51
|
Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci 2024; 25:7379. [PMID: 39000498 PMCID: PMC11242198 DOI: 10.3390/ijms25137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Yang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
52
|
Liu P, Luo Y, Zhang M. Intestinal microbiota and tuberculosis: Insights from Mendelian randomization. Medicine (Baltimore) 2024; 103:e38762. [PMID: 38968531 PMCID: PMC11250452 DOI: 10.1097/md.0000000000038762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Respiratory tuberculosis (RTB), a global health concern affecting millions of people, has been observationally linked to the gut microbiota, but the depth and nature of this association remain elusive. Despite these findings, the underlying causal relationship is still uncertain. Consequently, we used the Mendelian randomization (MR) method to further investigate this potential causal connection. We sourced data on the gut microbiota from a comprehensive genome-wide association study (GWAS) conducted by the MiBioGen Consortium (7686 cases, and 115,893 controls). For RTB, we procured 2 distinct datasets, labeled the Fingen R9 TBC RESP and Fingen R9 AB1 RESP, from the Finnish Genetic Consortium. To decipher the potential relationship between the gut microbiota and RTB, we employed MR on both datasets. Our primary mode of analysis was the inverse variance weighting (IVW) method. To ensure robustness and mitigate potential confounders, we meticulously evaluated the heterogeneity and potential pleiotropy of the outcomes. In the TBC RESP (RTB1) dataset related to the gut microbiota, the IVW methodology revealed 7 microbial taxa that were significantly associated with RTB. In a parallel vein, the AB1 RESP (RTB2) dataset highlighted 4 microbial taxa with notable links. Notably, Lachnospiraceae UCG010 was consistently identified across both datasets. This correlation was especially evident in the data segments designated Fingen R9 TBC RESP (OR = 1.799, 95% CI = 1.243-2.604) and Finngen R9 AB1 RESP (OR = 2.131, 95% CI = 1.088-4.172). Our study identified a causal relationship between particular gut microbiota and RTB at the level of prediction based on genetics. This discovery sheds new light on the mechanisms of RTB development, which are mediated by the gut microbiota.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yaomei Luo
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Minghua Zhang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
53
|
Zhou Y, Han W, Feng Y, Wang Y, Sun T, Xu J. Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review). Int J Oncol 2024; 65:73. [PMID: 38847233 PMCID: PMC11173369 DOI: 10.3892/ijo.2024.5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Several studies have indicated that the gut microbiome and tumor microbiota may affect tumors. Emerging metabolomics research illustrates the need to examine the variations in microbial metabolite composition between patients with cancer and healthy individuals. Microbial metabolites can impact the progression of tumors and the immune response by influencing a number of mechanisms, including modulation of the immune system, cancer or immune‑related signaling pathways, epigenetic modification of proteins and DNA damage. Microbial metabolites can also alleviate side effects and drug resistance during chemotherapy and immunotherapy, while effectively activating the immune system to exert tumor immunotherapy. Nevertheless, the impact of microbial metabolites on tumor immunity can be both beneficial and harmful, potentially influenced by the concentration of the metabolites or the specific cancer type. The present review summarizes the roles of various microbial metabolites in different solid tumors, alongside their influence on tumor immunity and treatment. Additionally, clinical trials evaluating the therapeutic effects of microbial metabolites or related microbes on patients with cancer have been listed. In summary, studying microbial metabolites, which play a crucial role in the interaction between the microbiota and tumors, could lead to the identification of new supplementary treatments for cancer. This has the potential to improve the effectiveness of cancer treatment and enhance patient prognosis.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yun Feng
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
54
|
Gan Q, Chen L, Xian J, An G, Wei H, Ma Y. Digestive characteristics of Gastrodia elata Blume polysaccharide and related impacts on human gut microbiota in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118064. [PMID: 38521425 DOI: 10.1016/j.jep.2024.118064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume is a traditional Chinese medicine with the effects of improving the deficiency of the body and maintaining health, and polysaccharide (GEP) is one of the effective ingredients to play these activities of G. elata. Traditionally, G. elata is orally administered, so the activities of GEP are associated with digestive and intestinal metabolism. However, the digestive behavior of GEP and its effects on the human gut microbiota are unclear and need to be fully studied. AIM OF THE STUDY This study aimed to investigate the changes in structural characteristics of GEP during digestion and the related impacts of its digestive product on gut microbiota in human fecal fermentation, and to explain the beneficial mechanism of GEP on human health from the perspective of digestive characteristics and "gut" axis. MATERIALS AND METHODS The changes of reducing sugars, free monosaccharides and physicochemical properties of GEP during digestion were investigated by GPC, HPLC, FT-IR, CD, NMR, SEM, and TGA. Moreover, polysaccharide consumption, pH value changes, SCFAs production, and changes in gut microbiota during fermentation were also discussed. RESULTS During digestion of GEP, glucose was partially released causing a decrease in molecular weight, and a change in monosaccharide composition. In addition, the characteristics of GEP before and after digestion, including configuration, morphology, and stability, were different. The digestive product of GEP was polysaccharide (GEP-I), which actively participated in the fecal fermentation process. As the fermentation time increased, the utilization of GEP-I by the microbiota gradually increased. The abundance of probiotics such as Bifidobacterium, Collinsella, Prevotella, and Faecalibacterium was significantly increased, and the abundance of pathogenic Shigella, Dorea, Desulfovibrio, and Blautia was significantly inhibited, thereby suggesting that GEP has the potential to maintain human health through the "gut" axis. In addition, the beneficial health effects of GEP-I have also been observed in the influence of microbial metabolites. During the fermentation of GEP-I, the pH value gradually decreased, and the contents of beneficial metabolites such as acetic acid, propionic acid, and caproic acid significantly increased. CONCLUSION The structure of GEP changed significantly during digestion, and its digestive product had the potential to maintain human health by regulating gut microbiota, which may be one of the active mechanisms of GEP.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jiacheng Xian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guangqin An
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haobo Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
55
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Bertuccioli A. The Role of Short-Chain Fatty Acids, Particularly Butyrate, in Oncological Immunotherapy with Checkpoint Inhibitors: The Effectiveness of Complementary Treatment with Clostridium butyricum 588. Microorganisms 2024; 12:1235. [PMID: 38930617 PMCID: PMC11206605 DOI: 10.3390/microorganisms12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|
56
|
Zhang L, Wu Z, Kang M, Wang J, Tan B. Utilization of Ningxiang pig milk oligosaccharides by Akkermansia muciniphila in vitro fermentation: enhancing neonatal piglet survival. Front Microbiol 2024; 15:1430276. [PMID: 38933035 PMCID: PMC11199860 DOI: 10.3389/fmicb.2024.1430276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila), an intestinal symbiont residing in the mucosal layer, shows promise as a probiotic. Our previous study found that the abundance of A. muciniphila was significantly higher in Ningxiang suckling piglets compared to other breeds, suggesting that early breast milk may play a crucial role. This study examines A. muciniphila's ability to utilize Ningxiang pig milk oligosaccharides. We discovered that A. muciniphila can thrive on both Ningxiang pig colostrum and purified pig milk oligosaccharides. Genetic analysis has shown that A. muciniphila harbors essential glycan-degrading enzymes, enabling it to effectively break down a broad spectrum of oligosaccharides. Our findings demonstrate that A. muciniphila can degrade pig milk oligosaccharides structures such as 3'-FL, 3'-SL, LNT, and LNnT, producing short-chain fatty acids in the process. The hydrolysis of these host-derived glycan structures enhances A. muciniphila's symbiotic interactions with other beneficial gut bacteria, contributing to a dynamic microbial ecological network. The capability of A. muciniphila to utilize pig milk oligosaccharides allows it to establish itself in the intestines of newborn piglets, effectively colonizing the mucosal layer early in life. This early colonization is key in supporting both mucosal and metabolic health, which is critical for enhancing piglet survival during lactation.
