51
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
52
|
Yang X, Wang G, Gong X, Huang C, Mao Q, Zeng L, Zheng P, Qin Y, Ye F, Lian B, Zhou C, Wang H, Zhou W, Xie P. Effects of chronic stress on intestinal amino acid pathways. Physiol Behav 2019; 204:199-209. [PMID: 30831184 DOI: 10.1016/j.physbeh.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
Abstract
Major depressive disorder (MDD) is a debilitating mental disorder with a high prevalence and severe impacts on quality of life. However, the pathophysiological mechanisms underlying MDD remain poorly understood. Here, we used high-performance liquid chromatography with ultraviolet detection-based targeted metabolomics to identify amino acid changes in the small intestine, in a rat model of chronic unpredictable mild stress (CUMS). Pearson's correlation analysis was conducted to investigate the correlations between amino acid changes and behavioral outcomes. Western blot analysis was employed to verify intestinal amino acid transport function. Moreover, we performed an integrated analysis of related differential amino acids in the hippocampus, peripheral blood mononuclear cells (PBMCs), urine and cerebellum identified in our previous studies using the CUMS rat model to further our understanding of amino acid metabolism in depression. Decreased concentrations of glutamine and glycine and upregulation of aspartic acid were found in CUMS model rats. These changes were significantly correlated with depressive-like behaviors. Western blot analysis revealed that CUMS rats exhibited a reduction in the expression levels of amino acid transporters ASCT2 and B0AT1, as well as an increase in LAT1 expression. Impaired transport of glycine and glutamine into the small intestine may contribute to a central deficiency. The current findings suggest that the glycine and glutamine uptake systems may be potential therapeutic targets for depression. The integrated analysis strategy used in the current study may provide new insight into the cellular and molecular mechanisms underlying the gut-brain axis, and help to elucidate the pathophysiological changes in central and peripheral systems in depression.
Collapse
Affiliation(s)
- Xun Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Guowei Wang
- Ning Xia Medical University, Yin Chuan, Ning Xia 750004, China
| | - Xue Gong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Cheng Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Qiang Mao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; The Second Affiliated Hospital of Chongqing Medical University, Department of Pharmacy, Chongqing, China
| | - Li Zeng
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Nephrology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Yinhua Qin
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Bin Lian
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Chanjuan Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Haiyang Wang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Wei Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|
53
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
54
|
Danthi SJ, Liang B, Smicker O, Coupland B, Gregory J, Gefteas E, Tietz D, Klodnitsky H, Randall K, Belanger A, Kuntzweiler TA. Identification and Characterization of Inhibitors of a Neutral Amino Acid Transporter, SLC6A19, Using Two Functional Cell-Based Assays. SLAS DISCOVERY 2018; 24:111-120. [PMID: 30589598 DOI: 10.1177/2472555218794627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SLC6A19 (B0AT1) is a neutral amino acid transporter, the loss of function of which results in Hartnup disease. SLC6A19 is also believed to have an important role in amino acid homeostasis, diabetes, and weight control. A small-molecule inhibitor of human SLC6A19 (hSLC6A19) was identified using two functional cell-based assays: a fluorescence imaging plate reader (FLIPR) membrane potential (FMP) assay and a stable isotope-labeled neutral amino acid uptake assay. A diverse collection of 3440 pharmacologically active compounds from the Microsource Spectrum and Tocriscreen collections were tested at 10 µM in both assays using MDCK cells stably expressing hSLC6A19 and its obligatory subunit, TMEM27. Compounds that inhibited SLC6A19 activity in both assays were further confirmed for activity and selectivity and characterized for potency in functional assays against hSLC6A19 and related transporters. A single compound, cinromide, was found to robustly, selectively, and reproducibly inhibit SLC6A19 in all functional assays. Structurally related analogs of cinromide were tested to demonstrate structure-activity relationship (SAR). The assays described here are suitable for carrying out high-throughput screening campaigns to identify modulators of SLC6A19.
Collapse
Affiliation(s)
- Sanjay J Danthi
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Beirong Liang
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Oanh Smicker
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Benjamin Coupland
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Jill Gregory
- 1 In Vitro Biology, Integrated Drug Discovery, Sanofi-Genzyme, Waltham, MA, USA
| | - Estelle Gefteas
- 2 Rare Muscle and Metabolic Diseases, Sanofi-Genzyme, Framingham, MA, USA
| | - Drew Tietz
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Helen Klodnitsky
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Kristen Randall
- 3 Pre-Development Sciences Analytical R&D, Sanofi-Genzyme, Waltham, MA, USA
| | - Adam Belanger
- 2 Rare Muscle and Metabolic Diseases, Sanofi-Genzyme, Framingham, MA, USA
| | | |
Collapse
|
55
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
56
|
Lu L, Zhang L, Li X, Liao X, Zhang L, Luo X. Organic iron absorption by in situ ligated jejunal and ileal loops of broilers. J Anim Sci 2018; 96:5198-5208. [PMID: 30256967 PMCID: PMC6276550 DOI: 10.1093/jas/sky375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the effect of organic and inorganic Fe sources on the Fe absorption and gene expression of Fe and amino acid transporters in the ligated jejunal and ileal segments of broilers. The in situ ligated jejunal and ileal loops from Fe-deficient broiler chicks (28-d-old) were perfused with Fe solutions containing 0, 3.58, or 7.16 mM Fe from one of the following Fe sources: Fe sulfate (FeSO4∙7H2O), the mixtures of FeSO4∙7H2O with either Met or Gly, Fe-Gly chelate, or three Fe-amino acid or protein chelates with weak, moderate or extremely strong chelation strengths (Fe-Met W, Fe-Pro M, or Fe-Pro ES), respectively, for up to 30 min. Iron absorption was increased (P < 0.0001) as the perfused Fe concentrations increased, and no differences (P > 0.07) were detected in the Fe absorption between the jejunum and ileum. Regardless of intestinal segments, Fe absorption was higher (P < 0.006) for Fe-Pro ES and Fe-Pro M than for FeSO4·7H2O, and for Fe-Pro ES than for Fe-Met W. Glycine but not Met supplementation increased (P < 0.03) the absorption of Fe as FeSO4. Regardless of Fe source, Fe addition inhibited (P < 0.05) the mRNA expressions of divalent metal transporter 1 (DMT1) in the jejunum and ileum, but enhanced (P < 0.05) the mRNA expressions of l-type amino transporter 1 (LAT1) and B0-type amino acid transporter 1 (B0AT1) in the jejunum and ileum. No differences (P > 0.05) among different Fe sources were observed in the mRNA expression levels of Fe and amino acid transporters in both the jejunum and the ileum. The mRNA expression levels of DMT1, ferroportin 1, B0AT1, or y+LAT1 were higher (P < 0.0001), but those of excitatory amino acid transporter 3, LAT1, or y+l-type amino transporter 2 were lower (P < 0.04) in the jejunum than in the ileum. The supplementation of inorganic or organic Fe had no effect (P > 0.14) on the protein expression levels of DMT1 and FPN1 in the jejunum and ileum. The above results indicate that organic Fe sources with stronger chelation strengths showed higher Fe absorption in the jejunum and ileum of broiler chicks. Glycine was more effective in facilitating Fe absorption than Met as a ligand. The mRNA expressions of Fe and amino acid transporters in the jejunum were different from those in the ileum. The DMT1, LAT1, and B0AT1 might be involved in the Fe absorption in the jejunum or ileum of broilers.
