51
|
Zhang M, Smith JAC, Harberd NP, Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:651-9. [PMID: 27233644 DOI: 10.1007/s11103-016-0488-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
52
|
Koprivova A, Kopriva S. Hormonal control of sulfate uptake and assimilation. PLANT MOLECULAR BIOLOGY 2016; 91:617-27. [PMID: 26810064 DOI: 10.1007/s11103-016-0438-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/11/2016] [Indexed: 05/23/2023]
Abstract
Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
53
|
Liu L, Chen X. RNA Quality Control as a Key to Suppressing RNA Silencing of Endogenous Genes in Plants. MOLECULAR PLANT 2016; 9:826-36. [PMID: 27045817 PMCID: PMC5123867 DOI: 10.1016/j.molp.2016.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
RNA quality control of endogenous RNAs is an integral part of eukaryotic gene expression and often relies on exonucleolytic degradation to eliminate dysfunctional transcripts. In parallel, exogenous and selected endogenous RNAs are degraded through RNA silencing, which is a genome defense mechanism used by many eukaryotes. In plants, RNA silencing is triggered by the production of double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASEs (RDRs) and proceeds through small interfering (si) RNA-directed, ARGONAUTE (AGO)-mediated cleavage of homologous transcripts. Many studies revealed that plants avert inappropriate posttranscriptional gene silencing of endogenous coding genes by using RNA surveillance mechanisms as a safeguard to protect their transcriptome profiles. The tug of war between RNA surveillance and RNA silencing ensures the appropriate partitioning of endogenous RNA substrates among these degradation pathways. Here we review recent advances on RNA quality control and its role in the suppression of RNA silencing at endogenous genes and discuss the mechanisms underlying the crosstalk among these pathways.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
54
|
Dunning LT, Hipperson H, Baker WJ, Butlin RK, Devaux C, Hutton I, Igea J, Papadopulos AST, Quan X, Smadja CM, Turnbull CGN, Savolainen V. Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy. J Evol Biol 2016; 29:1472-87. [PMID: 27177130 PMCID: PMC6680112 DOI: 10.1111/jeb.12895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA‐Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential ‘ecological speciation genes’ and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.
Collapse
Affiliation(s)
- L T Dunning
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - H Hipperson
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - W J Baker
- Royal Botanic Gardens, Kew, Richmond, UK
| | - R K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Sven Lovén Centre for Marine Sciences, Tjärnö, University of Gothenburg, Stromstäd, Sweden
| | - C Devaux
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - I Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, Australia
| | - J Igea
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - A S T Papadopulos
- Department of Life Sciences, Imperial College London, Ascot, UK.,Royal Botanic Gardens, Kew, Richmond, UK
| | - X Quan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - C M Smadja
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - C G N Turnbull
- Department of Life Sciences, Imperial College London, London, UK
| | - V Savolainen
- Department of Life Sciences, Imperial College London, Ascot, UK.,Royal Botanic Gardens, Kew, Richmond, UK
| |
Collapse
|
55
|
Xi H, Xu H, Xu W, He Z, Xu W, Ma M. A SAL1 Loss-of-Function Arabidopsis Mutant Exhibits Enhanced Cadmium Tolerance in Association with Alleviation of Endoplasmic Reticulum Stress. PLANT & CELL PHYSIOLOGY 2016; 57:1210-9. [PMID: 27044671 DOI: 10.1093/pcp/pcw069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/27/2016] [Indexed: 05/03/2023]
Abstract
SAL1, as a negative regulator of stress response signaling, has been studied extensively for its role in plant response to environmental stresses. However, the role of SAL1 in cadmium (Cd) stress response and the underlying mechanism is still unclear. Using an Arabidopsis thaliana loss-of-function mutant of SAL1, we assessed Cd resistance and further explored the Cd toxicity mechanism through analysis of the endoplasmic reticulum (ER) stress response. The loss of SAL1 function greatly improved Cd tolerance and significantly attenuated ER stress in Arabidopsis. Exposure to Cd induced an ER stress response in Arabidopsis as evidenced by unconventional splicing of AtbZIP60 and up-regulation of ER stress-responsive genes. Damage caused by Cd was markedly reduced in the ER stress response double mutant bzip28 bzip60 or by application of the ER stress-alleviating chemical agents, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (4-PBA), in wild-type plants. The Cd-induced ER stress in Arabidopsis was also alleviated by loss of function of SAL1. These results identified SAL1 as a new component mediating Cd toxicity and established the role of the ER stress response in Cd toxicity. Additionally, the attenuated ER stress in the sal1 mutant might also shed new light on the mechanism of diverse abiotic stress resistance in the SAL1 loss-of-function mutants.