Collapse
Affiliation(s)
- Longlin Zhang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Zichen Wu
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Meng Kang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Jing Wang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Bie Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
57
|
Martínez-Martínez AB, Lamban-Per BM, Lezaun M, Rezusta A, Arbones-Mainar JM. Exploring Functional Products and Early-Life Dynamics of Gut Microbiota. Nutrients 2024; 16:1823. [PMID: 38931178 PMCID: PMC11206896 DOI: 10.3390/nu16121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Research on the microbiome has progressed from identifying specific microbial communities to exploring how these organisms produce and modify metabolites that impact a wide range of health conditions, including gastrointestinal, metabolic, autoimmune, and neurodegenerative diseases. This review provides an overview of the bacteria commonly found in the intestinal tract, focusing on their main functional outputs. We explore biomarkers that not only indicate a well-balanced microbiota but also potential dysbiosis, which could foreshadow susceptibility to future health conditions. Additionally, it discusses the establishment of the microbiota during the early years of life, examining factors such as gestational age at birth, type of delivery, antibiotic intake, and genetic and environmental influences. Through a comprehensive analysis of current research, this article aims to enhance our understanding of the microbiota's foundational development and its long-term implications for health and disease management.
Collapse
Affiliation(s)
- Ana B. Martínez-Martínez
- Facultad de Ciencias de la Salud, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
| | - Belen M. Lamban-Per
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Maria Lezaun
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Antonio Rezusta
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Jose M. Arbones-Mainar
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
58
|
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L, Xie T. Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol 2024; 15:1401967. [PMID: 38915399 PMCID: PMC11194316 DOI: 10.3389/fimmu.2024.1401967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain tumor. Unfortunately, active comprehensive treatment does not significantly prolong patient survival. With the deepening of research, it has been found that gut microbiota plays a certain role in GBM, and can directly or indirectly affect the efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The metabolites produced by gut microbiota directly affect the host's immune homeostasis, and these metabolites can affect the function and distribution of immune cells, promote or inhibit inflammatory responses, affect the phenotype, angiogenesis, inflammatory response, and immune cell infiltration of GBM cells, thereby affecting the effectiveness of ICIs. (2) Some members of the gut microbiota may reverse T cell function inhibition, increase T cell anti-tumor activity, and ultimately improve the efficacy of ICIs by targeting specific immunosuppressive metabolites and cytokines. (3) Some members of the gut microbiota directly participate in the metabolic process of drugs, which can degrade, transform, or produce metabolites, affecting the effective concentration and bioavailability of drugs. Optimizing the structure of the gut microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also regulate immune cell function and inflammatory status in the brain through gut brain axis communication, indirectly affecting the progression of GBM and the therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI therapy, researchers have begun exploring the use of fecal microbiota transplantation (FMT) to transplant healthy or optimized gut microbiota to GBM patients, in order to improve their immune status and enhance their response to ICI therapy. Preliminary studies suggest that FMT may enhance the efficacy of ICI therapy in some patients. In summary, gut microbiota plays a crucial role in regulating ICIs in GBM, and with a deeper understanding of the relationship between gut microbiota and tumor immunity, it is expected to develop more precise and effective personalized ICI therapy strategies for GBM, in order to improve patient prognosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Hong
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Wu
- Department of Health Management, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Eyi Ben
- Department of Oncology, Yidu People’s Hospital, Yichang, Hubei, China
| | - Shuai Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
59
|
Dai M, Xu Y, Zhao L, Wu M, Ma H, Zhu L, Li W, Li X, Sun B. Caproicibacter sp. BJN0012, a potential new species isolated from cellar mud for caproic acid production from glucose. J Biotechnol 2024; 388:11-23. [PMID: 38614441 DOI: 10.1016/j.jbiotec.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.
Collapse
Affiliation(s)
- Mengqi Dai
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China
| | - Huifeng Ma
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Lining Zhu
- Hebei Fenglaiyi Wine Industry Co., Ltd, Xingtai, Hebei province 055550, China
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Businmmess University, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China.
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
60
|
Xie Y, Liu F. The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol 2024; 15:1410928. [PMID: 38903520 PMCID: PMC11188355 DOI: 10.3389/fimmu.2024.1410928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
In recent years, with the deepening understanding of the gut microbiota, it has been recognized to play a significant role in the development and progression of diseases. Particularly in gastrointestinal tumors, the gut microbiota influences tumor growth by dysbiosis, release of bacterial toxins, and modulation of host signaling pathways and immune status. Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment efficacy by enhancing immune cell responses. Current clinical and preclinical studies have demonstrated that the gut microbiota and its metabolites can enhance the effectiveness of immunotherapy. Furthermore, certain gut microbiota can serve as biomarkers for predicting immunotherapy responses. Interventions targeting the gut microbiota for the treatment of gastrointestinal diseases, especially colorectal cancer (CRC), include fecal microbiota transplantation, probiotics, prebiotics, engineered bacteria, and dietary interventions. These approaches not only improve the efficacy of ICIs but also hold promise for enhancing immunotherapy outcomes. In this review, we primarily discuss the role of the gut microbiota and its metabolites in tumors, host immunity, and immunotherapy.
