dual-energy X-ray absorptiometry (DEXA) was used to measure body fat distribution. RESULTS MAFLD patients with HUA had remarkably higher BMI, fasting insulin, OGIRT AUC, ALT, AST, TG, VAT, SAT, Adipo-IR, trunk fat mass, android fat, and total body fat than MAFLD patients with normal SUA (all p < 0.05). The increase in VAT, SAT, CAP, Adipo-IR, upper limbs fat mass, trunk fat mass, and android fat, as well as the percentage of MAFLD, were significantly correlated with the increase in SUA. The percentage of MAFLD patients with HUA increased significantly with increasing VAT or SAT, as determined by the Cochran-Armitage trend test (all p < 0.05). Furthermore, VAT (OR = 1.01 CI: 1.00, 1.03; p < 0.05) and adipo-IR (OR = 1.09 CI: 1.00, 1.19; p < 0.05) were associated with circling SUA in MAFLD after adjusting for sex, age, TG, TC, HOMA-IR, and BMI. CONCLUSION Abdominal fat promotes the co-existence of HUA and MAFLD, while weight loss, especially, decreasing VAT, is of great importance to decrease SUA levels and manage MAFLD.
Collapse
Affiliation(s)
- Min Tao
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xingyu Chen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qing Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Miao He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Wenwen Chen
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Cong Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Lili Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
86
|
da Silva JG, Aires ADL, da Cunha RX, do Monte TVS, Assis SPDO, de Oliveira RN, Souza TGDS, Chagas CA, Silva Neto JDC, de Araújo HDA, Lima VLDM. Anti-Hyperuricemic, Anti-Arthritic, Hemolytic Activity and Therapeutic Safety of Glycoconjugated Triazole-Phthalimides. Biomedicines 2023; 11:2537. [PMID: 37760978 PMCID: PMC10526838 DOI: 10.3390/biomedicines11092537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperuricemia, the metabolic alteration that leads to gout or gouty arthritis, is increasing worldwide. Glycoconjugated triazole-phthalimides show potent anti-inflammatory activity. The aim of this study was to evaluate the anti-hyperuricemia effect of glycoconjugated triazole-phthalimides. To develop hyperuricemia, groups of mice received orally potassium oxonate (250 mg/kg) for 7 days, and F2, F3 and F4 glycoconjugated triazole-phthalimides (20 mg/kg), allopurinol (300 mg/kg), and 1% carboxymethylcellulose; indomethacin (2 and 4 mg/kg) was the positive control for anti-arthritic effect. Genotoxic and mutagenic effects were evaluated by the comet and micronucleus assays, respectively. The hemolytic action of the compounds was evaluated. Phthalimides F2, F3 and F4 significantly reduced the levels of serum uric acid, creatinine and urea in hyperuricemic animals. In addition, the compounds were efficient in reducing protein denaturation in a dose-dependent manner. In an interesting way, the histopathological analysis of kidneys from groups treated with F2, F3 and F4 showed a glomerular architecture, with the Bowman's capsule and renal tubules having a normal appearance and without inflammatory changes. Also, F2 and F4 showed a small increase in micronuclei, indicating a low mutagenic effect, whilst by comet assay only, we could infer that F4 affected the frequency and damage index, thus indicating a very small genotoxic action. Similarly, the phthalimides showed a low degree of erythrocyte hemolysis (<3%). Our data demonstrate that the new glycoconjugate triazole-phthalimides have potential to treat hyperuricemia and its secondary complications, such as gouty arthritis, with a low to non-significant rate of erythrocytes hemolysis, genotoxicity and mutagenicity making these molecules strong candidates as pharmaceutical agents for treatment requiring uric-acid-lowering therapy.
