51
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
52
|
The role of the gut in reverse cholesterol transport--focus on the enterocyte. Prog Lipid Res 2013; 52:317-28. [PMID: 23608233 DOI: 10.1016/j.plipres.2013.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022]
Abstract
In the arterial intima, macrophages become cholesterol-enriched foam cells and atherosclerotic lesions are generated. This atherogenic process can be attenuated, prevented, or even reversed by HDL particles capable of initiating a multistep pathway known as the macrophage-specific reverse cholesterol transport. The macrophage-derived cholesterol released to HDL is taken up by the liver, secreted into the bile, and ultimately excreted in the feces. Importantly, the absorptive epithelial cells lining the lumen of the small intestine, the enterocytes, express several membrane-associated proteins which mediate the influx of luminal cholesterol and its subsequent efflux at their apical and basolateral sides. Moreover, generation of intestinal HDL and systemic effects of the gut microbiota recently revealed a direct link between the gut and the cholesterol cargo of peripheral macrophages. This review summarizes experimental evidence establishing that the reverse cholesterol transport pathway which initiates in macrophages is susceptible to modulation in the small intestine. We also describe four paths which govern cholesterol passage across the enterocyte and define a role for the gut in the regulation of reverse cholesterol transport. Understanding the concerted function of these paths may be useful when designing therapeutic strategies aimed at removing cholesterol from the foam cells which occupy atherosclerotic lesions.
Collapse
|
53
|
van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol 2013; 368:1-16. [PMID: 22721653 DOI: 10.1016/j.mce.2012.06.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/17/2012] [Accepted: 06/11/2012] [Indexed: 12/28/2022]
Abstract
Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.
Collapse
|
54
|
Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R, Wilson MD, Dikkers A, Tietge UJF, Collet X, Rudel LL, Temel RE, Brown JM. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res 2013; 54:1567-1577. [PMID: 23564696 DOI: 10.1194/jlr.m034454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.
Collapse
Affiliation(s)
- Kanwardeep S Bura
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Caleb Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gwyn Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Manya Warrier
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jun Zhang
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Janet K Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ramesh Shah
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Martha D Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Arne Dikkers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil Hospital, BP 84225, Toulouse, France
| | - Lawrence L Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| |
Collapse
|
55
|
Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 2013; 33:1484-93. [PMID: 23559630 DOI: 10.1161/atvbaha.112.300263] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Transintestinal cholesterol excretion (TICE) is an alternate pathway to hepatobiliary secretion. Our study aimed at identifying molecular mechanisms of TICE. APPROACH AND RESULTS We studied TICE ex vivo in mouse and human intestinal explants, and in vivo after bile diversion and intestinal cannulation in mice. We provide the first evidence that both low-density lipoprotein (LDL) and high-density lipoprotein deliver cholesterol for TICE in human and mouse jejunal explants at the basolateral side. Proprotein convertase subtilisin kexin type 9 (PCSK9)(-/-) mice and intestinal explants show increased LDL-TICE, and acute injection of PCSK9 decreases TICE in vivo, suggesting that PCSK9 is a repressor of TICE. The acute repression was dependent on the LDL receptor (LDLR). Further, TICE was increased when mice were treated with lovastatin. These data point to an important role for LDLR in TICE. However, LDLR(-/-) mice showed increased intestinal LDL uptake, contrary to what is observed in the liver, and tended to have higher TICE. We interpret these data to suggest that there might be at least 2 mechanisms contributing to TICE; 1 involving LDL receptors and other unidentified mechanisms. Acute modulation of LDLR affects TICE, but chronic deficiency is compensated for most likely by the upregulation of the unknown mechanisms. Using mice deficient for apical multidrug active transporter ATP-binding cassette transporter B1 a and b, and its inhibitor, we show that these apical transporters contribute significantly to TICE. CONCLUSIONS TICE is operative in human jejunal explants. It is a metabolically active process that can be acutely regulated, inversely related to cholesterolemia, and pharmacologically activated by statins.
Collapse
Affiliation(s)
- Cédric Le May
- INSERM, UMR 1087, CNRS UMR 6291, Nantes F-44000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Norata GD, Tibolla G, Catapano AL. Gene silencing approaches for the management of dyslipidaemia. Trends Pharmacol Sci 2013; 34:198-205. [DOI: 10.1016/j.tips.2013.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
57
|
Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab 2013; 24:120-8. [PMID: 23158108 DOI: 10.1016/j.tem.2012.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Modulation of the cholesterol-sensing liver X receptors (LXRs) and their downstream targets has emerged as promising therapeutic avenues in atherosclerosis. The intestine is important for its unique capabilities to act as a gatekeeper for cholesterol absorption and to participate in the process of cholesterol elimination in the feces and reverse cholesterol transport (RCT). Pharmacological and genetic intestine-specific LXR activation have been shown to protect against atherosclerosis. In this review we discuss the LXR-targeted molecular players in the enterocytes as well as the intestine-driven pathways contributing to cholesterol homeostasis with therapeutic potential as targets in the prevention and treatment of atherosclerosis..