Collapse
Affiliation(s)
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
61
|
Salsinha AS, Cima A, Araújo-Rodrigues H, Viana S, Reis F, Coscueta ER, Rodríguez-Alcalá LM, Relvas JB, Pintado M. The use of an in vitro fecal fermentation model to uncover the beneficial role of omega-3 and punicic acid in gut microbiota alterations induced by a Western diet. Food Funct 2024; 15:6095-6117. [PMID: 38757812 DOI: 10.1039/d4fo00727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Viana
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra, Rua 5 de Outubro - S. Martinho Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
62
|
Baraille M, Buttet M, Grimm P, Milojevic V, Julliand S, Julliand V. Changes of faecal bacterial communities and microbial fibrolytic activity in horses aged from 6 to 30 years old. PLoS One 2024; 19:e0303029. [PMID: 38829841 PMCID: PMC11146703 DOI: 10.1371/journal.pone.0303029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
Horse owners and veterinarians report that from the age of 15, their horses can lose body condition and be more susceptible to diseases. Large intestinal microbiome changes may be involved. Indeed, microbiota is crucial for maintaining the condition and health of herbivores by converting fibres into nutrients. This study aimed to compare the faecal microbiome in horses aged from 6 to 30 years old (yo), living in the same environment and consuming the same diet, in order to assess whether the parameters changed linearly with age and whether there was a pivotal age category. Fifty horses were selected from the same environment and distributed across four age categories: 6-10 (n = 12), 11-15 (n = 11), 16-20 (n = 13), and 21-30 (n = 14) yo. All horses had no digestive problems, had teeth suitable for consuming their feed, and were up to date with their vaccination and deworming programmes. After three weeks of constant diet (ad libitum hay and 860 g of concentrate per day), one faecal sample per horse was collected on the same day. The bacterial communities' richness and intra-sample diversity were negatively correlated with age. There was a new distribution of non-beneficial and beneficial taxa, particularly in the 21-30 yo category. Although the faecal concentration of short-chain fatty acids remained stable, the acetate proportion was negatively correlated with age while it was the opposite for the proportions of butyrate, valerate, and iso-valerate. Additionally, the faecal pH was negatively correlated with age. Differences were more pronounced when comparing the 6-10 yo and 21-30 yo categories. The values of the parameters studied became more dispersed from the 16-20 yo category onwards, which appeared as a transitional moment, as it did not differ significantly from the younger and older categories for most of these parameters. Our data suggest that the microbiome changes with age. By highlighting the pivotal age of 16-20, this gives the opportunity to intervene before individuals reach extremes that could lead to pathological conditions.
Collapse
Affiliation(s)
- Marylou Baraille
- Institut Agro Dijon, Université de Bourgogne Franche–Comté, PAM UMR A 02.102, Dijon, France
- Lab To Field, Dijon, France
| | | | | | | | | | - Véronique Julliand
- Institut Agro Dijon, Université de Bourgogne Franche–Comté, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
63
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
64
|
Islam SM, Willora FP, Sørensen M, Rbbani G, Siddik MAB, Zatti K, Gupta S, Carr I, Santigosa E, Brinchmann MF, Thompson KD, Vatsos IN. Mucosal barrier status in Atlantic salmon fed rapeseed oil and Schizochytrium oil partly or fully replacing fish oil through winter depression. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109549. [PMID: 38599365 DOI: 10.1016/j.fsi.2024.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.
Collapse
Affiliation(s)
- Sm Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Kyla Zatti
- Biomar, Havnegata 9, 7010, Trondheim, Norway
| | | | - Ian Carr
- Veramaris, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Ester Santigosa
- DSM Nutritional Products, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
65
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
66
|
Wang H, Zhan J, Jia H, Jiang H, Pan Y, Zhong X, Zhao S, Huo J. Relationship between Rumen Microbial Differences and Phenotype Traits among Hu Sheep and Crossbred Offspring Sheep. Animals (Basel) 2024; 14:1509. [PMID: 38791726 PMCID: PMC11117386 DOI: 10.3390/ani14101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This experiment was conducted to investigate the effect of three-way hybrid sheep and Hu sheep on serum indicators, rumen fermentation, rumen enzyme activity, and microorganisms in sheep. Healthy and similar birth weights from three groups (Hu, n = 11; Charolais × Australian White × Hu, CAH, n = 11; Charolais × Dorper × Hu, CDH, n = 11) were selected to be fed by the ewes until 45 days of age. Subsequently, they were weaned intensively and underwent short-term fattening for 3 months along with selected male lambs fed intensively. During this period, they were fed and watered ad libitum. Blood and rumen fluid were collected and analyzed for serum indicators and rumen fluid microorganisms, enzyme activity, and VFA, respectively, at the end of the fattening period. Compared with Hu lamb, the offspring of the three-way hybrid lamb showed significant improvements in body weight, serum lactate dehydrogenase, and creatinine content. However, there was no significant effect on serum immunity and antioxidant indices. In addition, the rumen fluid volatile fatty acid (VFA) molar concentration and microcrystalline cellulose and lipase content were significantly lower in the three-way hybrid lamb compared to Hu lamb, but β-glucosidase, amylase, pepsin, and VFA molar ratio were not significantly affected. Subsequently, 16S rRNA sequencing diversity analysis revealed that three-way hybrid lamb significantly increased rumen microbial ACE and Chao1 indices compared to Hu lamb. Meanwhile, the abundance of Verrucomicrobiota and Synergistota significantly increased at the phylum level. Correlation analysis showed that Prevotella had the highest proportion, while Rikenellaceae_RC9_gut_group correlated most closely with others genus. The microbial communities isovaleric acid molar concentration and proportion were strongly correlated. In addition, there were significant differences in correlations between microbial communities and isobutyric acid, butyric acid and valeric acid content, and their molar proportion, but they were not significantly correlated with digestive enzymes. From the functional enrichment analysis, it was found that hybrid progeny were mainly enriched in the pyruvate metabolism, microbial metabolism in diverse environments, carbon metabolism, and quorum sensing pathways. In contrast, the Hu sheep were primarily enriched in the cysteine and methionine, amino sugar and nucleotide sugar, and biosynthesis of secondary metabolite pathways. These results suggest that hybridization can play a role in regulating organismal metabolism and improve animal production performance by influencing the structure and characteristics of microbial communities.