Collapse
Affiliation(s)
- Hongmei Xi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
56
|
Koprivova A, Kopriva S. Sulfation pathways in plants. Chem Biol Interact 2016; 259:23-30. [PMID: 27206694 DOI: 10.1016/j.cbi.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 11/27/2022]
Abstract
Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.
Collapse
Affiliation(s)
- Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
57
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
58
|
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:25-53. [PMID: 26735063 DOI: 10.1146/annurev-arplant-043015-111854] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Su Yin Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Peter Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Ryan McQuinn
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| |
Collapse
|
59
|
Bohrer AS, Takahashi H. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:1-31. [PMID: 27572125 DOI: 10.1016/bs.ircmb.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants utilize sulfate to synthesize primary and secondary sulfur-containing metabolites required for growth and survival in the environment. Sulfate is taken up into roots from the soil and distributed to various organs through the functions of membrane-bound sulfate transporters, while it is utilized as the primary substrate for synthesizing sulfur-containing metabolites in the sulfate assimilation pathways. Transporters and enzymes for the assimilative conversion of sulfate are regulated in highly organized manners depending on changes in sulfate supply from the environment and demand for biosynthesis of reduced sulfur compounds in the plant systems. Over the past few decades, the effect of sulfur nutrition on gene expression of sulfate transporters and assimilatory enzymes has been extensively studied with the aim of understanding the full landscape of regulatory networks.
Collapse
Affiliation(s)
- A-S Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - H Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
60
|
Kleine T, Leister D. Retrograde signaling: Organelles go networking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1313-1325. [PMID: 26997501 DOI: 10.1016/j.bbabio.2016.03.017] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 10/25/2022]
Abstract
The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
61
|
Rai AN, Tamirisa S, Rao KV, Kumar V, Suprasanna P. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 90:375-87. [PMID: 26711633 DOI: 10.1007/s11103-015-0423-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/22/2015] [Indexed: 05/24/2023]
Abstract
'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.
Collapse
Affiliation(s)
- Archana N Rai
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Srinath Tamirisa
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500007, India
| | - K V Rao
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500007, India
| | - Vinay Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - P Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
62
|
Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:592-602. [PMID: 26011089 PMCID: PMC11389020 DOI: 10.1111/pbi.12402] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 05/06/2023]
Abstract
Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Feibing Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zengzhi Si
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jinxi Huo
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lei Xing
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanyan An
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
63
|
Royo C, Carbonell-Bejerano P, Torres-Pérez R, Nebish A, Martínez Ó, Rey M, Aroutiounian R, Ibáñez J, Martínez-Zapater JM. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:259-73. [PMID: 26454283 DOI: 10.1093/jxb/erv452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seedlessness is a relevant trait in grapevine cultivars intended for fresh consumption or raisin production. Previous DNA marker analysis indicated that Corinto bianco (CB) is a parthenocarpic somatic variant of the seeded cultivar Pedro Ximenes (PX). This study compared both variant lines to determine the basis of this parthenocarpic phenotype. At maturity, CB seedless berries were 6-fold smaller than PX berries. The macrogametophyte was absent from CB ovules, and CB was also pollen sterile. Occasionally, one seed developed in 1.6% of CB berries. Microsatellite genotyping and flow cytometry analyses of seedlings generated from these seeds showed that most CB viable seeds were formed by fertilization of unreduced gametes generated by meiotic diplospory, a process that has not been described previously in grapevine. Microarray and RNA-sequencing analyses identified 1958 genes that were differentially expressed between CB and PX developing flowers. Genes downregulated in CB were enriched in gametophyte-preferentially expressed transcripts, indicating the absence of regular post-meiotic germline development in CB. RNA-sequencing was also used for genetic variant calling and 14 single-nucleotide polymorphisms distinguishing the CB and PX variant lines were detected. Among these, CB-specific polymorphisms were considered as candidate parthenocarpy-responsible mutations, including a putative deleterious substitution in a HAL2-like protein. Collectively, these results revealed that the absence of a mature macrogametophyte, probably due to meiosis arrest, coupled with a process of fertilization-independent fruit growth, caused parthenocarpy in CB. This study provides a number of grapevine parthenocarpy-responsible candidate genes and shows how genomic approaches can shed light on the genetic origin of woody crop somatic variants.
