51
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
52
|
Zhang L, Lv S, Li M, Gu M, Gao X. A General Signal Pathway to Regulate Multiple Detoxification Genes Drives the Evolution of Helicoverpa armigera Adaptation to Xenobiotics. Int J Mol Sci 2022; 23:ijms232416126. [PMID: 36555764 PMCID: PMC9788003 DOI: 10.3390/ijms232416126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The study of insect adaptation to the defensive metabolites of host plants and various kinds of insecticides in order to acquire resistance is a hot topic in the pest-control field, but the mechanism is still unclear. In our study, we found that a general signal pathway exists in H. armigera which can regulate multiple P450s, GSTs and UGTs genes to help insects decrease their susceptibility to xenobiotics. Knockdown of HaNrf2 and HaAhR expression could significantly increase the toxicity of xenobiotics to H. armigera, and simultaneously decrease the gene expression of P450s, GSTs and UGTs which are related to the xenobiotic metabolism and synthesis of insect hormone pathways. Then, we used EMSA and dual luciferase assay to verify that a crosstalk exists between AhR and Nrf2 to regulate multiple P450s, GSTs and UGTs genes to mediate H. armigera susceptibility to plant allelochemicals and insecticides. The detoxification genes' expression network which can be regulated by Nrf2 and AhR is still unknown, and there were also no reports about the crosstalk between AhR and Nrf2 that exist in insects and can regulate multiple detoxification genes' expression. Our results provide a new general signaling pathway to reveal the adaptive mechanism of insects to xenobiotics and provides further insight into designing effective pest-management strategies to avoid the overuse of insecticides.
Collapse
|
53
|
Assanga SBI, Luján LML, McCarty MF, Di Nicolantonio JJ. Nutraceutical and Dietary Resources for Breast Cancer Prevention – Highlighting Strategies for Suppressing Breast Aromatase Expression. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
54
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
55
|
Baig N, Sultan R, Qureshi SA. Antioxidant and anti-inflammatory activities of Centratherum anthelminticum (L.) Kuntze seed oil in diabetic nephropathy via modulation of Nrf-2/HO-1 and NF-κB pathway. BMC Complement Med Ther 2022; 22:301. [PMID: 36401276 PMCID: PMC9675141 DOI: 10.1186/s12906-022-03776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) approximately constitutes 90% of the reported cases. 30-40% of diabetics eventually develop diabetic nephropathy (DN); accounting for one of the major causes of morbidity and mortality. Increased glucose autoxidation and non-enzymatic glycation of proteins in diabetic kidneys lead to the excessive generation of reactive oxygen species (ROS) that results in lipid peroxidation and activation of inflammatory mediators which overwhelms the scavenging capacity of the antioxidant defense system (Nrf2/Keap1/HO-1). Centratherum anthelminticum commonly called as kali zeeri (bitter cumin) and its seeds are well known for culinary purposes in Asia (Pakistan). It has reported anti-inflammatory, antioxidant, and anti-diabetic activities. The present study has attempted to explore the in-vivo anti-inflammatory, antioxidant and antihyperglycemic potential of the C. anthelminticum seed’s fixed oil (FO) and its fractions in high fat-high fructose-streptozotocin (HF-HFr-STZ) induced T2DM rat model. Methods The T2DM rat model was developed by giving a high-fat and high-fructose diet followed by a single intraperitoneal injection of streptozotocin (STZ 60 mg/kg) on 28th day of the trial. After 72 hours of this injection, rats showing fasting blood glucose (FBG) levels≥230 mg/dL were recruited into six groups. These groups were orally administered distilled water (1 mL/kg), Gliclazide (200 mg/kg), Centratherum anthelminticum seed (FO) and its hexane (HF), chloroform (CF) and ethanol (EF) soluble fractions (200 mg/kg each), respectively for 4 weeks (i.e. 28 days). Blood, serum, and kidney tissue samples of euthanized animals were used for biochemical, pro-inflammatory, and antioxidant markers (ELISA, qRT-PCR, and spectrophotometric assays) and histology, respectively. Results C. anthelminticum FO and its fractions reduced the lipid peroxidation, and improved the antioxidant parameters: enzymatic (SOD, CAT, and GPx), non-enzymatic (GSH), and mRNA expression of anti-inflammatory markers (Nrf-2, keap1, and HO-1). mRNA expression of inflammatory and apoptotic markers (TNF-α, IL-1β, COX-1, NF-κB, Bax, and Bcl-2) were attenuated along with improved kidney architecture. Conclusion C. anthelminticum can mitigate inflammation and oxidative stress in early DN. The anti-nephropathic effect can be attributed to its ability to down-regulate NF-κB and by bringing the Nrf-2 expression levels to near normal. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03776-x.
Collapse
Affiliation(s)
- Nida Baig
- grid.412080.f0000 0000 9363 9292Clinical Laboratory Sciences, Institute of Medical Technology, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan ,grid.266518.e0000 0001 0219 3705Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Rabia Sultan
- grid.266518.e0000 0001 0219 3705Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, 75270, Karachi, Pakistan
| | - Shamim Akhtar Qureshi
- grid.266518.e0000 0001 0219 3705Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
56
|
Yang TN, Li XN, Li XW, Li JY, Huang YQ, Li JL. DEHP triggers a damage severity grade increase in the jejunum in quail (Coturnix japonica) by disturbing nuclear xenobiotic receptors and the Nrf2-mediated defense response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104012. [PMID: 36372389 DOI: 10.1016/j.etap.2022.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As a plasticizer, di-2-ethylhexyl phthalate (DEHP) has been listed as a potential endocrine disruptor by The World Health Organization. The toxicity of DEHP has been widely studied, but its toxicity on the digestive tract of birds has not been clarified. Female quail were treated by gavage with DEHP (250, 500, 750 mg/kg), with the blank and vehicle control groups reserved. The result showed that DEHP raised the damage severity grade, and decreased the ratio of villus length to crypt depth. The content and activity of cytochrome P450 system (CYP450s) were increased by DEHP. DEHP interfered with the transcription of nuclear xenobiotic receptors (NXRs), CYP isoforms, and the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. This study revealed DEHP could cause the imbalance in CYP450s mediated by NXRs, and then promote Nrf2 mediated antioxidant defense. This study provided new evidence about the mechanisms of DEHP-induced toxic effects on digestive tract.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
57
|