Collapse
Affiliation(s)
- Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Lingyan Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Xiaofei Li
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
57
|
LPAR5, GNAT3 and partial amino acid transporters messenger RNA expression patterns in digestive tracts, metabolic organs and muscle tissues of growing goats. Animal 2018; 13:1394-1402. [PMID: 30378518 DOI: 10.1017/s1751731118002823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sufficient amino acid (AA) transport is essential to ensure the normal physiological function and growth of growing animals. The processes of AA sensing and transport in humans and murine animals, but rarely in goats, have been arousing great interest recently. This study was conducted to investigate the messenger RNA expression patterns of lysophosphatidic acid receptor 5 (LPAR5), guanine nucleotide-binding protein α-transducing 3 (GNAT3) and important partial AA transporters in digestive tracts, metabolic organs and muscles of growing goats. The results showed that these genes were widely expressed in goats, and had different expression patterns. LPAR5, GNAT3, solute carrier (SLC38A2), SLC7A7, SLC7A1 and SLC3A1 were rarely expressed in the rumen, but were highly expressed in the abomasum and intestine which are the main sites of AA absorption. GNAT3, SLC38A1, SLC38A2, SLC6A19, SLC7A7 and SLC7A1 showed comparatively high expression in the pancreas and the vital digestive glands, and the relatively high expression of these nine genes were noted in the tibialis posterior, the active muscle in energy metabolism. The correlation analysis showed that there were certain positive correlation among most genes. The current results indicate that the AA sensing and transport occur extensively in the abomasum and small intestine, metabolic organs and muscle tissues of ruminants, and that related genes have tissue specificity.
Collapse
|
58
|
Belanger AM, Przybylska M, Gefteas E, Furgerson M, Geller S, Kloss A, Cheng SH, Zhu Y, Yew NS. Inhibiting neutral amino acid transport for the treatment of phenylketonuria. JCI Insight 2018; 3:121762. [PMID: 30046012 DOI: 10.1172/jci.insight.121762] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
The neuropathological effects of phenylketonuria (PKU) stem from the inability of the body to metabolize excess phenylalanine (Phe), resulting in accumulation of Phe in the blood and brain. Since the kidney normally reabsorbs circulating amino acids with high efficiency, we hypothesized that preventing the renal uptake of Phe might provide a disposal pathway that could lower systemic Phe levels. SLC6A19 is a neutral amino acid transporter responsible for absorption of the majority of free Phe in the small intestine and reuptake of Phe by renal proximal tubule cells. Transgenic KO mice lacking SLC6A19 have elevated levels of Phe and other amino acids in their urine but are otherwise healthy. Here, we crossed the Pahenu2 mouse model of PKU with the Slc6a19-KO mouse. These mutant/KO mice exhibited abundant excretion of Phe in the urine and an approximately 70% decrease in plasma Phe levels. Importantly, brain Phe levels were decreased by 50%, and the levels of key neurotransmitters were increased in the mutant/KO mice. In addition, a deficit in spatial working memory and markers of neuropathology were corrected. Finally, treatment of Pahenu2 mice with Slc6a19 antisense oligonucleotides lowered Phe levels. The results suggest that inhibition of SLC6A19 may represent a novel approach for the treatment of PKU and related aminoacidopathies.