Collapse
Affiliation(s)
- José Guedes da Silva
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
- Faculdade de Medicina de Garanhuns (FAMEG), Garanhuns 55297-654, PE, Brazil
| | - André de Lima Aires
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Rebeca Xavier da Cunha
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Talyta Valéria Siqueira do Monte
- Centro de Ciências da Saúde (CCS), Departamento de Enfermagem, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Shalom Pôrto de Oliveira Assis
- Laboratório de Biotecnologia e Ciências Ambientais (NPCIAMB), Departamento de Medicina, Universidade Católica de Pernambuco (UNICAP), Recife 50050-900, PE, Brazil;
| | - Ronaldo Nascimento de Oliveira
- Laboratório de Síntese de Compostos Bioativos (LSCB), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife 52171-900, PE, Brazil;
| | - Talita Giselly dos Santos Souza
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (T.G.d.S.S.); (C.A.C.)
| | - Cristiano Aparecido Chagas
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (T.G.d.S.S.); (C.A.C.)
| | - Jacinto da Costa Silva Neto
- Laboratório de Pesquisas Citológicas e Moleculares (LPCM), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil;
| | - Hallysson Douglas Andrade de Araújo
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| |
Collapse
|
87
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
88
|
Lee SJ, Choi SE, Park S, Hwang Y, Son Y, Kang Y. CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes. Mol Cells 2023; 46:496-512. [PMID: 37497588 PMCID: PMC10440271 DOI: 10.14348/molcells.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.
Collapse
Affiliation(s)
- Soo-Jin Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Yoonjung Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Youngho Son
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
89
|
Amjad W, Shalaurova I, Garcia E, Gruppen EG, Dullaart RPF, DePaoli AM, Jiang ZG, Lai M, Connelly MA. Circulating Citrate Is Associated with Liver Fibrosis in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Int J Mol Sci 2023; 24:13332. [PMID: 37686138 PMCID: PMC10487511 DOI: 10.3390/ijms241713332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with mitochondrial damage. Circulating mitochondrial metabolites may be elevated in NAFLD but their associations with liver damage is not known. This study aimed to assess the association of key mitochondrial metabolites with the degree of liver fibrosis in the context of NAFLD and nonalcoholic steatohepatitis (NASH). Cross-sectional analyses were performed on two cohorts of biopsy-proven NAFLD and/or NASH subjects. The association of circulating mitochondrial metabolite concentrations with liver fibrosis was assessed using linear regression analysis. In the single-center cohort of NAFLD subjects (n = 187), the mean age was 54.9 ±13.0 years, 40.1% were female and 86.1% were White. Type 2 diabetes (51.3%), hypertension (43.9%) and obesity (72.2%) were prevalent. Those with high citrate had a higher proportion of moderate/significant liver fibrosis (stage F ≥ 2) (68.4 vs. 39.6%, p = 0.001) and advanced fibrosis (stage F ≥ 3) (31.6 vs. 13.6%, p = 0.01). Citrate was associated with liver fibrosis independent of age, sex, NAFLD activity score and metabolic syndrome (per 1 SD increase: β = 0.19, 95% CI: 0.03-0.35, p = 0.02). This association was also observed in a cohort of NASH subjects (n = 176) (β = 0.21, 95% CI: 0.07-0.36, p = 0.005). The association of citrate with liver fibrosis was observed in males (p = 0.005) but not females (p = 0.41). In conclusion, circulating citrate is elevated and associated with liver fibrosis, particularly in male subjects with NAFLD and NASH. Mitochondrial function may be a target to consider for reducing the progression of liver fibrosis and NASH.
Collapse
Affiliation(s)
- Waseem Amjad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, MA 02215, USA; (W.A.); (Z.G.J.); (M.L.)
| | | | - Erwin Garcia
- Labcorp, Morrisville, NC 27560, USA; (I.S.); (E.G.)
| | - Eke G. Gruppen
- Divisions of Nephrology and Endocrinology, University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands; (E.G.G.); (R.P.F.D.)
| | - Robin P. F. Dullaart
- Divisions of Nephrology and Endocrinology, University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands; (E.G.G.); (R.P.F.D.)
| | | | - Z. Gordon Jiang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, MA 02215, USA; (W.A.); (Z.G.J.); (M.L.)
| | - Michelle Lai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Boston, MA 02215, USA; (W.A.); (Z.G.J.); (M.L.)