Collapse
Affiliation(s)
- Haibo Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haoyun Jiang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| |
Collapse
|
67
|
Fristedt R, Ruppert V, Trower T, Cooney J, Landberg R. Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans. Talanta 2024; 272:125743. [PMID: 38382298 DOI: 10.1016/j.talanta.2024.125743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The role of gut microbiota in human health has been intensively studied and more recently shifted from emphasis on composition towards function. Function is partly mediated through formed metabolites. Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate as well as their branched analogues represent major products from gut fermentation of dietary fibre and proteins, respectively. Robust and high-throughput analysis of SCFAs in small volume blood samples have proven difficult. Major obstacles come from the ubiquitous presence of SCFAs that leads to contaminations and unstable analytical results because of the high volatility of these small molecules. Comprehensive and comparable data on the variation of SCFAs in blood samples from different blood matrices and mammal species including humans is lacking. Therefore, our aim was to develop and evaluate a stable and robust method for quantitation of 8 SCFAs and related fermentation products in small volume blood plasma samples and to investigate their variation in humans and different animal species. RESULTS Derivatization was a successful approach for measurement of SCFAs in biological samples but quenching of the derivatization reaction was crucial to obtain long-term stability of the derivatized analytes. In total 9 compounds (including succinic acid) were separated in 5 min. The method was linear over the range 0.6-3200 nM formic (FA), acetic (AA), 0.3-1600 nM propionic (PA), and 0.16-800 nM for butyric (BA)-, isobutyric (IBA)-, valeric (VA)-, isovaleric (IVA)-, succinic (SA) and caproic acid (CA). The precision ranged ≤12 % within days and ≤28 % between days (except for CA and VA) in three different plasma quality control (QC) samples (29 batches analyzed over 3 months). The extraction recovery was on average 94 % for the different SCFAs. Typical interquartile range (IQR) concentrations (μM) of SCFAs in human plasma samples were 168 μM (FA), 64 μM (AA), 2.2 μM (PA), 0.54 μM (BA), 0.66 μM (IBA), 0.18 μM (VA), 0.40 μM (IVA), and 0.34 μM (CA). In total, 55 samples per batch/day were successfully analyzed and in total 5380 human plasma samples measured over a 3-year timespan. SIGNIFICANCE The developed UHPLC-MS based method was suitable for measuring SCFAs in small blood volume samples and enabled robust quantitative data.
Collapse
Affiliation(s)
- Rikard Fristedt
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden.
| | - Vanessa Ruppert
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Rikard Landberg
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| |
Collapse
|
68
|
Drut A, Mkaouar H, Kriaa A, Mariaule V, Akermi N, Méric T, Sénécat O, Maguin E, Hernandez J, Rhimi M. Gut microbiota in cats with inflammatory bowel disease and low-grade intestinal T-cell lymphoma. Front Microbiol 2024; 15:1346639. [PMID: 38812688 PMCID: PMC11133722 DOI: 10.3389/fmicb.2024.1346639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
In cats and humans, several physiological and environmental factors have been shown to alter the gut microbiota of healthy individuals. Cats share several diseases with humans such as inflammatory bowel diseases and low-grade intestinal T-cell lymphoma. The physiopathology of these chronic enteropathies is poorly understood but may involve disequilibrium of the gut microbiota composition and disruption of normal microbiome activity profiles. These disorders are increasingly diagnosed in the feline species due to improved medicalization and easier access to endoscopy in veterinary practice. This review addresses the current data on the gut microbiota of cats in health and in chronic enteropathies. Such functional analysis will help the advancement of innovative diagnostic tools and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Amandine Drut
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Oniris VetAgroBio Nantes, Université de Nantes, Nantes, France
| | - Héla Mkaouar
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aicha Kriaa
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Mariaule
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nizar Akermi
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tristan Méric
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Oniris VetAgroBio Nantes, Université de Nantes, Nantes, France
| | - Odile Sénécat
- Oniris VetAgroBio Nantes, Université de Nantes, Nantes, France
| | - Emmanuelle Maguin
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juan Hernandez
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Oniris VetAgroBio Nantes, Université de Nantes, Nantes, France
| | - Moez Rhimi
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
69
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
70
|
Lassoued N, Yero A, Jenabian MA, Soret R, Pilon N. Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Sci Rep 2024; 14:11063. [PMID: 38744932 PMCID: PMC11094196 DOI: 10.1038/s41598-024-61834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
Collapse
Affiliation(s)
- Nejia Lassoued
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexis Yero
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
71
|
Noonin C, Thongboonkerd V. Beneficial roles of gastrointestinal and urinary microbiomes in kidney stone prevention via their oxalate-degrading ability and beyond. Microbiol Res 2024; 282:127663. [PMID: 38422861 DOI: 10.1016/j.micres.2024.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Formation of calcium oxalate (CaOx) crystal, the most common composition in kidney stones, occurs following supersaturation of calcium and oxalate ions in the urine. In addition to endogenous source, another main source of calcium and oxalate ions is dietary intake. In the intestinal lumen, calcium can bind with oxalate to form precipitates to be eliminated with feces. High intake of oxalate-rich foods, inappropriate amount of daily calcium intake, defective intestinal transporters for oxalate secretion and absorption, and gastrointestinal (GI) malabsorption (i.e., from gastric bypass surgery) can enhance intestinal oxalate absorption, thereby increasing urinary oxalate level and risk of kidney stone disease (KSD). The GI microbiome rich with oxalate-degrading bacteria can reduce intestinal oxalate absorption and urinary oxalate level. In addition to the oxalate-degrading ability, the GI microbiome also affects expression of oxalate transporters and net intestinal oxalate transport, cholesterol level, and short-chain fatty acids (SCFAs) production, leading to lower KSD risk. Recent evidence also shows beneficial effects of urinary microbiome in KSD prevention. This review summarizes the current knowledge on the aforementioned aspects. Potential benefits of the GI and urinary microbiomes as probiotics for KSD prevention are emphasized. Finally, challenges and future perspectives of probiotic treatment in KSD are discussed.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
72
|
Meng Q, Guo J, Lv K, Liu Y, Zhang J, Li M, Cheng X, Chen S, Huo X, Zhang Q, Chen Y, Li J. 5 S-Heudelotinone alleviates experimental colitis by shaping the immune system and enhancing the intestinal barrier in a gut microbiota-dependent manner. Acta Pharm Sin B 2024; 14:2153-2176. [PMID: 38799623 PMCID: PMC11120280 DOI: 10.1016/j.apsb.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant changes in the gut microbiota are implicated in many diseases, including inflammatory bowel disease (IBD). Gut microbes produce diverse metabolites that can shape the immune system and impact the intestinal barrier integrity, indicating that microbe-mediated modulation may be a promising strategy for preventing and treating IBD. Although fecal microbiota transplantation and probiotic supplementation are well-established IBD therapies, novel chemical agents that are safe and exert strong effects on the gut microbiota are urgently needed. Herein, we report the total synthesis of heudelotinone and the discovery of 5S-heudelotinone (an enantiomer) as a potent agent against experimental colitis that acts by modulating the gut microbiota. 5S-Heudelotinone alters the diversity and composition of the gut microbiota and increases the concentration of short-chain fatty acids (SCFAs); thus, it regulates the intestinal immune system by reducing proinflammatory immune cell numbers, and maintains intestinal mucosal integrity by modulating tight junctions (TJs). Moreover, 5S-heudelotinone (2) ameliorates colitis-associated colorectal cancer (CAC) in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced in situ carcinoma model. Together, these findings reveal the potential of a novel natural product, namely, 5S-heudelotinone, to control intestinal inflammation and highlight that this product is a safe and effective candidate for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Qing Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ke Lv
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Mingyue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Xirui Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Shenghua Chen
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | | | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China
- College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China
| |
Collapse
|
73
|
Wei S, Wang L, Chen X, Wang Y, Tong L, Wang L, Han Q, Guo D, Ren B. Polysaccharide from Boletus aereus ameliorates DSS-induced colitis in mice by regulating the MANF/MUC2 signaling and gut microbiota. Int J Biol Macromol 2024; 266:131232. [PMID: 38554896 DOI: 10.1016/j.ijbiomac.2024.131232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions characterized by disruptions in the colonic mucus barrier and gut microbiota. In this study, a novel soluble polysaccharide obtained from Boletus aereus (BAP) through water extraction was examined for its structure. The protective effects of BAP on colitis were investigated using a DSS-induced mice model. BAP was found to promote the expression of intestinal mucosal and tight junction proteins, restore the compromised mucus barrier, and suppress the activation of inflammatory signaling. Moreover, BAP reshape the gut microbiota and had a positive impact on the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, BAP decreased cytokine levels through the MANF-BATF2 signaling pathway. Correlation analysis revealed that MANF was negatively correlated with the DAI and the level of cytokines. Furthermore, the depletion of gut microbiota using antibiotic partially inhabited the effect of BAP on the activation of MANF and Muc2, indicating the role of gut microbiota in its protective effect against colitis. In conclusion, BAP had an obvious activation on MANF under gut inflammation. This provides new insights into the prospective use of BAP as a functional food to enhance intestinal health.