Collapse
MESH Headings
- Amines
- Amino Acid Transport Systems, Neutral/analysis
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Amino Acids, Neutral/blood
- Amino Acids, Neutral/metabolism
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Biological Transport/drug effects
- Brain/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Genetic Diseases, Inborn/therapy
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Memory, Short-Term
- Mice
- Mice, Knockout
- Morpholinos/pharmacology
- Oligonucleotides/pharmacology
- Phenylalanine/blood
- Phenylalanine/metabolism
- Phenylketonurias/pathology
- Phenylketonurias/therapy
- Renal Reabsorption/drug effects
Collapse
|
59
|
Li Y, Han H, Yin J, Zheng J, Zhu X, Li T, Yin Y. Effects of glutamate and aspartate on growth performance, serum amino acids, and amino acid transporters in piglets. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1437892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hui Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Zheng
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan, People’s Republic of China
| | - Xiaotong Zhu
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, People’s Republic of China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
60
|
Orozco ZGA, Soma S, Kaneko T, Watanabe S. Spatial mRNA Expression and Response to Fasting and Refeeding of Neutral Amino Acid Transporters slc6a18 and slc6a19a in the Intestinal Epithelium of Mozambique tilapia. Front Physiol 2018; 9:212. [PMID: 29593569 PMCID: PMC5859172 DOI: 10.3389/fphys.2018.00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The mRNA expressions of the epithelial neutral amino acid transporters slc6a18 and slc6a19a in the five segments (HL, PMC, GL, DMC, and TS) of the intestine of Mozambique tilapia, and their responses to fasting and refeeding were investigated for a better understanding of the functional and nutritional characteristics of slc6a18 and slc6a19a. Although both slc6a18 and slc6a19a were expressed mainly in the intestine, these genes showed opposing spatial distributions along the intestine. The slc6a18 was mainly expressed in the middle (GL) and posterior (DMC and TS) intestines, while slc6a19a was specifically expressed in the anterior intestine (HL and PMC). Large decreases of amino acid concentrations from the HL to GL imply that amino acids are mainly absorbed before reaching the GL, suggesting an important role of slc6a19a in the absorption. Moreover, substantial amounts of some neutral amino acids with the isoelectric point close to 6 remain in the GL. These are most likely the remaining unabsorbed amino acids or those from of amino acid antiporters which release neutral amino acids in exchange for uptake of its substrates. These amino acids were diminished in the TS, suggesting active absorption in the posterior intestine. This suggests that slc6a18 is essential to complete the absorption of neutral amino acids. At fasting, significant downregulation of slc6a19a expression was observed from the initial up to day 2 and became stable from day 4 to day 14 in the HL and PMC suggesting that slc6a19a expression reflects nutritional condition in the intestinal lumen. Refeeding stimulates slc6a19a expression, although expressions did not exceed the initial level within 3 days after refeeding. The slc6a18 expression was decreased during fasting in the GL but no significant change was observed in the DMC. Only a transient decrease was observed at day 2 in the TS. Refeeding did not stimulate slc6a18 expression. Results in this study suggest that Slc6a18 and Slc6a19 have different roles in the intestine, and that both of these contribute to establish the efficient neutral amino acid absorption system in the tilapia.
Collapse
Affiliation(s)
- Zenith Gaye A Orozco
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Soma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
61
|
Liu L, Zhang S, Bao J, He X, Tong D, Chen C, Ying Q, Zhang Q, Zhang C, Li J. Melatonin Improves Laying Performance by Enhancing Intestinal Amino Acids Transport in Hens. Front Endocrinol (Lausanne) 2018; 9:426. [PMID: 30105005 PMCID: PMC6077205 DOI: 10.3389/fendo.2018.00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
The high concentration of melatonin (MEL) in the intestinal mucosa suggests that it has a special physiological function in intestine. In hens, previous studies have shown that MEL treatment promoted egg-laying performance. Considering the importance of amino acids (AA) for egg formation, we hypothesized that MEL may enhance the intestinal absorption of AA from the feed, thus promoting egg laying performance. In this study, we supplemented the hens with MEL for two consecutive weeks. The results showed that, compared with control group, feeding with 0.625 mg MEL/kg diets gave rise to higher egg laying rate (by 4.3%, P = 0.016), increased eggshell thickness (by 16.9%, P < 0.01) and albumen height (by 4.5%, P = 0.042). Meanwhile, feeding with 0.625 and 2.5 mg MEL/kg diets could significantly increase serum levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline. Furthermore, a 0.625 mg MEL/kg diets could significantly increase the expression of PepT1 (by 3949.9%), B0AT (by 6045.9%), b0, +AT (by 603.5%), and EAAT3 (by 412.7%) in the jejunum. Additionally, in the cultured intestinal crypt "organoids," treatment with 0.5 μM MEL could significantly enhance the expression of PepT1, b0, +AT and EAAT3 mRNAs by 35.4%, 110.0%, and 160.1%, respectively. Detection of MEL concentration in serum and intestinal fluid suggested that lower dosage of MEL feeding was mainly acted on intestine locally, and further increased intestinal antioxidases (GPx-3, SOD-1 or PRDX-3) mRNA expression. Taken together, we demonstrated that MEL feeding in laying hens could locally promote the expression and function of AA transporter in small intestine by up-regulating antioxidases expression, and finally elevate laying performance.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiayang Bao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowen He
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Danni Tong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | | | - Qing Zhang
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Caiqiao Zhang
| |
Collapse
|
62
|
Ikeda K, Kinoshita M, Kayama H, Nagamori S, Kongpracha P, Umemoto E, Okumura R, Kurakawa T, Murakami M, Mikami N, Shintani Y, Ueno S, Andou A, Ito M, Tsumura H, Yasutomo K, Ozono K, Takashima S, Sakaguchi S, Kanai Y, Takeda K. Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells. Cell Rep 2017; 21:1824-1838. [DOI: 10.1016/j.celrep.2017.10.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022] Open
|
63
|
Uemura S, Mochizuki T, Kurosaka G, Hashimoto T, Masukawa Y, Abe F. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2076-2085. [DOI: 10.1016/j.bbamem.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
|
64
|
Jando J, Camargo SMR, Herzog B, Verrey F. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine. PLoS One 2017; 12:e0184845. [PMID: 28915252 PMCID: PMC5600382 DOI: 10.1371/journal.pone.0184845] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/24/2017] [Indexed: 01/11/2023] Open
Abstract
Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine.