Collapse
Affiliation(s)
- Carolina Royo
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - Anna Nebish
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo. Facultad de Biología. Universidad de Vigo, 36310 Vigo, Spain
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Carretera LO-20 - salida 13, Autovía del Camino de Santiago, 26007, Spain
| |
Collapse
|
64
|
Finnegan EJ. Time-dependent stabilization of the +1 nucleosome is an early step in the transition to stable cold-induced repression of FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:875-885. [PMID: 26437570 DOI: 10.1111/tpj.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
In vernalized Arabidopsis, the extent of FLC repression and promotion of flowering are correlated with the length of winter (low temperature exposure), but how plants measure the duration of winter is unknown. Repression of FLC occurs in two phases: establishment and maintenance. This study investigates the early events in the transition between establishment and maintenance of repression. Initial repression was rapid but transient; within 24 h of being placed at low temperatures FLC transcription was reduced by 40% and repression was complete after 5 days in the cold. The extent to which repression was maintained depended on the length of the cold treatment. Occupancy of the +1 nucleosome in FLC chromatin increased in a time-dependent manner over a 4-week low temperature treatment concomitant with decreased histone acetylation and increased trimethylation of histone H3 lysine 27 (H3K27me3). Mutant analyses showed that increased nucleosome occupancy occurred independent of histone deacetylation and increased H3K27me3, suggesting that it is an early step in the switch between transient and stable repression. Both altered histone composition and deacetylation contributed to increased nucleosome occupancy. The time-dependency of the steps required for the switch between transient and stable repression suggests that the duration of winter is measured by the chromatin state at FLC. A chromatin-based switch is consistent with finding that each FLC allele in a cell undergoes this transition independently.
Collapse
Affiliation(s)
- E Jean Finnegan
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
65
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
66
|
Chen J, Wei B, Li G, Fan R, Zhong Y, Wang X, Zhang X. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. PLANTA 2015; 242:137-51. [PMID: 25893867 DOI: 10.1007/s00425-015-2290-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/09/2015] [Indexed: 05/21/2023]
Abstract
TraeALDH7B1 - 5A , encoding aldehyde dehydrogenase 7 in wheat, conferred significant drought tolerance to Arabidopsis , supported by molecular biological and physiological experiments. Drought stress significantly affects wheat yields. Aldehyde dehydrogenase (ALDH) is a family of enzymes catalyzing the irreversible conversion of aldehydes into acids to decrease the damage caused by abiotic stresses. However, no wheat ALDH member has been functionally characterized to date. Here, we obtained a differentially expressed EST encoding ALDH7 from a cDNA-AFLP library of wheat that was treated with polyethylene glycol 6000. The three full-length homologs of TraeALDH7B1 were isolated by searching the NCBI database and by homolog-based cloning method. Using nulli-tetrasomic lines we located them on wheat chromosomes 5A, 5B and 5D, and named them as TraeALDH7B1-5A, -5B and -5D, respectively. Gene expression profiles indicated that the expressions of all three genes were induced in roots, leaves, culms and spikelets under drought and salt stresses. Enzymatic activity analysis showed that TraeALDH7B1-5A had acetaldehyde dehydrogenase activity. For further functional analysis, we developed transgenic Arabidopsis lines overexpressing TraeALDH7B1-5A driven by the cauliflower mosaic virus 35S promoter. Compared with wild type Arabidopsis, 35S::TraeALDH7B1-5A plants significantly enhanced the tolerance to drought stress, which was demonstrated by up-regulation of stress responsive genes and physiological evidence of primary root length, maintenance of water retention and contents of chlorophyll and MDA. The combined results indicated that TraeALDH7B1-5A is an important drought responsive gene for genetic transformation to improve drought tolerance in crops.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
67
|
Zhao M, Gu Y, He L, Chen Q, He C. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans. BMC PLANT BIOLOGY 2015; 15:120. [PMID: 25975199 PMCID: PMC4432951 DOI: 10.1186/s12870-015-0519-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/01/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). RESULTS Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. CONCLUSIONS Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.