Collapse
Affiliation(s)
- Barbara Bonamassa
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (CH), Italy
| | | |
Collapse
|
58
|
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A. J Lipids 2013; 2013:283486. [PMID: 23431457 PMCID: PMC3572687 DOI: 10.1155/2013/283486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023] Open
Abstract
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.
Collapse
|
59
|
Wegner CJ, Kim B, Lee J. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases. Nutrients 2013; 5:208-22. [PMID: 23325147 PMCID: PMC3571644 DOI: 10.3390/nu5010208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.
Collapse
Affiliation(s)
- Casey J Wegner
- Department of Nutritional Sciences, University of Connecticut, 216 Advanced Technology Laboratory Building, 1392 Storrs Road, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
60
|
Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology. Methods Mol Biol 2013; 1027:309-24. [PMID: 23912993 DOI: 10.1007/978-1-60327-369-5_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs.
Collapse
|
61
|
Vrins CLJ, Ottenhoff R, van den Oever K, de Waart DR, Kruyt JK, Zhao Y, van Berkel TJC, Havekes LM, Aerts JM, van Eck M, Rensen PCN, Groen AK. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res 2012; 53:2017-2023. [PMID: 22802462 DOI: 10.1194/jlr.m022194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cassette protein A1 deficient (Abca1(-/-)) mice that lack HDL and wild-type (WT) mice were intravenously injected with chylomicron-like emulsion particles that contained radiolabeled cholesterol that is liberated in the liver and partly reenters the circulation. Both groups secreted radiolabeled cholesterol from plasma into intestinal lumen and TICE was unaltered between the two mouse models. To further investigate the role of HDL, we injected HDL with radiolabeled cholesterol in WT mice and Abca1(-/-)×Sr-b1(-/-) mice that lack HDL and are also unable to clear HDL via the liver. The intestines of both mice were unable to take up and secrete radiolabeled cholesterol from HDL via TICE. Although a generally accepted major player in the hepatobiliary route-based cholesterol excretion, HDL plays no significant role in TICE in mice.
Collapse
Affiliation(s)
- Carlos L J Vrins
- Department of Medical Biochemistry, Amsterdam, The Netherlands; AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Dirk R de Waart
- AMC Tytgat Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J Kar Kruyt
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Louis M Havekes
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | - Miranda van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Albert K Groen
- Department of Pediatrics/Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
62
|
Zhang J, Kelley KL, Marshall SM, Davis MA, Wilson MD, Sawyer JK, Farese RV, Brown JM, Rudel LL. Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood. J Lipid Res 2012; 53:1144-52. [PMID: 22460046 PMCID: PMC3351821 DOI: 10.1194/jlr.m024356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Indexed: 11/20/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 2 (ACAT2) generates cholesterol esters (CE) for packaging into newly synthesized lipoproteins and thus is a major determinant of blood cholesterol levels. ACAT2 is expressed exclusively in the small intestine and liver, but the relative contributions of ACAT2 expression in these tissues to systemic cholesterol metabolism is unknown. We investigated whether CE derived from the intestine or liver would differentially affect hepatic and plasma cholesterol homeostasis. We generated liver-specific (ACAT2(L-/L-)) and intestine-specific (ACAT2(SI-/SI-)) ACAT2 knockout mice and studied dietary cholesterol-induced hepatic lipid accumulation and hypercholesterolemia. ACAT2(SI-/SI-) mice, in contrast to ACAT2(L-/L-) mice, had blunted cholesterol absorption. However, specific deletion of ACAT2 in the intestine generated essentially a phenocopy of the conditional knockout of ACAT2 in the liver, with reduced levels of plasma very low-density lipoprotein and hepatic CE, yet hepatic-free cholesterol does not build up after high cholesterol intake. ACAT2(L-/L-) and ACAT2(SI-/SI-) mice were equally protected from diet-induced hepatic CE accumulation and hypercholesterolemia. These results suggest that inhibition of intestinal or hepatic ACAT2 improves atherogenic hyperlipidemia and limits hepatic CE accumulation in mice and that depletion of intestinal ACAT2 is sufficient for most of the beneficial effects on cholesterol metabolism. Inhibitors of ACAT2 targeting either tissue likely would be beneficial for atheroprotection.