Collapse
Affiliation(s)
- Julia Jando
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Simone M. R. Camargo
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - Brigitte Herzog
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology, Zurich Center of Integrative Human Physiology and NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
65
|
Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids 2017. [PMID: 28623466 DOI: 10.1007/s00726-017-2451-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In-feed antibiotics have been commonly used to promote the growth performance of piglets. The antibiotics can increase protein utilization, but the underlying mechanism is largely unknown. The present study investigated the effects of in-feed antibiotics on intestinal AA transporters and receptors to test the hypothesis that the alteration of circulating AA profiles may be concomitant with the change of intestinal AA transporters and receptors. Sixteen litters of piglets at day 7 started to receive creep feed with (Antibiotic) or without (Control) antibiotic. Piglets were weaned at day 23 after birth, and fed the same diets until day 42. In-feed antibiotics did not affect the BW of 23-day-old (P = 0.248), or 42-day-old piglets (P = 0.089), but increased the weight gain to feed ratio from day 23 to 42 (P = 0.020). At day 42 after birth, antibiotic treatment increased the concentrations of most AAs in serum (P < 0.05), and decreased the concentrations of most AAs in jejunal and ileal digesta. Antibiotics upregulated (P < 0.05) the mRNA expression levels for jejunal AAs transporters (CAT1, EAAC1, ASCT2, y+LAT1), peptide transporters (PepT1), and Na+-K+-ATPase (ATP1A1), and ileal AA transporters (ASCT2, y+LAT1, b0,+AT, and B0AT1), and ATP1A1. The antibiotics also upregulated the mRNA expression of jejunal AAs receptors T1R3 and CaSR, and ileal T1R3. Protein expression levels for jejunal AA transporters (EAAC1, b0,+AT, and ASCT2) and PepT1 were also upregulated. Correlation analysis revealed that the alterations of AA profiles in serum after the in-feed antibiotics were correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. In conclusion, the in-feed antibiotics increased serum level of most AAs and decreased most AAs in the small intestine. These changes correlated with the upregulations of mRNA expression levels for key AA transporters and receptors in the small intestine. The findings provide further insights into the mechanism of in-feed antibiotics, which may provide new framework for designing alternatives to antibiotics in animal feed in the future.
Collapse
|
66
|
Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, Corry B, Bröer S. Identification of novel inhibitors of the amino acid transporter B 0 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br J Pharmacol 2017; 174:468-482. [PMID: 28176326 DOI: 10.1111/bph.13711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The neutral amino acid transporter B0 AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B0 AT1 mediates the Na+ -dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B0 AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B0 AT1. EXPERIMENTAL APPROACH A CHO-based cell line was generated, stably expressing collectrin and B0 AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B0 AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B0 AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. KEY RESULTS We characterized a series of novel inhibitors of the B0 AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 μM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. CONCLUSION AND IMPLICATIONS The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.
Collapse
Affiliation(s)
- Qi Cheng
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nishank Shah
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen Fairweather
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yang Jiang
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Dieter Schmoll
- Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Ben Corry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
67
|
Margheritis E, Imperiali FG, Cinquetti R, Vollero A, Terova G, Rimoldi S, Girardello R, Bossi E. Amino acid transporter B(0)AT1 (slc6a19) and ancillary protein: impact on function. Pflugers Arch 2016; 468:1363-74. [PMID: 27255547 DOI: 10.1007/s00424-016-1842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/04/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022]
Abstract
Amino acids play an important role in the metabolism of all organisms. Their epithelial re-absorption is due to specific transport proteins, such as B(0)AT1, a Na(+)-coupled neutral amino acid symporter belonging to the solute carrier 6 family. Here, a recently cloned fish orthologue, from the intestine of Salmo salar, was electrophysiologically characterized with the two-electrode voltage clamp technique, in Xenopus laevis oocytes heterologously expressing the transporter. Substrate specificity, apparent affinities and the ionic dependence of the transport mechanism were determined in the presence of specific collectrin. Results demonstrated that like the human, but differently from sea bass (Dicentrarchus labrax) orthologue, salmon B(0)AT1 needs to be associated with partner proteins to be correctly expressed at the oocyte plasma membrane. Cloning of sea bass collectrin and comparison of membrane expression and functionality of the B(0)AT1 orthologue transporters allowed a deeper investigation on the role of their interactions. The parameters acquired by electrophysiological and immunolocalization experiments in the mammalian and fish transporters contributed to highlight the dynamic of relations and impacts on transport function of the ancillary proteins. The comparative characterization of the physiological parameters of amino acid transporters with auxiliary proteins can help the comprehension of the regulatory mechanism of essential nutrient absorption.
Collapse
Affiliation(s)
- Eleonora Margheritis
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Francesca Guia Imperiali
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy.
| |
Collapse
|
68
|
Yang C, Yang X, Lackeyram D, Rideout TC, Wang Z, Stoll B, Yin Y, Burrin DG, Fan MZ. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula. Amino Acids 2016; 48:1491-508. [PMID: 26984322 DOI: 10.1007/s00726-016-2210-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.
Collapse
Affiliation(s)
- Chengbo Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Xiaojian Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Southern Research and Outreach Center, University of Minnesota, Waseca, MN, 56093, USA
| | - Dale Lackeyram
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Todd C Rideout
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Exercise and Nutrition Sciences, the State University of New York at Buffalo, New York, 14214, USA
| | - Zirong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Barbara Stoll
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulong Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ming Z Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
69
|
Komaba S, Coluccio LM. Myosin 1b Regulates Amino Acid Transport by Associating Transporters with the Apical Plasma Membrane of Kidney Cells. PLoS One 2015; 10:e0138012. [PMID: 26361046 PMCID: PMC4567078 DOI: 10.1371/journal.pone.0138012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023] Open
Abstract
Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized in patched microvilli with expressed mouse V5-tagged SIT1 (SIT1-V5), which mediates neutral amino acid transport in OK cells. Lentivirus-mediated delivery of opossum Myo1b-specific shRNA resulted in knockdown (kd) of Myo1b expression, less SIT1-V5 at the APM as determined by localization studies, and a decrease in neutral AAT as determined by radioactive uptake assays. Myo1b kd had no effect on Pi transport or noticeable change in microvilli structure as determined by rhodamine phalloidin staining. The studies are the first to define a physiological role for Myo1b, that of regulating renal AAT by modulating the association of AATers with the APM.