Collapse
Affiliation(s)
- Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
- College of Biological and Environmental Engineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
| | - Lingli He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China.
| |
Collapse
|
68
|
Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:185-193. [PMID: 25154696 DOI: 10.1016/j.plaphy.2014.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Craig W Whippo
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA; Department of Natural Science, Dickinson State University, Dickinson, ND 58601, USA
| | - Phillip A Davis
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Patricia S Springer
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
69
|
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, Zolla G, Kaye Y, Paul LK, Zhu JK, Maga G, Grafi G, Barak S. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:28-43. [PMID: 24724701 DOI: 10.1111/tpj.12533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 05/03/2023]
Abstract
DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.
Collapse
Affiliation(s)
- Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mattoo AK. Translational research in agricultural biology-enhancing crop resistivity against environmental stress alongside nutritional quality. Front Chem 2014; 2:30. [PMID: 24926479 PMCID: PMC4046571 DOI: 10.3389/fchem.2014.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
71
|
Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 2014; 15:431. [PMID: 24897929 PMCID: PMC4079960 DOI: 10.1186/1471-2164-15-431] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Background Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress. Results To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS. Conclusions Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Han SK, Wagner D. Role of chromatin in water stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2785-99. [PMID: 24302754 PMCID: PMC4110454 DOI: 10.1093/jxb/ert403] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
73
|
Shi CC, Feng CC, Yang MM, Li JL, Li XX, Zhao BC, Huang ZJ, Ge RC. Overexpression of the receptor-like protein kinase genes AtRPK1 and OsRPK1 reduces the salt tolerance of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:63-70. [PMID: 24467897 DOI: 10.1016/j.plantsci.2013.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 05/22/2023]
Abstract
AtRPK1 (AT1G69270) is a leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene in Arabidopsis thaliana. The rice gene Os07g0602700 (OsRPK1) is the homolog of AtRPK1. AtRPK1 and OsRPK1 were overexpressed and the expression of AtRPK1 was inhibited by RNAi in A. thaliana. The functional results showed that the degrees of salt tolerance of the 35S:RPK1 A. thaliana plants were significantly lower than that of the control plants. The AtRPK1-RNAi A. thaliana plants exhibited higher salt tolerance than the wild-type plants (Col). The subcellular localisation results showed that the RPK1 proteins were mainly distributed on the cell membrane and that the overexpressed AtRPK1 proteins exhibited a significantly clustered distribution. The physiological analyses revealed that the overexpression of the RPK1 genes increased the membrane permeability in the transgenic A. thaliana plants. In response to salt stress, these plants exhibited an increased Na(+) flux into the cell, which caused greater damage to the cell. The real-time quantitative PCR analysis showed that the expression of the P5CS1 gene was inhibited and the SOS signalling pathway was blocked in the 35S:AtRPK1 A. thaliana plants. These effects at least partially contribute to the salt-sensitive phenotype of the 35S:RPK1 plants.
Collapse
Affiliation(s)
- Cui-Cui Shi
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Cui-Cui Feng
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Mei-Mei Yang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jing-Lan Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Xiao-Xu Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Bao-Cun Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhan-Jing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Rong-Chao Ge
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
74
|
Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Oden S, Karampelias M, Cammue BPA, Prinsen E, Van Der Straeten D. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. MOLECULAR PLANT 2014; 7:290-310. [PMID: 23990142 DOI: 10.1093/mp/sst102] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.