Collapse
Affiliation(s)
- Shixiang Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaodie Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lingling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianyun Han
- BIOSYST-MeBioS, Faculty of Bioscience Engineering, KU Leuven, Leuven 3000, Belgium; College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Beijing 100083, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
74
|
Melaku M, Su D, Zhao H, Zhong R, Ma T, Yi B, Chen L, Zhang H. The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers. BIOLOGY 2024; 13:317. [PMID: 38785799 PMCID: PMC11117952 DOI: 10.3390/biology13050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
- Department of Animal Science, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Dan Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Huaibao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Teng Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
75
|
Zhao S, Lau R, Chen MH. Influence of chain length on the colonic fermentation of xylooligosaccharides. Carbohydr Polym 2024; 331:121869. [PMID: 38388037 DOI: 10.1016/j.carbpol.2024.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Raymond Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore.
| | - Ming-Hsu Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Block N1.2, 62 Nanyang Drive, 637459, Singapore; Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
76
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
77
|
Tao J, Gong Y, Chen S, Li W, Xie R, Zhang H, Chen N, Huang X, Li S. Dietary inclusion of Clostridium butyricum cultures alleviated impacts of high-carbohydrate diets in largemouth bass ( Micropterus salmoides). Br J Nutr 2024; 131:1308-1325. [PMID: 38073302 DOI: 10.1017/s0007114523002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
Collapse
Affiliation(s)
- Jiajie Tao
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ye Gong
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shiwen Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Wenfei Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xuxiong Huang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
78
|
Gao Y, Wang J, Xiao Y, Yu L, Tang Q, Wang Y, Zhou J. Structure characterization of an agavin-type fructan isolated from Polygonatum cyrtonema and its effect on the modulation of the gut microbiota in vitro. Carbohydr Polym 2024; 330:121829. [PMID: 38368108 DOI: 10.1016/j.carbpol.2024.121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
The herbal medicine Polygonatum cyrtonema is highly regarded in China for its medicinal and dietary properties. However, further research is needed to elucidate the structure of its polysaccharide and understand how it promotes human health by modulating the gut microbiota. This study aims to investigate a homogeneous polysaccharide (PCP95-1-1) from Polygonatum cyrtonema and assess its susceptibility to digestion as well as its utilization by intestinal microbiota. The results confirmed that PCP95-1-1 is an agavin-type fructan, which possesses two fructose chains, namely β-(2 → 6) and β-(2 → 1) fructosyl-fructose, attached to the sucrose core, and has branches of β-D-Fruf residues. Moreover, PCP95-1-1 demonstrated resistance to digestion and maintained its reducing sugar content throughout the digestive system, indicating it could reach the gut without being digested. In vitro fermentation of PCP95-1-1 significantly decreased the pH value (p < 0.05) while notably increasing the production of short-chain fatty acids (SCFAs), confirming its utilization by human gut microbiota. Additionally, PCP95-1-1 exhibited a significant ability (p < 0.05) to beneficial bacteria such as Megamonas and Bifidobacterium, while reducing the presence of facultative or conditional pathogens such as Escherichia-Shigella and Klebsiella at the genus level. Consequently, PCP95-1-1 has the potential to positively influence physical well-being by modulating the gut microbiota environment and can be developed as a functional food.
Collapse
Affiliation(s)
- Ya Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ying Xiao
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China.
| | - Ling Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yipeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianjin Zhou
- Sanming Academy of Agricultural Sciences, Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365051, China
| |
Collapse
|
79
|
De Giani A, Perillo F, Baeri A, Finazzi M, Facciotti F, Di Gennaro P. Positive modulation of a new reconstructed human gut microbiota by Maitake extract helpfully boosts the intestinal environment in vitro. PLoS One 2024; 19:e0301822. [PMID: 38603764 PMCID: PMC11008829 DOI: 10.1371/journal.pone.0301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Finazzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
80
|
Wei N, Ju M, Su X, Zhang Y, Huang Y, Rao X, Cui L, Lin Z, Dong Y. Transplantation of gut microbiota derived from patients with schizophrenia induces schizophrenia-like behaviors and dysregulated brain transcript response in mice. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:44. [PMID: 38589422 PMCID: PMC11001608 DOI: 10.1038/s41537-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Schizophrenia (SCZ), as a neurodevelopmental disorder and devastating disease, affects approximately 1% of the world population. Although numerous studies have attempted to elucidate the causes of SCZ occurrence, it is not clearly understood. Recently, the emerging roles of the gut microbiota in a range of brain disorders, including SCZ, have attracted much attention. While the molecular mechanism of gut microbiota in regulating the pathogenesis of SCZ is still lacking. Here, we first confirmed the difference of gut microbiome between SCZ patients and healthy controls, and then, we performed fecal microbiota transplantation (FMT) to clarify the roles of SCZ patients-derived microbiota in a specific pathogen free (SPF) mice model. 16 S rDNA sequencing confirmed that a significant difference of gut microbiome was present between two groups of FMT mice, which has a similar trend with the above human gut microbiome. Furthermore, we found that transplantation of fecal microbiota from SCZ patients into SPF mice was sufficient to induce schizophrenia-like (SCZ-like) symptoms, such as deficits in sociability and hyperactivity. Furthermore, the brains of mice colonized with SCZ microbiota displayed dysregulated transcript response and alternative splicing of SCZ-relevant genes. Moreover, 10 key genes were identified to be correlated with SCZ by an integrative transcriptome data analysis. Finally, 4 key genes were identified to be correlated with the 12 differential genera between two groups of FMT mice. Our results thus demonstrated that the gut microbiome might modify the transcriptomic profile in the brain, thereby modulating social behavior, and our present study can help better understand the link between gut microbiota and SCZ pathogenesis through the gut-brain axis.