Collapse
Affiliation(s)
- Shigeru Komaba
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lynne M. Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
70
|
Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources. J Nutr Sci 2015; 4:e21. [PMID: 26097704 PMCID: PMC4462763 DOI: 10.1017/jns.2015.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 01/11/2023] Open
Abstract
The objective of the present study was to examine the effect of diets with descending
fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest
FM level on growth performances, feed conversion ratio, and intestinal solute carrier
family 6 member 19 (SLC6A19) and oligopeptide transporter 1
(PEPT1) transcript levels, in freshwater-adapted European sea bass
(Dicentrarchus labrax). We first isolated by molecular cloning and
sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in
sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315).
The twelve transmembrane domains and the ‘de novo’ prediction of the
three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then
analysed diet-induced changes in the mRNA copies of SLC6A19 and
PEPT1 genes in different portions of sea bass intestine using real-time
RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or
descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet
was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19
mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary
protein sources and salt supplementation. Conversely, including salt in a diet containing
a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut.
Fish growth correlated positively with the content of FM in the diets. Interestingly, the
addition of salt to the diet containing 10 % FM improved feed intake, as well as specific
growth rate and feed conversion ratio.
Collapse
|
71
|
Choi MR, Kouyoumdzian NM, Rukavina Mikusic NL, Kravetz MC, Rosón MI, Rodríguez Fermepin M, Fernández BE. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J Nephrol 2015; 4:196-212. [PMID: 25949933 PMCID: PMC4419129 DOI: 10.5527/wjn.v4.i2.196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/29/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
Collapse
|
72
|
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 2015; 4:406-17. [PMID: 25973388 PMCID: PMC4421019 DOI: 10.1016/j.molmet.2015.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19). RESULTS Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B(0)AT1 could be a suitable target to treat type 2 diabetes.
Collapse
Affiliation(s)
- Yang Jiang
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Adam J. Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tjeerd P. Sijmonsma
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stephan Herzig
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
73
|
Morales A, Buenabad L, Castillo G, Arce N, Araiza BA, Htoo JK, Cervantes M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J Anim Sci 2015; 93:2154-64. [PMID: 26020311 DOI: 10.2527/jas.2014-8834] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8 percentage units of protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.
Collapse
|
74
|
Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 2015; 125:2136-50. [PMID: 25893600 DOI: 10.1172/jci78558] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
Collapse
|
75
|
Pochini L, Scalise M, Galluccio M, Indiveri C. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2014; 2:61. [PMID: 25157349 PMCID: PMC4127817 DOI: 10.3389/fchem.2014.00061] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022] Open
Abstract
Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy
| |
Collapse
|
76
|
Camargo SMR, Vuille-dit-Bille RN, Mariotta L, Ramadan T, Huggel K, Singer D, Götze O, Verrey F. The Molecular Mechanism of Intestinal Levodopa Absorption and Its Possible Implications for the Treatment of Parkinson’s Disease. J Pharmacol Exp Ther 2014; 351:114-23. [DOI: 10.1124/jpet.114.216317] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
77
|
Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids 2014; 46:2633-42. [PMID: 25063204 DOI: 10.1007/s00726-014-1809-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Leucine has been shown to influence intestinal protein metabolism, cell proliferation and migration. Furthermore, our previous study demonstrated that branched-chain amino acids could modulate the intestinal amino acid and peptide transporters in vivo. As the possible mechanisms are still largely unknown, in the present work, we studied the transcriptional and translational regulation of leucine on amino acid transporter production in IPEC-J2 cells and the signaling pathways involved. Treatment of IPEC-J2 cells with 7.5 mM leucine enhanced the mRNA expression of the Na(+)-neutral AA exchanger 2 (ASCT2) and 4F2 heavy chain (4F2hc) and caused an increase in ASCT2 protein expression. Leucine also activated phosphorylation of 4E-BP1 and eIF4E through the phosphorylation of mTOR, Akt and ERK signaling pathways in IPEC-J2 cells. Pre-treatment of IPEC-J2 cells with inhibitors of mTOR and Akt (rapamycin and wortmannin) or an inhibitor of ERK (PD098059) for 30 min before leucine treatment attenuated the positive effect of leucine in enhancing the protein abundance of ASCT2. These results demonstrate that leucine could up-regulate the expression of the amino acid transporters (ASCT2) through transcriptional and translational regulation by ERK and PI3K/Akt/mTOR activation.
Collapse
Affiliation(s)
- Shihai Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
78
|
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y, Suematsu M, Kasahara T, Ishii I. Neutral aminoaciduria in cystathionine β-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Renal Physiol 2014; 306:F1462-76. [DOI: 10.1152/ajprenal.00623.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney is one of the major loci for the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). While CBS-deficient ( Cbs−/−) mice display homocysteinemia/methioninemia and severe growth retardation, and rarely survive beyond the first 4 wk, CTH-deficient ( Cth−/−) mice show homocysteinemia/cystathioninemia but develop with no apparent abnormality. This study examined renal amino acid reabsorption in those mice. Although both 2-wk-old Cbs−/− and Cth−/− mice had normal renal architecture, their serum/urinary amino acid profiles largely differed from wild-type mice. The most striking feature was marked accumulation of Met and cystathionine in serum/urine/kidney samples of Cbs−/− and Cth−/− mice, respectively. Levels of some neutral amino acids (Val, Leu, Ile, and Tyr) that were not elevated in Cbs−/− serum were highly elevated in Cbs−/− urine, and urinary excretion of other neutral amino acids (except Met) was much higher than expected from their serum levels, demonstrating neutral aminoaciduria in Cbs−/− (not Cth−/−) mice. Because the bulk of neutral amino acids is absorbed via a B0AT1 transporter and Met has the highest substrate affinity for B0AT1 than other neutral amino acids, hypermethioninemia may cause hyperexcretion of neutral amino acids.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan; and
| | - Shotaro Kamata
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Masashi Kubota
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Hishiki
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Yoshiko Nagahata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Chiho Yamazaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuka Yoshida
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidenori Yamada
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makoto Suematsu
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Isao Ishii
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
79
|
Atrial natriuretic peptide and renal dopaminergic system: a positive friendly relationship? BIOMED RESEARCH INTERNATIONAL 2014; 2014:710781. [PMID: 25013796 PMCID: PMC4075025 DOI: 10.1155/2014/710781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 01/11/2023]
Abstract
Sodium metabolism by the kidney is accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Renal dopamine plays a central role in this interactive network. The natriuretic hormones, such as the atrial natriuretic peptide, mediate some of their effects by affecting the renal dopaminergic system. Renal dopaminergic tonus can be modulated at different steps of dopamine metabolism (synthesis, uptake, release, catabolism, and receptor sensitization) which can be regulated by the atrial natriuretic peptide. At tubular level, dopamine and atrial natriuretic peptide act together in a concerted manner to promote sodium excretion, especially through the overinhibition of Na+, K+-ATPase activity. In this way, different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome or hypertension, are associated with impaired action of renal dopamine and/or atrial natriuretic peptide, or as a result of impaired interaction between these two natriuretic systems. The aim of this review is to update and comment on the most recent evidences demonstrating how the renal dopaminergic system interacts with atrial natriuretic peptide to control renal physiology and blood pressure through different regulatory pathways.