Li H, Yuan Y, Chen H, Dai H, Li J. Indoleamine 2,3-dioxygenase mediates the therapeutic effects of adipose-derived stromal/stem cells in experimental periodontitis by modulating macrophages through the kynurenine-AhR-NRF2 pathway. Mol Metab 2022; 66:101617. [PMID: 36270612 PMCID: PMC9627099 DOI: 10.1016/j.molmet.2022.101617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Mesenchymal stromal/stem cell (MSC)-based therapy has become a promising approach to periodontal tissue repair. Adipose-derived stromal/stem cells (ASCs), compared with other dental or non-dental MSCs, serve as promising candidates for MSC therapy due to non-invasive acquisition and abundant sources. This study aimed to explore the effects of ASC therapy in experimental periodontitis and the underlying mechanism. METHODS Micro-CT was performed to evaluate the alveolar bone parameters following local injection of ASCs. Immunohistochemistry and immunofluorescence were employed to detect the expression of IL-1β, osteocalcin (OCN), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and surface markers of macrophage polarization. Afterward, multiple reaction monitoring (MRM)-based targeted tryptophan metabolomic analysis was used to examine the ASC metabolites. Chromatin immunoprecipitation (ChIP)-qPCR assay was performed to investigate the direct binding of aryl hydrocarbon receptor (AhR) and NRF2. RESULTS Alveolar bone loss was reduced, and the ratio of iNOS+/CD206+ macrophages was significantly decreased after ASC injection in the rat models of periodontitis. ASCs promoted NRF2 expression and activation in macrophages, while NRF2 silencing in macrophages blocked the regulation of ASCs on macrophages. Furthermore, the expression of indoleamine 2,3-dioxygenase (IDO) of ASCs in the inflammatory condition was high. The inhibitor of IDO, 1-methyltryptophan (1-MT), impaired the therapeutic effects of ASCs in experimental periodontitis and regulation of macrophage polarization. Mechanistically, kynurenine (Kyn), a metabolite of ASCs catalyzed by IDO, activated AhR and enhanced its binding to the promoter of NRF2, which stimulated M2 macrophage polarization. CONCLUSIONS These findings suggested that ASCs can alleviate ligature-induced periodontitis through modulating macrophage polarization by the IDO-dependent Kyn-AhR-NRF2 pathway, uncovering a novel mechanism and providing a scientific basis for ASC-based therapy in experimental periodontitis.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Yu Yuan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Hongying Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China,Corresponding author. College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, PR China. Fax: +86 23 8886 0222.
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 401147, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, China,Corresponding author. College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, PR China. Fax: +86 23 8886 0222.
| |
Collapse
|
58
|
Kim YS, Ko B, Kim DJ, Tak J, Han CY, Cho JY, Kim W, Kim SG. Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D. Nat Commun 2022; 13:6080. [PMID: 36241614 PMCID: PMC9568535 DOI: 10.1038/s41467-022-33749-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Disturbed lipid metabolism precedes alcoholic liver injury. Whether and how AhR alters degradation of lipids, particularly phospho-/sphingo-lipids during alcohol exposure, was not explored. Here, we show that alcohol consumption in mice results in induction and activation of aryl hydrocarbon receptor (AhR) in the liver, and changes the hepatic phospho-/sphingo-lipids content. The levels of kynurenine, an endogenous AhR ligand, are elevated with increased hepatic tryptophan metabolic enzymes in alcohol-fed mice. Either alcohol or kynurenine treatment promotes AhR activation with autophagy dysregulation via AMPK. Protein Phosphatase 2 Regulatory Subunit-Bdelta (Ppp2r2d) is identified as a transcriptional target of AhR. Consequently, PPP2R2D-dependent AMPKα dephosphorylation causes autophagy inhibition and mitochondrial dysfunction. Hepatocyte-specific AhR ablation attenuates steatosis, which is associated with recovery of phospho-/sphingo-lipids content. Changes of AhR targets are corroborated using patient specimens. Overall, AhR induction by alcohol inhibits autophagy in hepatocytes through AMPKα, which is mediated by Ppp2r2d gene transactivation, revealing an AhR-dependent metabolism of phospho-/sphingo-lipids.
Collapse
Affiliation(s)
- Yun Seok Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bongsub Ko
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Da Jung Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.412484.f0000 0001 0302 820XMetabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082 Korea
| | - Jihoon Tak
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Chang Yeob Han
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.411545.00000 0004 0470 4320School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Korea
| | - Joo-Youn Cho
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Won Kim
- grid.31501.360000 0004 0470 5905Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
59
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|
60
|
Sapochnik D, Raimondi AR, Medina V, Naipauer J, Mesri EA, Coso O. A major role for Nrf2 transcription factors in cell transformation by KSHV encoded oncogenes. Front Oncol 2022; 12:890825. [PMID: 36212441 PMCID: PMC9534600 DOI: 10.3389/fonc.2022.890825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Kaposi's sarcoma (KS) is the most common tumor in AIDS patients. The highly vascularized patient's skin lesions are composed of cells derived from the endothelial tissue transformed by the KSHV virus. Heme oxygenase-1 (HO-1) is an enzyme upregulated by the Kaposi´s sarcoma-associated herpesvirus (KSHV) and highly expressed in human Kaposi Sarcoma (KS) lesions. The oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR) is expressed by the viral genome in infected cells. It is involved in KS development, HO-1 expression, and vascular endothelial growth factor (VEGF) expression. vGPCR induces HO-1 expression and HO-1 dependent transformation through the Ga13 subunit of heterotrimeric G proteins and the small GTPase RhoA. We have found several lines of evidence supporting a role for Nrf2 transcription factors and family members in the vGPCR-Ga13-RhoA signaling pathway that converges on the HO-1 gene promoter. Our current information assigns a major role to ERK1/2MAPK pathways as intermediates in signaling from vGPCR to Nrf2, influencing Nrf2 translocation to the cell nucleus, Nrf2 transactivation activity, and consequently HO-1 expression. Experiments in nude mice show that the tumorigenic effect of vGPCR is dependent on Nrf2. In the context of a complete KSHV genome, we show that the lack of vGPCR increased cytoplasmic localization of Nrf2 correlated with a downregulation of HO-1 expression. Moreover, we also found an increase in phospho-Nrf2 nuclear localization in mouse KS-like KSHV (positive) tumors compared to KSHV (negative) mouse KS-like tumors. Our data highlights the fundamental role of Nrf2 linking vGPCR signaling to the HO-1 promoter, acting upon not only HO-1 gene expression regulation but also in the tumorigenesis induced by vGPCR. Overall, these data pinpoint this transcription factor or its associated proteins as putative pharmacological or therapeutic targets in KS.