| | | |
Collapse
|
90
|
Wang C, Qin P, Liu Y, Wang L, Xu S, Chen H, Dai S, Zhao P, Hu F, Lou Y. Association between hyperuricemia and hypertension and the mediatory role of obesity: a large cohort study in China. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20220241. [PMID: 37610925 PMCID: PMC10443908 DOI: 10.1590/1806-9282.20220241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/25/2023]
Abstract
OBJECTIVE This study aimed to investigate the sex-specific association between hyperuricemia and the risk of hypertension and whether obesity mediates this association. METHODS This study included 31,395 (47.0% women) adults without hypertension, cardiovascular disease, or cancer at baseline who completed at least one follow-up annual examination between 2009 and 2016. Cox regression models were performed to calculate hazard ratios and 95% confidence intervals. Mediation analysis was conducted to estimate the effect of body mass index on the association between hyperuricemia and hypertension. RESULTS During a median 2.9-year follow-up, hyperuricemia was significantly associated with a higher risk of hypertension (HR 1.15, 95%CI 1.07-1.24 for all participants; HR 1.12, 95%CI 1.03-1.22 for men; and HR 1.23, 95%CI 1.02-1.48 for women) after adjustment for potential confounders. Additional adjustment for body mass index attenuated this association (HR 1.09, 95%CI 1.08-1.10 for all participants; HR 1.07; 95%CI 0.98-1.16 for men; HR 1.18; 95%CI 0.96-1.44 for women). Mediation analysis showed that BMI partially mediated the relationship between hyperuricemia and incident hypertension (indirect effect HR 1.09, 95%CI 1.08-1.10; direct effect: HR 1.08, 95%CI 1.02-1.15). The percentage of the mediation effect was 53.2% (95%CI 37.9-84.5). CONCLUSION Hyperuricemia is associated with a risk of hypertension in both sexes, and BMI partially mediates hyperuricemia-related incident hypertension.
Collapse
Affiliation(s)
- Changyi Wang
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
- Zunyi Medical University, School of Public Health - Zunyi, China
| | - Pei Qin
- Shenzhen University, Health Science Center, School of Public Health, Department of Biostatistics and Epidemiology - Shenzhen, China
| | - Yinxing Liu
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
- Zunyi Medical University, School of Public Health - Zunyi, China
| | - Li Wang
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
| | - Shan Xu
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
| | - Hongen Chen
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
| | - Shuhong Dai
- Shenzhen Nanshan Center for Chronic Disease, Department of Non-communicable Disease Prevention and Control - Shenzhen, China
| | - Ping Zhao
- Beijing Xiaotangshan Hospital, Department of Health Management - Beijing, China
| | - Fulan Hu
- Shenzhen University, Health Science Center, School of Public Health, Department of Biostatistics and Epidemiology - Shenzhen, China
| | - Yanmei Lou
- Beijing Xiaotangshan Hospital, Department of Health Management - Beijing, China
| |
Collapse
|
91
|
Zhao Q, Zhang M, Chu Y, Ban B. Association between serum uric acid and triglyceride-glucose index in children and adolescents with short stature. Sci Rep 2023; 13:13594. [PMID: 37604856 PMCID: PMC10442343 DOI: 10.1038/s41598-023-40972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
The aim of this study was to explore the relationship between serum uric acid (SUA) and the triglyceride-glucose (TyG) index, which is a more effective indicator of insulin resistance. The study participants included 1700 children and adolescents with short stature who were recruited at the Affiliated Hospital of Jining Medical University in China between March 2013 and April 2021. A positive association between SUA levels and the TyG index was detected by univariate analysis (p < 0.001). Furthermore, a nonlinear relationship was detected between SUA and the TyG index, whose point was 6.55 mg/dL. There was a positive association between SUA and the TyG index when the SUA level was greater than 6.55 mg/dL (β 0.17, 95% CI: 0.07, 0.27; P < 0.001). However, we did not observe a significant relationship between SUA and the TyG index when the SUA level was less than 6.55 mg/dL (β 0.02, 95% CI: - 0.01, 0.05; P = 0.091). In addition, a stratified analysis was performed to appraise changes in this relationship for different sexes. The relationship between SUA and the TyG index in males and females is consistent with that in the general population, showing a nonlinear relationship. However, the inflection points of SUA level were significantly higher in males than in females, and the inflection points were approximately 6.72 and 5.88 mg/dL, respectively. This study revealed a nonlinear relationship between SUA and the TyG index in children with short stature. The nonlinear relationship remained in gender stratification analysis, but the inflection point of SUA level was higher in men. Further studies are needed to establish a causal relationship between SUA levels and the TyG index in children with short stature.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Mei Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Yuntian Chu