Collapse
Affiliation(s)
- Nana Wei
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Mingliang Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Xichen Su
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Xinyue Rao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Zhibing Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
81
|
Dosh L, Ghazi M, Haddad K, El Masri J, Hawi J, Leone A, Basset C, Geagea AG, Jurjus R, Jurjus A. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transpl Immunol 2024; 83:102000. [PMID: 38262540 DOI: 10.1016/j.trim.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Cardiovascular diseases (CVD) are one of the most challenging diseases and many factors have been demonstrated to affect their pathogenesis. One of the major factors that affect CVDs, especially atherosclerosis, is the gut microbiota (GM). Genetics play a key role in linking CVDs with GM, in addition to some environmental factors which can be either beneficial or harmful. The interplay between GM and CVDs is complex due to the numerous mechanisms through which microbial components and their metabolites can influence CVDs. Within this interplay, the immune system plays a major role, mainly based on the immunomodulatory effects of microbial dysbiosis and its resulting metabolites. The resulting modulation of chronic inflammatory processes was found to reduce the severity of CVDs and to maintain cardiovascular health. To better understand the specific roles of GM-related metabolites in this interplay, this review presents an updated perspective on gut metabolites related effects on the cardiovascular system, highlighting the possible benefits of probiotics in therapeutic strategies.
Collapse
Affiliation(s)
- Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Karim Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon.
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Charbel Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
82
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
83
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
84
|
Palepu MSK, Gajula SNR, K M, Sonti R, Dandekar MP. SCFAs Supplementation Rescues Anxiety- and Depression-like Phenotypes Generated by Fecal Engraftment of Treatment-Resistant Depression Rats. ACS Chem Neurosci 2024; 15:1010-1025. [PMID: 38382546 DOI: 10.1021/acschemneuro.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Malleshwari K
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
85
|
Nienaber-Rousseau C. Understanding and applying gene-environment interactions: a guide for nutrition professionals with an emphasis on integration in African research settings. Nutr Rev 2024:nuae015. [PMID: 38442341 DOI: 10.1093/nutrit/nuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Noncommunicable diseases (NCDs) are influenced by the interplay between genetics and environmental exposures, particularly diet. However, many healthcare professionals, including nutritionists and dietitians, have limited genetic background and, therefore, they may lack understanding of gene-environment interactions (GxEs) studies. Even researchers deeply involved in nutrition studies, but with a focus elsewhere, can struggle to interpret, evaluate, and conduct GxE studies. There is an urgent need to study African populations that bear a heavy burden of NCDs, demonstrate unique genetic variability, and have cultural practices resulting in distinctive environmental exposures compared with Europeans or Americans, who are studied more. Although diverse and rapidly changing environments, as well as the high genetic variability of Africans and difference in linkage disequilibrium (ie, certain gene variants are inherited together more often than expected by chance), provide unparalleled potential to investigate the omics fields, only a small percentage of studies come from Africa. Furthermore, research evidence lags behind the practices of companies offering genetic testing for personalized medicine and nutrition. We need to generate more evidence on GxEs that also considers continental African populations to be able to prevent unethical practices and enable tailored treatments. This review aims to introduce nutrition professionals to genetics terms and valid methods to investigate GxEs and their challenges, and proposes ways to improve quality and reproducibility. The review also provides insight into the potential contributions of nutrigenetics and nutrigenomics to the healthcare sphere, addresses direct-to-consumer genetic testing, and concludes by offering insights into the field's future, including advanced technologies like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
86
|
Liang S, Yu J, Zhao M, Chen S, Lu X, Ye F, Chen J, Zhao G, Lei L. In vitro digestion and fecal fermentation of selenocompounds: impact on gut microbiota, antioxidant activity, and short-chain fatty acids. Food Res Int 2024; 180:114089. [PMID: 38395585 DOI: 10.1016/j.foodres.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.
Collapse
Affiliation(s)
- Shuojia Liang
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Junlei Yu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China.
| | - Meng Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Sha Chen
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China
| | - Xiang Lu
- Beijing Shiji Chuangzhan Food Technology Co., Ltd., Beijing 100068, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
87
|
Liu Y, Gao J, Nie Z, Wang J, Sun Y, Xu G. Integration of metagenome and metabolome analysis reveals the correlation of gut microbiota, oxidative stress, and inflammation in Coilia nasus under air exposure stress and salinity mitigation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101175. [PMID: 38171069 DOI: 10.1016/j.cbd.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Due to the strong response to air exposure, high mortality was occurred in Coilia nasus. Previous studies reported that 10 ‰ NaCl could significantly reduce mortality in C. nasus under air exposure. To investigate the mechanisms that 10 ‰ NaCl can alleviate stress, community structure and metabolism of the intestinal flora of C. nasus were detected via metagenome and metabolome. In this study, C. nasus were divided into control group (C), air exposure group without 10 ‰ NaCl (AE), and air exposure group with 10 ‰ NaCl (AES). After air exposure stress and salinity mitigation, the mortality, intestinal microorganisms, metabolites, and physiological biomarkers were analyzed. The results showed that the mortality rate of C. nasus was reduced after salinity reduction; the antioxidant capacity was elevated compared to the AE group; and anti-inflammatory capacity was increased in the AES group compared to the AE group. Metagenomic sequencing results showed that the levels of harmful bacteria (E. coli, Aeromonas) in the Candida nasus gut increased after air exposure; beneficial bacteria (Actinobacteria, Corynebacteria) in the C. nasus gut increased after salinity reduction. Metabolomics analyses showed that AE decreased the expression of beneficial metabolites and increased the expression of harmful metabolites; AES increased beneficial metabolites and decreased harmful metabolites. Correlation analysis showed that in the AE group, beneficial metabolites were negatively correlated with oxidative stress and inflammatory response, while harmful metabolites were positively correlated with oxidative stress and inflammatory response, and were associated with bacterial communities such as Gillisia, Alkalitalia, Avipoxvirus, etc.; the correlation of metabolites with oxidative stress and inflammatory response was opposite to that of AE in the case of AES, and was associated with Lentilactobacillus, Cyanobacterium, and other bacterial communities. Air exposure caused damage to Candida rhinoceros and 10 ‰ salinity was beneficial in alleviating C. nasus stress. These results will provide new insights into methods and mechanisms to mitigate stress in fish.
