51
|
Cope JE, Russell J, Norton GJ, George TS, Newton AC. Assessing the variation in manganese use efficiency traits in Scottish barley landrace Bere (Hordeum vulgare L.). ANNALS OF BOTANY 2020; 126:289-300. [PMID: 32333775 PMCID: PMC7380464 DOI: 10.1093/aob/mcaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Manganese (Mn) deficiency in barley is a global problem. It is difficult to detect in the early stages of symptom development and is commonly pre-emptively corrected by Mn foliar sprays that can be costly. Landraces adapted to marginal lands around the world represent a genetic resource for potential sustainability traits including mineral use efficiency. This research aims to confirm novel Mn use efficiency traits from the Scottish landrace Bere and use an association mapping approach to identify genetic loci associated with the trait. METHODS A hydroponic system was developed to identify and characterize the Mn deficiency tolerance traits in a collection of landraces, including a large number of Scottish Bere barleys, a group of six-rowed heritage landraces grown in the highlands and islands of Scotland. Measuring chlorophyll fluorescence, the effect of Mn deficiency was identified in the early stages of development. Genotypic data, generated using the 50k Illumina iSelect genotyping array, were coupled with the Mn phenotypic data to create a genome-wide association study (GWAS) identifying candidate loci associated with Mn use efficiency. KEY RESULTS The Bere lines generally had good Mn use efficiency traits. Individual Bere lines showed large efficiencies, with some Bere lines recording almost double chlorophyll fluorescence readings in limited Mn conditions compared with the elite cultivar Scholar. The Mn-efficient Bere lines had increased accumulation of Mn in their shoot biomass compared with elite cultivars, which was highly correlated to the chlorophyll fluorescence. Several candidate genes were identified as being associated with Mn use efficiency in the GWAS. CONCLUSIONS Several genomic regions for Mn use efficiency traits originating from the Bere lines were identified. Further examination and validation of these regions should be undertaken to identify candidate genes for future breeding for marginal lands.
Collapse
Affiliation(s)
| | | | - Gareth J Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
52
|
Dwivedi SL, Stoddard FL, Ortiz R. Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110365. [PMID: 32534611 DOI: 10.1016/j.plantsci.2019.110365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity refers to changes expressed by a genotype across different environments and is one of the major means by which plants cope with environmental variability. Multi-fold differences in phenotypic plasticity have been noted across crops, with wild ancestors and landraces being more plastic than crops when under stress. Plasticity in response to abiotic stress adaptation, plant architecture, physio-reproductive and quality traits are multi-genic (QTL). Plasticity QTL (pQTL) were either collocated with main effect QTL and QEI (QTL × environment interaction) or located independently from the main effect QTL. For example, variations in root plasticity have been successfully introgressed to enhance abiotic stress adaptation in rice. The independence of genetic control of a trait and of its plasticity suggests that breeders may select for high or low plasticity in combination with high or low performance of economically important traits. Trait plasticity in stressful environments may be harnessed through breeding stress-tolerant crops. There exists a genetic cost associated with plasticity, so a better understanding of the trade-offs between plasticity and productivity is warranted prior to undertaking breeding for plasticity traits together with productivity in stress environments.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, SE 23053, Alnarp, Sweden.
| |
Collapse
|
53
|
Kim Y, Chung YS, Lee E, Tripathi P, Heo S, Kim KH. Root Response to Drought Stress in Rice ( Oryza sativa L .). Int J Mol Sci 2020; 21:E1513. [PMID: 32098434 PMCID: PMC7073213 DOI: 10.3390/ijms21041513] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023] Open
Abstract
The current unpredictable climate changes are causing frequent and severe droughts. Such circumstances emphasize the need to understand the response of plants to drought stress, especially in rice, one of the most important grain crops. Knowledge of the drought stress response components is especially important in plant roots, the major organ for the absorption of water and nutrients from the soil. Thus, this article reviews the root response to drought stress in rice. It is presented to provide readers with information of use for their own research and breeding program for tolerance to drought stress in rice.
Collapse
Affiliation(s)
- Yoonha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.K.); (P.T.)
| | - Yong Suk Chung
- Faculty of Bioscience and Industry, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Korea;
| | - Eungyeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea;
| | - Pooja Tripathi
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.K.); (P.T.)
| | - Seong Heo
- Ganghwa Agricultural Technology Service Center, Incheon 23038, Korea;
| | - Kyung-Hwan Kim
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea;
| |
Collapse
|
54
|
van Veelen A, Koebernick N, Scotson CS, McKay-Fletcher D, Huthwelker T, Borca CN, Mosselmans JFW, Roose T. Root-induced soil deformation influences Fe, S and P: rhizosphere chemistry investigated using synchrotron XRF and XANES. THE NEW PHYTOLOGIST 2020; 225:1476-1490. [PMID: 31591727 DOI: 10.1111/nph.16242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/27/2019] [Indexed: 05/10/2023]
Abstract
Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root-induced physical changes, chemical changes have not been extensively measured in situ on the pore scale. In this study, we couple structural information, previously obtained using synchrotron X-ray computed tomography (XCT), with synchrotron X-ray fluorescence microscopy (XRF) and X-ray absorption near-edge structure (XANES) to unravel chemical changes induced by plant roots. Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42- ) and phosphorus (P) is increasingly adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically, suggesting the preferential dissolution and the formation of more stable Fe oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via XCT. The fact that these changes are colocated near the root and the compaction zone suggests that decreased permeability as a result of soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface-mediated processes, microbial activity and acidification.
Collapse
Affiliation(s)
- Arjen van Veelen
- Bioengineering Sciences Research Group, Faculty of Engineering and Physical Sciences, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicolai Koebernick
- Bioengineering Sciences Research Group, Faculty of Engineering and Physical Sciences, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Callum S Scotson
- Bioengineering Sciences Research Group, Faculty of Engineering and Physical Sciences, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Daniel McKay-Fletcher
- Bioengineering Sciences Research Group, Faculty of Engineering and Physical Sciences, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Source, Villigen, 5232, Switzerland
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Source, Villigen, 5232, Switzerland
| | - J Fred W Mosselmans
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Physical Sciences, School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
55
|
Li Z, Guo F, Cornelis JT, Song Z, Wang X, Delvaux B. Combined Silicon-Phosphorus Fertilization Affects the Biomass and Phytolith Stock of Rice Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:67. [PMID: 32133016 PMCID: PMC7040097 DOI: 10.3389/fpls.2020.00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/17/2020] [Indexed: 05/22/2023]
Abstract
Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and marine ecosystems through their impact on plant health and carbon fixation by diatoms, respectively. Fertilization increases crop biomass through the supply of plant nutrients, and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P) fertilization enhance rice crop biomass, but their combined impact on Si accumulation in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g Si kg-1 and 0.20 g P kg-1 generated the largest increase in plant shoot biomass (leaf, flag leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group. Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in phytoliths. However, it increased plant available Si in soil, plant phytolith content and its total stock (mg phytolith pot-1) in dry plant matter, leading to the increase of the total amount of OC within plants. In addition, P supply increased rice biomass and grain yield. Through these positive effects, combined Si-P fertilization may thus address agronomic (e.g., sustainable ecosystem development) and environmental (e.g., climate change) issues through the increase in crop yield and phytolith production as well as the promotion of Si ecological services and OC accumulation within phytoliths.