- National Telemedicine Center of China, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450099, Henan, People's Republic of China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| |
Collapse
|
92
|
Liu N, Huang L, Xu H, He X, He X, Cao J, Xu W, Wang Y, Wei H, Wang S, Zheng H, Gao S, Xu Y, Lu W. Phosphatidylserine decarboxylase downregulation in uric acid‑induced hepatic mitochondrial dysfunction and apoptosis. MedComm (Beijing) 2023; 4:e336. [PMID: 37502610 PMCID: PMC10369160 DOI: 10.1002/mco2.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The molecular mechanisms underlying uric acid (UA)-induced mitochondrial dysfunction and apoptosis have not yet been elucidated. Herein, we investigated underlying mechanisms of UA in the development of mitochondrial dysfunction and apoptosis. We analyzed blood samples of individuals with normal UA levels and patients with hyperuricemia. Results showed that patients with hyperuricemia had significantly elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which may indicate liver or mitochondrial damage in patients with hyperuricemia. Subsequently, lipidomic analysis of mouse liver tissue mitochondria and human liver L02 cell mitochondria was performed. Compared with control group levels, high UA increased mitochondrial phosphatidylserine (PS) and decreased mitochondrial phosphatidylethanolamine (PE) levels, whereas the expression of mitochondrial phosphatidylserine decarboxylase (PISD) that mediates PS and PE conversion was downregulated. High UA levels also inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation as well as mitochondrial respiration, while inducing apoptosis both in vivo and in vitro. Treatment with allopurinol, overexpression of PISD, and lyso-PE (LPE) administration significantly attenuated the three above-described effects in vitro. In conclusion, UA may induce mitochondrial dysfunction and apoptosis through mitochondrial PISD downregulation. This study provides a new perspective on liver damage caused by hyperuricemia.
Collapse
Affiliation(s)
- Ning Liu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life SciencesWestlake UniversityHangzhouZhejiangChina
- College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
- Institute of BiologyWestlake Institute for Advanced StudyHangzhouZhejiang ProvinceChina
| | - Lei Huang
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Hu Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xinyu He
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xueqing He
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Jun Cao
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Wenjun Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Yaoxing Wang
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Hongquan Wei
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Sheng Wang
- Center for Scientific ResearchAnhui Medical UniversityHefeiAnhuiChina
| | - Hong Zheng
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Shan Gao
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Youzhi Xu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Wenjie Lu
- Basic Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
93
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
94
|
Cui Y, Qu Z, Hu W, Shi H. Relationship between Uric Acid to High Density Lipoprotein Cholesterol Ratio and Nonalcoholic Fatty Liver Disease in Nonoverweight/Obese Patients with Type 2 Diabetes. Int J Endocrinol 2023; 2023:2513175. [PMID: 37560201 PMCID: PMC10409575 DOI: 10.1155/2023/2513175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
AIMS To investigate the relationship between uric acid to high-density lipoprotein cholesterol ratio (UHR) levels and nonalcoholic fatty liver disease (NAFLD) in nonoverweight/obese patients with type 2 diabetes. METHODS A retrospective study was designed including a total of 343 inpatients with type 2 diabetes whose BMI<24 kg/m2. The population was divided into three groups as the UHR tertiles. Logistic regression analysis was performed to estimate odds ratios (ORs) of UHR for NAFLD. ROC curve analysis was used to estimate the diagnostic value of UHR for NAFLD. RESULTS The prevalence rat of NAFLD enhanced progressively from the tertile 1 to tertile 3 of UHR (30.70% vs. 56.52% vs. 73.68%). Logistic regression analysis showed that participants in the higher UHR groups, compared with those in the first tertile group, had higher occurrence risks for NAFLD. The positive association between UHR and NAFLD was independent of age, BMI, blood pressure, hepatic enzymes, and other components of metabolic disorders. ROC curve analysis showed that the area under curve (AUC), sensitivity, and specificity for UHR were 0.697, 0.761, and 0.553, respectively. CONCLUSIONS In type 2 diabetic patients without overweight or obesity, UHR is significantly associated with NAFLD and can be used as a novel and useful predictor for NAFLD onset.