Collapse
Affiliation(s)
- Jun Zhang
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Kathryn L. Kelley
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Stephanie M. Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Matthew A. Davis
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Martha D. Wilson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Janet K. Sawyer
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Robert V. Farese
- Departments of Medicine, Biochemistry & Biophysics, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158
| | - J. Mark Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Lawrence L. Rudel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
63
|
De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 2012; 56:1058-72. [PMID: 22623436 DOI: 10.1002/mnfr.201100722] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/27/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022]
Abstract
Plant sterols and stanols are natural food ingredients found in plants. It was already shown in 1950 that they lower serum low-density lipoprotein cholesterol (LDL-C) concentrations. Meta-analysis has reported that a daily intake of 2.5 g plant sterols/stanols reduced serum LDL-C concentrations up to 10%. Despite many studies, the underlying mechanism remains to be elucidated. Therefore, the proposed mechanisms that have been presented over the past decades will be described and discussed in the context of the current knowledge. In the early days, it was suggested that plant sterols/stanols compete with intestinal cholesterol for incorporation into mixed micelles as well as into chylomicrons. Next, the focus shifted toward cellular processes. In particular, a role for sterol transporters localized in the membranes of enterocytes was suggested. All these processes ultimately lowered intestinal cholesterol absorption. More recently, the existence of a direct secretion of cholesterol from the circulation into the intestinal lumen was described. First results in animal studies suggested that plant sterols/stanols activate this pathway, which also explains the increased fecal neutral sterol content and as such could explain the cholesterol-lowering activity of plant sterols/stanols.
Collapse
Affiliation(s)
- Els De Smet
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
64
|
|
65
|
Abstract
PURPOSE OF REVIEW The process of reverse cholesterol transport (RCT) is critical for disposal of excess cholesterol from the body. Although it is generally accepted that RCT requires biliary secretion, recent studies show that RCT persists in genetic or surgical models of biliary insufficiency. Discovery of this nonbiliary pathway has opened new possibilities of targeting the intestine as an inducible cholesterol excretory organ. In this review we highlight the relative contribution and therapeutic potential for both biliary and nonbiliary components of RCT. RECENT FINDINGS Recently, the proximal small intestine has gained attention for its underappreciated ability to secrete cholesterol in a process called transintestinal cholesterol efflux (TICE). Although this intestinal pathway for RCT is quantitatively less important than the biliary route under normal physiological conditions, TICE is highly inducible, providing a novel therapeutic opportunity for treatment of atherosclerotic cardiovascular disease (ASCVD). In fact, recent studies show that intestine-specific activation of RCT protects against ASCVD in mice. SUMMARY It is well known that the small intestine plays a gatekeeper role in the maintenance of cholesterol balance. Through integrated regulation of cholesterol absorption and TICE, the small intestine is a key target for new therapies against ASCVD.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
66
|
Briand F, Thiéblemont Q, Muzotte E, Sulpice T. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters. J Nutr 2012; 142:704-9. [PMID: 22357742 DOI: 10.3945/jn.111.153197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting ³H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater ³H-tracer recoveries in plasma, but not HDL. After 72 h, ³H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.
Collapse
Affiliation(s)
- François Briand
- Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Labège-Innopole, France.
| | | | | | | |
Collapse
|
67
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
68
|
Danielsen EM, Hansen GH, Rasmussen K, Niels-Christiansen LL, Frenzel F. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: A possible role in transintestinal cholesterol efflux (TICE)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:530-6. [DOI: 10.1016/j.bbamem.2011.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/24/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022]
|
69
|
Lord CC, Betters JL, Ivanova PT, Milne SB, Myers DS, Madenspacher J, Thomas G, Chung S, Liu M, Davis MA, Lee RG, Crooke RM, Graham MJ, Parks JS, Brasaemle DL, Fessler MB, Brown HA, Brown JM. CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action. Diabetes 2012; 61:355-63. [PMID: 22228714 PMCID: PMC3266405 DOI: 10.2337/db11-0994] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations of comparative gene identification 58 (CGI-58) in humans cause Chanarin-Dorfman syndrome, a rare autosomal recessive disease in which excess triacylglycerol (TAG) accumulates in multiple tissues. CGI-58 recently has been ascribed two distinct biochemical activities, including coactivation of adipose triglyceride lipase and acylation of lysophosphatidic acid (LPA). It is noteworthy that both the substrate (LPA) and the product (phosphatidic acid) of the LPA acyltransferase reaction are well-known signaling lipids. Therefore, we hypothesized that CGI-58 is involved in generating lipid mediators that regulate TAG metabolism and insulin sensitivity. Here, we show that CGI-58 is required for the generation of signaling lipids in response to inflammatory stimuli and that lipid second messengers generated by CGI-58 play a critical role in maintaining the balance between inflammation and insulin action. Furthermore, we show that CGI-58 is necessary for maximal TH1 cytokine signaling in the liver. This novel role for CGI-58 in cytokine signaling may explain why diminished CGI-58 expression causes severe hepatic lipid accumulation yet paradoxically improves hepatic insulin action. Collectively, these findings establish that CGI-58 provides a novel source of signaling lipids. These findings contribute insight into the basic mechanisms linking TH1 cytokine signaling to nutrient metabolism.