Collapse
Affiliation(s)
- Zimin Li
- Soil Science, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Fengshan Guo
- School of Environment and Resources, Zhejiang Agricultural and Forestry University, Lin'an, China
| | - Jean-Thomas Cornelis
- BIOSE Department, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Zhaoliang Song
- Institute of the Surface-Earth System Science, Tianjin University, Tianjin, China
- *Correspondence: Zhaoliang Song,
| | - Xudong Wang
- School of Environment and Resources, Zhejiang Agricultural and Forestry University, Lin'an, China
| | - Bruno Delvaux
- Soil Science, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
56
|
Ruiz S, Koebernick N, Duncan S, Fletcher DM, Scotson C, Boghi A, Marin M, Bengough AG, George TS, Brown LK, Hallett PD, Roose T. Significance of root hairs at the field scale - modelling root water and phosphorus uptake under different field conditions. PLANT AND SOIL 2019; 447:281-304. [PMID: 32214504 PMCID: PMC7062663 DOI: 10.1007/s11104-019-04308-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
ABSTRACT BACKGROUND AND AIMS Root hairs play a significant role in phosphorus (P) extraction at the pore scale. However, their importance at the field scale remains poorly understood. METHODS This study uses a continuum model to explore the impact of root hairs on the large-scale uptake of P, comparing root hair influence under different agricultural scenarios. High vs low and constant vs decaying P concentrations down the soil profile are considered, along with early vs late precipitation scenarios. RESULTS Simulation results suggest root hairs accounted for 50% of total P uptake by plants. Furthermore, a delayed initiation time of precipitation potentially limits the P uptake rate by over 50% depending on the growth period. Despite the large differences in the uptake rate, changes in the soil P concentration in the domain due to root solute uptake remains marginal when considering a single growth season. However, over the duration of 6 years, simulation results showed that noticeable differences arise over time. CONCLUSION Root hairs are critical to P capture, with uptake efficiency potentially enhanced by coordinating irrigation with P application during earlier growth stages of crops.
Collapse
Affiliation(s)
- S Ruiz
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| | - N Koebernick
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
- 5Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Universitaetplatz 10, 06108 Halle (Saale), Germany
| | - S Duncan
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| | - D McKay Fletcher
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| | - C Scotson
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| | - A Boghi
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| | - M Marin
- 2School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU UK
| | - A G Bengough
- 3Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- 4School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - T S George
- 3Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - L K Brown
- 3Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - P D Hallett
- 2School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU UK
| | - T Roose
- 1Bioengineering Science Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Science, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
57
|
Klamer F, Vogel F, Li X, Bremer H, Neumann G, Neuhäuser B, Hochholdinger F, Ludewig U. Estimating the importance of maize root hairs in low phosphorus conditions and under drought. ANNALS OF BOTANY 2019; 124:961-968. [PMID: 30759179 PMCID: PMC6881218 DOI: 10.1093/aob/mcz011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/24/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Root hairs are single-cell extensions of the epidermis that face into the soil and increase the root-soil contact surface. Root hairs enlarge the rhizosphere radially and are very important for taking up water and sparingly soluble nutrients, such as the poorly soil-mobile phosphate. In order to quantify the importance of root hairs for maize, a mutant and the corresponding wild type were compared. METHODS The rth2 maize mutant with very short root hairs was assayed for growth and phosphorus (P) acquisition in a slightly alkaline soil with low P and limited water supply in the absence of mycorrhization and with ample P supply. KEY RESULTS Root and shoot growth was additively impaired under P deficiency and drought. Internal P concentrations declined with reduced water and P supply, whereas micronutrients (iron, zinc) were little affected. The very short root hairs in rth2 did not affect internal P concentrations, but the P content of juvenile plants was halved under combined stress. The rth2 plants had more fine roots and increased specific root length, but P mobilization traits (root organic carbon and phosphatase exudation) differed little. CONCLUSIONS The results confirm the importance of root hairs for maize P uptake and content, but not for internal P concentrations. Furthermore, the performance of root hair mutants may be biased by secondary effects, such as altered root growth.
Collapse
Affiliation(s)
- Florian Klamer
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Florian Vogel
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Xuelian Li
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Hinrich Bremer
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | | | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
58
|
White PJ. Root traits benefitting crop production in environments with limited water and nutrient availability. ANNALS OF BOTANY 2019; 124:mcz162. [PMID: 31599920 PMCID: PMC6881216 DOI: 10.1093/aob/mcz162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Breeding for advantageous root traits will play a fundamental role in improving the efficiency of water and nutrient acquisition, closing yield gaps, and underpinning the "Evergreen Revolution" that must match crop production with human demand. SCOPE This preface provides an overview of a Special Issue of Annals of Botany on "Root traits benefitting crop production in environments with limited water and nutrient availability". The first papers in the Special Issue examine how breeding for reduced shoot stature and greater harvest index during the Green Revolution affected root system architecture. It is observed that reduced plant height and root architecture are inherited independently and can be improved simultaneously to increase the acquisition and utilisation of carbon, water and mineral nutrients. These insights are followed by papers examining beneficial root traits for resource acquisition in environments with limited water or nutrient availability, such as deep rooting, control of hydraulic conductivity, formation of aerenchyma, proliferation of lateral roots and root hairs, foraging of nutrient-rich patches, manipulation of rhizosphere pH and the exudation of low molecular weight organic solutes. The Special Issue concludes with papers exploring the interactions of plant roots and microorganisms, highlighting the need for plants to control the symbiotic relationships between mycorrhizal fungi and rhizobia to achieve maximal growth, and the roles of plants and microbes in the modification and development of soils.
Collapse
Affiliation(s)
- Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, UK
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
59
|
Liu TY, Chen MX, Zhang Y, Zhu FY, Liu YG, Tian Y, Fernie AR, Ye N, Zhang J. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. PLANTA 2019; 250:1355-1369. [PMID: 31278465 DOI: 10.1007/s00425-019-03228-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/27/2019] [Indexed: 05/21/2023]
Abstract
Rhizosheath comprises soil that adheres firmly to roots. In this study, two ecotypes of switchgrass with different rhizosheath sizes after drought stress were analyzed which showed metabolic differences under drought conditions. The rhizosheath comprises soil that adheres firmly to roots by a combination of root hairs and mucilage and may aid in root growth under soil drying. The aim of this work is to reveal the potential metabolites involved in rhizosheath formation under drought stress conditions. Panicum virgatum L. (switchgrass), which belongs to the Poaceae family, is an important biofuel and fodder crop in drought areas. Five switchgrass ecotypes (cv. Alamo, cv. Blackwake, cv. Summer, cv. Cave-in-Rock and cv. Kanlow) have a broad range of rhizosheath weight under drought conditions. For two selected ecotypes with contrast rhizosheath weight (cv. Alamo and cv. Kanlow), root hair length and density, lateral root number, root morphological parameters were measured, and real-time qRT-PCR was performed. Gas chromatography mass spectrophotometry (GC-MS) was used to determine the primary metabolites in the shoots and roots of selected ecotypes under drought stress conditions. The change trends of root hair length and density, lateral root number and related gene expression were consistent with rhizosheath weight in Alamo and Kanlow under drought and watered conditions. For root morphological parameters, Alamo grew deeper than Kanlow, while Kanlow exhibited higher values for other parameters. In this study, the levels of amino acids, sugars and organic acids were significantly changed in response to drought stress in two switchgrass ecotypes. Several metabolites including amino acids (arginine, isoleucine, methionine and cysteine) and sugars (kestose, raffinose, fructose, fucose, sorbose and xylose) in the large soil-sheathed roots of Alamo and Kanlow were significantly increased compared to small or no soil-sheathed roots of Alamo and Kanlow. Difference in rhizosheath size is reflected in the plant internal metabolites under drought stress conditions. Additionally, our results highlight the importance of using metabolite profiling and provide a better understanding of rhizosheath formation at the cellular level.
