51
|
Cervantes-Barragan L, Vanderheiden A, Royer CJ, Davis-Gardner ME, Ralfs P, Chirkova T, Anderson LJ, Grakoui A, Suthar MS. Plasmacytoid dendritic cells produce type I interferon and reduce viral replication in airway epithelial cells after SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34013278 DOI: 10.1101/2021.05.12.443948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infection with SARS-CoV-2 has caused a pandemic of unprecedented dimensions. SARS-CoV-2 infects airway and lung cells causing viral pneumonia. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with inborn errors of type I IFN response or auto-antibodies against IFN-α. Plasmacytoid dendritic cells (pDCs) are a unique immune cell population specialized in recognizing and controlling viral infections through the production of high concentrations of type I IFN. In this study, we isolated pDCs from healthy donors and showed that pDCs are able to recognize SARS-CoV-2 and rapidly produce large amounts of type I IFN. Sensing of SARS-CoV-2 by pDCs was independent of viral replication since pDCs were also able to recognize UV-inactivated SARS-CoV-2 and produce type I IFN. Transcriptional profiling of SARS-CoV-2 and UV-SARS-CoV-2 stimulated pDCs also showed a rapid type I and III IFN response as well as induction of several chemokines, and the induction of apoptosis in pDCs. Moreover, we modeled SARS-CoV-2 infection in the lung using primary human airway epithelial cells (pHAEs) and showed that co-culture of pDCs with SARS-CoV-2 infected pHAEs induces an antiviral response and upregulation of antigen presentation in pHAE cells. Importantly, the presence of pDCs in the co-culture results in control of SARS-CoV-2 replication in pHAEs. Our study identifies pDCs as one of the key cells that can recognize SARS-CoV-2 infection, produce type I and III IFN and control viral replication in infected cells. Importance Type I interferons (IFNs) are a major part of the innate immune defense against viral infections. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with defects in the type I IFN response. Interestingly, many cells are not able to produce type I IFN after being infected with SARS-CoV-2 and cannot control viral infection. In this study we show that plasmacytoid dendritic cells are able to recognize SARS-CoV-2 and produce type I IFN, and that pDCs are able to help control viral infection in SARS-CoV-2 infected airway epithelial cells.
Collapse
|
52
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
53
|
Hamza A, Shafat Z, Parray ZA, Hisamuddin M, Khan WH, Ahmed A, Almajhdi FN, Farrag MA, Mohammed AA, Islam A, Parveen S. Structural Characterization and Binding Studies of the Ectodomain G Protein of Respiratory Syncytial Virus Reveal the Crucial Role of pH with Possible Implications in Host-Pathogen Interactions. ACS OMEGA 2021; 6:10403-10414. [PMID: 34056193 PMCID: PMC8153753 DOI: 10.1021/acsomega.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading viral pathogen causing acute lower respiratory tract infection in children. The G protein of RSV is involved in attachment with the host cell. It is a neutralizing antigen and thus a vaccine candidate. Heparan sulfate is a type of glycosaminoglycan (GAG) present on the host cell membrane that is involved in attachment with the G protein of RSV. We describe a novel approach for efficient expression and purification of the ectodomain G protein in the prokaryotic system and its biophysical characterization. The native ectodomain G protein was purified using a two-step process by Ni-NTA and DEAE weak anion-exchange chromatography through the supernatant obtained after cell lysis. In addition, the denatured form of the protein was also purified from the solubilized inclusion bodies (IBs) by Ni-NTA affinity chromatography with a higher yield. Dynamic light scattering (DLS) was performed to confirm the homogeneity of the purified protein. The effect of pH on the stability and structure of the purified protein was studied by circular dichroism (CD), fluorescence, and absorbance spectroscopy techniques. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) were exploited to demonstrate the interaction of heparan sulfate with the ectodomain G protein. The dynamic light scattering results showed that the purified protein was homogenic and had a well-folded native conformation. Biophysical characterization of the protein revealed that it was stable and had intact secondary and tertiary structures at pH 7.5. CD analysis revealed that the protein showed a loss in the secondary structure at pH values 5.5 and 3.5, while absorbance spectroscopy suggested a stable tertiary structure at pH values 7.5 and 5.5 with a probable aggregation pattern at pH 3.5. This loss in the structure of the ectodomain G protein at low pH can be correlated with its physiological activity. A slight change in pH might play a crucial role in host-pathogen interactions. The fluorescence intensity of the protein decreased on moving toward a lower pH with no spectral shift in emission maxima. In addition, isothermal titration calorimetry and microscale thermophoresis results showed strong binding affinity of the ectodomain G protein with heparan sulfate. The binding of heparan sulfate with protein was probably due to the electrostatic interaction of positively charged amino acid residues of the heparin-binding domain of the protein and the negatively charged group of GAGs. Future studies may involve the development of possible therapeutic agents interacting with the G protein and affecting the overall charge and pH that might hinder the host-pathogen interaction.
Collapse
Affiliation(s)
- Abu Hamza
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zoya Shafat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Malik Hisamuddin
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wajihul Hasan Khan
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Anwar Ahmed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad N. Almajhdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Farrag
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Centre
of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
54
|
Reverse genetics systems for contemporary isolates of respiratory syncytial virus enable rapid evaluation of antibody escape mutants. Proc Natl Acad Sci U S A 2021; 118:2026558118. [PMID: 33811145 DOI: 10.1073/pnas.2026558118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.
Collapse
|
55
|
King T, Mejias A, Ramilo O, Peeples ME. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog 2021; 17:e1009469. [PMID: 33831114 PMCID: PMC8057581 DOI: 10.1371/journal.ppat.1009469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.
Collapse
Affiliation(s)
- Tiffany King
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
56
|
Respiratory Syncytial Virus (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1 Blocking Antibodies. Viruses 2021; 13:v13020352. [PMID: 33672319 PMCID: PMC7926521 DOI: 10.3390/v13020352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause bronchiolitis, pneumonia, morbidity, and some mortality, primarily in infants and the elderly, for which no vaccine is available. The RSV attachment (G) protein contains a central conserved domain (CCD) with a CX3C motif implicated in the induction of protective antibodies, thus vaccine candidates containing the G protein are of interest. This study determined if mutations in the G protein CCD would mediate immunogenicity while inducing G protein CX3C-CX3CR1 blocking antibodies. BALB/c mice were vaccinated with structurally-guided, rationally designed G proteins with CCD mutations. The results show that these G protein immunogens induce a substantial anti-G protein antibody response, and using serum IgG from the vaccinated mice, these antibodies are capable of blocking the RSV G protein CX3C-CX3CR1 binding while not interfering with CX3CL1, fractalkine.
Collapse
|
57
|
Immunogenicity and inflammatory properties of respiratory syncytial virus attachment G protein in cotton rats. PLoS One 2021; 16:e0246770. [PMID: 33600439 PMCID: PMC7891763 DOI: 10.1371/journal.pone.0246770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants and young children worldwide. The attachment (G) protein of RSV is synthesized by infected cells in both a membrane bound (mG) and secreted form (sG) and uses a CX3C motif for binding to its cellular receptor. Cell culture and mouse studies suggest that the G protein mimics the cytokine CX3CL1 by binding to CX3CR1 on immune cells, which is thought to cause increased pulmonary inflammation in vivo. However, because these studies have used RSV lacking its G protein gene or blockade of the G protein with a G protein specific monoclonal antibody, the observed reduction in inflammation may be due to reduced virus replication and spread, and not to a direct role for G protein as a viral chemokine. In order to more directly determine the influence of the soluble and the membrane-bound forms of G protein on the immune system independent of its attachment function for the virion, we expressed the G protein in cotton rat lungs using adeno-associated virus (AAV), a vector system which does not itself induce inflammation. We found no increase in pulmonary inflammation as determined by histology and bronchoalveolar lavage after inoculation of AAVs expressing the membrane bound G protein, the secreted G protein or the complete G protein gene which expresses both forms. The long-term low-level expression of AAV-G did, however, result in the induction of non-neutralizing antibodies, CD8 T cells and partial protection from challenge with RSV. Complete protection was accomplished through co-immunization with AAV-G and an AAV expressing cotton rat interferon α.