Collapse
Affiliation(s)
- Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jiayu Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
88
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
89
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
90
|
Bernard R, Shilts MH, Strickland BA, Boone HH, Payne DC, Brown RF, Edwards K, Das SR, Nicholson MR. The relationship between the intestinal microbiome and body mass index in children with cystic fibrosis. J Cyst Fibros 2024; 23:242-251. [PMID: 37953184 PMCID: PMC11480998 DOI: 10.1016/j.jcf.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The nutritional status of children with cystic fibrosis (CF), as assessed by their body mass index percentile (BMIp), is a critical determinant of long-term health outcomes. While the intestinal microbiome plays an important role in nutrition, little is known regarding the relationship of the microbiome and BMIp in children with CF. METHODS Pediatric patients (< 18 years old) with CF and healthy comparison patients (HCs) were enrolled in the study and stool samples obtained. BMIp was categorized as Green Zone (BMIp > 50th), Yellow Zone (BMIp 25th-49th) and Red Zone (BMIp < 25th). Intestinal microbiome assessment was performed via 16S rRNA gene sequencing; microbial richness, diversity, and differential species abundance were assessed. RESULTS Stool samples were collected from 107 children with CF and 50 age-matched HCs. Compared to HCs, children with CF were found to have lower bacterial richness, alpha-diversity, and a different microbial composition. When evaluating them by their BMIp color zone, richness and alpha-diversity were lowest in those in the Red Zone. In addition, an unclassified amplicon sequence variant (ASV) of Blautia, a known butyrate-producing anaerobe, was of lowest abundance in children in the Red Zone. CONCLUSION Children with CF have a dysbiotic intestinal microbiome with specific changes that accompany changes in BMIp. Longitudinal assessments of the microbiome and its metabolic activities over time are needed to better understand how improvements in the microbiome may improve nutrition and enhance long-term survival in children with CF.
Collapse
Affiliation(s)
- Rachel Bernard
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Meghan H Shilts
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA.
| | - Britton A Strickland
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Tennessee, USA.
| | - Helen H Boone
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA.
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA.
| | - Rebekah F Brown
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Kathryn Edwards
- Department of Pediatrics, Division of Infectious Diseases, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| | - Suman R Das
- Division of Infectious Disease, Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Tennessee, USA; Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maribeth R Nicholson
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Monroe Carell Junior Vanderbilt Children's Hospital, Nashville, TN, USA.
| |
Collapse
|
91
|
Huang F, Luo M, Peng J, Liu S, He J. Opportunistic pathogens increased and probiotics or short-chain fatty acid-producing bacteria decreased in the intestinal microbiota of pneumonia inpatients during SARS-CoV-2 Omicron variant epidemic. Lett Appl Microbiol 2024; 77:ovae022. [PMID: 38402465 DOI: 10.1093/lambio/ovae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.
Collapse
Affiliation(s)
- Fan Huang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Min Luo
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Jun Peng
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Shide Liu
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
92
|
Maguey-González JA, Liu J, Zhang G, Latorre JD, Hernández-Ramírez JO, de Jesús Nava-Ramírez M, Senas-Cuesta R, Gómez-Rosales S, de Lourdes Ángeles M, Stein A, Solís-Cruz B, Hernández-Patlán D, Merino-Guzmán R, Hernandez-Velasco X, Castellanos-Huerta I, Uribe-Diaz S, Vázquez-Durán A, Méndez-Albores A, Petrone-Garcia VM, Tellez Jr. G, Hargis BM, Téllez-Isaías G. Assessment of the Impact of Humic Acids on Intestinal Microbiota, Gut Integrity, Ileum Morphometry, and Cellular Immunity of Turkey Poults Fed an Aflatoxin B 1-Contaminated Diet. Toxins (Basel) 2024; 16:122. [PMID: 38535788 PMCID: PMC10975313 DOI: 10.3390/toxins16030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024] Open
Abstract
A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.
Collapse
Affiliation(s)
- Jesús A. Maguey-González
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Juan O. Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Roberto Senas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Sergio Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - María de Lourdes Ángeles
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - Andressa Stein
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Daniel Hernández-Patlán
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Rubén Merino-Guzmán
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Inkar Castellanos-Huerta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Santiago Uribe-Diaz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | | | - Guillermo Tellez Jr.
- Department of Developmental Biology, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Guillermo Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| |
Collapse
|
93
|
Cheng Y, Liu S, Wang F, Wang T, Yin L, Chen J, Fu C. Effects of Dietary Terminalia chebula Extract on Growth Performance, Immune Function, Antioxidant Capacity, and Intestinal Health of Broilers. Animals (Basel) 2024; 14:746. [PMID: 38473130 DOI: 10.3390/ani14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Terminalia chebula extract (TCE) has many physiological functions and is potentially helpful in maintaining poultry health, but its specific effect on the growth of broilers is not yet known. This research investigated the effects of dietary Terminalia chebula extract (TCE) supplementation on growth performance, immune function, antioxidant capacity, and intestinal health in yellow-feathered broilers. A total of 288 one-day-old yellow-feathered broilers were divided into four treatment groups (72 broilers/group), each with six replicates of 12 broilers. The broilers were given a basal diet of corn-soybean meal supplemented with 0 (control), 200, 400, and 600 mg/kg TCE for 56 d. The results demonstrated that, compared with the basal diet, the addition of TCE significantly increased (linear and quadratic, p < 0.05) the final body weight and overall weight gain and performance and decreased (linear and quadratic, p < 0.05) the feed-to-gain ratio in the overall period. Dietary TCE increased (linear, p < 0.05) the levels of IgM, IL-4, and IL-10 and decreased (linear and quadratic, p < 0.05) the level of IL-6 in the serum. Dietary TCE increased (linear and quadratic, p < 0.05) the levels of IL-2 and IL-4, decreased (linear and quadratic, p < 0.05) the level of IL-1β, and decreased (linear, p < 0.05) the level of IL-6 in the liver. Dietary TCE increased (linear and quadratic, p < 0.05) the level of IgM and IL-10, increased (linear, p < 0.05) the level of IgG, and decreased (linear and quadratic, p < 0.05) the levels of IL-1β and IL-6 in the spleen. Supplementation with TCE linearly and quadratically increased (p < 0.05) the catalase, superoxide dismutase, glutathione peroxidase, and total antioxidant capacity activities while decreasing (p < 0.05) the malonic dialdehyde concentrations in the serum, liver, and spleen. TCE-containing diets for broilers resulted in a higher (linear and quadratic, p < 0.05) villus height, a higher (linear and quadratic, p < 0.05) ratio of villus height to crypt depth, and a lower (linear and quadratic, p < 0.05) crypt depth compared with the basal diet. TCE significantly increased (linear, p < 0.05) the acetic and butyric acid concentrations and decreased (quadratic, p < 0.05) the isovaleric acid concentration. Bacteroidaceae and Bacteroides, which regulate the richness and diversity of microorganisms, were more abundant and contained when TCE was added to the diet. In conclusion, these findings demonstrate that supplementing broilers with TCE could boost their immune function, antioxidant capacity, and gut health, improving their growth performance; they could also provide a reference for future research on TCE.