Collapse
Affiliation(s)
- Daiana Sapochnik
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Ana R. Raimondi
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Victoria Medina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Julian Naipauer
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miami Center for AIDS Research, Department of Microbiology & Immunology, University of Miami, Miami, FL, United States
| | - Enrique A. Mesri
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miami Center for AIDS Research, Department of Microbiology & Immunology, University of Miami, Miami, FL, United States
| | - Omar Coso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
61
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
62
|
Bondi CD, Rush BM, Hartman HL, Wang J, Al-Bataineh MM, Hughey RP, Tan RJ. Suppression of NRF2 Activity by HIF-1α Promotes Fibrosis after Ischemic Acute Kidney Injury. Antioxidants (Basel) 2022; 11:1810. [PMID: 36139884 PMCID: PMC9495756 DOI: 10.3390/antiox11091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury. Mild IRI increased NRF2 activity and was associated with renal recovery, whereas severe IRI decreased NRF2 activity and led to progressive CKD. Due to these effects of ischemia, we tested the hypothesis that hypoxia-inducible factor-1α (HIF-1α) mediates NRF2 activity. To mimic mild and severe ischemia, we activated HIF-1α in HK-2 cells in nutrient-replete or nutrient-deficient conditions. HIF-1α activation in nutrient-replete conditions enhanced NRF2 nuclear localization and activity. However, in nutrient-deficient conditions, HIF-1α activation suppressed NRF2 nuclear localization and activity. Nuclear localization was rescued with HIF-1α siRNA knockdown. Our results suggest that severe ischemic AKI leads to HIF-1α-mediated suppression of NRF2, leading to AKI-to-CKD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA
| |
Collapse
|
63
|
Sakakibara Y, Kojima A, Asai Y, Nadai M, Katoh M. Changes in uridine 5'-diphospho-glucuronosyltransferase 1A6 expression by histone deacetylase inhibitor valproic acid. Biopharm Drug Dispos 2022; 43:175-182. [PMID: 36000181 DOI: 10.1002/bdd.2328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Valproic acid (VPA) is well-known as a histone deacetylase (HDAC) inhibitor. It has been reported that HDAC inhibitors enhance basal and aryl hydrocarbon receptor (AhR) ligand-induced aryl hydrocarbon receptor-responsive gene expression. Other studies suggested that HDAC inhibition might significantly activate the NF-E2-related factor-2 (Nrf2). Moreover, VPA activates mitogen-activated protein kinases (MAPKs). MAPK pathways regulate Nrf2 transactivation domain activity. Uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A6 is one of the important isoforms to affect drug pharmacokinetics. UGT1A6 gene is regulated transcriptionally by AhR and Nrf2. The present study aimed to investigate whether UGT1A6 expression was changed by VPA and to elucidate the mechanism of the alteration. Following VPA treatment for 72 h in Caco-2 cells, UGT1A6 mRNA was increased by 7.9-fold. Moreover, UGT1A6 mRNA was increased by other HDAC inhibitors, suggesting that HDAC inhibition caused the UGT1A6 mRNA induction. AhR and Nrf2 proteins in the nucleus of Caco-2 cells were increased by 1.5- and 1.7-fold, respectively, following the VPA treatment. However, VPA treatment did not activate the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways in Caco-2 cells. In conclusion, we observed that VPA induced UGT1A6 mRNA expression via AhR and Nrf2 pathways, but not via the ERK or JNK pathways.
Collapse
Affiliation(s)
| | - Ayaka Kojima
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
64
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
65
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
66
|
Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1β and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3β among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran.
| | - Amirreza Mirzaie
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amin Maghsoudloo
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Asadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
67
|
Lee E, Ahn H, Park S, Kim G, Kim H, Noh MG, Kim Y, Yeon JS, Park H. Staphylococcus epidermidis WF2R11 Suppresses PM 2.5-Mediated Activation of the Aryl Hydrocarbon Receptor in HaCaT Keratinocytes. Probiotics Antimicrob Proteins 2022; 14:915-933. [PMID: 35727505 PMCID: PMC9474527 DOI: 10.1007/s12602-022-09922-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The skin supports a diverse microbiome whose imbalance is related to skin inflammation and diseases. Exposure to fine particulate matter (PM2.5), a major air pollutant, can adversely affect the skin microbiota equilibrium. In this study, the effect and mechanism of PM2.5 exposure in HaCaT keratinocytes were investigated. PM2.5 stimulated the aryl hydrocarbon receptor (AhR) to produce reactive oxygen species (ROS) in HaCaT cells, leading to mitochondrial dysfunction and intrinsic mitochondrial apoptosis. We observed that the culture medium derived from a particular skin microbe, Staphylococcus epidermidis WF2R11, remarkably reduced oxidative stress in HaCaT cells caused by PM2.5-mediated activation of the AhR pathway. Staphylococcus epidermidis WF2R11 also exhibited inhibition of ROS-induced inflammatory cytokine secretion. Herein, we demonstrated that S. epidermidis WF2R11 could act as a suppressor of AhRs, affect cell proliferation, and inhibit apoptosis. Our results highlight the importance of the clinical application of skin microbiome interventions in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae-Sung Yeon
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea. .,Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea.