Collapse
|
58
|
Mastrangelo P, Chin AA, Tan S, Jeon AH, Ackerley CA, Siu KK, Lee JE, Hegele RG. Identification of RSV Fusion Protein Interaction Domains on the Virus Receptor, Nucleolin. Viruses 2021; 13:261. [PMID: 33567674 PMCID: PMC7915953 DOI: 10.3390/v13020261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023] Open
Abstract
Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development. Results of immunogold transmission and scanning electron microscopy showed RSV-nucleolin co-localization on the cell surface, as would be expected for a viral receptor. RSV, through its fusion protein (RSV-F), physically interacts with RBD1,2 and these interactions can be competitively inhibited by treatment with Palivizumab or recombinant RBD1,2. Treatment with synthetic peptides derived from two 12-mer domains of RBD1,2 inhibited RSV infection in vitro, with structural analysis suggesting these domains are potentially feasible for targeting in drug development. In conclusion, the identification and characterization of domains of nucleolin that interact with RSV provide the essential groundwork toward informing design of novel nucleolin-targeting compounds in RSV drug development.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Allysia A. Chin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Stephanie Tan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Amy H. Jeon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Cameron A. Ackerley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
59
|
A Respiratory Syncytial Virus Attachment Gene Variant Associated with More Severe Disease in Infants Decreases Fusion Protein Expression, Which May Facilitate Immune Evasion. J Virol 2020; 95:JVI.01201-20. [PMID: 33115881 DOI: 10.1128/jvi.01201-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.
Collapse
|
60
|
Bianchini S, Silvestri E, Argentiero A, Fainardi V, Pisi G, Esposito S. Role of Respiratory Syncytial Virus in Pediatric Pneumonia. Microorganisms 2020; 8:microorganisms8122048. [PMID: 33371276 PMCID: PMC7766387 DOI: 10.3390/microorganisms8122048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory viral infections represent the leading cause of hospitalization in infants and young children worldwide and the second leading cause of infant mortality. Among these, Respiratory Syncytial Virus (RSV) represents the main cause of lower respiratory tract infections (LRTIs) in young children worldwide. RSV manifestation can range widely from mild upper respiratory infections to severe respiratory infections, mainly bronchiolitis and pneumonia, leading to hospitalization, serious complications (such as respiratory failure), and relevant sequalae in childhood and adulthood (wheezing, asthma, and hyperreactive airways). There are no specific clinical signs or symptoms that can distinguish RSV infection from other respiratory pathogens. New multiplex platforms offer the possibility to simultaneously identify different pathogens, including RSV, with an accuracy similar to that of single polymerase chain reaction (PCR) in the majority of cases. At present, the treatment of RSV infection relies on supportive therapy, mainly consisting of oxygen and hydration. Palivizumab is the only prophylactic method available for RSV infection. Advances in technology and scientific knowledge have led to the creation of different kinds of vaccines and drugs to treat RSV infection. Despite the good level of these studies, there are currently few registered strategies to prevent or treat RSV due to difficulties related to the unpredictable nature of the disease and to the specific target population.
Collapse
Affiliation(s)
- Sonia Bianchini
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (S.B.); (E.S.)
- Pediatric Unit, ASST Santi Carlo e Paolo, 20142 Milan, Italy
| | - Ettore Silvestri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (S.B.); (E.S.)
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Valentina Fainardi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Giovanna Pisi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
- Correspondence: ; Tel.: +39-0521-704790
| |
Collapse
|
61
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
62
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. J Virol 2020; 94:JVI.00985-20. [PMID: 32699094 DOI: 10.1128/jvi.00985-20] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.
Collapse
|
64
|
Evaluation of the respiratory syncytial virus G-directed neutralizing antibody response in the human airway epithelial cell model. Virology 2020; 550:21-26. [PMID: 32866728 DOI: 10.1016/j.virol.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022]
Abstract
Human respiratory syncytial virus (RSV) is a major cause of serious respiratory tract infections in infants and the elderly. Recently it was shown that the RSV G glycoprotein mediates attachment to cells using CX3CR1 as a receptor, and that G-specific neutralizing antibodies can be detected using human airway epithelial (HAE) cell cultures. To investigate the contributions of G-specific antibodies to RSV neutralization, we performed HAE neutralization assays on sera from RSV G-immunized mice or RSV-infected infants. We confirmed that G-specific neutralization using serum from mice or humans could only be detected on HAE cultures. We also found that RSV G-specific antibodies in infants were either subgroup specific or cross-neutralizing. Altogether, our results suggest that G is an important target for generating neutralizing antibodies and would be beneficial to include in an RSV vaccine. Further, inclusion of G antigens from both RSV subgroups may enhance the vaccine cross protection potency.
Collapse
|
65
|
Ha B, Yang JE, Chen X, Jadhao SJ, Wright ER, Anderson LJ. Two RSV Platforms for G, F, or G+F Proteins VLPs. Viruses 2020; 12:E906. [PMID: 32824936 PMCID: PMC7551478 DOI: 10.3390/v12090906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial lower respiratory tract disease in children and at-risk adults. Though there are no effective anti-viral drugs for acute disease or licensed vaccines for RSV, palivizumab prophylaxis is available for some high risk infants. To support anti-viral and vaccine development efforts, we developed an RSV virus-like particle (VLP) platform to explore the role RSV F and G protein interactions in disease pathogenesis. Since VLPs are immunogenic and a proven platform for licensed human vaccines, we also considered these VLPs as potential vaccine candidates. We developed two RSV VLP platforms, M+P and M+M2-1 that had F and G, F and a G peptide, or a truncated F and G on their surface. Immunoblots of sucrose gradient purified particles showed co-expression of M, G, and F with both VLP platforms. Electron microscopy imaging and immunogold labeling confirmed VLP-like structures with surface exposed projections consistent with F and G proteins. In mice, the VLPs induced both anti-F and -G protein antibodies and, on challenge, reduced lung viral titer and inflammation. These data show that these RSV VLP platforms provide a tool to study the structure of F and G and their interactions and flexible platforms to develop VLP vaccines in which all components contribute to RSV-specific immune responses.