Collapse
Affiliation(s)
- Caleb C. Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jenna L. Betters
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Pavlina T. Ivanova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephen B. Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David S. Myers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jennifer Madenspacher
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Soonkyu Chung
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mingxia Liu
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - John S. Parks
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Dawn L. Brasaemle
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Michael B. Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Corresponding author: J. Mark Brown,
| |
Collapse
|
70
|
Crooke RM, Graham MJ. Therapeutic potential of antisense oligonucleotides for the management of dyslipidemia. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Caviglia JM, Betters JL, Dapito DH, Lord CC, Sullivan S, Chua S, Yin T, Sekowski A, Mu H, Shapiro L, Brown JM, Brasaemle DL. Adipose-selective overexpression of ABHD5/CGI-58 does not increase lipolysis or protect against diet-induced obesity. J Lipid Res 2011; 52:2032-42. [PMID: 21885429 DOI: 10.1194/jlr.m019117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates. To test this hypothesis in vivo, we generated transgenic mice that express 6-fold higher ABHD5 in adipose tissue relative to wild-type (WT) mice. In vivo lipolysis increased to a similar extent in ABHD5 transgenic and WT mice following an overnight fast or injection of either a β-adrenergic receptor agonist or lipopolysaccharide. Similarly, basal and β-adrenergic-stimulated lipolysis was comparable in adipocytes isolated from ABHD5 transgenic and WT mice. Although ABHD5 expression was elevated in thioglycolate-elicited macrophages from ABHD5 transgenic mice, Toll-like receptor 4 (TLR4) signaling was comparable in macrophages isolated from ABHD5 transgenic and WT mice. Overexpression of ABHD5 did not prevent the development of obesity in mice fed a high-fat diet, as shown by comparison of body weight, body fat percentage, and adipocyte hypertrophy of ABHD5 transgenic to WT mice. The expression of ABHD5 in mouse adipose tissue is not limiting for either basal or stimulated lipolysis.
Collapse
Affiliation(s)
- Jorge M Caviglia
- Rutgers Center for Lipid Research and Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Brufau G, Kuipers F, Lin Y, Trautwein EA, Groen AK. A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS One 2011; 6:e21576. [PMID: 21738715 PMCID: PMC3128081 DOI: 10.1371/journal.pone.0021576] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
73
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
74
|
Camarota LM, Woollett LA, Howles PN. Reverse cholesterol transport is elevated in carboxyl ester lipase-knockout mice. FASEB J 2011; 25:1370-7. [PMID: 21212359 DOI: 10.1096/fj.10-169680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms to increase reverse cholesterol transport (RCT) and biliary sterol disposal are currently sought to prevent atherosclerosis. Previous work with HepG2 cells and primary hepatocytes showed that carboxyl ester lipase (CEL), a broad-spectrum lipase secreted by pancreas and liver, plays an important role in hydrolysis of high-density lipoprotein (HDL) cholesteryl esters (CEs) after selective uptake by hepatocytes. The effect of CEL on RCT of HDL cholesterol was assessed by measuring biliary and fecal disposal of radiolabeled HDL-CE in control and Cel(-/-) mice. Radiolabeled CE was increased 3-fold in hepatic bile of Cel(-/-) mice, and the mass of CE in gall bladder bile was elevated. Total radiolabeled transport from plasma to hepatic bile was more rapid in Cel(-/-) mice. Fecal disposal of radiolabel from HDL-CE, as well as total sterol mass, was markedly elevated for Cel(-/-) mice, primarily due to more CE. RCT of macrophage CE was also increased in Cel(-/-) mice, as measured by excretion of radiolabel from injected J774 cells. Increased sterol loss was compensated by increased cholesterol synthesis in Cel(-/-) mice. Together, the data demonstrate significantly increased RCT in the absence of CEL and suggest a novel mechanism by which to manipulate plasma cholesterol flux.
Collapse
Affiliation(s)
- Lisa M Camarota
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
75
|
Francis AA, Pierce GN. An integrated approach for the mechanisms responsible for atherosclerotic plaque regression. Exp Clin Cardiol 2011; 16:77-86. [PMID: 22065938 PMCID: PMC3209544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
Atherosclerosis was originally considered to be an ongoing process that was inevitably associated with age. However, plaques are highly dynamic, and are able to progress, stabilize or regress depending on their surrounding milieu. A great deal of research attention has been focused on understanding the involvement of high-density lipoprotein in atherosclerotic plaque regression. However, atherosclerotic plaque regression encompasses a variety of processes that can be grouped into three main areas: removal of lipids and necrotic material; restoration of endothelial function and repair of denuded areas; and cessation of vascular smooth muscle cell proliferation and phenotype reversal. In addition to the role of high-density lipoproteins in lipid removal, resident macrophages and foam cells are able to regain motility and rapidly migrate on milieu improvement, moving both lipids and necrotic material to regional lymph nodes. Neighbouring endothelial cells can proliferate and replace dead and dysfunctional cells. Circulating endothelial progenitor cells can similarly restore vessel function. Finally, abrogation of smooth muscle cell proliferation occurs secondarily to these processes. This information is integrated in the current article to present a comprehensive and clear depiction of plaque regression. This integrated view of regression is essential to optimize the pharmaceutical targeting of the many processes and pathways involved in plaque regression.