Collapse
Affiliation(s)
- Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mo-Xian Chen
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fu-Yuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu Province, China
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yuan Tian
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Alisdair R Fernie
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, China.
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
60
|
Liu TY, Ye N, Song T, Cao Y, Gao B, Zhang D, Zhu F, Chen M, Zhang Y, Xu W, Zhang J. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:449-462. [PMID: 30183129 DOI: 10.1111/jipb.12716] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
The rhizosheath, a layer of soil particles that adheres firmly to the root surface by a combination of root hairs and mucilage, may improve tolerance to drought stress. Setaria italica (L.) P. Beauv. (foxtail millet), a member of the Poaceae family, is an important food and fodder crop in arid regions and forms a larger rhizosheath under drought conditions. Rhizosheath formation under drought conditions has been studied, but the regulation of root hair growth and rhizosheath size in response to soil moisture remains unclear. To address this question, in this study we monitored root hair growth and rhizosheath development in response to a gradual decline in soil moisture. Here, we determined that a soil moisture level of 10%-14% (w/w) stimulated greater rhizosheath production compared to other soil moisture levels. Root hair density and length also increased at this soil moisture level, which was validated by measurement of the expression of root hair-related genes. These findings contribute to our understanding of rhizosheath formation in response to soil water stress.
Collapse
Affiliation(s)
- Tie-Yuan Liu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tao Song
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yunying Cao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- College of Life Sciences, Nantong University, Nantong 226019, China
| | - Bei Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fuyuan Zhu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Moxian Chen
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjiao Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
61
|
Koebernick N, Daly KR, Keyes SD, Bengough AG, Brown LK, Cooper LJ, George TS, Hallett PD, Naveed M, Raffan A, Roose T. Imaging microstructure of the barley rhizosphere: particle packing and root hair influences. THE NEW PHYTOLOGIST 2019; 221:1878-1889. [PMID: 30289555 DOI: 10.1111/nph.15516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/23/2018] [Indexed: 05/10/2023]
Abstract
Soil adjacent to roots has distinct structural and physical properties from bulk soil, affecting water and solute acquisition by plants. Detailed knowledge on how root activity and traits such as root hairs affect the three-dimensional pore structure at a fine scale is scarce and often contradictory. Roots of hairless barley (Hordeum vulgare L. cv Optic) mutant (NRH) and its wildtype (WT) parent were grown in tubes of sieved (<250 μm) sandy loam soil under two different water regimes. The tubes were scanned by synchrotron-based X-ray computed tomography to visualise pore structure at the soil-root interface. Pore volume fraction and pore size distribution were analysed vs distance within 1 mm of the root surface. Less dense packing of particles at the root surface was hypothesised to cause the observed increased pore volume fraction immediately next to the epidermis. The pore size distribution was narrower due to a decreased fraction of larger pores. There were no statistically significant differences in pore structure between genotypes or moisture conditions. A model is proposed that describes the variation in porosity near roots taking into account soil compaction and the surface effect at the root surface.
Collapse
Affiliation(s)
- Nicolai Koebernick
- Bioengineering Sciences Research Group, Engineering Sciences Academic Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, von-Seckendoff-Platz 3, 06120, Halle (Saale), Germany
| | - Keith R Daly
- Bioengineering Sciences Research Group, Engineering Sciences Academic Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Samuel D Keyes
- Bioengineering Sciences Research Group, Engineering Sciences Academic Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anthony G Bengough
- Ecological Sciences Group, The James Hutton Institute, Dundee, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Lawrie K Brown
- Ecological Sciences Group, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Laura J Cooper
- Bioengineering Sciences Research Group, Engineering Sciences Academic Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Mathematics Institute, University of Warwick, Warwick, CV4 7AL, UK
| | - Timothy S George
- Ecological Sciences Group, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Paul D Hallett
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Muhammad Naveed
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, AB24 3FX, UK
- School of Computing and Engineering, University of West London, London, W5 5RF, UK
| | - Annette Raffan
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Engineering Sciences Academic Unit, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
62
|
Kumar S, Chinnannan K, Thamilarasan SK, Seralathan M, Shanmuganathan R, Padikasan IA. Enzymatically hydrolysed sago bagasse improves physiological, biochemical and molecular attributes of Solanum lycopersicum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
63
|
Gajewska P, Janiak A, Kwasniewski M, Kędziorski P, Szarejko I. Forward Genetics Approach Reveals a Mutation in bHLH Transcription Factor-Encoding Gene as the Best Candidate for the Root Hairless Phenotype in Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:1229. [PMID: 30233607 PMCID: PMC6129617 DOI: 10.3389/fpls.2018.01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/03/2018] [Indexed: 05/29/2023]
Abstract
Root hairs are the part of root architecture contributing significantly to the root surface area. Their role is particularly substantial in maintaining plant growth under stress conditions, however, knowledge on mechanism of root hair differentiation is still limited for majority of crop species, including barley. Here, we report the results of a map-based identification of a candidate gene responsible for the lack of root epidermal cell differentiation, which results in the lack of root hairs in barley. The analysis was based on the root hairless barley mutant rhl1.b, obtained after chemical mutagenesis of spring cultivar 'Karat'. The rhl1 gene was located in chromosome 7HS in our previous studies. Fine mapping allowed to narrow the interval encompassing rhl1 gene to 3.7 cM, which on physical barley map spans a region of 577 kb. Five high confidence genes are located within this region and their sequencing resulted in the identification of A>T mutation in one candidate, HORVU7Hr1G030250 (MLOC_38567), differing the mutant from its parent variety. The mutation, located in the 3' splice-junction site, caused the retention of the last intron, 98 bp long, in mRNA of rhl1.b allele. This resulted in the frameshift, the synthesis of 71 abnormal amino acids and introduction of premature STOP codon in mRNA. The mutation was present in the recombinants from the mapping population (F2rhl1.b × 'Morex') that lacked root hairs. The candidate gene encodes a bHLH transcription factor with LRL domain and may be involved in early stages of root hair cell development. We discuss the possible involvement of HORVU7Hr1G030250 in this process, as the best candidate responsible for early stages of rhizodermis differentiation in barley.
Collapse
Affiliation(s)
- Patrycja Gajewska
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Kędziorski
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
64
|
Zhang C, Simpson RJ, Kim CM, Warthmann N, Delhaize E, Dolan L, Byrne ME, Wu Y, Ryan PR. Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic Brachypodium distachyon lines overexpressing endogenous RSL genes. THE NEW PHYTOLOGIST 2018; 217:1654-1666. [PMID: 29341123 DOI: 10.1111/nph.14980] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/04/2017] [Indexed: 05/14/2023]
Abstract
Mutants without root hairs show reduced inorganic orthophosphate (Pi) uptake and compromised growth on soils when Pi availability is restricted. What is less clear is whether root hairs that are longer than wild-type provide an additional benefit to phosphorus (P) nutrition. This was tested using transgenic Brachypodium lines with longer root hairs. The lines were transformed with the endogenous BdRSL2 and BdRSL3 genes using either a constitutive promoter or a root hair-specific promoter. Plants were grown for 32 d in soil amended with various Pi concentrations. Plant biomass and P uptake were measured and genotypes were compared on the basis of critical Pi values and P uptake per unit root length. Ectopic expression of RSL2 and RSL3 increased root hair length three-fold but decreased plant biomass. Constitutive expression of BdRSL2, but not expression of BdRSL3, consistently improved P nutrition as measured by lowering the critical Pi values and increasing Pi uptake per unit root length. Increasing root hair length through breeding or biotechnology can improve P uptake efficiency if the pleotropic effects on plant biomass are avoided. Long root hairs, alone, appear to be insufficient to improve Pi uptake and need to be combined with other traits to benefit P nutrition.