Collapse
Affiliation(s)
- Binh Ha
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA;
| | - Xuemin Chen
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Samadhan J. Jadhao
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA;
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Larry J. Anderson
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (B.H.); (X.C.); (S.J.J.)
| |
Collapse
|
66
|
Boyoglu-Barnum S, Tripp RA. Up-to-date role of biologics in the management of respiratory syncytial virus. Expert Opin Biol Ther 2020; 20:1073-1082. [PMID: 32264720 DOI: 10.1080/14712598.2020.1753696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life. Despite RSV being a high priority for vaccine development, there is currently no safe and effective vaccine available. There are many challenges to developing an RSV vaccine and there are limited antiviral drugs or biologics available for the management of infection. In this article, we review the antiviral treatments, vaccination strategies along with alternative therapies for RSV. AREAS COVERED This review is a summary of the current antiviral and RSV vaccination approaches noting strategies and alternative therapies that may prevent or decrease the disease severity in RSV susceptible populations. EXPERT OPINION This review discusses anti-RSV strategies given that no safe and efficacious vaccines are available, and therapeutic treatments are limited. Various biologicals that target for RSV are considered for disease intervention, as it is likely that it may be necessary to develop separate vaccines or therapeutics for each at-risk population.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia , Athens, GA, USA
| |
Collapse
|
67
|
CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung. Pediatr Res 2020; 87:862-867. [PMID: 31726465 PMCID: PMC7774023 DOI: 10.1038/s41390-019-0677-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Data on the host factors that contribute to infection of young children by respiratory syncytial virus (RSV) are limited. The human chemokine receptor, CX3CR1, has recently been implicated as an RSV receptor. Here we evaluate a role for CX3CR1 in pediatric lung RSV infections. METHODS CX3CR1 transcript levels in the upper and lower pediatric airways were assessed. Tissue localization and cell-specific expression was confirmed using in situ hybridization and immunohistochemistry. The role of CX3CR1 in RSV infection was also investigated using a novel physiological model of pediatric epithelial cells. RESULTS Low levels of CX3CR1 transcript were often, but not always, expressed in both upper (62%) and lower airways (36%) of pediatric subjects. CX3CR1 transcript and protein expression was detected in epithelial cells of normal human pediatric lung tissues. CX3CR1 expression was readily detected on primary cultures of differentiated pediatric/infant human lung epithelial cells. RSV demonstrated preferential infection of CX3CR1-positive cells, and blocking CX3CR1/RSV interaction significantly decreased viral load. CONCLUSION CX3CR1 is present in the airways of pediatric subjects where it may serve as a receptor for RSV infection. Furthermore, CX3CR1 appears to play a mechanistic role in mediating viral infection of pediatric airway epithelial cells in vitro.
Collapse
|
68
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
69
|
Conformational Flexibility in Respiratory Syncytial Virus G Neutralizing Epitopes. J Virol 2020; 94:JVI.01879-19. [PMID: 31852779 DOI: 10.1128/jvi.01879-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in infants and the elderly. Currently, no vaccine or effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment to cells and contributes to pathogenesis by modulating host immunity through interactions with the human chemokine receptor CX3CR1. Antibodies targeting the RSV G central conserved domain are protective in both prophylactic and postinfection animal models. Here, we describe the crystal structure of the broadly neutralizing human monoclonal antibody 3G12 bound to the RSV G central conserved domain. Antibody 3G12 binds to a conformational epitope composed of highly conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G complexed with 3G12 adopts a distinct conformation not observed in previously described RSV G-antibody structures. Comparison to other structures reveals that the RSV G central conserved domain is flexible and can adopt multiple conformations in the regions flanking the cysteine noose. We also show that restriction of RSV G flexibility with a proline mutation abolishes binding to antibody 3G12 but not antibody 3D3, which recognizes a different conformation of RSV G. Our studies provide new insights for rational vaccine design, indicating the importance of preserving both the global structural integrity of antigens and local conformational flexibility at antigenic sites, which may elicit a more diverse antibody response and broader protection against infection and disease.IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in infants, young children, and the elderly, and currently, no licensed vaccine exists. In this study, we describe the crystal structure of the RSV surface glycoprotein G in complex with a broadly neutralizing human monoclonal antibody. The antibody binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it captures RSV G in a conformation not previously observed, revealing that this region is both structured and flexible. Importantly, our findings provide insight for the design of vaccines that elicit diverse antibodies, which may provide broad protection from infection and disease.
Collapse
|
70
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
71
|
Contribution of Dendritic Cells in Protective Immunity against Respiratory Syncytial Virus Infection. Viruses 2020; 12:v12010102. [PMID: 31952261 PMCID: PMC7020095 DOI: 10.3390/v12010102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. The socioeconomic burden of RSV infection is substantial because it leads to serious respiratory problems, subsequent hospitalization, and mortality. Despite its clinical significance, a safe and effective vaccine is not yet available to prevent RSV infection. Upon RSV infection, lung dendritic cells (DCs) detecting pathogens migrate to the lymph nodes and activate the adaptive immune response. Therefore, RSV has evolved various immunomodulatory strategies to inhibit DC function. Due to the capacity of RSV to modulate defense mechanisms in hosts, RSV infection results in inappropriate activation of immune responses resulting in immunopathology and frequent reinfection throughout life. This review discusses how DCs recognize invading RSV and induce adaptive immune responses, as well as the regulatory mechanisms mediated by RSV to disrupt DC functions and ultimately avoid host defenses.
Collapse
|
72
|
Antunes KH, Becker A, Franceschina C, de Freitas DDN, Lape I, da Cunha MD, Leitão L, Rigo MM, Pinto LA, Stein RT, de Souza APD. Respiratory syncytial virus reduces STAT3 phosphorylation in human memory CD8 T cells stimulated with IL-21. Sci Rep 2019; 9:17766. [PMID: 31780735 PMCID: PMC6882881 DOI: 10.1038/s41598-019-54240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of childhood lower respiratory tract infections. The recent failure of a vaccine candidate based on recombinant F protein underlines the urgent need to better understand the protective human memory immune response against RSV. Signal transducer and activator of transcription 3 (STAT3) protein is a transcription factor that promotes the maturation of the memory CD8 T cell response in cooperation with IL-10 and IL-21. However, the role of STAT3 in the memory CD8 T cell response during RSV infection remains to be elucidated. We found that in infants with bronchiolitis infected with RSV, the expression of STAT3 detected in nasal washes is reduced when compared to that in infants infected by other viruses. In vitro, RSV impairs STAT3 phosphorylation induced by IL-21 in purified human memory CD8 T cells. In addition, RSV decreases granzyme B production by memory CD8 T cells, reducing its cytotoxic activity against RSV-infected epithelial pulmonary cell lines. Together, these data indicate that RSV modulates the IL-21/STAT3 pathway in human memory CD8 T cells, and this could be a mechanism to be further explored to improve the memory response against the infection.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - André Becker
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Caroline Franceschina
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Deise do Nascimento de Freitas
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Isadora Lape
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana D'Ávila da Cunha
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lidiane Leitão
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Mauricio M Rigo
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Araújo Pinto
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Renato T Stein
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and experimental Immunology, Infant Center, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,School of Health and Life Sciences, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
73
|
Immunological Lessons from Respiratory Syncytial Virus Vaccine Development. Immunity 2019; 51:429-442. [DOI: 10.1016/j.immuni.2019.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
|
74
|
San-Juan-Vergara H, Peeples ME. Importance of Virus Characteristics in Respiratory Syncytial Virus-Induced Disease. Immunol Allergy Clin North Am 2019; 39:321-334. [PMID: 31284923 PMCID: PMC6879194 DOI: 10.1016/j.iac.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe lower respiratory tract infection in infants and young children is most frequently caused by respiratory syncytial virus (RSV). RSV infects the smallest airways, making breathing difficult and in some infants requiring medical support. Severity is affected by viral dose, infant age, virus genotype, and effectiveness of the innate/adaptive immune responses. Severe disease correlates with later wheezing and asthma in some children. The adaptive immune response is protective but wanes after each infection, likely due to the ability of the RSV NS1/NS2 proteins to inhibit the innate immune response. Several vaccine approaches and candidates are currently in clinical trials.