| |
Collapse
|
68
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
69
|
Cen Y, Zou X, Zhong Q, Chen Y, Lin Y, Feng Q, Wang X, Zheng S. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med 2022; 184:17-29. [PMID: 35367339 DOI: 10.1016/j.freeradbiomed.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023]
Abstract
Nrf2 is a key regulator in the maintenance of cellular redox balance by regulating the expression of genes related to antioxidative responses and detoxification. Nrf2 protein levels are increased in response to oxidative stress. However, the regulation of the Nrf2 3'UTR on Nrf2 translation is unclear. Here, we report that the translational activity of the 3'UTR is required for Spodoptera litura Nrf2 protein expression. Experiments showed that the 3'UTR translation activity of S. litura Nrf2 was much higher than that of the 5'UTR. RNA interference (RNAi) of the expression of T cell internal antigen-related protein (TIAR), an RNA-binding protein that interacts with the 3'UTR of S. litura Nrf2, resulted in Nrf2 mRNA movement out of translationally active polysomes and a decrease in cellular Nrf2 protein levels. TIAR interacted with poly(A)-binding protein (PABP) and translation initiation factors eIF2-2 and eIF2-3 to enhance Nrf2 translation, indicating that the 3'UTR regulates Nrf2 translation. Diethyl maleate (DEM) treatment increased reactive oxygen species (ROS) in cells and enhanced Nrf2 levels, which had been reduced by cycloheximide (CHX), an inhibitor of de novo protein synthesis; Tiar RNAi increased ROS levels in DEM-treated cells, suggesting TIAR-mediated 3'UTR involvement in Nrf2 translation in response to DEM treatment. Thus, we reveal a posttranscriptional regulation mechanism of Nrf2, in which TIAR binds with the Nrf2 mRNA 3'UTR to enhance Nrf2 translation, facilitating the increase in Nrf2 protein levels in response to oxidative stress.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qien Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yumei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
70
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
71
|
Rockwell CE, Jin Y, Boss AP, Kaiser LM, Awali S. The Complicated Role of Nuclear Factor Erythroid-Derived 2-Like 2 in Allergy and Asthma. Drug Metab Dispos 2022; 50:500-507. [PMID: 34930784 PMCID: PMC11022934 DOI: 10.1124/dmd.121.000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-activated transcription factor that is highly responsive to oxidative stress and electrophilic stimuli. Upon activation, Nrf2 upregulates a battery of cytoprotective genes meant to prevent cell death or damage. In many models of inflammation, Nrf2 protects against the immune response and decreases injury, including in the context of asthma and allergy. However, in some models of asthma and allergy, Nrf2 either does not play a role or can even exacerbate inflammation. In general, the reasons behind these discrepancies are not clear and the mechanisms by which Nrf2 modulates immune response are largely uncharacterized. The aim of this review is to highlight current literature assessing the role of Nrf2 in allergy and asthma to understand Nrf2 as a potential therapeutic target. SIGNIFICANCE STATEMENT: Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune mediator that modulates numerous immune cell types in various inflammatory diseases, including allergy and asthma. There is considerable interest in Nrf2 as a drug target in inflammation, which is complicated by the complex nature of Nrf2 in the immune system. This review focuses on the role of Nrf2 in asthma and allergy, including in regulating immune cell function and in detoxifying xenobiotics that exacerbate these diseases.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Yining Jin
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Allison P Boss
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Luca M Kaiser
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Saamera Awali
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
72
|
Tastan B, Arioz BI, Genc S. Targeting NLRP3 Inflammasome With Nrf2 Inducers in Central Nervous System Disorders. Front Immunol 2022; 13:865772. [PMID: 35418995 PMCID: PMC8995746 DOI: 10.3389/fimmu.2022.865772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
The NLRP3 inflammasome is an intracellular multiprotein complex that plays an essential role in the innate immune system by identifying and eliminating a plethora of endogenous and exogenous threats to the host. Upon activation of the NLRP3 complex, pro-inflammatory cytokines are processed and released. Furthermore, activation of the NLRP3 inflammasome complex can induce pyroptotic cell death, thereby propagating the inflammatory response. The aberrant activity and detrimental effects of NLRP3 inflammasome activation have been associated with cardiovascular, neurodegenerative, metabolic, and inflammatory diseases. Therefore, clinical strategies targeting the inhibition of the self-propelled NLRP3 inflammasome activation are required. The transcription factor Nrf2 regulates cellular stress response, controlling the redox equilibrium, metabolic programming, and inflammation. The Nrf2 pathway participates in anti-oxidative, cytoprotective, and anti-inflammatory activities. This prominent regulator, through pharmacologic activation, could provide a therapeutic strategy for the diseases to the etiology and pathogenesis of which NLRP3 inflammasome contributes. In this review, current knowledge on NLRP3 inflammasome activation and Nrf2 pathways is presented; the relationship between NLRP3 inflammasome signaling and Nrf2 pathway, as well as the pre/clinical use of Nrf2 activators against NLRP3 inflammasome activation in disorders of the central nervous system, are thoroughly described. Cumulative evidence points out therapeutic use of Nrf2 activators against NLRP3 inflammasome activation or diseases that NLRP3 inflammasome contributes to would be advantageous to prevent inflammatory conditions; however, the side effects of these molecules should be kept in mind before applying them to clinical practice.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I. Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey,*Correspondence: Sermin Genc,
| |
Collapse
|
73
|
DiNicolantonio JJ, McCarty MF, Assanga SI, Lujan LL, O'Keefe JH. Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity. Open Heart 2022; 9:openhrt-2021-001801. [PMID: 35301252 PMCID: PMC8932268 DOI: 10.1136/openhrt-2021-001801] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Ferulic acid, a bacterial metabolite of anthocyanins, seems likely to be a primary mediator of the health benefits associated with anthocyanin-rich diets, and has long been employed in Chinese cardiovascular medicine. In rodent studies, it has exerted wide-ranging antioxidant and anti-inflammatory effects, the molecular basis of which remains rather obscure. However, recent studies indicate that physiologically relevant concentrations of ferulic acid can boost expression of Sirt1 at mRNA and protein levels in a range of tissues. Sirt1, a class III deacetylase, functions to detect a paucity of oxidisable substrate, and in response works in various ways to promote cellular survival and healthful longevity. Sirt1 promotes ‘cell cleansing’ and cell survival by boosting autophagy, mitophagy, mitochondrial biogenesis, phase 2 induction of antioxidant enzymes via Nrf2, and DNA repair—while inhibiting NF-kB-driven inflammation, apoptosis, and cellular senescence, and boosting endothelial expression of the protective transcription factor kruppel-like factor 2. A deficit of the latter appears to mediate the endothelial toxicity of the SARS-CoV-2 spike protein. Ferulic acid also enhances the activation of AMP-activated kinase (AMPK) by increasing expression and activity of its activating kinase LKB1—whereas AMPK in turn amplifies Sirt1 activity by promoting induction of nicotinamide phosphoribosyltranferase, rate-limiting for generation of Sirt1’s obligate substrate NAD+. Curiously, AMPK acts by independent mechanisms to potentiate many of the effects mediated by Sirt1. Hence, it is proposed that ferulic acid may exert complementary or synergistic health-promoting effects when used in conjunction with clinically useful AMPK activators, such as the nutraceutical berberine. Additional nutraceuticals which might have potential for amplifying certain protective effects of ferulic acid/berberine are also discussed.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - Simon Iloki Assanga
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - James H O'Keefe
- Charles and Barbara Duboc Cardio Health & Wellness Center, St Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
74
|
Jin Y, Qi G, Shou Y, Li D, Liu Y, Guan H, Zhang Q, Chen S, Luo J, Xu L, Li C, Ma W, Chen N, Zheng Y, Yu D. High throughput data-based, toxicity pathway-oriented development of a quantitative adverse outcome pathway network linking AHR activation to lung damages. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128041. [PMID: 34906874 DOI: 10.1016/j.jhazmat.2021.128041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The quantitative adverse outcome pathway (qAOP) is proposed to inform dose-responses at multiple biological levels for the purpose of toxicity prediction. So far, qAOP models concerning human health are scarce. Previously, we proposed 5 key molecular pathways that led aryl hydrogen receptor (AHR) activation to lung damages. The present study assembled an AOP network based on the gene expression signatures of these toxicity pathways, and validated the network using publicly available high throughput data combined with machine learning models. In addition, the AOP network was quantitatively evaluated with omics approaches and bioassays, using 16HBE-CYP1A1 cells exposed to benzo(a)pyrene (BaP), a prototypical AHR activator. Benchmark dose (BMD) analysis of transcriptomics revealed that AHR gene held the lowest BMD value, whereas AHR pathway held the lowest point of departure (PoD) compared to the other 4 pathways. Targeted bioassays were further performed to quantitatively understand the cellular responses, including ROS generation, DNA damage, interleukin-6 production, and extracellular matrix increase marked by collagen expression. Eventually, response-response relationships were plotted using nonlinear model fitting. The present study developed a highly reliable AOP model concerning human health, and validated as well as quantitatively evaluated it, and such a method is likely to be adoptable for risk assessment.