Collapse
|
80
|
Pochini L, Seidita A, Sensi C, Scalise M, Eberini I, Indiveri C. Nimesulide binding site in the B0AT1 (SLC6A19) amino acid transporter. Mechanism of inhibition revealed by proteoliposome transport assay and molecular modelling. Biochem Pharmacol 2014; 89:422-30. [PMID: 24704252 DOI: 10.1016/j.bcp.2014.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
The effect of pharmaceutical compounds on the rat kidney B0AT1 transporter in proteoliposomes has been screened. To this aim, inhibition of the transport activity by the different compounds was measured on Na(+)-[(3)H]glutamine co-transport in the presence of membrane potential positive outside. Most of the tested drugs had no effect on the transport activity. Some compounds exhibited inhibitory effects from 5 to 88% at concentration of 300μM. Among the tested compounds, only the anti-inflammatory drug nimesulide exerted potent inhibition on B0AT1. From dose response analysis, an IC50 value of 23μM was found. Inhibition kinetic analysis was performed: noncompetitive inhibition of the glutamine transport was observed while competitive behaviour was found when the inhibition was analyzed with respect to the Na(+) concentration. Several molecules harbouring functional groups of nimesulide (analogues) were tested as inhibitors. None among the tested molecules has the capacity to inhibit the transport with the exception of the compound NS-398, whose chemical structure is very close to that of whole nimesulide. The IC50 for this compound was 131μM. Inhibition kinetics showed behaviour of NS-398 identical to that of nimesulide, i.e., noncompetitive inhibition respect to glutamine and competitive inhibition respect to Na(+). Molecular docking of nimesulide suggested that this drug is able to bind B0AT1 in an external dedicated binding site and that its binding produces a steric hindrance effect of the protein translocation path abolishing the transporter activity.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Angela Seidita
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cristina Sensi
- Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia Università degli Studi di Milano Via Trentacoste, 22134 Milano, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ivano Eberini
- Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia Università degli Studi di Milano Via Trentacoste, 22134 Milano, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW Epithelial neutral amino acid transporters have been identified at the molecular level in recent years. Mouse models have now established the crucial role of these transporters for systemic amino acid homeostasis. This review summarizes recent progress in this field. RECENT FINDINGS Epithelial neutral amino acid transporters play an important role in the homeostasis of neutral amino acid levels in the body. They are important for the maintenance of body weight and muscle mass and serve as fuels. They also serve a role in providing nutrients to epithelial cells. Changes of plasma amino acid levels are not necessarily correlated to the amino acids appearing in the urine; changes in organ amino acid metabolism need to be taken into account. SUMMARY Genetic deletion of neutral amino acid transporters provides insight into their role in protein nutrition and homeostasis.
Collapse
|
82
|
|
83
|
|
84
|
Tümer E, Bröer A, Balkrishna S, Jülich T, Bröer S. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem 2013; 288:33813-33823. [PMID: 24121511 DOI: 10.1074/jbc.m113.482760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using the Slc6a19 gene as an example, encoding the neutral amino acid transporter B(0)AT1, we studied regulation of the gene by transcription factors and epigenetic factors in the intestine. To investigate this question, we used a fractionation method to separate mature enterocytes from crypt cells and analyzed gene expression. Transcription factors HNF1a and HNF4a activate transcription of the Slc6a19 gene in villus enterocytes, whereas high levels of SOX9 repress expression in the crypts. CpG dinucleotides in the proximal promoter were highly methylated in the crypt and fully de-methylated in the villus. Furthermore, histone modification H3K27Ac, indicating an active promoter, was prevalent in villus cells but barely detectable in crypt cells. The results suggest that Slc6a19 expression in the intestine is regulated at three different levels involving promoter methylation, histone modification, and opposing transcription factors.