Collapse
Affiliation(s)
| | - Grant N Pierce
- Correspondence: Dr Grant N Pierce, Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6. Telephone 204-235-3206, fax 204-235-0793, e-mail
| |
Collapse
|
76
|
Abstract
Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTβ. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
77
|
Temel RE, Brown JM. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport. World J Gastroenterol 2010; 16:5946-52. [PMID: 21157970 PMCID: PMC3007104 DOI: 10.3748/wjg.v16.i47.5946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This non-biliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and non-biliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ.
Collapse
|
78
|
Abstract
Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the precursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be responsible for the disposal of cholesterol is called reverse cholesterol transport (RCT). Therefore, RCT is seen as an interesting target for the development of drugs aimed at the prevention of atherosclerosis. Research on RCT has taken off in recent years. In this review, the classical concepts about RCT are discussed, together with new insights about this topic.
Collapse
|
79
|
Abstract
Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophysiological determinant of cholesterol gallstone formation. This review summarizes current knowledge on the origins of cholesterol secreted into the bile as well as the relevant processes and transporters involved. Next to the established ATP-binding cassette (ABC) transporters mediating the biliary secretion of bile acids (ABCB11), phospholipids (ABCB4) and cholesterol (ABCG5/G8), special attention is given to emerging proteins that modulate or mediate biliary cholesterol secretion. In this regard, the potential impact of the phosphatidylserine flippase ATPase class I type 8B member 1, the Niemann Pick C1-like protein 1 that mediates cholesterol absorption and the high density lipoprotein cholesterol uptake receptor, scavenger receptor class B type I, is discussed.
Collapse
|
80
|
Abstract
The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In the last few years it has become evident that a non-biliary cholesterol secretion pathway exists in which the intestine plays a central role. This transintestinal cholesterol efflux (TICE) pathway contributes significantly to the total fecal neutral sterol excretion. Moreover, recent studies have shown that TICE is also sensitive to stimulation. As a consequence, the direct role of cholesterol secretion from blood via TICE makes the intestine a suitable and approachable target for cholesterol removal from the body and possibly reduction of atherosclerosis. In this review, the discovery and recent findings contributing to understanding the mechanism of TICE will be discussed.
Collapse
|
81
|
Briand F, Naik SU, Fuki I, Millar JS, Macphee C, Walker M, Billheimer J, Rothblat G, Rader DJ. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci 2010; 2:127-33. [PMID: 20169010 DOI: 10.1111/j.1752-8062.2009.00098.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARdelta) agonism increases HDL cholesterol and has therefore the potential to stimulate macrophage-to-feces reverse cholesterol transport (RCT). To test whether PPARdelta activation promotes RCT in mice, in vivo macrophage RCT was assessed using cholesterol-loaded/3H-cholesterol-labeled macrophages injected intraperitoneally. PPARdelta agonist GW0742 (10 mg/kg per day) did not change 3H-tracer plasma appearance, but increased fecal 3H-free sterols excretion by 103% ( p < 0.005) over 48 hours. Total free cholesterol efflux from macrophages to serum (collected from both control and GW0742 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW0742. The metabolic fate of HDL labeled with 3H- cholesteryl ether or 3H-cholesteryl oleate was also measured. While 3H-cholesteryl ether tissue uptake was unchanged, the 3H-tracer recovered in fecal free sterol fraction after 3H-cholesteryl oleate injection increased by 88% with GW0742 ( p < 0.0005). This was associated with a lower Niemann-Pick C1 like 1 (NPC1L1) mRNA expression in the small intestine ( p < 0.05). The same experiments in mice treated with ezetimibe, which blocks NPC1L1, showed a similar 2-fold increase in fecal free sterol excretion after labeled macrophages orHDL injection. In conclusion, PPARdelta activation enhances excretion of macrophage or HDL-derived cholesterol in feces through reduced NPC1L1 expression in mice, comparable to the effect of ezetimibe.
Collapse
Affiliation(s)
- François Briand
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Jakulj L, Vissers MN, van Roomen CP, van der Veen JN, Vrins CLJ, Kunne C, Stellaard F, Kastelein JJP, Groen AK. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett 2010; 584:3625-8. [PMID: 20659465 DOI: 10.1016/j.febslet.2010.07.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022]
Abstract
Ezetimibe stimulates faecal neutral sterol (FNS) excretion in mice, which cannot be explained by cholesterol absorption inhibition alone. We investigated whether these effects are mediated via the sterol exporter ATP binding cassette transporter G8 (abcg8). Ezetimibe increased FNS excretion 2.7-fold in WT mice and 1.5-fold in abcg8(-/-) mice, without affecting biliary cholesterol secretion. Daily FNS excretion exceeded the sum of dietary cholesterol intake and biliary secretion by about 60%. Ezetimibe enhanced this 'extra' FNS excretion by 3.5-fold and 1.5-fold in wildtype (WT) and abcg8(-/-) mice, respectively. Ezetimibe stimulates fecal sterol excretion of non-biliary and non-dietary origin, probably through stimulation of trans-intestinal cholesterol excretion. We show that this effect depends on intact abcg8 function.