Collapse
Affiliation(s)
- Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
94
|
Wen J, Xu Q, Li J, Shen X, Zhou X, Huang J, Liu S. Sodium butyrate exerts a neuroprotective effect in rats with acute carbon monoxide poisoning by activating autophagy through the mTOR signaling pathway. Sci Rep 2024; 14:4610. [PMID: 38409245 PMCID: PMC10897214 DOI: 10.1038/s41598-024-55198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Acute carbon monoxide (CO) poisoning is a prevalent type of poisoning that causes significant harm globally. Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that occurs after acute CO poisoning; however, the exact underlying pathological cause of DEACMP remains unclear. Accumulating evidence indicates that abnormal inflammation and immune-mediated brain damage, cellular apoptosis and autophagy, and direct neuronal toxicity are involved in the development of delayed neurologic sequelae. Sodium butyrate, a histone deacetylase inhibitor, has gained increasing attention for its numerous beneficial effects on various diseases, such as obesity, diabetes, inflammatory diseases, and cerebral damage. In this study, an acute carbon monoxide poisoning (ACOP) model is established in rats to investigate the mechanism of CO poisoning and the therapeutic potential of sodium butyrate. The results suggested that the ACOP rats had impaired spatial memory, and cell apoptosis was observed in the hippocampi with activated autophagy. Sodium butyrate treatment further increased the activation of autophagy in the hippocampi of CO-exposed rats, inhibited apoptosis, and consolidated spatial memory. These findings indicated that sodium butyrate may improve memory and cognitive function in ACMP rats by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jing Wen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Qiong Xu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Li
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xuanyang Shen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Xiaolong Zhou
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Huang
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Shiping Liu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
95
|
Chen P, Luo Z, Lu C, Jian G, Qi X, Xiong H. Gut-immunity-joint axis: a new therapeutic target for gouty arthritis. Front Pharmacol 2024; 15:1353615. [PMID: 38464719 PMCID: PMC10920255 DOI: 10.3389/fphar.2024.1353615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.
Collapse
Affiliation(s)
- Pei Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Integrative Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
96
|
Donkers JM, Wiese M, van den Broek TJ, Wierenga E, Agamennone V, Schuren F, van de Steeg E. A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:18. [PMID: 38841408 PMCID: PMC11149092 DOI: 10.20517/mrr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024]
Abstract
Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Maria Wiese
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Tim J. van den Broek
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Esmée Wierenga
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Valeria Agamennone
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Frank Schuren
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| |
Collapse
|
97
|
He M, Wei W, Zhang Y, Xiang Z, Peng D, Kasimumali A, Rong S. Gut microbial metabolites SCFAs and chronic kidney disease. J Transl Med 2024; 22:172. [PMID: 38369469 PMCID: PMC10874542 DOI: 10.1186/s12967-024-04974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024] Open
Abstract
The global incidence of Chronic Kidney Disease (CKD) is steadily escalating, with discernible linkage to the intricate terrain of intestinal microecology. The intestinal microbiota orchestrates a dynamic equilibrium in the organism, metabolizing dietary-derived compounds, a process which profoundly impacts human health. Among these compounds, short-chain fatty acids (SCFAs), which result from microbial metabolic processes, play a versatile role in influencing host energy homeostasis, immune function, and intermicrobial signaling, etc. SCFAs emerge as pivotal risk factors influencing CKD's development and prognosis. This paper review elucidates the impact of gut microbial metabolites, specifically SCFAs, on CKD, highlighting their role in modulating host inflammatory responses, oxidative stress, cellular autophagy, the immune milieu, and signaling cascades. An in-depth comprehension of the interplay between SCFAs and kidney disease pathogenesis may pave the way for their utilization as biomarkers for CKD progression and prognosis or as novel adjunctive therapeutic strategies.
Collapse
Affiliation(s)
- Meng He
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhouxia Xiang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dan Peng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ayijiaken Kasimumali
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
98
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
99
|
Tian S, Huang W. The causal relationship between gut microbiota and COVID-19: A two-sample Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e36493. [PMID: 38306556 PMCID: PMC10843424 DOI: 10.1097/md.0000000000036493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 02/04/2024] Open
Abstract
Recent studies have shown that gut microbiota is associated with coronavirus disease 2019 (COVID-19). However, the causal impact of the gut microbiota on COVID-19 remains unclear. We performed a bidirectional Mendelian randomization. The summary statistics on the gut microbiota from the MiBioGen consortium. Summary statistics for COVID-19 were obtained from the 6th round of the COVID-19 Host Genetics Initiative genome-wide association study meta-analysis. Inverse variance weighting was used as the main method to test the causal relationship between gut microbiota and COVID-19. Reverse Mendelian randomization analysis was performed. Mendelian randomization analysis showed that Intestinimas.id.2062 was associated with an increased risk of severe COVID-19. Bifidobacterium.id.436, LachnospiraceaeUCG010.id.11330, RikenellaceaeRC9gutgroup.id.11191 increase the risk of hospitalized COVID-19. RuminococcaceaeUCG014.id.11371 shows the positive protection on hospitalized COVID-19. There is no causal relationship between gut microbiota and infection with COVID-19. According to the results of reverse Mendelian randomization analysis, no significant causal effect of COVID-19 on gut microbiota was found. The study found that gut microbiota with COVID-19 has a causal relationship. This study provides a basis for the theory of the gut-lung axis. Further randomized controlled trials are needed to clarify the protective effect of probiotics against COVID-19 and the specific protective mechanisms. This study has important implications for gut microbiota as a nondrug intervention for COVID-19.
Collapse
Affiliation(s)
- Siyu Tian
- Proctology Department, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhui Huang
- Cardiothoracic Surgery Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
100
|
Padhi S, Sarkar P, Sahoo D, Rai AK. Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38299734 DOI: 10.1002/jsfa.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Foods prepared using microbial conversion of major and minor food components, which are otherwise known as fermented foods continue to impact human health. The live microorganisms and transformed metabolites can also have a deep influence on the gut microbiota, the multifaceted population of microorganisms dwelling inside the gut play a key role in wellbeing of an individual. The probiotic strains delivered through the consumption of fermented food and other bioactive components such as polyphenolic metabolites, bioactive peptides, short-chain fatty acids and others including those produced via gut microbiota mediated transformations have been proposed to balance the gut microbiota diversity and activity, and also to regulate the inflammation in the gut. However, little is known about such effects and only a handful of fermented foods have been explored to date. We herein review the recent knowledge on the dysbiotic gut microbiota linking to major gut inflammatory diseases. Also, evidences that fermented food consumption modulates the gut microbiota, and its impact on the gut inflammation and inflammatory diseases have been discussed. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Srichandan Padhi
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Puja Sarkar
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Amit Kumar Rai
- Nutrition Biotechnlogy Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|