Collapse
Affiliation(s)
- Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Liu
- School of Public Health, Qingdao University, Qingdao, China
| | - Heyuan Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
75
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
76
|
Aranguren-Abadía L, Yadetie F, Donald CE, Sørhus E, Myklatun LE, Zhang X, Lie KK, Perrichon P, Nakken CL, Durif C, Shema S, Browman HI, Skiftesvik AB, Goksøyr A, Meier S, Karlsen OA. Photo-enhanced toxicity of crude oil on early developmental stages of Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150697. [PMID: 34610396 DOI: 10.1016/j.scitotenv.2021.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.
Collapse
Affiliation(s)
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | | | - Xiaokang Zhang
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | | | | | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Steven Shema
- Grótti ehf., Grundarstíg 4, 101 Reykjavík, Iceland
| | - Howard I Browman
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
77
|
Yang X, Li C, Yu G, Sun L, Guo S, Sai L, Bo C, Xing C, Shao H, Peng C, Jia Q. Ligand-independent activation of AhR by hydroquinone mediates benzene-induced hematopoietic toxicity. Chem Biol Interact 2022; 355:109845. [DOI: 10.1016/j.cbi.2022.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
78
|
Nguyen C, Edgley AJ, Kelly DJ, Kompa AR. Aryl Hydrocarbon Receptor Inhibition Restores Indoxyl Sulfate-Mediated Endothelial Dysfunction in Rat Aortic Rings. Toxins (Basel) 2022; 14:100. [PMID: 35202128 PMCID: PMC8878015 DOI: 10.3390/toxins14020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
The uremic toxin indoxyl sulfate (IS), elevated in chronic kidney disease (CKD), is known to contribute towards progressive cardiovascular disease. IS activates the aryl hydrocarbon receptor (AhR) mediating oxidative stress and endothelial dysfunction via activation of the CYP1A1 pathway. The present study examines AhR inhibition with the antagonist, CH223191, on IS-mediated impairment of vascular endothelial function and disruption of redox balance. The acute effects of IS on endothelium-dependent relaxation were assessed in aortic rings from Sprague Dawley rats exposed to the following conditions: (1) control; (2) IS (300 μM); (3) IS + CH223191 (1 μM); (4) IS + CH223191 (10 μM). Thereafter, tissues were assessed for changes in expression of redox markers. IS reduced the maximum level of endothelium-dependent relaxation (Rmax) by 42% (p < 0.001) compared to control, this was restored in the presence of increasing concentrations of CH223191 (p < 0.05). Rings exposed to IS increased expression of CYP1A1, nitro-tyrosine, NADPH oxidase 4 (NOX4), superoxide, and reduced eNOS expression (p < 0.05). CH223191 (10 μM) restored expression of these markers back to control levels (p < 0.05). These findings demonstrate the adverse impact of IS-mediated AhR activation on the vascular endothelium, where oxidative stress may play a critical role in inducing endothelial dysfunction in the vasculature of the heart and kidneys. AhR inhibition could provide an exciting novel therapy for CVD in the CKD setting.
Collapse
Affiliation(s)
| | | | | | - Andrew R. Kompa
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy 3065, Australia; (C.N.); (A.J.E.); (D.J.K.)
| |
Collapse
|
79
|
Edamitsu T, Taguchi K, Okuyama R, Yamamoto M. AHR and NRF2 in Skin Homeostasis and Atopic Dermatitis. Antioxidants (Basel) 2022; 11:antiox11020227. [PMID: 35204110 PMCID: PMC8868544 DOI: 10.3390/antiox11020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Skin is constantly exposed to environmental insults, including toxic chemicals and oxidative stress. These insults often provoke perturbation of epidermal homeostasis and lead to characteristic skin diseases. AHR (aryl hydrocarbon receptor) and NRF2 (nuclear factor erythroid 2-related factor 2) are transcription factors that induce a battery of cytoprotective genes encoding detoxication and antioxidant enzymes in response to environmental insults. In addition to their basic functions as key regulators of xenobiotic and oxidant detoxification, recent investigations revealed that AHR and NRF2 also play critical roles in the maintenance of skin homeostasis. In fact, specific disruption of AHR function in the skin has been found to be associated with the pathogenesis of various skin diseases, most prevalently atopic dermatitis (AD). In this review, current knowledge on the roles that AHR and NRF2 play in epidermal homeostasis was summarized. Functional annotations of genetic variants, both regulatory and nonsynonymous SNPs, identified in the AHR and NRF2 loci in the human genome were also summarized. Finally, the possibility that AHR and NRF2 serve as therapeutic targets of AD was assessed.
Collapse
Affiliation(s)
- Tomohiro Edamitsu
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (T.E.); (K.T.)
- Department of Dermatology, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| | - Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (T.E.); (K.T.)
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (T.E.); (K.T.)
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
- Correspondence: ; Tel.: +81-22-717-8084
| |
Collapse
|
80
|
Identification of triazolopyridine derivatives as a new class of AhR agonists and evaluation of anti-psoriasis effect in a mouse model. Eur J Med Chem 2022; 231:114122. [DOI: 10.1016/j.ejmech.2022.114122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
|
81
|
Song W, Yang X, Wang W, Wang Z, Wu J, Huang F. Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway. Eur J Pharmacol 2021; 912:174581. [PMID: 34743979 DOI: 10.1016/j.ejphar.2021.174581] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by a host's immune response to infection. Acute lung injury (ALI) is one of the most common complications of sepsis with high mortality and morbidity. Recent evidence demonstrated that the 'gut-lung axis' was related to the progression of septic acute lung injury, which regarded gut microbiota and intestinal barrier as two critical factors correlated with acute lung injury. Sinomenine is an isoquinoline alkaloid component extracted from Sinomenium acutum Rehd,et Wils, which has been already reported to have significant anti-inflammatory, immunosuppressive, and anti-arthritis properties. In this research, we observed that sinomenine could repair the lung injury and alleviate inflammatory response induced by cecum ligation and puncture (CLP). Illumine sequencing of 16S rDNA revealed that sinomenine could improve the richness of gut microbiota and modulate the composition of intestinal flora in cecum ligation and puncture mice. Meanwhile, sinomenine could reduce the colon pathological damage and improve the intestine barrier integrity in cecum ligation and puncture mice. We also found that the molecular mechanism of sinomenine's protective effect on intestinal tract was related to the activation of aryl hydrocarbon receptor/nuclear factor erythroid-2 related factor 2(Nrf2)pathway both in vivo and vitro experiments. Collectively, the prevention of septic acute lung injury by sinomenine might be mediated by modulating gut microbiota and restoring intestinal barrier via aryl hydrocarbon receptor/Nrf2-dependent pathway.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoting Yang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Wanqiu Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Zi Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
82
|
Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021; 10:cells10113176. [PMID: 34831399 PMCID: PMC8622815 DOI: 10.3390/cells10113176] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment–cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| | - Danay Cibrian
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| |
Collapse
|
83
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
84
|
Mastalerz M, Dick E, Chakraborty AA, Hennen E, Schamberger AC, Schröppel A, Lindner M, Hatz R, Behr J, Hilgendorff A, Schmid O, Staab-Weijnitz CA. Validation of in vitro models for smoke exposure of primary human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 322:L129-L148. [PMID: 34668416 DOI: 10.1152/ajplung.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RATIONALE The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. METHODS We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. RESULTS Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. CONCLUSIONS Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.