Collapse
Affiliation(s)
- Chunyan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard J Simpson
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Chul Min Kim
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Norman Warthmann
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Emmanuel Delhaize
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Mary E Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Peter R Ryan
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
65
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients. FRONTIERS IN PLANT SCIENCE 2018; 9:163. [PMID: 29527216 PMCID: PMC5829606 DOI: 10.3389/fpls.2018.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO) production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs) in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1) suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP), relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.
Collapse
Affiliation(s)
- Bansh N. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal S. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
66
|
Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A. Root hairs increase rhizosphere extension and carbon input to soil. ANNALS OF BOTANY 2018; 121:61-69. [PMID: 29267846 PMCID: PMC5786240 DOI: 10.1093/aob/mcx127] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Although it is commonly accepted that root exudation enhances plant-microbial interactions in the rhizosphere, experimental data on the spatial distribution of exudates are scarce. Our hypothesis was that root hairs exude organic substances to enlarge the rhizosphere farther from the root surface. METHODS Barley (Hordeum vulgare 'Pallas' - wild type) and its root-hairless mutant (brb) were grown in rhizoboxes and labelled with 14CO2. A filter paper was placed on the soil surface to capture, image and quantify root exudates. KEY RESULTS Plants with root hairs allocated more carbon (C) to roots (wild type: 13 %; brb: 8 % of assimilated 14C) and to rhizosheaths (wild type: 1.2 %; brb: 0.2 %), while hairless plants allocated more C to shoots (wild type: 65 %; brb: 75 %). Root hairs increased the radial rhizosphere extension three-fold, from 0.5 to 1.5 mm. Total exudation on filter paper was three times greater for wild type plants compared to the hairless mutant. CONCLUSION Root hairs increase exudation and spatial rhizosphere extension, which probably enhance rhizosphere interactions and nutrient cycling in larger soil volumes. Root hairs may therefore be beneficial to plants under nutrient-limiting conditions. The greater C allocation below ground in the presence of root hairs may additionally foster C sequestration.
Collapse
Affiliation(s)
- Maire Holz
- Division of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- For correspondence.
| | | | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems and Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Johanna Pausch
- Division of Agroecology, University of Bayreuth, Bayreuth, Germany
| | - Andrea Carminati
- Division of Soil Physics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
67
|
Carminati A, Passioura JB, Zarebanadkouki M, Ahmed MA, Ryan PR, Watt M, Delhaize E. Root hairs enable high transpiration rates in drying soils. THE NEW PHYTOLOGIST 2017; 216:771-781. [PMID: 28758687 DOI: 10.1111/nph.14715] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/21/2017] [Indexed: 05/24/2023]
Abstract
Do root hairs help roots take up water from the soil? Despite the well-documented role of root hairs in phosphate uptake, their role in water extraction is controversial. We grew barley (Hordeum vulgare cv Pallas) and its root-hairless mutant brb in a root pressure chamber, whereby the transpiration rate could be varied whilst monitoring the suction in the xylem. The method provides accurate measurements of the dynamic relationship between the transpiration rate and xylem suction. The relationship between the transpiration rate and xylem suction was linear in wet soils and did not differ between genotypes. When the soil dried, the xylem suction increased rapidly and non-linearly at high transpiration rates. This response was much greater with the brb mutant, implying a reduced capacity to take up water. We conclude that root hairs facilitate the uptake of water by substantially reducing the drop in matric potential at the interface between root and soil in rapidly transpiring plants. The experiments also reinforce earlier observations that there is a marked hysteresis in the suction in the xylem when the transpiration rate is rising compared with when it is falling, and possible reasons for this behavior are discussed.
Collapse
Affiliation(s)
- Andrea Carminati
- Chair of Soil Physics, University of Bayreuth, Bauyreuth, D-95447, Germany
| | - John B Passioura
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | - Mutez A Ahmed
- Chair of Soil Physics, University of Bayreuth, Bauyreuth, D-95447, Germany
- Division of Soil Hydrology, Georg-August Universität, D-37073, Göttingen, Germany
- Department of Agricultural Engineering, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Shambat, Sudan
| | - Peter R Ryan
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Michelle Watt
- Plant Sciences, Institute of Bio- and Geosciences, Jülich Forschungszentrum, Jülich, D-52425, Germany
| | - Emmanuel Delhaize
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
68
|
Han H, Wang H, Han Y, Hu Z, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution. PLANTA 2017; 246:1019-1028. [PMID: 28770336 DOI: 10.1007/s00425-017-2735-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/03/2017] [Indexed: 05/16/2023]
Abstract
Altered expression of the TaRSL2 gene was positively correlated with variation in root hair length during allopolyploid wheat evolution, and overexpression of TaRSL2 in Arabidopsis increases root hair length. Root hairs aid nutrient and water uptake and anchor the plant in the soil. Allopolyploid wheats display significant growth vigor in terms of root hair length compared to their diploid progenitors, but little is known about the molecular basis of variation in root hair length during wheat allopolyploidization. Here, we isolated three orthologs of the Arabidopsis root hair gene ROOT HAIR DEFECTIVE SIX-LIKE 2 (AtRSL2) in allohexaploid wheat, designated TaRSL2-4A, TaRSL2-4B and TaRSL2-4D. The deduced polypeptides of these three TaRSL2 homoeologous genes shared high similarity, and a conserved basic helix-loop-helix (bHLH) domain was present in their C-terminal regions. Notably, the expression of TaRSL2 was positively correlated with root hair length of wheat accessions with different ploidy levels. Moreover, ectopic overexpression of TaRSL2-4D in Arabidopsis could increase root hair length. We found that the transcript levels of TaRSL2 homoeologous genes dynamically changed during allopolyploid wheat evolution, implicating the complexity of the underlying molecular mechanism. Collectively, we propose that altered expression of the TaRSL2 gene contributed to variation in root hair length in allopolyploid wheats.
Collapse
Affiliation(s)
- Haiming Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yao Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
69
|
Koebernick N, Daly KR, Keyes SD, George TS, Brown LK, Raffan A, Cooper LJ, Naveed M, Bengough AG, Sinclair I, Hallett PD, Roose T. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. THE NEW PHYTOLOGIST 2017; 216:124-135. [PMID: 28758681 PMCID: PMC5601222 DOI: 10.1111/nph.14705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/12/2017] [Indexed: 05/17/2023]
Abstract
In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm-3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling.