Collapse
Affiliation(s)
- Homero San-Juan-Vergara
- Division of Health Sciences, Fundación Universidad del Norte, Universidad del Norte, Bloque de Salud, Cuarto Piso 4-25L4, Km 5. Via Puerto, Barranquilla 081007, Colombia
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
75
|
Boyoglu-Barnum S, Chirkova T, Anderson LJ. Biology of Infection and Disease Pathogenesis to Guide RSV Vaccine Development. Front Immunol 2019; 10:1675. [PMID: 31402910 PMCID: PMC6677153 DOI: 10.3389/fimmu.2019.01675] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life and as such a high priority for vaccine development. However, after nearly 60 years of research no vaccine is yet available. The challenges to developing an RSV vaccine include the young age, 2-4 months of age, for the peak of disease, the enhanced RSV disease associated with the first RSV vaccine, formalin-inactivated RSV with an alum adjuvant (FI-RSV), and difficulty achieving protection as illustrated by repeat infections with disease that occur throughout life. Understanding the biology of infection and disease pathogenesis has and will continue to guide vaccine development. In this paper, we review the roles that RSV proteins play in the biology of infection and disease pathogenesis and the corresponding contribution to live attenuated and subunit RSV vaccines. Each of RSV's 11 proteins are in the design of one or more vaccines. The G protein's contribution to disease pathogenesis through altering host immune responses as well as its role in the biology of infection suggest it can make a unique contribution to an RSV vaccine, both live attenuated and subunit vaccines. One of G's potential unique contributions to a vaccine is the potential for anti-G immunity to have an anti-inflammatory effect independent of virus replication. Though an anti-viral effect is essential to an effective RSV vaccine, it is important to remember that the goal of a vaccine is to prevent disease. Thus, other effects of the infection, such as G's alteration of the host immune response may provide opportunities to induce responses that block this effect and improve an RSV vaccine. Keeping in mind the goal of a vaccine is to prevent disease and not virus replication may help identify new strategies for other vaccine challenges, such as improving influenza vaccines and developing HIV vaccines.
Collapse
Affiliation(s)
| | - Tatiana Chirkova
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
76
|
Ha B, Chirkova T, Boukhvalova MS, Sun HY, Walsh EE, Anderson CS, Mariani TJ, Anderson LJ. Mutation of Respiratory Syncytial Virus G Protein's CX3C Motif Attenuates Infection in Cotton Rats and Primary Human Airway Epithelial Cells. Vaccines (Basel) 2019; 7:E69. [PMID: 31330970 PMCID: PMC6789749 DOI: 10.3390/vaccines7030069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
Despite being a high priority for vaccine development, no vaccine is yet available for respiratory syncytial virus (RSV). A live virus vaccine is the primary type of vaccine being developed for young children. In this report, we describe our studies of infected cotton rats and primary human airway epithelial cells (pHAECs) using an RSV r19F with a mutation in the CX3C chemokine motif in the RSV G protein (CX4C). Through this CX3C motif, RSV binds to the corresponding chemokine receptor, CX3CR1, and this binding contributes to RSV infection of pHAECs and virus induced host responses that contribute to disease. In both the cotton rat and pHAECs, the CX4C mutation decreased virus replication and disease and/or host responses to infection. Thus, this mutation, or other mutations that block binding to CX3CR1, has the potential to improve a live attenuated RSV vaccine by attenuating both infection and disease pathogenesis.
Collapse
Affiliation(s)
- Binh Ha
- Pediatric Infectious Diseases, Emory University and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Tatiana Chirkova
- Pediatric Infectious Diseases, Emory University and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | | - He Ying Sun
- Pediatric Infectious Diseases, Emory University and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Edward E Walsh
- Department of Medicine, University of Rochester School of Medicine and Department of Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Christopher S Anderson
- Department of Neonatology, Program in Pediatric Molecular and Personalized Medicine, and Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Thomas J Mariani
- Department of Neonatology, Program in Pediatric Molecular and Personalized Medicine, and Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Larry J Anderson
- Pediatric Infectious Diseases, Emory University and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
77
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
78
|
A Contemporary View of Respiratory Syncytial Virus (RSV) Biology and Strain-Specific Differences. Pathogens 2019; 8:pathogens8020067. [PMID: 31117229 PMCID: PMC6631838 DOI: 10.3390/pathogens8020067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a human respiratory pathogen which remains a leading viral cause of hospitalizations and mortality among infants in their first year of life. Here, we review the biology of RSV, the primary laboratory isolates or strains which have been used to best characterize the virus since its discovery in 1956, and discuss the implications for genetic and functional variations between the established laboratory strains and the recently identified clinical isolates.
Collapse
|
79
|
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease in young children and elderly people. Although the virus was isolated in 1955, an effective RSV vaccine has not been developed, and the only licensed intervention is passive immunoprophylaxis of high-risk infants with a humanized monoclonal antibody. During the past 5 years, however, there has been substantial progress in our understanding of the structure and function of the RSV glycoproteins and their interactions with host cell factors that mediate entry. This period has coincided with renewed interest in developing effective interventions, including the isolation of potent monoclonal antibodies and small molecules and the design of novel vaccine candidates. In this Review, we summarize the recent findings that have begun to elucidate RSV entry mechanisms, describe progress on the development of new interventions and conclude with a perspective on gaps in our knowledge that require further investigation.
Collapse
Affiliation(s)
- Michael B Battles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
80
|
Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. Role of Type I Interferon (IFN) in the Respiratory Syncytial Virus (RSV) Immune Response and Disease Severity. Front Immunol 2019; 10:566. [PMID: 30972063 PMCID: PMC6443902 DOI: 10.3389/fimmu.2019.00566] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract disease in children <2 years of age. Increased morbidity and mortality have been reported in high-risk patients, such as premature infants, patients with cardiac disease, and severely immune compromised patients. Severe disease is associated with the virulence of the virus as well as host factors specifically including the innate immune response. The role of type I interferons (IFNs) in the response to RSV infection is important in regulating the rate of virus clearance and in directing the character of the immune response, which is normally associated with protection and less severe disease. Two RSV non-structural proteins, NS1 and NS2, as well as the envelope G glycoprotein are known to suppress type I IFN production and a robust type I IFN response to RSV does not occur in human infants or neonatal mouse models of RSV infection. Additionally, presence of type I IFNs are associated with mild symptoms in infants and administration of IFN-α prior to infection of neonatal mice with RSV reduces immunopathology. This evidence has driven RSV prophylaxis and therapeutic efforts to consider strategies for enhancing type I IFN production.
Collapse
Affiliation(s)
- Diego R Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Luan D Vu
- Department of Biological Sciences, Louisiana State University and School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | | - Ralph A Tripp
- Department of Infectious Disease, University of Georgia, Athens, GA, United States
| | | | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
81
|
Machado VB, Maróstica de Sá J, Miranda Prado AK, Alves de Toledo K, Regasini LO, Pereira de Souza F, Caruso ÍP, Fossey MA. Biophysical and flavonoid-binding studies of the G protein ectodomain of group A human respiratory syncytial virus. Heliyon 2019; 5:e01394. [PMID: 30976680 PMCID: PMC6439273 DOI: 10.1016/j.heliyon.2019.e01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
The human Respiratory Syncytial Virus (hRSV) is the major causative agent of lower respiratory tract diseases in infants, young children and elderly. The membrane protein G is embedded in the viral lipid envelope and plays an adhesion function of the virus to host cells. The present study reports the production of the group A hRSV recombinant G protein ectodomain (edG) and its characterization of secondary structure and thermal unfolding by circular dichroism (CD), as well as the binding investigation of flavonoids quercetin and morin to this protein by fluorescent quenching. CD data reveal that edG is composed mostly of β-structure and its melting temperature is of 325 K. Fluorescence quenching experiments of hRSV edG show that the dissociation constants for the flavonoids binding are micromolar and the binding affinity for the edG/quercetin complex is inversely dependent on rising temperature while is directly dependent for the edG/morin interaction. The thermodynamic parameters suggest that hydrophobic contacts are important for the edG/morin association while van der Waals forces and hydrogen bonds contribute to the stabilization of the edG/quercetin complex. Thus, data reported herein may contribute to the development of new treatment strategies that prevent the viral infection by hRSV.