Collapse
Affiliation(s)
- Michal Mastalerz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ashesh Anjankumar Chakraborty
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elisabeth Hennen
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea C Schamberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Schröppel
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität (LMU), Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
85
|
Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021; 16:71. [PMID: 34663413 PMCID: PMC8521937 DOI: 10.1186/s13024-021-00479-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). MAIN BODY Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS. We then examine several compounds capable of promoting NRF2 activity thereby inducing cytoprotective effects, and which are currently in different stages of clinical development for many pathologies, including neurodegenerative diseases. CONCLUSIONS Although challenges associated with some of these compounds remain, important advances have been made in the development of safer and more effective drugs that could actually represent a breakthrough for fatal degenerative diseases such as ALS.
Collapse
Affiliation(s)
- Silvia Bono
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| | - Marco Feligioni
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| |
Collapse
|
86
|
Somarribas Patterson LF, Vardhana SA. Metabolic regulation of the cancer-immunity cycle. Trends Immunol 2021; 42:975-993. [PMID: 34610889 DOI: 10.1016/j.it.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies.
Collapse
Affiliation(s)
- Luis F Somarribas Patterson
- Department of Biochemistry, School of Medicine, University of Costa Rica, 11501-2060 San José, Costa Rica; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
87
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
88
|
Zhao Y, Bao RK, Zhu SY, Talukder M, Cui JG, Zhang H, Li XN, Li JL. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117080. [PMID: 33965855 DOI: 10.1016/j.envpol.2021.117080] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/20/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR-Nrf2 pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
89
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
90
|
Savall M, Senni N, Lagoutte I, Sohier P, Dentin R, Romagnolo B, Perret C, Bossard P. Cooperation Between the NRF2 Pathway and Oncogenic β-catenin During HCC Tumorigenesis. Hepatol Commun 2021; 5:1490-1506. [PMID: 34510835 PMCID: PMC8435276 DOI: 10.1002/hep4.1746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
CTNNB1 (catenin beta 1)-mutated hepatocellular carcinomas (HCCs) account for a large proportion of human HCCs. They display high levels of respiratory chain activity. As metabolism and redox balance are closely linked, tumor cells must maintain their redox status during these metabolic alterations. We investigated the redox balance of these HCCs and the feasibility of targeting this balance as an avenue for targeted therapy. We assessed the expression of the nuclear erythroid 2 p45-related factor 2 (NRF2) detoxification pathway in an annotated human HCC data set and reported an enrichment of the NRF2 program in human HCCs with CTNNB1 mutations, largely independent of NFE2L2 (nuclear factor, erythroid 2 like 2) or KEAP1 (Kelch-like ECH-associated protein 1) mutations. We then used mice with hepatocyte-specific oncogenic β-catenin activation to evaluate the redox status associated with β-catenin activation in preneoplastic livers and tumors. We challenged them with various oxidative stressors and observed that the β-catenin pathway activation increased transcription of Nfe2l2, which protects β-catenin-activated hepatocytes from oxidative damage and supports tumor development. Moreover, outside of its effects on reactive oxygen species scavenging, we found out that Nrf2 itself contributes to the metabolic activity of β-catenin-activated cells. We then challenged β-catenin activated tumors pharmacologically to create a redox imbalance and found that pharmacological inactivation of Nrf2 was sufficient to considerably decrease the progression of β-catenin-dependent HCC development. Conclusion: These results demonstrate cooperation between oncogenic β-catenin signaling and the NRF2 pathway in CTNNB1-mediated HCC tumorigenesis, and we provide evidence for the relevance of redox balance targeting as a therapeutic strategy in CTNNB1-mutated HCC.
Collapse
Affiliation(s)
| | - Nadia Senni
- Université de ParisInstitut CochinINSERMCNRSParisFrance
| | | | - Pierre Sohier
- Department of PathologyHôpital CochinAP-HPCentre-Université de ParisParisFrance
| | - Renaud Dentin
- Université de ParisInstitut CochinINSERMCNRSParisFrance
| | | | | | | |
Collapse
|
91
|
Tao LP, Li X, Zhao MZ, Shi JR, Ji SQ, Jiang WY, Liang QJ, Lei YH, Zhou YY, Cheng R, Shi Z, Deng W, Zhu J, Zhang SY. Chrysene, a four-ring polycyclic aromatic hydrocarbon, induces hepatotoxicity in mice by activation of the aryl hydrocarbon receptor (AhR). CHEMOSPHERE 2021; 276:130108. [PMID: 33711793 DOI: 10.1016/j.chemosphere.2021.130108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic global environmental pollutants and cause harmful effects on human health. Here, we evaluated adverse effects of chrysene, which is a four-ring PAH and an important member of 16 priority PAHs, on the liver. Chrysene was detected in some common raw and cooked Chinese food samples. Hepatotoxicity including increased relative liver weight, hepatocyte swelling and degeneration, and elevated serum alanine aminotransferase (ALT) levels were observed in chrysene-exposed C57BL/6 mice. Glutamine treatment effectively ameliorated chrysene-induced mice liver injury by decreasing serum ALT levels. Chrysene induced mice hepatic glutathione depletion and oxidative DNA damage with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Hepatic expression levels of the aryl hydrocarbon receptor (AhR), AhR-related target genes including CYP1A1, CYP1A2 and CYP1B1, and AhR nuclear translocator (ARNT) were significantly increased in chrysene-exposed C57BL/6 mice. Chrysene induced mice hepatic mRNA levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated phase II detoxifying and antioxidant enzymes including NQO1, UGT1A1, UGT1A6, SULT1A1, GSTm1, GSTm3, Catalase (CAT), GPx1, and SOD2. We found that chrysene had toxic effects including increased relative liver weight and elevated serum ALT levels on AhR+/+ mice but not AhR-/- mice. Chrysene significantly induced hepatic mRNA levels of CYP1A1 and CYP1A2 in AhR+/+ mice but not AhR-/- mice. To our knowledge, this study is the first to demonstrate that hepatotoxicity causes by chrysene is dependent on AhR, and Nrf2 plays an important regulation role in protection against oxidative liver injury induced by chrysene.