Collapse
Affiliation(s)
- Nicolai Koebernick
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Keith R. Daly
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Samuel D. Keyes
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Timothy S. George
- Ecological Sciences GroupThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Lawrie K. Brown
- Ecological Sciences GroupThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Annette Raffan
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenAB24 3UUUK
| | - Laura J. Cooper
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Muhammad Naveed
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenAB24 3UUUK
| | - Anthony G. Bengough
- Ecological Sciences GroupThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundeeDD1 4HNUK
| | - Ian Sinclair
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Paul D. Hallett
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenAB24 3UUUK
| | - Tiina Roose
- Bioengineering Sciences Research GroupEngineering Sciences Academic UnitFaculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
70
|
Gong X, McDonald G. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1885-1902. [PMID: 28593327 DOI: 10.1007/s00122-017-2931-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/30/2017] [Indexed: 05/05/2023]
Abstract
Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
Collapse
Affiliation(s)
- Xue Gong
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, 5064, Adelaide, SA, Australia.
| | - Glenn McDonald
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, 5064, Adelaide, SA, Australia
| |
Collapse
|
71
|
Ndour PMS, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo AL, Dezette D, Chapuis-Lardy L, Assigbetsé K, Kane NA, Vigouroux Y, Achouak W, Ndoye I, Heulin T, Cournac L. Pearl Millet Genetic Traits Shape Rhizobacterial Diversity and Modulate Rhizosphere Aggregation. FRONTIERS IN PLANT SCIENCE 2017; 8:1288. [PMID: 28798755 PMCID: PMC5529415 DOI: 10.3389/fpls.2017.01288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/07/2017] [Indexed: 05/25/2023]
Abstract
Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the "RAS/RT ratio." Regarding taxonomic composition, the Rhizobiales were stimulated in lines showing high aggregation level whereas Bacillales were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from Rhizobiales and Bacillales. However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil.
Collapse
Affiliation(s)
- Papa M. S. Ndour
- IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRDDakar, Sénégal
- Département de Biologie Végétale, Université Cheikh Anta DiopDakar, Sénégal
| | - Mariama Gueye
- IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRDDakar, Sénégal
| | - Mohamed Barakat
- Aix Marseille Université, CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement extrêmes, ECCOREV FR3098F-13108 St Paul Les Durance, France
| | - Philippe Ortet
- Aix Marseille Université, CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement extrêmes, ECCOREV FR3098F-13108 St Paul Les Durance, France
| | - Marie Bertrand-Huleux
- Aix Marseille Université, CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement extrêmes, ECCOREV FR3098F-13108 St Paul Les Durance, France
| | - Anne-Laure Pablo
- Eco&Sols, Cirad, INRA, IRD, Montpellier SupAgro, Université de MontpellierMontpellier, France
| | - Damien Dezette
- Eco&Sols, Cirad, INRA, IRD, Montpellier SupAgro, Université de MontpellierMontpellier, France
| | - Lydie Chapuis-Lardy
- Eco&Sols, Cirad, INRA, IRD, Montpellier SupAgro, Université de MontpellierMontpellier, France
| | - Komi Assigbetsé
- IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRDDakar, Sénégal
| | - Ndjido Ardo Kane
- Laboratoire National de Recherches sur les Productions Végétales, Institut Sénégalais de Recherches Agricoles, Centre de Recherche de Bel AirDakar, Senegal
| | | | - Wafa Achouak
- Aix Marseille Université, CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement extrêmes, ECCOREV FR3098F-13108 St Paul Les Durance, France
| | - Ibrahima Ndoye
- Département de Biologie Végétale, Université Cheikh Anta DiopDakar, Sénégal
| | - Thierry Heulin
- Aix Marseille Université, CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement extrêmes, ECCOREV FR3098F-13108 St Paul Les Durance, France
| | - Laurent Cournac
- IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRDDakar, Sénégal
| |
Collapse
|
72
|
Schmidt JE, Gaudin ACM. Toward an Integrated Root Ideotype for Irrigated Systems. TRENDS IN PLANT SCIENCE 2017; 22:433-443. [PMID: 28262426 DOI: 10.1016/j.tplants.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 05/24/2023]
Abstract
Breeding towards root-centric ideotypes can be a relatively quick trait-based strategy to improve crop resource use efficiency. Irrigated agriculture represents a crucial and expanding sector, but its unique parameters require traits distinct from previously proposed rainfed ideotypes. We propose a novel irrigated ideotype that integrates traits across multiple scales to enhance resource use efficiency in irrigated agroecosystems, where resources are concentrated in a relatively shallow 'critical zone'. Unique components of this ideotype include rapid transplant recovery and establishment, enhanced exploitation of localized resource hotspots, adaptive physiological regulation, maintenance of hydraulic conductivity, beneficial rhizosphere interactions, and salinity/waterlogging avoidance. If augmented by future research, this target could help to enhance agricultural sustainability in irrigated agroecosystems by guiding the creation of resource-efficient cultivars.
Collapse
Affiliation(s)
- Jennifer E Schmidt
- Department of Plant Sciences, University of California (UC) Davis, Davis, CA 95616, USA
| | - Amélie C M Gaudin
- Department of Plant Sciences, University of California (UC) Davis, Davis, CA 95616, USA.
| |
Collapse
|
73
|
Wang G, Ma Y, Zhang P, He X, Zhang Z, Qu M, Ding Y, Zhang J, Xie C, Luo W, Zhang J, Chu S, Chai Z, Zhang Z. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:392-399. [PMID: 28237306 DOI: 10.1016/j.envpol.2017.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Fate and toxicity of manufactured nanoparticles (NPs) in the living organisms and the environment are highly related to their transformation. In the present study, the effect of phosphate on the phytotoxicity and transformation of CeO2 NPs was investigated in an agar medium using head lettuce plants that are sensitive to Ce3+ ions. Plants were treated by CeO2 NPs with or without phosphate for 10 days. Results suggest that the treatments of P deficiency (P(-)) and CeO2 NPs (P(+)&Ce) could separately induce significant inhibition on the growth of lettuce seedlings and cause oxidative stress, but the inhibition was the most serious when the two conditions were combined (P(-)&Ce). In the absence of phosphate, more CeO2 NPs were transformed to Ce(III) in the roots and more Ce3+ ions were translocated to the shoots, which induced higher toxicity to head lettuce. Phosphates could alleviate the phytotoxic effect of CeO2 NPs through the precipitation of dissociated Ce3+ ions. Considering the wide existence of phosphate in the environment, phosphate-related transformation may be a critical factor in evaluating the toxicity and fate of many other metal-based NPs.
Collapse
Affiliation(s)
- Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Zhang
- School of Public Health, University of South China, Hunan, 421001, China
| | - Meihua Qu
- Weifang Medical University, Shandong, 261042, China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
74
|
Yokoya K, Postel S, Fang R, Sarasan V. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. PeerJ 2017; 5:e2860. [PMID: 28168102 PMCID: PMC5289447 DOI: 10.7717/peerj.2860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/03/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fungal endophytes are highly diverse ubiquitous asymptomatic microorganisms, some of which appear to be symbiotic. Depending on abiotic conditions and genotype of the plant, the diversity of endophytes may confer fitness benefits to plant communities. METHODS We studied a crop wild relative (CWR) of strawberry, along environmental gradients with a view to understand the cultivable root-derived endophytic fungi that can be evaluated for promoting growth and tolerating stress in selected plant groups. The main objectives were to understand whether: (a) suboptimal soil types are drivers for fungal distribution and diversity; (b) high pH and poor nutrient availability lead to fungal-plant associations that help deliver fitness benefits; and (c) novel fungi can be identified for their use in improving plant growth, and alleviate stress in diverse crops. RESULTS The study revealed that habitats with high pH and low nutrient availability have higher fungal diversity, with more rare fungi isolated from locations with chalky soil. Plants from location G were the healthiest even though soil from this location was the poorest in nutrients. Study of environmental gradients, especially extreme habitat types, may help understand the root zone fungal diversity of different functional classes. Two small in vitro pilot studies conducted with two isolates showed that endophytic fungi from suboptimal habitats can promote plant growth and fitness benefits in selected plant groups. DISCUSSION Targeting native plants and crop wild relatives for research offers opportunities to unearth diverse functional groups of root-derived endophytic fungi that are beneficial for crops.