Collapse
Affiliation(s)
- Vitor Brassolatti Machado
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
| | - Jéssica Maróstica de Sá
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Ana Karla Miranda Prado
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Karina Alves de Toledo
- Faculdade de Ciências e Letras, UNESP, Department of Biology Sciences, Assis, SP, Brazil
| | - Luis Octávio Regasini
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brazil
| | - Fátima Pereira de Souza
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Ícaro Putinhon Caruso
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
- Corresponding author.
| | - Marcelo Andres Fossey
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
- Corresponding author.
| |
Collapse
|
82
|
Development of Luciferase Immunoprecipitation Systems (LIPS) Assay to Detect IgG Antibodies against Human Respiratory Syncytial Virus G-Glycoprotein. Vaccines (Basel) 2019; 7:vaccines7010016. [PMID: 30717190 PMCID: PMC6466036 DOI: 10.3390/vaccines7010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in infants and the elderly. Although there is no licensed vaccine, RSV-F and -G glycoproteins are targets for vaccine development and therapeutics. We developed an assay that can detect anti-RSV-G IgG antibodies, either as a biomarker of natural exposure or immunization. RSV genes encoding native and mutated G (mG) proteins from subgroups A and B strains were cloned, expressed as luciferase-tagged proteins, and tested individually to detect anti-RSV-G specific IgG antibodies using a high-throughput luciferase immunoprecipitation system (LIPS-G). RSV monoclonal antibodies and polyclonal antisera specifically bound in the LIPS-GA and/or -GB assays; whereas anti-RSV-F and -N, and antisera against measles virus or human metapneumovirus did not bind. Anti-RSV-GA and -GB IgG responses detected in mice infected intranasally with RSV-A or -B strains were subtype specific. Subtype specific anti-RSV-GA or -GB IgG responses were also detected using paired serum samples from infants while human adolescent serum samples reacted in both LIPS-GA and -GB assays, reflecting a broader experience.
Collapse
|
83
|
Noor A, Krilov LR. Respiratory syncytial virus vaccine: where are we now and what comes next? Expert Opin Biol Ther 2018; 18:1247-1256. [PMID: 30426788 DOI: 10.1080/14712598.2018.1544239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants and elderly and to date, there is no safe or effective vaccine against RSV. AREAS COVERED This review provides a roadmap to RSV vaccine development. It is a journey spanning over more than half a century from the initial disappointment with inactivated formalin vaccine to the current advancements in vaccine technology. We highlight the important aspects of RSV structural biology and protective immune response. We include discussion of newer fusion glycoprotein immune targets and current vaccine candidates. We used Pub Med and Medline resources for literature search. EXPERT OPINION A resurgence of information on the burden related to RSV infection coupled with the newer understanding of the molecular mechanism of RSV infection has reignited a tremendous activity in RSV vaccine discovery. The vaccine pipeline is diverse and target populations are varied, thus making the goal of a safe and effective RSV vaccine in the future within reach.
Collapse
Affiliation(s)
- Asif Noor
- a Department of Pediatrics, Children's Medical Center , NYU Winthrop Hospital , Mineola , NY , USA
| | - Leonard R Krilov
- a Department of Pediatrics, Children's Medical Center , NYU Winthrop Hospital , Mineola , NY , USA.,b Department of Pediatrics, Stony Brook School of Medicine , State University of New York , Stony Brook , NY , USA
| |
Collapse
|
84
|
Lee J, Klenow L, Coyle EM, Golding H, Khurana S. Protective antigenic sites in respiratory syncytial virus G attachment protein outside the central conserved and cysteine noose domains. PLoS Pathog 2018; 14:e1007262. [PMID: 30142227 PMCID: PMC6126872 DOI: 10.1371/journal.ppat.1007262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/06/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract disease in infants. Previously, we elucidated the antibody repertoire following primary RSV infection in infants. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes from RSV bound 100-fold more phages within attachment protein (G) following primary RSV infection. The G-reactive epitopes spanned the N- and C-termini of G ectodomain, in addition to the central conserved domain (CCD). In the current study, we examined the contribution of antigenic regions of G outside of the CCD to RSV-specific immunity. We evaluated the immunogenicity, neutralization and protective efficacy of all RSV-G antigenic sites identified following primary RSV infection using recombinant E. coli expressed G ectodomain (REG), CCD-deleted G ectodomain (REG ΔCCD), N- and C-terminal G subdomains, and antigenic site peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice that bound fully glycosylated Recombinant Mammalian expressed G ectodomain (RMG) and intact RSV virion particles but minimal in vitro neutralization titers compared with the intact G ectodomain. Vaccinated mice were challenged intranasally with RSV-A2 Line 19F. Viral replication in nasal cavity and lungs was significantly reduced in vaccinated animals compared to unimmunized controls. Control of viral loads post-RSV challenge correlated with serum antibody binding to the virus particles. In addition, very low Th2/Th1 cytokine ratios were found in the lungs of REG ΔCCD vaccinated mice after challenge. These data demonstrate the presence of multiple protective sites in RSV G protein outside of the CCD that could contribute to the development of a bacterially produced unglycosylated G protein as safe and protective vaccine against RSV disease. A vaccine against RSV that provides protection without potential for disease enhancement is required. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. However, the contribution of different antigenic sites to protection against RSV is not completely understood. We evaluated the protective efficacy of recombinant unglycosylated RSV-G protein vaccine produced in E. coli (REG) vs. CCD-deletion (REG ΔCCD). We also investigated immunogenicity and protective efficacy of all antigenic sites identified in post-primary infection infant sera using GFPDL that includes N- and C-terminal G subdomains, and linear peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice. Vaccinated mice challenged intranasally with RSV demonstrated significant reduction of viral replication in the nasal cavity and lungs. Our study highlights the safety and immunogenicity of recombinant G protein as economical protective vaccine against RSV disease.
Collapse
Affiliation(s)
- Jeehyun Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Elizabeth M. Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
85
|
Muñoz-Durango N, Pizarro-Ortega MS, Rey-Jurado E, Díaz FE, Bueno SM, Kalergis AM. Patterns of antibody response during natural hRSV infection: insights for the development of new antibody-based therapies. Expert Opin Investig Drugs 2018; 27:721-731. [PMID: 30111181 DOI: 10.1080/13543784.2018.1511699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The human respiratory syncytial virus (hRSV) is the main cause of acute lower respiratory tract infection in susceptible population worldwide, such as young children and the elderly. Although hRSV is a major public health burden, there are no licensed vaccines and the only available therapy is palivizumab. During life, reinfections with hRSV are common, suggesting that the virus can impair the development of an efficient host immune response. This feature has hindered the development of efficient therapies. AREAS COVERED This article focuses on research about the natural development of antibodies in humans after the exposure to hRSV. The difficulties of developing anti-hRSV therapies based on monoclonal antibodies have been recently associated to the relationship between the disease outcome and the pattern of antibody response. EXPERT OPINION Development of monoclonal antibodies is a potentially successful approach to prevent the population from suffering severe respiratory diseases caused by hRSV infection, for which there are no available vaccines. Although the use of palivizumab is safe, its effectiveness is controversial. Recent data have prompted research to develop therapies targeting alternative viral antigens, rather than focusing only on the F protein, as well as the development of antibodies with a cell-mediated function.