Collapse
Affiliation(s)
- Li-Ping Tao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ming-Zhu Zhao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Ru Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Si-Qi Ji
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yuan Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiu-Ju Liang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu-Hang Lei
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi-Yao Zhou
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rong Cheng
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhai Deng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayin Zhu
- Laboratory of Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
92
|
Mishra R, Nawas AF, Mendelson CR. Role of NRF2 in immune modulator expression in developing lung. FASEB J 2021; 35:e21758. [PMID: 34245611 DOI: 10.1096/fj.202100129rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
After birth, the alveolar epithelium is exposed to environmental pathogens and high O2 tensions. The alveolar type II cells may protect this epithelium through surfactant production. Surfactant protein, SP-A, an immune modulator, is developmentally upregulated in fetal lung with surfactant phospholipid synthesis. Herein, we observed that the redox-regulated transcription factor, NRF2, and co-regulated C/EBPβ and PPARγ, were markedly induced during cAMP-mediated differentiation of cultured human fetal lung (HFL) epithelial cells. This occurred with enhanced expression of immune modulators, SP-A, TDO2, AhR, and NQO1. Like SP-A, cAMP induction of NRF2 was prevented when cells were exposed to hypoxia. NRF2 knockdown inhibited induction of C/EBPβ, PPARγ, and immune modulators. Binding of endogenous NRF2 to promoters of SP-A and other immune modulator genes increased during HFL cell differentiation. In mouse fetal lung (MFL), a developmental increase in Nrf2, SP-A, Tdo2, Ahr, and Nqo1 and decrease in Keap1 occurred from 14.5 to 18.5 dpc. Developmental induction of Nrf2 in MFL was associated with increased nuclear localization of NF-κB p65, a decline in p38 MAPK phosphorylation, increase in the MAPK phosphatase, DUSP1, induction of the histone acetylase, CBP, and decline in the histone deacetylase, HDAC4. Thus, together with surfactant production, type II cells protect the alveolar epithelium through increased expression of NRF2 and immune modulators to prevent inflammation and oxidative stress. Our findings further suggest that lung cancer cells have usurped this developmental pathway to promote immune tolerance and enhance survival.
Collapse
Affiliation(s)
- Ritu Mishra
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Afshan Fathima Nawas
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carole R Mendelson
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics & Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Med Center, Dallas, TX, USA
| |
Collapse
|
93
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
94
|
Gao S, Guo K, Chen Y, Zhao J, Jing R, Wang L, Li X, Hu Z, Xu N, Li X. Keratinocyte Growth Factor 2 Ameliorates UVB-Induced Skin Damage via Activating the AhR/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:655281. [PMID: 34163354 PMCID: PMC8215442 DOI: 10.3389/fphar.2021.655281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: Exposure to ultraviolet B (UVB) can cause skin damage through oxidative stress, DNA damage, and apoptosis. Keratinocyte growth factor (KGF) has been shown to reduce the content of intracellular reactive oxygen species (ROS) following UVB exposure, a role that is crucial for the efficient photoprotection of skin. The present study evaluated the photoprotective effect of KGF-2 on UVB-induced skin damage and explored its potential molecular mechanism. Methods: To evaluate the effect of KGF-2 on UVB-induced damage ex vivo, a human epidermal full-thickness skin equivalent was pretreated without or with KGF-2 and then exposed to UVB and the levels of histopathological changes, DNA damage, inflammation, and apoptosis were then evaluated. The ability of KGF-2 to protect the cells against UVB-inflicted damage and its effect on ROS production, apoptosis, and mitochondrial dysfunction were determined in HaCaT cells. Results: Pretreatment of the epidermis with KGF-2 ameliorated the extent of photodamage. At the cellular level, KGF-2 could attenuate ROS production, apoptosis, DNA damage, and mitochondrial dysfunction caused by UVB exposure. KGF-2 could also activate the aryl hydrocarbon receptor (AhR) to trigger the Nrf2 signaling pathway. Conclusion: Taken together, our findings suggested that KGF-2 could ameliorate UVB-induced skin damage through inhibiting apoptosis, reducing oxidative stress, and preventing DNA damage and mitochondrial dysfunction via regulating AhR/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yu Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuenan Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
95
|
Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021; 76:110-119. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
The complex role of NRF2 in the context of cancer continues to evolve. As a transcription factor, NRF2 regulates various genes involved in redox homeostasis, protein degradation, DNA repair, and xenobiotic metabolism. As such, NRF2 is critical in preserving cell function and viability, particularly during stress. Importantly, NRF2 itself is regulated via a variety of mechanisms, and the mode of NRF2 activation often dictates the duration of NRF2 signaling and its role in either preventing cancer initiation or promoting cancer progression. Herein, different modes of NRF2 regulation, including oxidative stress, autophagy dysfunction, protein-protein interactions, and epigenetics, as well as pharmacological modulators targeting this cascade in cancer, are explored. Specifically, how the timing and duration of these different mechanisms of NRF2 induction affect tumor initiation, progression, and metastasis are discussed. Additionally, progress in the discovery and development of NRF2 inhibitors for the treatment of NRF2-addicted cancers is highlighted, including modulators that inhibit specific NRF2 downstream targets. Overall, a better understanding of the intricate nature of NRF2 regulation in specific cancer contexts should facilitate the generation of novel therapeutics designed to not only prevent tumor initiation, but also halt progression and ultimately improve patient wellbeing and survival.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Aryatara Shakya
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
96
|
McCarty MF, Lerner A. The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother 2021; 21:559-570. [PMID: 33749495 DOI: 10.1080/14737175.2021.1907182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION A delayed second wave of brain trauma is mediated in large part by microglia that are activated to a pro-inflammatory M1 phenotype by DAMP proteins released by dying neurons. These microglia can promote apoptosis or necrosis in neighboring neurons by producing a range of pro-inflammatory cytokines and the deadly oxidant peroxynitrite. This second wave could therefore be mitigated with agents that blunt the post-traumatic M1 activation of microglia and that preferentially promote a pro-healing M2 phenotype. AREAS COVERED The literature on nutraceuticals that might have clinical potential in this regard. EXPERT OPINION The chief signaling pathway whereby DAMPs promote M1 microglial activation involves activation of toll-like receptor 4 (TLR4), NADPH oxidase, NF-kappaB, and the stress activated kinases JNK and p38. The green tea catechin EGCG can suppress TLR4 expression. Phycocyanobilin can inhibit NOX2-dependent NADPH oxidase, ferulate and melatonin can oppose pro-inflammatory signal modulation by NADPH oxidase-derived oxidants. Long-chain omega-3 fatty acids, the soy isoflavone genistein, the AMPK activator berberine, glucosamine, and ketone bodies can down-regulate NF-kappaB activation. Vitamin D activity can oppose JNK/p38 activation. A sophisticated program of nutraceutical supplementation may have important potential for mitigating the second phase of neuronal death and aiding subsequent healing.