Collapse
Affiliation(s)
- Kazutomo Yokoya
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Sarah Postel
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Rui Fang
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| | - Viswambharan Sarasan
- Natural Capital and Plant Health, Royal Botanic Gardens Kew , Richmond , Surrey , United Kingdom
| |
Collapse
|
75
|
Yoo CM, Naramoto S, Sparks JA, Khan BR, Nakashima J, Fukuda H, Blancaflor EB. Deletion analysis of AGD1 reveals domains crucial for its plasma membrane recruitment and function in root hair polarity. J Cell Sci 2017. [DOI: 10.1242/jcs.203828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AGD1, a plant ACAP-type ADP-ribosylation factor-GTPase activating protein (ARF-GAP), functions in specifying root hair polarity in Arabidopsis thaliana. To better understand how AGD1 modulates root hair growth, we generated full length and domain-deleted AGD1-green fluorescent protein (GFP) constructs, and followed their localization during root hair development. AGD1-GFP localized to the cytoplasm and was recruited to specific regions of the root hair plasma membrane (PM). Distinct PM AGD1-GFP signal was first detected along the site of root hair bulge formation. The construct continued to mark the PM at the root hair apical dome but only during periods of reduced growth. During rapid tip-growth, AGD1-GFP labeled the PM of the lateral flanks and dissipated from the apical-most PM. Deletion analysis and a single domain GFP fusion revealed that the pleckstrin homology (PH) domain is the minimal unit required for recruitment of AGD1 to the PM. Our results indicate that differential recruitment of AGD1 to specific PM domains is an essential component of the membrane trafficking machinery that facilitates root hair developmental phase transitions and responses to changes in the root microenvironment.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Present address: Gulf Coast Research and Education Center, University of Florida, 14625 CR 672, Wimauma, FL 33598, USA
| | - Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aobaku, Japan
| | - J. Alan Sparks
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Bibi Rafeiza Khan
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
76
|
Robertson-Albertyn S, Alegria Terrazas R, Balbirnie K, Blank M, Janiak A, Szarejko I, Chmielewska B, Karcz J, Morris J, Hedley PE, George TS, Bulgarelli D. Root Hair Mutations Displace the Barley Rhizosphere Microbiota. FRONTIERS IN PLANT SCIENCE 2017; 8:1094. [PMID: 28694814 PMCID: PMC5483447 DOI: 10.3389/fpls.2017.01094] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/06/2017] [Indexed: 05/03/2023]
Abstract
The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root-soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root-soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota.
Collapse
Affiliation(s)
| | | | - Katharin Balbirnie
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
| | - Manuel Blank
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
| | - Agnieszka Janiak
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Beata Chmielewska
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, University of Silesia in KatowiceKatowice, Poland
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Timothy S. George
- Ecological Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Davide Bulgarelli
- Plant Sciences, School of Life Sciences, University of DundeeDundee, United Kingdom
- *Correspondence: Davide Bulgarelli,
| |
Collapse
|
77
|
Nestler J, Wissuwa M. Superior Root Hair Formation Confers Root Efficiency in Some, But Not All, Rice Genotypes upon P Deficiency. FRONTIERS IN PLANT SCIENCE 2016; 7:1935. [PMID: 28066487 PMCID: PMC5174101 DOI: 10.3389/fpls.2016.01935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/06/2016] [Indexed: 05/24/2023]
Abstract
Root hairs are a low-cost way to extend root surface area (RSA), water and nutrient acquisition. This study investigated to what extend variation exists for root hair formation in rice in dependence of genotype, phosphorus (P) supply, growth medium, and root type. In general, genotypic variation was found for three root hair properties: root hair length, density, and longevity. In low P nutrient solution more than twofold genotypic difference was detected for root hair length while only onefold variation was found in low P soil. These differences were mostly due to the ability of some genotypes to increase root hair length in response to P deficiency. In addition, we were able to show that a higher proportion of root hairs remain viable even in mature, field-grown plants under low P conditions. All investigated root hair parameters exhibited high correlations across root types which were always higher in the low P conditions compared to the high P controls. Therefore we hypothesize that a low P response leads to a systemic signal in the entire root system. The genotype DJ123 consistently had the longest root hairs under low P conditions and we estimated that, across the field-grown root system, root hairs increased the total RSA by 31% in this genotype. This would explain why DJ123 is considered to be very root efficient in P uptake and suggests that DJ123 should be utilized as a donor in breeding for enhanced P uptake. Surprisingly, another root and P efficient genotype seemed not to rely on root hair growth upon P deficiency and therefore must contain different methods of low P adaptation. Genotypic ranking of root hair properties did change substantially with growth condition highlighting the need to phenotype plants in soil-based conditions or at least to validate results obtained in solution-based growth conditions.
Collapse
|
78
|
Vejchasarn P, Lynch JP, Brown KM. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes. RICE (NEW YORK, N.Y.) 2016; 9:29. [PMID: 27294384 PMCID: PMC4905936 DOI: 10.1186/s12284-016-0102-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/02/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. RESULTS Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. CONCLUSIONS There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
Collapse
Affiliation(s)
- Phanchita Vejchasarn
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
- Present address: Ubonratchathani Rice Research Center, Ubon Ratchathani, USA
| | - Jonathan P Lynch
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
| | - Kathleen M Brown
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
79
|
Wang Y, Thorup-Kristensen K, Jensen LS, Magid J. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility. FRONTIERS IN PLANT SCIENCE 2016; 7:865. [PMID: 27379145 PMCID: PMC4910668 DOI: 10.3389/fpls.2016.00865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 05/29/2023]
Abstract
A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development.
Collapse
Affiliation(s)
- Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Kristian Thorup-Kristensen
- Crop Science Section, Department of Plant and Environmental Sciences, University of CopenhagenTaastrup, Denmark
| | - Lars Stoumann Jensen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Jakob Magid
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
80
|
Nestler J, Keyes SD, Wissuwa M. Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3699-708. [PMID: 26976815 DOI: 10.1093/jxb/erw115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Root hairs are important sites for nutrient uptake, especially in P limiting conditions. Here we provide first insights into root hair development for the diverse root types of rice grown under different conditions, and show the first in situ images of rice root hairs in intact soil. Roots of plants grown in upland fields produced short root hairs that showed little responsiveness to P deficiency, and had a higher root hair density in the high P condition. These results were reproducible in rhizoboxes under greenhouse conditions. Synchrotron-based in situ analysis of root hairs in intact soil further confirmed this pattern of root hair formation. In contrast, plants grown in nutrient solution produced more and longer root hairs in low P conditions, but these were unequally distributed among the different root types. While nutrient solution-grown main roots had longer hairs compared to upland field-grown main roots, second order lateral roots did not form any root hairs in nutrient solution-grown plants. Furthermore, root hair formation for plants grown in flooded lowland fields revealed few similarities with those grown in nutrient solution, thus defining nutrient solution as a possible measure of maximal, but not natural root hair development. By combining root hair length and density as a measure for root hair impact on the whole soil-grown root system we show that lateral roots provided the majority of root hair surface.