Collapse
Affiliation(s)
- Natalia Muñoz-Durango
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Magdalena S Pizarro-Ortega
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Emma Rey-Jurado
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Fabián E Díaz
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,b Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
86
|
The Morphology and Assembly of Respiratory Syncytial Virus Revealed by Cryo-Electron Tomography. Viruses 2018; 10:v10080446. [PMID: 30127286 PMCID: PMC6116276 DOI: 10.3390/v10080446] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 μm and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.
Collapse
|
87
|
Huong TN, Yan Y, Jumat MR, Lui J, Tan BH, Wang DY, Sugrue RJ. A sustained antiviral host response in respiratory syncytial virus infected human nasal epithelium does not prevent progeny virus production. Virology 2018; 521:20-32. [PMID: 29870884 DOI: 10.1016/j.virol.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Abstract
Respiratory syncytial virus infection was examined using a human nasal epithelial cell model. Maximum levels of shed-virus were produced at between 3 and 5 days post-infection (dpi), and the infectivity of the shed-virus was stable up to 10 dpi. The highest levels of interferon signalling were recorded at 2dpi, and infection induced a widespread antivirus response in the nasal epithelium, involving both infected cells and non-infected cells. Although these cellular responses were associated with reduced levels of progeny virus production and restricted virus spread, they did not inhibit the infectivity virus that is shed early in infection. In the clinical context these data suggest that although the host cell response in the nasal epithelium may restrict the levels of progeny virus particles produced, the stability of the shed-virus in the nasal mucosa may be an important factor in both disease progression and virus transmission.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
88
|
Boukhvalova MS, Mbaye A, Kovtun S, Yim KC, Konstantinova T, Getachew T, Khurana S, Falsey AR, Blanco JCG. Improving ability of RSV microneutralization assay to detect G-specific and cross-reactive neutralizing antibodies through immortalized cell line selection. Vaccine 2018; 36:4657-4662. [PMID: 29960801 DOI: 10.1016/j.vaccine.2018.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of bronchiolitis and pneumonia. Protection against RSV is associated with neutralizing antibodies against the fusion (F) and attachment (G) glycoproteins. Several RSV vaccine candidates are in development, but their immunogenicity is hard to compare due to the little-understood differences between multiple RSV neutralizing antibody assays used. Existing assays utilize primarily Vero or HEp-2 cells, but their ability to detect G-neutralizing antibodies or antibodies against specific RSV strains is unclear. In this work, we developed an RSV microneutralization assay (MNA) using unmodified RSV and immortalized cell line derived from human airway epithelial cells (A549). Performance of A549-, HEp-2- and Vero-based MNA was compared under the same assay conditions (fixed amount of virus and cells) with regards to detection of neutralizing antibodies against RSV A or B viruses, G-reactive neutralizing antibodies, and effect of complement. Our results indicate that A549 cells yield the highest MNA titers, particularly in the RSV A/A2 MNA, are least susceptible to complement-enhancing effect of neutralizing titer readout and are superior to Vero or HEp-2 MNA at recognizing G-reactive neutralizing antibodies when no complement is used. Vero cells, however, can be more consistent at recognizing neutralizing antibodies against multiple RSV strains. The choice of substrate cells thus affects the outcome of MNA, as some immortalized cells better support detection of broader range of neutralizing antibodies, while others facilitate detection of G-targeting neutralizing antibodies, a long-thought prerogative of primary airway epithelial cells.
Collapse
Affiliation(s)
- M S Boukhvalova
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA.
| | - A Mbaye
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - S Kovtun
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - K C Yim
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - T Konstantinova
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - T Getachew
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - S Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - A R Falsey
- University of Rochester Medical Center, Rochester General Hospital, 1425 Portland Avenue, Infectious Diseases Unit, Rochester, NY 14621, USA
| | - J C G Blanco
- Sigmovir Biosystems, Inc, 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
89
|
Groppo R, DiNapoli J, Il Jeong K, Kishko M, Jackson N, Kleanthous H, Delagrave S, Zhang L, Parrington M. Effect of genetic background and delivery route on the preclinical properties of a live attenuated RSV vaccine. PLoS One 2018; 13:e0199452. [PMID: 29920563 PMCID: PMC6007926 DOI: 10.1371/journal.pone.0199452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
A safe and effective vaccine against RSV remains an important unmet public health need. Intranasally (IN) delivered live-attenuated vaccines represent the most extensively studied approach for immunization of RSV-naïve infants and children, however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we report pre-clinical immunogenicity and efficacy data utilizing a live-attenuated vaccine candidate, RGΔM2-2, which was obtained by deleting the M2-2 open reading frame from the genome of the MSA1 clinical isolate. Intramuscular (IM) administration of RGΔM2-2 in cotton rats induced immunity and protective efficacy that was comparable to that induced by intranasal (IN) immunization. In contrast, the protective efficacy of RGΔM2-2 delivered by the IM route to African green monkeys was substantially reduced as compared to the efficacy following IN administration, despite comparable levels of serum neutralizing antibodies. This result suggests that mucosal immunity may play an important role in RSV protection. The RGΔM2-2 vaccine also demonstrated different attenuation profiles when tested in cotton rats, non-human primates, and a human airway epithelial (HAE) cell model. The data suggest RGΔM2-2 is less attenuated than a similarly designed vaccine candidate constructed on the A2 genetic background. These findings have important implications with regard to both the design and the preclinical safety testing of live-attenuated vaccines.
Collapse
Affiliation(s)
- Rachel Groppo
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Joshua DiNapoli
- FluNeXt, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Kwang Il Jeong
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Michael Kishko
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Nicholas Jackson
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Harold Kleanthous
- FluNeXt, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Simon Delagrave
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Linong Zhang
- Research and non-clinical safety, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| | - Mark Parrington
- External R&D, Sanofi Pasteur, Cambridge, Massachusetts, United States of America
| |
Collapse
|
90
|
Caidi H, Miao C, Thornburg NJ, Tripp RA, Anderson LJ, Haynes LM. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model. Antiviral Res 2018; 154:149-157. [PMID: 29678551 DOI: 10.1016/j.antiviral.2018.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023]
Abstract
RSV continues to be a high priority for vaccine and antiviral drug development. Unfortunately, no safe and effective RSV vaccine is available and treatment options are limited. Over the past decade, several studies have focused on the role of RSV G protein on viral entry, viral neutralization, and RSV-mediated pathology. Anti-G murine monoclonal antibody (mAb) 131-2G treatment has been previously shown to reduce weight loss, bronchoalveolar lavage (BAL) cell number, airway reactivity, and Th2-type cytokine production in RSV-infected mice more rapidly than a commercial humanized monoclonal antibody (mAb) against RSV F protein (Palivizumab). In this study, we have tested two human anti-RSV G mAbs, 2B11 and 3D3, by both prophylactic and therapeutic treatment for RSV in the BALB/c mouse model. Both anti-G mAbs reduced viral load, leukocyte infiltration and IFN-γ and IL-4 expression in cell-free BAL supernatants emphasizing the potential of anti-G mAbs as anti-inflammatory and antiviral strategies.