Collapse
Affiliation(s)
- Lily Jakulj
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010; 12:96-102. [PMID: 20620999 PMCID: PMC2913877 DOI: 10.1016/j.cmet.2010.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Recent evidence suggests that the intestine may play a direct facilitative role in reverse cholesterol transport (RCT), independent of hepatobiliary secretion. In order to understand the nonbiliary pathway for RCT, we created both genetic and surgical models of biliary cholesterol insufficiency. To genetically inhibit biliary cholesterol secretion, we generated mice in which Niemann-Pick C1-Like 1 (NPC1L1) was overexpressed in the liver. Compared to controls, NPC1L1(Liver-Tg) mice exhibit a >90% decrease in biliary cholesterol secretion, yet mass fecal sterol loss and macrophage RCT are normal. To surgically inhibit biliary emptying into the intestine, we have established an acute biliary diversion model. Strikingly, macrophage RCT persists in mice surgically lacking the ability to secrete bile into the intestine. Collectively, these studies demonstrate that mass fecal sterol loss and macrophage RCT can proceed in the absence of biliary sterol secretion, challenging the obligate role of bile in RCT.
Collapse
Affiliation(s)
- Ryan E Temel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding of the emerging role of the intestine in cholesterol transport. RECENT FINDINGS In recent years, insight in the transport systems that mediate intestinal cholesterol excretion has deepened considerably. Evidence is emerging that the proximal part of the small intestine is able to secrete cholesterol actively, a pathway called transintestinal cholesterol efflux (TICE). In mice, TICE accounts for up to 70% of fecal neutral sterol excretion. SUMMARY The small intestine plays a significant role in the regulation of body cholesterol homeostasis. Active processes control both absorption and excretion of the sterol and the pathways involved are being elucidated. TICE might provide an attractive target for therapy aiming at reduction of atherosclerosis.
Collapse
|
85
|
Alger HM, Brown JM, Sawyer JK, Kelley KL, Shah R, Wilson MD, Willingham MC, Rudel LL. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization. J Biol Chem 2010; 285:14267-74. [PMID: 20231283 PMCID: PMC2863169 DOI: 10.1074/jbc.m110.118422] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol O-acyl transferase 2 (ACAT2) promotes cholesterol absorption by the intestine and the secretion of cholesteryl ester-enriched very low density lipoproteins by the liver. Paradoxically, mice lacking ACAT2 also exhibit mild hypertriglyceridemia. The present study addresses the unexpected role of ACAT2 in regulation of hepatic triglyceride (TG) metabolism. Mouse models of either complete genetic deficiency or pharmacological inhibition of ACAT2 were fed low fat diets containing various amounts of cholesterol to induce hepatic steatosis. Mice genetically lacking ACAT2 in both the intestine and the liver were dramatically protected against hepatic neutral lipid (TG and cholesteryl ester) accumulation, with the greatest differences occurring in situations where dietary cholesterol was elevated. Further studies demonstrated that liver-specific depletion of ACAT2 with antisense oligonucleotides prevents dietary cholesterol-associated hepatic steatosis both in an inbred mouse model of non-alcoholic fatty liver disease (SJL/J) and in a humanized hyperlipidemic mouse model (LDLr(-/-), apoB(100/100)). All mouse models of diminished ACAT2 function showed lowered hepatic triglyceride concentrations and higher plasma triglycerides secondary to increased hepatic secretion of TG into nascent very low density lipoproteins. This work demonstrates that inhibition of hepatic ACAT2 can prevent dietary cholesterol-driven hepatic steatosis in mice. These data provide the first evidence to suggest that ACAT2-specific inhibitors may hold unexpected therapeutic potential to treat both atherosclerosis and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark C. Willingham
- Department of Pathology/Tumor Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040
| | - Lawrence L. Rudel
- From the Department of Biochemistry
- Department of Pathology/Lipid Sciences, and
| |
Collapse
|
86
|
Oosterveer MH, Grefhorst A, Groen AK, Kuipers F. The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design. Prog Lipid Res 2010; 49:343-52. [PMID: 20363253 DOI: 10.1016/j.plipres.2010.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/22/2010] [Accepted: 03/19/2010] [Indexed: 11/30/2022]
Abstract