Collapse
Affiliation(s)
- Josefine Nestler
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Samuel David Keyes
- Faculty of Engineering and Environment, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Matthias Wissuwa
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
81
|
James RA, Weligama C, Verbyla K, Ryan PR, Rebetzke GJ, Rattey A, Richardson AE, Delhaize E. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3709-18. [PMID: 26873980 PMCID: PMC4896358 DOI: 10.1093/jxb/erw035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding.
Collapse
Affiliation(s)
- Richard A James
- CSIRO Agriculture, PO Box 1600, Canberra, ACT 2601, Australia
| | | | - Klara Verbyla
- CSIRO Data61 , PO Box 1600, Canberra, ACT 2601, Australia
| | - Peter R Ryan
- CSIRO Agriculture, PO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
82
|
Dodd IC, Diatloff E. Enhanced root growth of the brb (bald root barley) mutant in drying soil allows similar shoot physiological responses to soil water deficit as wild-type plants. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:199-206. [PMID: 32480453 DOI: 10.1071/fp15303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/30/2015] [Indexed: 06/11/2023]
Abstract
The genetics, molecular biology and nutrient uptake of plant root hair mutants have been studied in detail, but their physiological responses to soil drying have not. Thus, the root hairless brb (bald root barley) barley (Hordeum vulgare L.) mutant and its wild type (WT) were grown in drying soil. Well-watered, pre-tillering plants showed no genotypic differences in daily transpiration and leaf elongation rate, and the ratio of day to night leaf elongation (D/N, a sensitive indicator of water stress). After withholding water for 25 days, root hydraulic conductivity and xylem ABA concentration were similar between genotypes, but WT plants had more tillers and D/N was more than halved in brb. To avoid possible developmental and nutritional differences confounding responses to water deficit, pre-tillering plants were allowed to dry soils of high and low phosphorus (P) status. Although leaf area, leaf water potential and shoot fresh weight (FW) were similar in the two genotypes, root FW of brb was greater by 44 and 18% in a high and low P soil respectively. This adaptive response allowed brb to maintain similar shoot growth and transpiration as WT plants, despite decreased effective root surface area in the absence of root hairs.
Collapse
Affiliation(s)
- Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK
| | - Eugene Diatloff
- The Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK
| |
Collapse
|
83
|
Cheng S, Zhou DX, Zhao Y. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development. PLANT SIGNALING & BEHAVIOR 2016; 11:e1130198. [PMID: 26689769 PMCID: PMC4883865 DOI: 10.1080/15592324.2015.1130198] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Roots are essential organs for anchoring plants, exploring and exploiting soil resources, and establishing plant-microorganisms communities in vascular plants. Rice has a complex root system architecture consisting of several root types, including primary roots, lateral roots, and crown roots. Crown roots constitute the major part of the rice root system and play important roles during the growing period. Recently, we have refined a mechanism that involves ERF3/WOX11 interaction is required to regulate the expression of genes in the cytokinin signaling pathway during the different stages of crown roots development in rice. In this study, we further analyzed the root phenotypes of WOX11 transgenic plants and revealed that WOX11 also acts in controlling root hair development and enhancing rice drought resistance, in addition to its roles in regulating crown root and lateral root development. Based on this new finding, we proposed the mechanism of that WOX11 is involved in drought resistance by modulating rice root system development.
Collapse
Affiliation(s)
- Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
84
|
He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7405-19. [PMID: 26417018 PMCID: PMC4765802 DOI: 10.1093/jxb/erv436] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant cv. Tadmor were compared. Drought-induced root hair growth was only observed in XZ5. Thirty-six drought tolerance-associated genes were identified in XZ5, including 16 genes specifically highly expressed in XZ5 but not Tadmor under drought. The full length cDNA of a novel β-expansin gene (HvEXPB7), being the unique root hair development related gene in the identified genes, was cloned. The sequence comparison indicated that HvEXPB7 carried both DPBB_1 and Pollon_allerg_1 domains. HvEXPB7 is predominantly expressed in roots. Subcellular localization verified that HvEXPB7 is located in the plasma membrane. Barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of HvEXPB7 led to severely suppressed root hairs both under control and drought conditions, and significantly reduced K uptake. These findings highlight and confer the significance of HvEXPB7 in root hair growth under drought stress in XZ5, and provide a novel insight into the genetic basis for drought tolerance in Tibetan wild barley.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jianbin Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Imrul Mosaddek Ahmed
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Eva Vincze
- Department of Molecular Biology and Genetics, University of Aarhus, Fosøgsvej 1, DK-4200 Slagelse, Denmark
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
85
|
Polyethylene Glycol (PEG)-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties. AGRONOMY-BASEL 2015. [DOI: 10.3390/agronomy5040506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Delhaize E, Rathjen TM, Cavanagh CR. The genetics of rhizosheath size in a multiparent mapping population of wheat. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4527-36. [PMID: 25969556 PMCID: PMC4507764 DOI: 10.1093/jxb/erv223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rhizosheaths comprise soil that adheres to plant roots and, in some species, are indicative of root hair length. In this study, the genetics of rhizosheath size in wheat was investigated by screening the progeny of multiparent advanced generation intercrosses (MAGIC). Two MAGIC populations were screened for rhizosheath size using a high throughput method. One MAGIC population was developed from intercrosses between four parents (4-way) and the other from intercrosses between eight parents (8-way). Transgressive segregation for rhizosheath size was observed in both the 4-way and 8-way MAGIC populations. A quantitative trait loci (QTL) analysis of the 4-way population identified six major loci located on chromosomes 2B, 4D, 5A, 5B, 6A, and 7A together accounting for 42% of the variation in rhizosheath size. Rhizosheath size was strongly correlated with root hair length and was robust across different soil types in the absence of chemical constraints. Rhizosheath size in the MAGIC populations was a reliable surrogate for root hair length and, therefore, the QTL identified probably control root hair elongation. Members of the basic helix-loop-helix family of transcription factors have previously been identified to regulate root hair length in Arabidopsis and rice. Since several wheat members of the basic helix-loop-helix family of genes are located within or near the QTL, these genes are candidates for controlling the long root hair trait. The QTL for rhizosheath size identified in this study provides the opportunity to implement marker-assisted selection to increase root hair length for improved phosphate acquisition in wheat.
Collapse
Affiliation(s)
| | - Tina M Rathjen
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | | |
Collapse
|
87
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
88
|
Marzec M, Melzer M, Szarejko I. Root hair development in the grasses: what we already know and what we still need to know. PLANT PHYSIOLOGY 2015; 168:407-14. [PMID: 25873551 PMCID: PMC4453783 DOI: 10.1104/pp.15.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/08/2015] [Indexed: 05/03/2023]
Abstract
A priority in many crop improvement programs for a long time has been to enhance the tolerance level of plants to both abiotic and biotic stress. Recognition that the root system is the prime determinant of a plant's ability to extract both water and minerals from the soil implies that its architecture is an important variable underlying a cultivar's adaptation. The density and/or length of the root hairs (RHs) that are formed are thought to have a major bearing on the plant's performance under stressful conditions. Any attempt to improve a crop's root system will require a detailed understanding of the processes of RH differentiation. Recent progress in uncovering the molecular basis of root epidermis specialization has been recorded in the grasses. This review seeks to present the current view of RH differentiation in grass species. It combines what has been learned from molecular-based analyses, histological studies, and observation of the phenotypes of both laboratory- and field-grown plants.