Collapse
Affiliation(s)
- Emrah Tümer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Sarojini Balkrishna
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Torsten Jülich
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| |
Collapse
|
85
|
Matsumoto T, Nakamura E, Nakamura H, Hirota M, San Gabriel A, Nakamura KI, Chotechuang N, Wu G, Uneyama H, Torii K. Production of free glutamate in milk requires the leucine transporter LAT1. Am J Physiol Cell Physiol 2013; 305:C623-31. [PMID: 23804198 DOI: 10.1152/ajpcell.00291.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentration of free glutamate (Glu) in rat's milk is ∼10 times higher than that in plasma. Previous work has shown that mammary tissue actively transports circulatory leucine (Leu), which is transaminated to synthesize other amino acids such as Glu and aspartate (Asp). To investigate the molecular basis of Leu transport and its conversion into Glu in the mammary gland, we characterized the expression of Leu transporters and [(3)H]Leu uptake in rat mammary cells. Gene expression analysis indicated that mammary cells express two Leu transporters, LAT1 and LAT2, with LAT1 being more abundant than LAT2. This transport system is sodium independent and transports large neutral amino acids. The Leu transport system in isolated rat mammary cells could be specifically blocked by the LAT1 inhibitors 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH) and triiodothyronine (T3). In organ cultures, Glu secretion was markedly inhibited by these LAT1 inhibitors. Furthermore, the profiles of Leu uptake inhibition by amino acids in mammary cells were similar to those reported for LAT1. In vivo, concentrations of free Glu and Asp increased in milk by oral gavage with Leu at 6, 12, and 18 days of lactation. These results indicate that the main Leu transporter in mammary tissue is LAT1 and the transport of Leu is a limiting factor for the synthesis and release of Glu and Asp into milk. Our studies provide the bases for the molecular mechanism of Leu transport in mammary tissue by LAT1 and its active role on free Glu secretion in milk, which confer umami taste in suckling pups.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Corporation, Kawasaki-ku, Kawasaki-shi, Japan; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Pinto V, Pinho MJ, Soares-da-Silva P. Renal amino acid transport systems and essential hypertension. FASEB J 2013; 27:2927-38. [PMID: 23616567 DOI: 10.1096/fj.12-224998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.
Collapse
Affiliation(s)
- Vanda Pinto
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
87
|
Metzler R, Meleshkevitch EA, Fox J, Kim H, Boudko DY. An SLC6 transporter of the novel B(0,)- system aids in absorption and detection of nutrient amino acids in Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 216:2843-57. [PMID: 23580723 DOI: 10.1242/jeb.081497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nutrient amino acid transporters (NATs) of solute carrier family 6 (SLC6) mediate uptake of essential amino acids in mammals and insects. Phylogenomic analysis of the Caenorhabditis elegans (Ce) SLC6 family identifies five genes paralogous to an insect-specific NAT subfamily. Here we cloned and characterized the first representative of the identified nematode-specific transporters, SNF-5. SNF-5 mediates broad spectrum cation-coupled transport of neutral amino acids with submillimolar affinities and stoichiometry of 1 AA:1 Na(+), except for 1 l-Pro:2 Na(+). Unexpectedly, it transports acidic l-Glu(-) and l-Asp(-) (1 AA(-):3 Na(+)), revealing it to be the first member of a new B(0,-) system among characterized SLC6 transporters. This activity correlates with a unique positively charged His(+) 377 in the substrate-binding pocket. snf-5 promoter-driven enhanced green fluorescent protein labels intestinal cells INT1-9 and three pairs of amphid sensory neurons: ASI, ADF and ASK. These cells are intimately involved in control of dauer diapause, development, metabolism and longevity. The snf-5 deletion mutants do not show apparent morphological disorders, but increase dauer formation while reducing dauer maintenance upon starvation. Overall, the present study characterized the first nematode-specific NAT and revealed important structural and functional aspects of this transporter. In addition to the predictable role in alimentary amino acid absorption, our results indicate possible neuronal roles of SNF-5 as an amino acid provider to specific neuronal functions, including sensing of amino acid availability.
Collapse
Affiliation(s)
- Ryan Metzler
- The Department of Physiology and Biophysics of the Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
89
|
Singer D, Camargo SMR, Ramadan T, Schäfer M, Mariotta L, Herzog B, Huggel K, Wolfer D, Werner S, Penninger JM, Verrey F. Defective intestinal amino acid absorption in Ace2 null mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G686-95. [PMID: 22790597 DOI: 10.1152/ajpgi.00140.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestinal B(0)AT1 expression, we tested the impact of intestinal B(0)AT1 absence in ace2 null mice. Their weight gain following weaning was decreased, and Na(+)-dependent uptake of B(0)AT1 substrates measured in everted intestinal rings was defective. Additionally, high-affinity Na(+)-dependent transport of L-proline, presumably via SIT1 (Slc6a20), was absent, whereas glucose uptake via SGLT1 (Slc5a1) was not affected. Measurements of small intestine luminal amino acid content following gavage showed that more L-tryptophan than other B(0)AT1 substrates reach the ileum in wild-type mice, which is in line with its known lower apparent affinity. In ace2 null mice, the absorption defect was confirmed by a severalfold increase of L-tryptophan and of other neutral amino acids reaching the ileum lumen. Furthermore, plasma and muscle levels of glycine and L-tryptophan were significantly decreased in ace2 null mice, with other neutral amino acids displaying a similar trend. A low-protein/low-niacin diet challenge led to differential changes in plasma amino acid levels in both wild-type and ace2 null mice, but only in ace2 null mice to a stop in weight gain. Despite the combination of low-niacin with a low-protein diet, plasma niacin concentrations remained normal in ace2 null mice and no pellagra symptoms, such as photosensitive skin rash or ataxia, were observed. In summary, mice lacking Ace2-dependent intestinal amino acid transport display no total niacin deficiency nor clear pellagra symptoms, even under a low-protein and low-niacin diet, despite gross amino acid homeostasis alterations.
Collapse
Affiliation(s)
- Dustin Singer
- Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Fairweather S, Bröer A, O'Mara M, Bröer S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1. Biochem J 2012; 446:135-48. [PMID: 22677001 PMCID: PMC3408045 DOI: 10.1042/bj20120307] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023]
Abstract
The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B(0)AT1 and B(0)AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B(0)AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B(0)AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (V(max)). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B(0)AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B(0)AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.