Collapse
Affiliation(s)
- Qiang Zhu
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bohrer AS, Kopriva S, Takahashi H. Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:751. [PMID: 25657651 PMCID: PMC4302788 DOI: 10.3389/fpls.2014.00751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 05/03/2023]
Abstract
Plants assimilate sulfate from the environment to synthesize biologically active sulfur-containing compounds required for growth and cellular development. The primary steps of sulfur metabolism involve sequential enzymatic reactions synthesizing adenosine 5'-phosphosulfate (APS) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Recent finding suggests that an adenosine nucleotide transport system facilitating the exchange of PAPS and 3'-phosphoadenosine 5'-phosphate across the plastid envelope is essential for establishing an intimate connection between the plastidic and cytosolic sulfate assimilation pathways in plants. Subcellular partitioning and integration of metabolic pathways provide focal points for investigating metabolic flux regulations. This perspective article presents an integrative view of sulfur metabolic flux control mechanisms with an emphasis on subcellular partitioning of APS/PAPS biosynthetic pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Anne-Sophie Bohrer
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, CologneGermany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Hideki Takahashi, Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, 209 Biochemistry Building, East Lansing, MI 48824, USA e-mail:
| |
Collapse
|
76
|
|
77
|
Gašparič MB, Lenassi M, Gostinčar C, Rotter A, Plemenitaš A, Gunde-Cimerman N, Gruden K, Žel J. Insertion of a specific fungal 3'-phosphoadenosine-5'-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants. PLoS One 2013; 8:e81872. [PMID: 24349144 PMCID: PMC3857206 DOI: 10.1371/journal.pone.0081872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/20/2013] [Indexed: 01/05/2023] Open
Abstract
Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3′-phosphoadenosine-5′-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should be considered as a valuable resource for improving stress-tolerance in plant breeding in the future.
Collapse
Affiliation(s)
- Meti Buh Gašparič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| | - Cene Gostinčar
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
78
|
Ku YS, Koo NSC, Li FWY, Li MW, Wang H, Tsai SN, Sun F, Lim BL, Ko WH, Lam HM. GmSAL1 hydrolyzes inositol-1,4,5-trisphosphate and regulates stomatal closure in detached leaves and ion compartmentalization in plant cells. PLoS One 2013; 8:e78181. [PMID: 24167607 PMCID: PMC3805524 DOI: 10.1371/journal.pone.0078181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain-green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na(+) compartmentalization and therefore could partially alleviate salinity stress.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Nicolas Siu-Chung Koo
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Francisca Wing-Yen Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hongmei Wang
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Sau-Na Tsai
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| |
Collapse
|
79
|
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin. TRENDS IN PLANT SCIENCE 2013; 18:450-8. [PMID: 23701908 DOI: 10.1016/j.tplants.2013.04.006] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 05/18/2023]
Abstract
The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.
Collapse
Affiliation(s)
- Julien Lavenus
- Institut de Recherche pour le Développement (IRD), UMR DIADE (IRD/UM2), 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
81
|
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. PLANT CELL REPORTS 2013; 32:985-1006. [PMID: 23508256 DOI: 10.1007/s00299-013-1414-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.
Collapse
Affiliation(s)
- Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College Autonomous, 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| | | | | |
Collapse
|
82
|
Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease. Adv Biol Regul 2013; 52:229-38. [PMID: 22100882 DOI: 10.1016/j.advenzreg.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
|
83
|
Xiao Y, Huang X, Shen Y, Huang Z. A novel wheat α-amylase inhibitor gene, TaHPS, significantly improves the salt and drought tolerance of transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2013; 148:273-283. [PMID: 23039848 DOI: 10.1111/j.1399-3054.2012.01707.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/09/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
On the basis of microarray analyses of the salt-tolerant wheat mutant RH8706-49, a previously unreported salt-induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)-like protein], was cloned. Real-time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non-transgenic wild-type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na⁺ and guard cells took up more Ca²⁺ ions. Compared with wild-type plants, TaHPS-expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought.