Collapse
Affiliation(s)
- Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland (M.Ma., I.S.); andDepartment of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (M.Me.)
| | - Michael Melzer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland (M.Ma., I.S.); andDepartment of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (M.Me.)
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland (M.Ma., I.S.); andDepartment of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (M.Me.)
| |
Collapse
|
89
|
Li T, Lin G, Zhang X, Chen Y, Zhang S, Chen B. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. MYCORRHIZA 2014; 24:595-602. [PMID: 24743902 DOI: 10.1007/s00572-014-0578-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 05/23/2023]
Abstract
Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | | | | | | | | |
Collapse
|
90
|
Lynch JP, Chimungu JG, Brown KM. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6155-66. [PMID: 24759880 DOI: 10.1093/jxb/eru162] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| | - Joseph G Chimungu
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| | - Kathleen M Brown
- Department of Plant Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
91
|
Abstract
During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| |
Collapse
|
92
|
George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). THE NEW PHYTOLOGIST 2014; 203:195-205. [PMID: 24684319 DOI: 10.1111/nph.12786] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/02/2014] [Indexed: 05/18/2023]
Abstract
There is an urgent need for simple rapid screens of root traits that improve the acquisition of nutrients and water. Temperate cereals produce rhizosheaths of variable weight, a trait first noted on desert species sampled by Tansley over 100 yr ago. This trait is almost certainly important in tolerance to abiotic stress. Here, we screened association genetics populations of barley for rhizosheath weight and derived quantitative trait loci (QTLs) and candidate genes. We assessed whether rhizosheath weight was correlated with plant performance and phosphate uptake under combined drought and phosphorus deficiency. Rhizosheath weight was investigated in relation to root hair length, and under both laboratory and field conditions. Our data demonstrated that rhizosheath weight was correlated with phosphate uptake under dry conditions and that the differences in rhizosheath weight between genotypes were maintained in the field. Rhizosheath weight also varied significantly within barley populations, was correlated with root hair length and was associated with a genetic locus (QTL) on chromosome 2H. Putative candidate genes were identified. Rhizosheath weight is easy and rapid to measure, and is associated with relatively high heritability. The breeding of cereal genotypes for beneficial rhizosheath characteristics is achievable and could contribute to agricultural sustainability in nutrient- and water-stressed environments.
Collapse
|
93
|
Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1497-512. [PMID: 24501179 PMCID: PMC3967087 DOI: 10.1093/jxb/eru014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.
Collapse
Affiliation(s)
- Natsuki Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Rie Tomioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
| | - Rie Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masayoshi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464–8601, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
94
|
Haling RE, Brown LK, Bengough AG, Valentine TA, White PJ, Young IM, George TS. Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. PLANTA 2014; 239:643-51. [PMID: 24318401 DOI: 10.1007/s00425-013-2002-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/13/2013] [Indexed: 05/23/2023]
Abstract
Selecting plants with improved root hair growth is a key strategy for improving phosphorus-uptake efficiency in agriculture. While significant inter- and intra-specific variation is reported for root hair length, it is not known whether these phenotypic differences are exhibited under conditions that are known to affect root hair elongation. This work investigates the effect of soil strength, soil water content (SWC) and soil particle size (SPS) on the root hair length of different root hair genotypes of barley. The root hair and rhizosheath development of five root hair genotypes of barley (Hordeum vulgare L.) was compared in soils with penetrometer resistances ranging from 0.03 to 4.45 MPa (dry bulk densities 1.2-1.7 g cm(-3)). A "short" (SRH) and "long" root hair (LRH) genotype was selected to further investigate whether differentiation of these genotypes was related to SWC or SPS when grown in washed graded sand. In low-strength soil (<1.43 MPa), root hairs of the LRH genotype were on average 25 % longer than that of the SRH genotype. In high-strength soil, root hair length of the LRH genotype was shorter than that in low-strength soil and did not differ from that of the SRH genotype. Root hairs were shorter in wetter soils or soils with smaller particles, and again SRH and LRH did not differ in hair length. Longer root hairs were generally, but not always, associated with larger rhizosheaths, suggesting that mucilage adhesion was also important. The root hair growth of barley was found to be highly responsive to soil properties and this impacted on the expression of phenotypic differences in root hair length. While root hairs are an important trait for phosphorus acquisition in dense soils, the results highlight the importance of selecting multiple and potentially robust root traits to improve resource acquisition in agricultural systems.
Collapse
Affiliation(s)
- Rebecca E Haling
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia,
| | | | | | | | | | | | | |
Collapse
|
95
|
Wang X, Pearse SJ, Lambers H. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate. ANNALS OF BOTANY 2013; 112:1449-59. [PMID: 24061491 PMCID: PMC3806539 DOI: 10.1093/aob/mct210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/23/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. METHODS Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg(-1) dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. KEY RESULTS Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg(-1) sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. CONCLUSIONS Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.
Collapse
|
96
|
Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3711-21. [PMID: 23861547 DOI: 10.1093/jxb/ert200] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Rebecca E Haling
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | | | | | | | | | | |
Collapse
|
97
|
Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. PLANT CELL REPORTS 2013; 32:971-83. [PMID: 23571661 DOI: 10.1007/s00299-013-1439-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 05/05/2023]
Abstract
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
98
|
Brown LK, George TS, Dupuy LX, White PJ. A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? ANNALS OF BOTANY 2013; 112:317-30. [PMID: 23172412 PMCID: PMC3698376 DOI: 10.1093/aob/mcs231] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/21/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) often limits crop production and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P acquisition, and an understanding of these traits could result in improved long-term sustainability of agriculture. This Viewpoint focuses on the potential benefits of root hairs to sustainable production. SCOPE First the various root-related traits that could be deployed to improve agricultural sustainability are catalogued, and their potential costs and benefits to the plant are discussed. A novel mathematical model describing the effects of length, density and longevity of root hairs on P acquisition is developed, and the relative benefits of these three root-hair traits to plant P nutrition are calculated. Insights from this model are combined with experimental data to assess the relative benefits of a range of root hair ideotypes for sustainability of agriculture. CONCLUSIONS A cost-benefit analysis of root traits suggests that root hairs have the greatest potential for P acquisition relative to their cost of production. The novel modelling of root hair development indicates that the greatest gains in P-uptake efficiency are likely to be made through increased length and longevity of root hairs rather than by increasing their density. Synthesizing this information with that from published experiments we formulate six potential ideotypes to improve crop P acquisition. These combine appropriate root hair phenotypes with architectural, anatomical and biochemical traits, such that more root-hair zones are produced in surface soils, where P resources are found, on roots which are metabolically cheap to construct and maintain, and that release more P-mobilizing exudates. These ideotypes could be used to inform breeding programmes to enhance agricultural sustainability.
Collapse
Affiliation(s)
| | - T. S. George
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | |
Collapse
|
99
|
Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. ANNALS OF BOTANY 2013; 112:381-9. [PMID: 23172414 PMCID: PMC3698377 DOI: 10.1093/aob/mcs245] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Taoxiong Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Martin R. Broadley
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | | | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - John P. Hammond
- School of Plant Biology and Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
100
|
Ha S, Tran LS. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol 2013; 34:16-30. [PMID: 23586682 DOI: 10.3109/07388551.2013.783549] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University , Buk-Gu, Gwangju , Korea and
| | | |
Collapse
|