Collapse
Affiliation(s)
- Mark F McCarty
- Department of research, Catalytic Longevity Foundation, San Diego, California, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
97
|
Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO 2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021; 22:3087. [PMID: 33802993 PMCID: PMC8002609 DOI: 10.3390/ijms22063087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Despite advances in the preparation of metal oxide (MO) nanoparticles (NPs) as catalysts for various applications, concerns about the biosafety of these particles remain. In this study, we prepared transition metal-doped cerium oxide (TM@CeO2; TM = Cr, Mn, Fe, Co, or Ni) nanoparticles and investigated the mechanism underlying dopant-dependent toxicity in HaCaT human keratinocytes. We show that doping with Cr or Co but not Fe, Mn, or Ni increased the toxicity of CeO2 NPs in dose- and time-dependent manners and led to apoptotic cell death. Interestingly, while both undoped and transition metal-doped NPs increased intracellular reactive oxygen species (ROS), toxic Cr@CeO2 and Co@CeO2 NPs failed to induce the expression of NRF2 (nuclear factor erythroid 2-related factor 2) as well as its downstream target genes involved in the antioxidant defense system. Moreover, activation of NRF2 transcription was correlated with dynamic changes in H3K4me3 and H3K27me3 at the promoter of NRF2, which was not observed in cells exposed to Cr@CeO2 NPs. Furthermore, exposure to relatively non-toxic Fe@CeO2 NPs, but not the toxic Cr@CeO2 NPs, resulted in increased binding of MLL1 complex, a major histone lysine methylase mediating trimethylation of histone H3 lysine 4, at the NRF2 promoter. Taken together, our findings strongly suggest that failure of cells to respond to oxidative stress is critical for dopant-dependent toxicity of CeO2 NPs and emphasize that careful evaluation of newly developed NPs should be preceded before industrial or biomedical applications.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| | - Haram Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| |
Collapse
|
98
|
Wuputra K, Tsai MH, Kato K, Yang YH, Pan JB, Ku CC, Noguchi M, Kishikawa S, Nakade K, Chen HL, Liu CJ, Nakamura Y, Kuo KK, Lin YC, Chan TF, Wu DC, Hou MF, Huang SK, Lin CS, Yokoyama KK. Dimethyl sulfoxide stimulates the AhR-Jdp2 axis to control ROS accumulation in mouse embryonic fibroblasts. Cell Biol Toxicol 2021; 38:203-222. [PMID: 33723743 PMCID: PMC8986748 DOI: 10.1007/s10565-021-09592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-binding protein that responds to environmental aromatic hydrocarbons and stimulates the transcription of downstream phase I enzyme–related genes by binding the cis element of dioxin-responsive elements (DREs)/xenobiotic-responsive elements. Dimethyl sulfoxide (DMSO) is a well-known organic solvent that is often used to dissolve phase I reagents in toxicology and oxidative stress research experiments. In the current study, we discovered that 0.1% DMSO significantly induced the activation of the AhR promoter via DREs and produced reactive oxygen species, which induced apoptosis in mouse embryonic fibroblasts (MEFs). Moreover, Jun dimerization protein 2 (Jdp2) was found to be required for activation of the AhR promoter in response to DMSO. Coimmunoprecipitation and chromatin immunoprecipitation studies demonstrated that the phase I–dependent transcription factors, AhR and the AhR nuclear translocator, and phase II–dependent transcription factors such as nuclear factor (erythroid-derived 2)–like 2 (Nrf2) integrated into DRE sites together with Jdp2 to form an activation complex to increase AhR promoter activity in response to DMSO in MEFs. Our findings provide evidence for the functional role of Jdp2 in controlling the AhR gene via Nrf2 and provide insights into how Jdp2 contributes to the regulation of ROS production and the cell spreading and apoptosis produced by the ligand DMSO in MEFs.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ya-Han Yang
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hua-Ling Chen
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kung-Kai Kuo
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
99
|
Kim JE, Kim HR, Kang SY, Jung MJ, Heo NH, Lee HJ, Ryu A, Kim HO, Park CW, Chung BY. Aryl Hydrocarbon Receptor and Autophagy-Related Protein Microtubule-Associated Protein Light Chain 3 Expression in Psoriasis. Ann Dermatol 2021; 33:138-146. [PMID: 33935455 PMCID: PMC8082009 DOI: 10.5021/ad.2021.33.2.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) and autophagy are both important to maintain skin homeostasis. However, they are also involved in skin disorders. So far, their roles in psoriasis pathogenesis are unknown. Objective We studied the immunohistochemical and gene expression of AHR, CYP1A1, and microtubule-associated protein light chain 3 (LC3) in lesional skin of psoriasis patients to determine correlations among them. Methods We included 24 psoriasis patients and ten healthy volunteers. Skin biopsies were collected. AHR, CYP1A1, and LC3 protein expression was examined by immunohistochemistry, immunofluorescence, and western blotting. AHR, CYP1A1, LC3, ATG5, BECN1 and Nrf2 mRNA levels were measured by quantitative polymerase chain reaction. Results AHR and CYP1A1 protein expression were higher in psoriasis lesional skin than in normal skin. LC3 protein expression was lower in psoriasis lesions than in normal controls. AHR and CYP1A1 protein expression in psoriasis lesions showed significant positive correlations with mean epidermal thickness and inflammatory cell density. Significant negative correlations were noted between LC3 protein expression in psoriasis lesions and the mean epidermal thickness or inflammatory cell density. A significant negative correlation was found between AHR and LC3 expression in psoriatic skin. AHR, CYP1A1 and Nrf2 mRNA expression were upregulated while LC3, ATG5, and BECN1 mRNA were down-regulated, in psoriatic lesional skin compared with normal controls. Conclusion AHR and autophagy could play a role in psoriasis pathogenesis by modifying epidermal hyperproliferation and inflammation. AHR and autophagy regulation are potential therapeutic targets in chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Seok Young Kang
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Min Je Jung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Nam Hun Heo
- Soonchunhyang University Hospital Cheonan, Clinical Trial Center, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| |
Collapse
|
100
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|