Liver X receptor (LXR) α and β are nuclear receptors that control cellular metabolism. LXRs modulate the expression of genes involved in cholesterol and lipid metabolism in response to changes in cellular cholesterol status. Because of their involvement in cholesterol homeostasis, LXRs have emerged as promising drug targets for anti-atherosclerotic therapies. In rodents, synthetic LXR agonists promote cellular cholesterol efflux, transport and excretion. As a result, the progression of atherosclerosis is halted. However, pharmacological LXR activation also induces hepatic steatosis and promotes the secretion of atherogenic triacylglycerol-rich VLDL particles by the liver, complicating the clinical application of LXR agonists. The more recently emerged roles of LXRs in fat tissue, pituitary and brain may have implications for treatment of obesity and Alzheimer disease. In addition to the improvements in atherosclerosis, LXR activation exerts beneficial effects on glucose control in mouse models of type 2 diabetes. Future therapeutic strategies aiming to exert beneficial effects on cholesterol and glucose homeostasis, while circumventing the undesired effects on hepatic lipid metabolism, should target specific LXR-mediated processes. Therefore, tissue and/or isotype-specific effects of LXR action need to be established. The consequences of combinatorial drug approaches and the identification of the co-regulatory networks involved in the LXR-mediated control of particular genes may contribute to development of novel LXR agonists. Finally, pathway analyses of LXR actions provide tools to evaluate and optimize the effectiveness of novel therapeutic strategies to prevent and/or treat metabolic diseases.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
87
|
Costet P. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacol Ther 2010; 126:263-78. [PMID: 20227438 DOI: 10.1016/j.pharmthera.2010.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
Recent guidelines in North America and Europe recommend lowering low density lipoprotein associated cholesterol (LDLC) to achieve optimal coronary heart disease risk reduction. Statins have been the therapy of choice and proven successful and relatively safe. However, we are now facing new challenges and it appears that additional or alternative drugs are urgently needed. This boosts research in the field, reopening old cases like other inhibitors of cholesterol synthesis or making attractive tools from the latest technologies like gene silencing by anti-sense oligonucleotides. LDLs are cholesterol-enriched lipoproteins stabilized by the hepatic apolipoprotein B100, and derived from TG rich very low density lipoprotein. This review focuses on the molecular pathways involved in plasma LDLC production and elimination, in particular cholesterol absorption and the hepatobiliary route, apoB100 and VLDL production, and LDL clearance via the LDL receptor. We will identify important or rate-limiting proteins (including Niemann-Pick C1-like 1 (NPC1L1), microsomal TG transfer protein (MTP), acyl-coenzyme A/cholesterol acyltransferase (ACAT), Acyl-CoA:diacylglycerol acyltransferases 2 (DGAT2), proprotein convertase subtilisin kexin type 9 (PCSK9)), and nuclear receptors (farnesoid X receptor (FXR), thyroid hormone receptor (TR)) that constitute interesting therapeutic targets. Numerous compounds already in use modulate these pathways, such as phytosterols, ezetimibe, bile acids sequestrants, niacin, and fibrates. Many pathways can be considered to lower LDLC, but the road has been paved with disappointments and difficulties. With new targets identified and diversification of the drugs, a new era for better LDLC management is plausible.
Collapse
|
88
|
Abstract
Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease.
Collapse
Affiliation(s)
| | - Liqing Yu
- Address correspondence to: Liqing Yu, M.D., Ph.D., Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1040, Tel: 336-716-0920, Fax: 336-716-6279,
| |
Collapse
|
89
|
Parini P, Jiang ZY, Einarsson C, Eggertsen G, Zhang SD, Rudel LL, Han TQ, Eriksson M. ACAT2 and human hepatic cholesterol metabolism: identification of important gender-related differences in normolipidemic, non-obese Chinese patients. Atherosclerosis 2009; 207:266-71. [PMID: 19467657 PMCID: PMC2784173 DOI: 10.1016/j.atherosclerosis.2009.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/30/2009] [Accepted: 04/08/2009] [Indexed: 12/26/2022]
Abstract
OBJECTIVE ACAT2 is a major cholesterol esterification enzyme specifically expressed in hepatocytes and may control the amount of hepatic free (unesterified) cholesterol available for secretion into bile or into HDL. This study aims to further elucidate physiologic roles of ACAT2 in human hepatic cholesterol metabolism. METHODS AND RESULTS Liver biopsies from 40 normolipidemic, non-obese gallstone patients including some gallstone-free patients (female/male, 18/22) were collected and analyzed for microsomal ACAT2 activity, protein and mRNA expression. Plasma HDL-cholesterol (HDL-C) was significantly higher in females than in males, while triglycerides were significantly lower. ACAT2 activity in females was significantly lower than observed in males, regardless of the presence of gallstone disease. Moreover, the activity of ACAT2 correlated negatively with plasma levels of HDL-C (r=-0.57, P<0.05) and with Apo AI (r=-0.49, P<0.05). CONCLUSION This is the first description of a gender-related difference in hepatic ACAT2 activity in normolipidemic non-obese Chinese patients suggesting a possible role for ACAT2 in the regulation of cholesterol metabolism in humans. The negative correlation between ACAT2 activity and HDL-C or Apo AI may reflect this regulation. Since ACAT2 activity generally has been found to be pro-atherogenic in animal models, the observed sex-related difference may contribute to female protection from complications of coronary heart disease (CHD).