Collapse
Affiliation(s)
- Yuliang Cui
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Zhenzhen Qu
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Wenmei Hu
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Haiyan Shi
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| |
Collapse
|
95
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
96
|
Choi J, Joe H, Oh JE, Cho YJ, Shin HS, Heo NH. The correlation between NAFLD and serum uric acid to serum creatinine ratio. PLoS One 2023; 18:e0288666. [PMID: 37463147 PMCID: PMC10353803 DOI: 10.1371/journal.pone.0288666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND With the prevalence of non-alcoholic fatty liver disease (NAFLD) increasing worldwide, many noninvasive techniques have been used to improve its diagnosis. Recently, the serum uric acid/creatinine (sUA/sCr) ratio was identified as an indicator of fatty liver disease. Therefore, we examined the relationship between sUA/sCr levels and ultrasound-diagnosed NAFLD in Korean adults. METHODS This study included 16,666 20-year-olds or older who received health checkups at a university hospital's health promotion center from January to December 2021. Among them, 11,791 non-patients with and without NAFLD were analyzed, excluding those without abdominal ultrasound, those without data on fatty liver, cancer, or chronic kidney disease severity, those with a history of alcohol abuse, and those with serum hs-CRP <5 mg/L. The odds ratio (OR) and 95% confidence interval (CI) of the sUA/sCr ratio according to the presence or absence of fatty liver disease and severity were calculated after correcting for confounding variables using logistic regression analysis. The receiver operating characteristic (ROC) curve and area under the curve (AUC) of the sUA/sCr ratio confirmed and compared the sensitivity and specificity of NAFLD and serum uric acid. RESULTS sUA/sCr increased with fatty liver severity, and the post-correction OR in the NAFLD group was 1.183 (95% CI: 1.137-1.231) compared to the group without NAFLD. Concerning the fatty liver severity, the post-correction OR in the mild NAFLD group increased to 1.147 (95% CI: 1.099-1.196), and that in the moderate-to-severe NAFLD group increased to 1.275 (95% CI: 1.212-1.341) compared to the group without NAFLD. The sensitivity of sUA/sCr to fatty liver severity was 57.9% for the non-NAFLD group, 56.7% for the mild NAFLD group, and 59.0% for the moderate-to-severe NAFLD group; the specificity of sUA/sCr to fatty liver severity 61.4% for the non-NAFLD group, 57.3% for the mild NAFLD group, and 65.2% for the moderate-to-severe NAFLD group. CONCLUSION NAFLD severity is associated with sUA/sCR.
Collapse
Affiliation(s)
- Jangwon Choi
- Department of Family Medicine, College of Medicine, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyun Joe
- Department of Family Medicine, College of Medicine, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung-Eun Oh
- Department of Family Medicine, College of Medicine, Soonchunhyang University Cheonan Hospital, Chungnam, Republic of Korea
| | - Yong-Jin Cho
- Department of Family Medicine, College of Medicine, Soonchunhyang University Cheonan Hospital, Chungnam, Republic of Korea
| | - Hwang-Sik Shin
- Department of Family Medicine, College of Medicine, Soonchunhyang University Cheonan Hospital, Chungnam, Republic of Korea
| | - Nam Hun Heo
- Biostatics Department of Clinical Trial Center, College of Medicine, Soonchunhyang University Cheonan Hospital, Chungnam, Korea
| |
Collapse
|
97
|
Crummett LT, Aslam MH. Diabetes websites lack information on dietary causes, risk factors, and preventions for type 2 diabetes. Front Public Health 2023; 11:1159024. [PMID: 37521964 PMCID: PMC10373935 DOI: 10.3389/fpubh.2023.1159024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Type 2 diabetes (T2D) is a growing public health burden throughout the world. Many people looking for information on how to prevent T2D will search on diabetes websites. Multiple dietary factors have a significant association with T2D risk, such as high intake of added sugars, refined carbohydrates, saturated fat, and red meat or processed meat; and decreased intake of dietary fiber, and fruits/vegetables. Despite this dietary information being available in the scientific literature, it is unclear whether this information is available in gray literature (websites). Objective In this study, we evaluate the use of specific terms from diabetes websites that are significantly associated with causes/risk factors and preventions for T2D from three term categories: (A) dietary factors, (B) nondietary nongenetic (lifestyle-associated) factors, and (C) genetic (non-modifiable) factors. We also evaluate the effect of website type (business, government, nonprofit) on term usage among websites. Methods We used web scraping and coding tools to quantify the use of specific terms from 73 diabetes websites. To determine the effect of term category and website type on the usage of specific terms among 73 websites, a repeated measures general linear model was performed. Results We found that dietary risk factors that are significantly associated with T2D (e.g., sugar, processed carbohydrates, dietary fat, fruits/vegetables, fiber, processed meat/red meat) were mentioned in significantly fewer websites than either nondietary nongenetic factors (e.g., obesity, physical activity, dyslipidemia, blood pressure) or genetic factors (age, family history, ethnicity). Among websites that provided "eat healthy" guidance, one third provided zero dietary factors associated with type 2 diabetes, and only 30% provided more than two specific dietary factors associates with type 2 diabetes. We also observed that mean percent usage of all terms associated with T2D causes/risk factors and preventions was significantly lower among government websites compared to business websites and nonprofit websites. Conclusion Diabetes websites need to increase their usage of dietary factors when discussing causes/risk factors and preventions for T2D; as dietary factors are modifiable and strongly associated with all nondietary nongenetic risk factors, in addition to T2D risk.