Collapse
Affiliation(s)
- Yanhong Xiao
- College of Life Science of Hebei Normal University, Shijiazhuang, Hebei, China
| | | | | | | |
Collapse
|
84
|
Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. PLANT CELL REPORTS 2013; 32:839-51. [PMID: 23471417 DOI: 10.1007/s00299-013-1399-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Collapse
Affiliation(s)
- Martin Janda
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, 160 000 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Ni Z, Hu Z, Jiang Q, Zhang H. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. PLANT MOLECULAR BIOLOGY 2013; 82:113-29. [PMID: 23483290 DOI: 10.1007/s11103-013-0040-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. In this study, we identified and characterized a gene, GmNFYA3, which encodes the NF-YA subunit of the NF-Y complex in soybeans (Glycine max L.). Real time RT-PCR analysis indicated that GmNFYA3 was induced by abscisic acid (ABA) and abiotic stresses, such as polyethylene glycol, NaCl and cold. Subcellular localization analysis suggested that GmNFYA3 may activate its specific targets in the nucleus. Histochemical β-glucuronidase (GUS) staining revealed that the expression of the GUS gene driven by the GmNFYA3 promoter occurred in various transgenic Arabidopsis tissues. Coexpression in Nicotiana benthamiana and 5' RACE assays indicated that miR169 directs GmNFYA3 mRNA cleavage in vivo. Overexpression of GmNFYA3 resulted in Arabidopsis with reduced leaf water loss and enhanced drought tolerance. In addition, the transgenic Arabidopsis exhibited increased sensitivity to high salinity and exogenous ABA. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI1, ABI2) and stress-responsive genes, including RD29A and CBF3, were generally higher in GmNFYA3 plants than in wild-type controls under normal conditions. These results suggest that the GmNFYA3 gene functions in positive modulation of drought stress tolerance and has potential applications in molecular breeding to enhance drought tolerance in crops.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Base Sequence
- Cloning, Molecular
- Droughts
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Germination/drug effects
- Germination/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sodium Chloride/pharmacology
- Glycine max/drug effects
- Glycine max/genetics
- Glycine max/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Zhiyong Ni
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | |
Collapse
|
86
|
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 2013; 110:5040-5. [PMID: 23479625 DOI: 10.1073/pnas.1205001110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleotide hydrolysis is essential for many aspects of cellular function. In the case of 3',5'-bisphosphorylated nucleotides, mammals possess two related 3'-nucleotidases, Golgi-resident 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase (gPAPP) and Bisphosphate 3'-nucleotidase 1 (Bpnt1). gPAPP and Bpnt1 localize to distinct subcellular compartments and are members of a conserved family of metal-dependent lithium-sensitive enzymes. Although recent studies have demonstrated the importance of gPAPP for proper skeletal development in mice and humans, the role of Bpnt1 in mammals remains largely unknown. Here we report that mice deficient for Bpnt1 do not exhibit skeletal defects but instead develop severe liver pathologies, including hypoproteinemia, hepatocellular damage, and in severe cases, frank whole-body edema and death. Accompanying these phenotypes, we observed tissue-specific elevations of the substrate PAP, up to 50-fold in liver, repressed translation, and aberrant nucleolar architecture. Remarkably, the phenotypes of the Bpnt1 knockout are rescued by generating a double mutant mouse deficient for both PAP synthesis and hydrolysis, consistent with a mechanism in which PAP accumulation is toxic to tissue function independent of sulfation. Overall, our study defines a role for Bpnt1 in mammalian physiology and provides mechanistic insights into the importance of sulfur assimilation and cytoplasmic PAP hydrolysis to normal liver function.
Collapse
|
87
|
Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. PLANT PHYSIOLOGY 2013; 161:1202-1216. [PMID: 23296688 DOI: 10.2307/41943540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
OsTZF1 is a member of the CCCH-type zinc finger gene family in rice (Oryza sativa). Expression of OsTZF1 was induced by drought, high-salt stress, and hydrogen peroxide. OsTZF1 gene expression was also induced by abscisic acid, methyl jasmonate, and salicylic acid. Histochemical activity of β-glucuronidase in transgenic rice plants containing the promoter of OsTZF1 fused with β-glucuronidase was observed in callus, coleoptile, young leaf, and panicle tissues. Upon stress, OsTZF1-green fluorescent protein localization was observed in the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF1 driven by a maize (Zea mays) ubiquitin promoter (Ubi:OsTZF1-OX [for overexpression]) exhibited delayed seed germination, growth retardation at the seedling stage, and delayed leaf senescence. RNA interference (RNAi) knocked-down plants (OsTZF1-RNAi) showed early seed germination, enhanced seedling growth, and early leaf senescence compared with controls. Ubi:OsTZF1-OX plants showed improved tolerance to high-salt and drought stresses and vice versa for OsTZF1-RNAi plants. Microarray analysis revealed that genes related to stress, reactive oxygen species homeostasis, and metal homeostasis were regulated in the Ubi:OsTZF1-OX plants. RNA-binding assays indicated that OsTZF1 binds to U-rich regions in the 3' untranslated region of messenger RNAs, suggesting that OsTZF1 might be associated with RNA metabolism of stress-responsive genes. OsTZF1 may serve as a useful biotechnological tool for the improvement of stress tolerance in various plants through the control of RNA metabolism of stress-responsive genes.