Collapse
Affiliation(s)
- Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Kavanagh K, Davis MA, Zhang L, Wilson MD, Register TC, Adams MR, Rudel LL, Wagner JD. Estrogen decreases atherosclerosis in part by reducing hepatic acyl-CoA:cholesterol acyltransferase 2 (ACAT2) in monkeys. Arterioscler Thromb Vasc Biol 2009; 29:1471-7. [PMID: 19759374 PMCID: PMC2763273 DOI: 10.1161/atvbaha.109.191825] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Estrogens decrease atherosclerosis progression, mediated in part through changes in plasma lipids and lipoproteins. This study aimed to determine estrogen-induced changes in hepatic cholesterol metabolism, plasma lipoproteins, and the relationship of these changes to atherosclerosis extent. METHODS AND RESULTS Ovariectomized monkeys (n=34) consumed atherogenic diets for 30 months which contained either no hormones (control, n=17) or conjugated equine estrogens (CEE, n=17) at a human dose equivalent of 0.625 mg/d. Hepatic cholesterol content, low-density lipoprotein (LDL) receptor expression, cholesterol 7 alpha-hydroxylase and acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity, and expression levels were determined. CEE treatment resulted in lower plasma concentrations of very-low- and intermediate- density lipoprotein cholesterol (V+IDLC; P=0.01), smaller LDL particles (P=0.002), and 50% lower hepatic cholesterol content (total, free, and esterified; P<0.05 for all). Total ACAT activity was significantly lower (P=0.01), explained primarily by reductions in the activity of ACAT2. Estrogen regulation of enzymatic activity was at the protein level as both ACAT1 and 2 protein, but not mRNA levels, were lower (P=0.02 and <0.0001, respectively). ACAT2 activity was significantly associated with hepatic total cholesterol, plasma V+IDLC cholesterol, and atherosclerosis. CONCLUSIONS Atheroprotective effects of estrogen therapy may be related to reduced hepatic secretion of ACAT2-derived cholesteryl esters in plasma lipoproteins.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, 1 Rope Ferry Rd., Hanover, NH 03755-1404, USA.
| | | | | | | |
Collapse
|
92
|
Nguyen DV, Drover VA, Knopfel M, Dhanasekaran P, Hauser H, Phillips MC. Influence of class B scavenger receptors on cholesterol flux across the brush border membrane and intestinal absorption. J Lipid Res 2009; 50:2235-44. [PMID: 19454765 DOI: 10.1194/jlr.m900036-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To learn more about how the step of cholesterol uptake into the brush border membrane (BBM) of enterocytes influences overall cholesterol absorption, we measured cholesterol absorption 4 and 24 h after administration of an intragastric bolus of radioactive cholesterol in mice with scavenger receptor class B, type 1 (SR-BI) and/or cluster determinant 36 (CD36) deleted. The cholesterol absorption efficiency is unaltered by deletion of either one or both of the receptors. In vitro determinations of the cholesterol uptake specific activity of the BBM from the mice reveal that the scavenger receptors facilitate cholesterol uptake into the proximal BBM. It follows that cholesterol uptake into the BBM is not normally rate-limiting for the cholesterol absorption process in vivo; a subsequent step, such as NPC1L1-mediated transfer from the BBM into the interior of the enterocyte, is rate-limiting. The absorption of dietary cholesterol after 4 h in mice lacking SR-BI and/or CD36 and fed a high-fat/high-cholesterol diet is delayed to more distal regions of the small intestine. This effect probably arises because ATP binding cassette half transporters G5 and G8-mediated back flux of cholesterol from the BBM to the lumen of the small intestine limits absorption and causes the local cholesterol uptake facilitated by SR-BI and CD36 to become rate-limiting under this dietary condition.
Collapse
Affiliation(s)
- David V Nguyen
- Gastroenterology, Hepatology, and Nutrition Division, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
93
|
van der Veen JN, van Dijk TH, Vrins CLJ, van Meer H, Havinga R, Bijsterveld K, Tietge UJF, Groen AK, Kuipers F. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 2009; 284:19211-9. [PMID: 19416968 DOI: 10.1074/jbc.m109.014860] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 micromol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 micromol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (-4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
95
|
Abstract
Cholesterol available for bile secretion is controlled by a wide variety of proteins that mediate lipoprotein cholesterol uptake and cholesterol transport and metabolism in the liver. From a disease perspective, abnormalities in the transhepatic traffic of cholesterol from plasma into the bile may influence the risk of cholesterol gallstone formation. This review summarizes some recent progress in understanding the hepatic determinants of biliary cholesterol secretion and its potential pathogenic implications in cholesterol gallstone disease. This information together with new discoveries in this field may lead to improved risk evaluation, novel surrogate markers and earlier diagnosis, better preventive approaches and more effective pharmacological therapies for this prevalent human disease.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | |
Collapse
|
96
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|