Collapse
|
98
|
Castro MC, Villagarcía HG, Schinella G, Massa ML, Francini F. Mechanism of preventive effects of exendin-4 and des-fluoro-sitagliptin in a murine model of fructose-induced prediabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159363. [PMID: 37429413 DOI: 10.1016/j.bbalip.2023.159363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.
Collapse
Affiliation(s)
- María Cecilia Castro
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Hernán Gonzalo Villagarcía
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina; Instituto de Ciencias de la Salud, UNAJ-CICPBA, Street Avenue Calchaqui 6200, Florencio Varela 1888, Argentina.
| | - María Laura Massa
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Flavio Francini
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| |
Collapse
|
99
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
100
|
Helsley RN, Park SH, Vekaria HJ, Sullivan PG, Conroy LR, Sun RC, Romero MDM, Herrero L, Bons J, King CD, Rose J, Meyer JG, Schilling B, Kahn CR, Softic S. Ketohexokinase-C regulates global protein acetylation to decrease carnitine palmitoyltransferase 1a-mediated fatty acid oxidation. J Hepatol 2023; 79:25-42. [PMID: 36822479 PMCID: PMC10679901 DOI: 10.1016/j.jhep.2023.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND & AIMS The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive. METHODS Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water. Moreover, cultured AML12 hepatocytes were engineered to overexpress ketohexokinase-C (KHK-C) using a lentivirus vector, while CRISPR-Cas9 was used to knockdown CPT1α. The cell culture experiments were complemented with in vivo studies using mice with hepatic overexpression of KHK-C and in mice with liver-specific CPT1α knockout. We used comprehensive metabolomics, electron microscopy, mitochondrial substrate phenotyping, proteomics and acetylome analysis to investigate underlying mechanisms. RESULTS Fructose supplementation in mice fed normal chow and fructose or glucose supplementation in mice fed a HFD increase KHK-C, an enzyme that catalyzes the first step of fructolysis. Elevated KHK-C is associated with an increase in lipogenic proteins, such as ACLY, without affecting their mRNA expression. An increase in KHK-C also correlates with acetylation of CPT1α at K508, and lower CPT1α protein in vivo. In vitro, KHK-C overexpression lowers CPT1α and increases triglyceride accumulation. The effects of KHK-C are, in part, replicated by a knockdown of CPT1α. An increase in KHK-C correlates negatively with CPT1α protein levels in mice fed sugar and a HFD, but also in genetically obese db/db and lipodystrophic FIRKO mice. Mechanistically, overexpression of KHK-C in vitro increases global protein acetylation and decreases levels of the major cytoplasmic deacetylase, SIRT2. CONCLUSIONS KHK-C-induced acetylation is a novel mechanism by which dietary fructose augments lipogenesis and decreases fatty acid oxidation to promote the development of metabolic complications. IMPACT AND IMPLICATIONS Fructose is a highly lipogenic nutrient whose negative consequences have been largely attributed to increased de novo lipogenesis. Herein, we show that fructose upregulates ketohexokinase, which in turn modifies global protein acetylation, including acetylation of CPT1a, to decrease fatty acid oxidation. Our findings broaden the impact of dietary sugar beyond its lipogenic role and have implications on drug development aimed at reducing the harmful effects attributed to sugar metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Se-Hyung Park
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lindsey R Conroy
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - María Del Mar Romero
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Laura Herrero
- School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Joanna Bons
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Christina D King
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Jacob Rose
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - Jesse G Meyer
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|