Collapse
Affiliation(s)
- Asad Jan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. PLANT PHYSIOLOGY 2013; 161:1202-16. [PMID: 23296688 PMCID: PMC3585590 DOI: 10.1104/pp.112.205385] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/02/2013] [Indexed: 05/19/2023]
Abstract
OsTZF1 is a member of the CCCH-type zinc finger gene family in rice (Oryza sativa). Expression of OsTZF1 was induced by drought, high-salt stress, and hydrogen peroxide. OsTZF1 gene expression was also induced by abscisic acid, methyl jasmonate, and salicylic acid. Histochemical activity of β-glucuronidase in transgenic rice plants containing the promoter of OsTZF1 fused with β-glucuronidase was observed in callus, coleoptile, young leaf, and panicle tissues. Upon stress, OsTZF1-green fluorescent protein localization was observed in the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF1 driven by a maize (Zea mays) ubiquitin promoter (Ubi:OsTZF1-OX [for overexpression]) exhibited delayed seed germination, growth retardation at the seedling stage, and delayed leaf senescence. RNA interference (RNAi) knocked-down plants (OsTZF1-RNAi) showed early seed germination, enhanced seedling growth, and early leaf senescence compared with controls. Ubi:OsTZF1-OX plants showed improved tolerance to high-salt and drought stresses and vice versa for OsTZF1-RNAi plants. Microarray analysis revealed that genes related to stress, reactive oxygen species homeostasis, and metal homeostasis were regulated in the Ubi:OsTZF1-OX plants. RNA-binding assays indicated that OsTZF1 binds to U-rich regions in the 3' untranslated region of messenger RNAs, suggesting that OsTZF1 might be associated with RNA metabolism of stress-responsive genes. OsTZF1 may serve as a useful biotechnological tool for the improvement of stress tolerance in various plants through the control of RNA metabolism of stress-responsive genes.
Collapse
|
89
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
90
|
Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. PLANT MOLECULAR BIOLOGY 2013; 81:273-286. [PMID: 23242917 DOI: 10.1007/s11103-012-9997-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/06/2012] [Indexed: 05/27/2023]
Abstract
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
91
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Abstract
Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106 Address
- correspondence to e-mail:
| |
Collapse
|
93
|
Smith CM, Desai M, Land ES, Perera IY. A role for lipid-mediated signaling in plant gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:153-60. [PMID: 23258369 DOI: 10.3732/ajb.1200355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.
Collapse
Affiliation(s)
- Caroline M Smith
- Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
94
|
Arisz SA, van Wijk R, Roels W, Zhu JK, Haring MA, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. FRONTIERS IN PLANT SCIENCE 2013; 4:1. [PMID: 23346092 PMCID: PMC3551192 DOI: 10.3389/fpls.2013.00001] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented.
Collapse
Affiliation(s)
- Steven A. Arisz
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Ringo van Wijk
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Wendy Roels
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Michel A. Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- *Correspondence: Teun Munnik, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, Netherlands. e-mail:
| |
Collapse
|
95
|
Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Mol Biol Rep 2012; 40:2633-44. [PMID: 23268310 PMCID: PMC3563958 DOI: 10.1007/s11033-012-2350-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/09/2012] [Indexed: 10/27/2022]
Abstract
Protein phosphatases type 2C (PP2Cs) from group A, which includes the ABI1/HAB1 and PP2CA branches, are key negative regulators of ABA signaling. HAI-1 gene had been shown to affect both seed and vegetative responses to ABA, which is one of PP2Cs clade A in Arabidopsis thaliana. Transgenic plants containing pHAI-1::GUS (β-glucuronidase) displayed GUS activity existing in the vascular system of leave veins, stems and petioles. Green fluorescent protein fused HAI-1 (HAI-1-GFP) was found in the nucleus through transient transformation assays with onion epidermal cells. The water-loss assays indicated the loss-of-function mutants did not show symptoms of wilting and they had still turgid green rosette leaves. The assays of seed germination by exogenous ABA and NaCl manifested that the loss-of-function mutants displayed higher insensitivity than wild-type plants. Taken together, the final results suggest that the HAI-1 (AT5G59220) encoded a nuclear protein and it can be highly induced by ABA and wound in Arabidposis, the stress-tolerance phenotype showed a slightly improvement when HAI-1 gene was disrupted.