Collapse
Affiliation(s)
- Hayat Caidi
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Congrong Miao
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Ralph A Tripp
- College of Veterinary Medicine, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Larry J Anderson
- Division of Pediatric Infectious Diseases, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lia M Haynes
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
91
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
92
|
Fedechkin SO, George NL, Wolff JT, Kauvar LM, DuBois RM. Structures of respiratory syncytial virus G antigen bound to broadly neutralizing antibodies. Sci Immunol 2018; 3:eaar3534. [PMID: 29523582 PMCID: PMC6203301 DOI: 10.1126/sciimmunol.aar3534] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in young children and the elderly. The viral envelope G glycoprotein contributes to pathogenesis through its roles in host cell attachment and modulation of host immunity. Although the G glycoprotein is a target of protective RSV-neutralizing antibodies, its development as a vaccine antigen has been hindered by its heterogeneous glycosylation and sequence variability outside a conserved central domain (CCD). We describe the cocrystal structures of two high-affinity broadly neutralizing human monoclonal antibodies bound to the RSV G CCD. The antibodies bind to neighboring conformational epitopes, which we named antigenic sites γ1 and γ2, that span a highly conserved surface, illuminating an important region of vulnerability. We further show that isolated RSV G CCD activates the chemokine receptor CX3CR1 and that antibodies block this activity. These studies provide a template for rational vaccine design targeting this key contributor to RSV disease.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Natasha L George
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jacob T Wolff
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
93
|
Jones HG, Ritschel T, Pascual G, Brakenhoff JPJ, Keogh E, Furmanova-Hollenstein P, Lanckacker E, Wadia JS, Gilman MSA, Williamson RA, Roymans D, van ‘t Wout AB, Langedijk JP, McLellan JS. Structural basis for recognition of the central conserved region of RSV G by neutralizing human antibodies. PLoS Pathog 2018; 14:e1006935. [PMID: 29509814 PMCID: PMC5856423 DOI: 10.1371/journal.ppat.1006935] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/16/2018] [Accepted: 02/12/2018] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly, and yet there remains no effective treatment or vaccine. The surface of the virion is decorated with the fusion glycoprotein (RSV F) and the attachment glycoprotein (RSV G), which binds to CX3CR1 on human airway epithelial cells to mediate viral attachment and subsequent infection. RSV G is a major target of the humoral immune response, and antibodies that target the central conserved region of G have been shown to neutralize both subtypes of RSV and to protect against severe RSV disease in animal models. However, the molecular underpinnings for antibody recognition of this region have remained unknown. Therefore, we isolated two human antibodies directed against the central conserved region of RSV G and demonstrated that they neutralize RSV infection of human bronchial epithelial cell cultures in the absence of complement. Moreover, the antibodies protected cotton rats from severe RSV disease. Both antibodies bound with high affinity to a secreted form of RSV G as well as to a peptide corresponding to the unglycosylated central conserved region. High-resolution crystal structures of each antibody in complex with the G peptide revealed two distinct conformational epitopes that require proper folding of the cystine noose located in the C-terminal part of the central conserved region. Comparison of these structures with the structure of fractalkine (CX3CL1) alone or in complex with a viral homolog of CX3CR1 (US28) suggests that RSV G would bind to CX3CR1 in a mode that is distinct from that of fractalkine. Collectively, these results build on recent studies demonstrating the importance of RSV G in antibody-mediated protection from severe RSV disease, and the structural information presented here should guide the development of new vaccines and antibody-based therapies for RSV.
Collapse
Affiliation(s)
- Harrison G. Jones
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Tina Ritschel
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Gabriel Pascual
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson and Johnson, San Diego, California, United States of America
| | - Just P. J. Brakenhoff
- Janssen Prevention Center, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Elissa Keogh
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson and Johnson, San Diego, California, United States of America
| | | | - Ellen Lanckacker
- Janssen Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Morgan S. A. Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - R. Anthony Williamson
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson and Johnson, London, United Kingdom
| | - Dirk Roymans
- Janssen Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Jason S. McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
94
|
Hartl D, Tirouvanziam R, Laval J, Greene CM, Habiel D, Sharma L, Yildirim AÖ, Dela Cruz CS, Hogaboam CM. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun 2018; 10:487-501. [PMID: 29439264 DOI: 10.1159/000487057] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The respiratory tract is faced daily with 10,000 L of inhaled air. While the majority of air contains harmless environmental components, the pulmonary immune system also has to cope with harmful microbial or sterile threats and react rapidly to protect the host at this intimate barrier zone. The airways are endowed with a broad armamentarium of cellular and humoral host defense mechanisms, most of which belong to the innate arm of the immune system. The complex interplay between resident and infiltrating immune cells and secreted innate immune proteins shapes the outcome of host-pathogen, host-allergen, and host-particle interactions within the mucosal airway compartment. Here, we summarize and discuss recent findings on pulmonary innate immunity and highlight key pathways relevant for biomarker and therapeutic targeting strategies for acute and chronic diseases of the respiratory tract.
Collapse
Affiliation(s)
- Dominik Hartl
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, .,Roche Pharma Research and Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel,
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Julie Laval
- Department of Pediatrics I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - David Habiel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
95
|
Respiratory Syncytial Virus: Targeting the G Protein Provides a New Approach for an Old Problem. J Virol 2018; 92:JVI.01302-17. [PMID: 29118126 DOI: 10.1128/jvi.01302-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection (LRTI) annually affecting >2 million children in the United States <5 years old. In the elderly (>65 years old), RSV results in ∼175,000 hospitalizations annually in the United States with a worldwide incidence of ∼34 million. There is no approved RSV vaccine, and treatments are limited. Recently, a phase 3 trial in the elderly using a recombinant RSV F protein vaccine failed to meet its efficacy objectives, namely, prevention of moderate-to-severe RSV-associated LRTI and reduced incidence of acute respiratory disease. Moreover, a recent phase 3 trial evaluating suptavumab (REGN2222), an antibody to RSV F protein, did not meet its primary endpoint of preventing medically attended RSV infections in preterm infants. Despite these setbacks, numerous efforts targeting the RSV F protein with vaccines, antibodies, and small molecules continue based on the commercial success of a monoclonal antibody (MAb) against the RSV F protein (palivizumab). As the understanding of RSV biology has improved, the other major coat protein, the RSV G protein, has reemerged as an alternative target reflecting progress in understanding its roles in infecting bronchial epithelial cells and in altering the host immune response. In mouse models, a high-affinity, strain-independent human MAb to the RSV G protein has shown potent direct antiviral activity combined with the alleviation of virus-induced immune system effects that contribute to disease pathology. This MAb, being prepared for clinical trials, provides a qualitatively new approach to managing RSV for populations not eligible for prophylaxis with palivizumab.
Collapse
|
96
|
Magro-Lopez E, Guijarro T, Martinez I, Martin-Vicente M, Liste I, Zambrano A. A Two-Dimensional Human Minilung System (Model) for Respiratory Syncytial Virus Infections. Viruses 2017; 9:v9120379. [PMID: 29232863 PMCID: PMC5744153 DOI: 10.3390/v9120379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs). The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV-host interactions.
Collapse
Affiliation(s)
- Esmeralda Magro-Lopez
- Functional Unit for Research into Chronic Diseases (UFIEC), Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Trinidad Guijarro
- Functional Unit for Research into Chronic Diseases (UFIEC), Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Isidoro Martinez
- Spanish National Center for Microbiology (CNM), Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Maria Martin-Vicente
- Spanish National Center for Microbiology (CNM), Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Isabel Liste
- Functional Unit for Research into Chronic Diseases (UFIEC), Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Alberto Zambrano
- Functional Unit for Research into Chronic Diseases (UFIEC), Institute of Health Carlos III, 28220 Madrid, Spain.
| |
Collapse
|
97
|
Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin Microbiol Rev 2017; 30:277-319. [PMID: 27903593 DOI: 10.1128/cmr.00010-16] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a significant cause of hospitalization of children in North America and one of the leading causes of death of infants less than 1 year of age worldwide, second only to malaria. Despite its global impact on human health, there are relatively few therapeutic options available to prevent or treat RSV infection. Paradoxically, there is a very large volume of information that is constantly being refined on RSV replication, the mechanisms of RSV-induced pathology, and community transmission. Compounding the burden of acute RSV infections is the exacerbation of preexisting chronic airway diseases and the chronic sequelae of RSV infection. A mechanistic link is even starting to emerge between asthma and those who suffer severe RSV infection early in childhood. In this article, we discuss developments in the understanding of RSV replication, pathogenesis, diagnostics, and therapeutics. We attempt to reconcile the large body of information on RSV and why after many clinical trials there is still no efficacious RSV vaccine and few therapeutics.