Collapse
Key Words
- aminopeptidase n
- angiotensin-converting enzyme 2 (ace2)
- broad neutral (0) amino acid transporter 1 (b0at1)
- brush-border membrane
- nutrient absorption
- protein complex
- ace2, angiotensin-converting enzyme 2
- apn, aminopeptidase n
- b0at, broad neutral (0) amino acid transporter
- bbmv, brush-border membrane vesicle
- dtt, dithiothreitol
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- gfp, green fluorescent protein
- hek, human embryonic kidney
- lap, leucine aminopeptidase
- ncbi, national centre for biotechnology information
- rmsd, root mean square deviation
- slc, solute carrier
- sulfo-nhs-lc-biotin, sulfosuccinimidyl 6′-(biotinamido) hexanoate
Collapse
Affiliation(s)
- Stephen J. Fairweather
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Angelika Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Megan L. O'Mara
- †School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
91
|
Fanjul C, Barrenetxe J, Iñigo C, Sakar Y, Ducroc R, Barber A, Lostao MP. Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Acta Physiol (Oxf) 2012; 205:82-91. [PMID: 22252010 DOI: 10.1111/j.1748-1716.2012.02412.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/04/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023]
Abstract
AIM Studies in rodents have shown that leptin controls sugars and glutamine entry in the enterocytes by regulating membrane transporters. Here, we have examined the effect of leptin on sugar and amino acids absorption in the human model of intestinal cells Caco-2 and investigated the transporters involved. METHODS Substrate uptake experiments were performed in Caco-2 cells, grown on plates, in the presence and the absence of leptin, and the expression of the different transporters in brush border membrane vesicles was analysed by Western blot. RESULTS Leptin inhibited 0.1 mm α-methyl-D-glucoside uptake after 5 or 30 min treatment and decreased SGLT1 protein abundance in the apical membrane. Uptake of 20 μm glutamine and 0.1 mm phenylalanine was also inhibited by leptin, indicating sensitivity to the hormone of the Na(+) -dependent neutral amino acid transporters ASCT2 and B(0) AT1. This inhibition was accompanied by a reduction in the transporters expression at the brush border membrane. Leptin also inhibited 1 mm proline and β-alanine uptake in Na(+) medium at pH 6, conditions for optimal activity of the H(+) -dependent neutral amino acid transporter PAT1. In this case, abundance of PAT1 in the brush border membrane after leptin treatment was not modified. Interestingly, leptin inhibitory effect on β-alanine uptake was reversed by the PKA inhibitor H-89 suggesting involvement of PKA pathway in leptin's regulation of PAT1 activity. CONCLUSION These data show in human intestinal cells that leptin can rapidly control the activity of physiologically relevant transporters for rich-energy molecules, that is, D-glucose (SGLT1) and amino acids (ASCT2, B(0) AT1 and PAT1).
Collapse
Affiliation(s)
- C. Fanjul
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - J. Barrenetxe
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - C. Iñigo
- Department of Biochemistry; Miguel Servet Hospital; Zaragoza; Spain
| | | | | | - A. Barber
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - M. P. Lostao
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| |
Collapse
|
92
|
Boudko DY. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:433-49. [PMID: 22230793 PMCID: PMC3397479 DOI: 10.1016/j.jinsphys.2011.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 05/03/2023]
Abstract
Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B(0) transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B(0)-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- Department of Physiology and Biophysics of Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
93
|
Yoshizawa F. New Therapeutic Strategy for Amino Acid Medicine: Notable Functions of Branched Chain Amino Acids as Biological Regulators. J Pharmacol Sci 2012; 118:149-55. [DOI: 10.1254/jphs.11r05fm] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
94
|
Saha P, Arthur S, Kekuda R, Sundaram U. Na-glutamine co-transporters B(0)AT1 in villus and SN2 in crypts are differentially altered in chronically inflamed rabbit intestine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:434-42. [PMID: 22100603 DOI: 10.1016/j.bbamem.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/05/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023]
Abstract
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.
Collapse
Affiliation(s)
- Prosenjit Saha
- West Virginia University Health Science Centre, Morgantown, WV, USA
| | | | | | | |
Collapse
|
95
|
Zeng P, Li X, Wang X, Zhang D, Shu G, Luo Q. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration. Poult Sci 2011; 90:2548-56. [DOI: 10.3382/ps.2011-01458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
96
|
Bröer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J, Bailey CG, Rasko JEJ, Bröer S. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. J Biol Chem 2011; 286:26638-51. [PMID: 21636576 PMCID: PMC3143628 DOI: 10.1074/jbc.m111.241323] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/01/2011] [Indexed: 01/11/2023] Open
Abstract
Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.
Collapse
Affiliation(s)
- Angelika Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tan BSN, Lonic A, Morris MB, Rathjen PD, Rathjen J. The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells. Am J Physiol Cell Physiol 2011; 300:C1270-9. [DOI: 10.1152/ajpcell.00235.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.
Collapse
Affiliation(s)
| | - Ana Lonic
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Michael B. Morris
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
98
|
The B°AT1 amino acid transporter from rat kidney reconstituted in liposomes: kinetics and inactivation by methylmercury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2551-8. [PMID: 21621508 DOI: 10.1016/j.bbamem.2011.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/20/2011] [Accepted: 05/11/2011] [Indexed: 11/23/2022]
Abstract
The neutral amino acid transporter B°-like from rat kidney, previously reconstituted in liposomes, was identified as B°AT1 by a specific antibody. Collectrin was present in the brush-border extract but not in functionally active proteoliposomes, indicating that it was not required for the transport function. Neutral amino acids behaved as competitive inhibitors of the glutamine transport mediated by B°AT1 with half saturation constants ranging from 0.13 to 4.74mM. The intraliposomal half saturation constant for glutamine was 2.0mM. By a bisubstrate kinetic analysis of the glutamine-Na(+) cotransport, a random simultaneous mechanism was found. Methylmercury and HgCl(2) inhibited the transporter; the inhibition was reversed by dithioerythritol, Cys and, at a lower extent, N-acetylcysteine but not by S-carboxymethylcysteine. The IC(50) of the transporter for methylmercury and HgCl(2) was 1.88 and 1.75μM, respectively. The reagents behaved as non-competitive inhibitors toward both glutamine and Na(+) and no protection by glutamine or Na(+) was found for the two inhibitors.
Collapse
|
99
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
100
|
Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K. Putative Transport Mechanism and Intracellular Fate of Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human Prostate Cancer. J Nucl Med 2011; 52:822-9. [DOI: 10.2967/jnumed.110.086074] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|