Collapse
|
96
|
Huang X, Zhang Y, Jiao B, Chen G, Huang S, Guo F, Shen Y, Huang Z, Zhao B. Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5463-5473. [PMID: 22821939 DOI: 10.1093/jxb/ers198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel gene named TaSC was cloned from salt-tolerant wheat. Northern blot showed that the expression of TaSC in salt-tolerant wheat was up-regulated after salt stress. Real-time quantitative PCR analyses showed that TaSC expression was induced by salt and ABA in wheat. Localization analysis showed that TaSC proteins were localized to the plasma membrane in transgenic Arabidopsis thaliana. The overexpression of TaSC in Col-0 and atsc (SALK_072220) Arabidopsis strains resulted in increased salt tolerance of the transgenic plants. TaSC overexpression in Col-0 and atsc significantly up-regulated the expression of AtFRY1, AtSAD1, and AtCDPK2. AtCDPK2 overexpression in atsc rescued the salt-sensitive phenotype of atsc. The TaSC gene may improve plant salt tolerance by acting via the CDPK pathway.
Collapse
Affiliation(s)
- Xi Huang
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang 050024 China
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:425-37. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/30/2022]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
98
|
Lee BR, Huseby S, Koprivova A, Chételat A, Wirtz M, Mugford ST, Navid E, Brearley C, Saha S, Mithen R, Hell R, Farmer EE, Kopriva S. Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response? PLoS One 2012; 7:e39425. [PMID: 22724014 PMCID: PMC3377649 DOI: 10.1371/journal.pone.0039425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/21/2012] [Indexed: 12/30/2022] Open
Abstract
The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5′phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3′-phosphoadenosine 5′-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism.
Collapse
Affiliation(s)
- Bok-Rye Lee
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Stine Huseby
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Plant- and Environmental Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anna Koprivova
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Markus Wirtz
- Heidelberg Institute for Plant Sciences (HIP), Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Sam T. Mugford
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Emily Navid
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Charles Brearley
- University of East Anglia, School of Biological Sciences, Norfolk, United Kingdom
| | - Shikha Saha
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Richard Mithen
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Rüdiger Hell
- Heidelberg Institute for Plant Sciences (HIP), Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Stanislav Kopriva
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
99
|
Chen H, Li Z, Xiong L. A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 2012; 586:1742-7. [PMID: 22613571 DOI: 10.1016/j.febslet.2012.05.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/30/2022]
Abstract
Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress.
Collapse
Affiliation(s)
- Hao Chen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
100
|
Surveillance of 3' Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis. G3-GENES GENOMES GENETICS 2012; 2:487-98. [PMID: 22540040 PMCID: PMC3337477 DOI: 10.1534/g3.111.001362] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/11/2012] [Indexed: 01/21/2023]
Abstract
Eukaryotes possess several RNA surveillance mechanisms that prevent undesirable aberrant RNAs from accumulating. Arabidopsis XRN2, XRN3, and XRN4 are three orthologs of the yeast 5'-to-3' exoribonuclease, Rat1/Xrn2, that function in multiple RNA decay pathways. XRN activity is maintained by FIERY1 (FRY1), which converts the XRN inhibitor, adenosine 3', 5'-bisphosphate (PAP), into 5'AMP. To identify the roles of XRNs and FRY1 in suppression of non-coding RNAs, strand-specific genome-wide tiling arrays and deep strand-specific RNA-Seq analyses were carried out in fry1 and xrn single and double mutants. In fry1-6, about 2000 new transcripts were identified that extended the 3' end of specific mRNAs; many of these were also observed in genotypes that possess the xrn3-3 mutation, a partial loss-of-function allele. Mutations in XRN2 and XRN4 in combination with xrn3-3 revealed only a minor effect on 3' extensions, indicating that these genes may be partially redundant with XRN3. We also observed the accumulation of 3' remnants of many DCL1-processed microRNA (miRNA) precursors in fry1-6 and xrn3-3. These findings suggest that XRN3, in combination with FRY1, is required to prevent the accumulation of 3' extensions that arise from thousands of mRNA and miRNA precursor transcripts.
Collapse
|