Collapse
|
98
|
Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain PO, Schandene L, Casartelli N, Rameix-Welti MA, Hervé PL, Dériaud E, Beitz B, Ripaux-Lefevre M, Miatello J, Lemercier B, Lorin V, Descamps D, Fix J, Eléouët JF, Riffault S, Schwartz O, Porcheray F, Mascart F, Mouquet H, Zhang X, Tissières P, Lo-Man R. Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity 2017; 46:301-314. [PMID: 28228284 PMCID: PMC7128247 DOI: 10.1016/j.immuni.2017.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in infants and is characterized by pulmonary infiltration of B cells in fatal cases. We analyzed the B cell compartment in human newborns and identified a population of neonatal regulatory B lymphocytes (nBreg cells) that produced interleukin 10 (IL-10) in response to RSV infection. The polyreactive B cell receptor of nBreg cells interacted with RSV protein F and induced upregulation of chemokine receptor CX3CR1. CX3CR1 interacted with RSV glycoprotein G, leading to nBreg cell infection and IL-10 production that dampened T helper 1 (Th1) cytokine production. In the respiratory tract of neonates with severe RSV-induced acute bronchiolitis, RSV-infected nBreg cell frequencies correlated with increased viral load and decreased blood memory Th1 cell frequencies. Thus, the frequency of nBreg cells is predictive of the severity of acute bronchiolitis disease and nBreg cell activity may constitute an early-life host response that favors microbial pathogenesis. Identified a neonatal-specific subset of regulatory B (nBreg) cells in the blood Neonatal nBreg cells are infected by RSV via the BCR and CX3CR1 RSV-infected nBreg cells produce anti-inflammatory IL-10 that dowregulates Th1 cell responses Blood nBreg cells are a biomarker of lung disease severity in RSV+ patients
Collapse
Affiliation(s)
- Dania Zhivaki
- Neonatal Immunity Group, Human Histopathology and Animal Models, Institut Pasteur, Paris 75724, France; Paris 7 Diderot University, Paris 75724, France
| | - Sébastien Lemoine
- Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris 75724, France; INSERM U1041, Paris 75724, France
| | - Annick Lim
- Departement d'Immunologie, Institut Pasteur, Paris 75724, France
| | - Ahsen Morva
- Neonatal Immunity Group, Human Histopathology and Animal Models, Institut Pasteur, Paris 75724, France
| | | | | | - Nicoletta Casartelli
- Virus et Immunité, Institut Pasteur, Paris 75724, France; UMR CNRS 3568, Paris 75724, France
| | - Marie-Anne Rameix-Welti
- INSERM U1173, Versailles-Saint-Quentin University, Saint-Quentin en Yvelines 78180, France; AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt 92100, France
| | - Pierre-Louis Hervé
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Edith Dériaud
- Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris 75724, France; INSERM U1041, Paris 75724, France
| | - Benoit Beitz
- Bioaster Microbiology Technology Institute, Paris 75015, France
| | | | - Jordi Miatello
- APHP, Pediatric ICU and Neonatal Medicine, Paris South University Hospitals, Le Kremlin-Bicetre 94270, France; School of Medicine, Paris South University, Le Kremlin-Bicêtre 94270, France; Institute of Integrative Biology of the Cell - UMR 9196, Paris Saclay University, Gif-sur-Yvette 91190, France
| | | | - Valerie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75724, France; INSERM U1222, Paris 75724, France
| | - Delphyne Descamps
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Sabine Riffault
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Olivier Schwartz
- Virus et Immunité, Institut Pasteur, Paris 75724, France; UMR CNRS 3568, Paris 75724, France
| | | | - Françoise Mascart
- Immunobiology Clinic, Hopital Erasme, Brussels 1070, Belgium; Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75724, France; INSERM U1222, Paris 75724, France
| | - Xiaoming Zhang
- Unit of Innate Defense and Immune Modulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pierre Tissières
- APHP, Pediatric ICU and Neonatal Medicine, Paris South University Hospitals, Le Kremlin-Bicetre 94270, France; School of Medicine, Paris South University, Le Kremlin-Bicêtre 94270, France; Institute of Integrative Biology of the Cell - UMR 9196, Paris Saclay University, Gif-sur-Yvette 91190, France
| | - Richard Lo-Man
- Neonatal Immunity Group, Human Histopathology and Animal Models, Institut Pasteur, Paris 75724, France.
| |
Collapse
|
99
|
Das S, Raundhal M, Chen J, Oriss TB, Huff R, Williams JV, Ray A, Ray P. Respiratory syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary innate immune response. JCI Insight 2017; 2:94605. [PMID: 28878128 DOI: 10.1172/jci.insight.94605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects almost all infants by 2 years of age, and severe bronchiolitis resulting from RSV infection is the primary cause of hospitalization in the first year of life. Among infants hospitalized due to RSV-induced bronchiolitis, those with a specific mutation in the chemokine receptor CX3CR1, which severely compromises binding of its ligand CX3CL1, were at a higher risk for more severe viral bronchiolitis than those without the mutation. Here, we show that RSV infection of newborn mice deficient in CX3CR1 leads to significantly greater neutrophilic inflammation in the lungs, accompanied by an increase in mucus production compared with that induced in WT mice. Analysis of innate and adaptive immune responses revealed an early increase in the number of IL-17+ γδ T cells in CX3CR1-deficient mice that outnumbered IFN-γ+ γδ T cells as well as IFN-γ+ NK cells, IFN-γ being host protective in the context of RSV infection. This bias toward IL-17+ γδ T cells persisted at a later time. The lungs of CX3CR1-deficient mice expressed higher levels of IL-1β mRNA and protein, and blockade of IL-1β signaling using IL-1 receptor antagonist significantly reduced the number of IL-17+ γδ T cells in the lungs of infected mice. Blockade of IL-17RC abolished RSV-induced lung pathology in infected CX3CR1-deficient mice. We propose that, in infants harboring mutant CX3CR1, targeting the IL-17R may minimize disease severity and hospitalization in early life.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V Williams
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
100
|
Canedo-Marroquín G, Acevedo-Acevedo O, Rey-Jurado E, Saavedra JM, Lay MK, Bueno SM, Riedel CA, Kalergis AM. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity. Front Cell Infect Microbiol 2017; 7:367. [PMID: 28861397 PMCID: PMC5561764 DOI: 10.3389/fcimb.2017.00367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 01/27/2023] Open
Abstract
The Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F), the Glycoprotein (G), and the Small Hydrophobic (SH) protein, which are located on the virus surface. In addition, the Nucleoprotein (N), Phosphoprotein (P) large polymerase protein (L) part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M) protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2). HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.
Collapse
Affiliation(s)
- Gisela Canedo-Marroquín
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Orlando Acevedo-Acevedo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan M Saavedra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Medicina, Universidad Andres Bello, Millennium Institute on Immunology and ImmunotherapySantiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|