51
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
52
|
Lin D, Zhu X, Qi B, Gao Z, Tian P, Li Z, Lin Z, Zhang Y, Huang T. SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1456-1469. [PMID: 35403821 PMCID: PMC9342619 DOI: 10.1111/pbi.13824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
MiRNAs are important posttranscriptional regulators of plant development. Many miRNAs, such as the conserved miR164 species, are encoded by families of MIRNA genes, but the specific roles of individual MIRNA genes are largely undefined. Here, we characterize the functions and regulatory mechanisms of SlMIR164A, one of the primary genes of Sly-miR164, in tomato. We show that SlMIR164A is preferentially expressed at late stages of fruit development and plays a vital role in controlling fruit ripening and quality. Loss of function of SlMIR164A by CRISPR/Cas9-mediated mutagenesis results in accelerated fruit ripening and enhanced chloroplast development, which leads to altered sugar and organic acid contents and affects the nutritional quality of fruits. We also show that SlMIR164A modulates fruit ripening and quality through specific target genes, SlNAM2 and SlNAM3, which control key regulators of chloroplast function and fruit ripening processes. MIR164 genes have been shown to play conserved roles in regulating organ ageing, such as leaf senescence and fruit ripening, in a variety of plants, but whether and how their family members in tomato exert the same function remain to be elucidated. Our results reveal a previously undiscovered role of SlMIR164A in ripening control, which will further our understanding of the actions of MIR164 family, as well as the mechanisms of fruit ripening and quality control in tomato. Moreover, as loss of SlMIR164A exhibits minor impacts on organ morphology, our results can be leveraged in tomato breeding for specific manipulation of fruit ripening and quality to facilitate tomato improvement in agriculture.
Collapse
Affiliation(s)
- Dongbo Lin
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and GuangdongCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdongChina
| | - Xiaoen Zhu
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Binglin Qi
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Zhong Gao
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Peng Tian
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Zeteng Lin
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
53
|
Li Z, Gao J, Wang B, Xu J, Fu X, Han H, Wang L, Zhang W, Deng Y, Wang Y, Gong Z, Tian Y, Peng R, Yao Q. Rice carotenoid biofortification and yield improvement conferred by endosperm-specific overexpression of OsGLK1. FRONTIERS IN PLANT SCIENCE 2022; 13:951605. [PMID: 35909772 PMCID: PMC9335051 DOI: 10.3389/fpls.2022.951605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids, indispensable isoprenoid phytonutrients, are synthesized in plastids and are known to be deficient in rice endosperm. Many studies, involving transgenic manipulations of carotenoid biosynthetic genes, have been performed to obtain carotenoid-enriched rice grains. Nuclear-encoded GOLDEN2-LIKE (GLK) transcription factors play important roles in the regulation of plastid and thylakoid grana development. Here, we show that endosperm-specific overexpression of rice GLK1 gene (OsGLK1) leads to enhanced carotenoid production, increased grain yield, but deteriorated grain quality in rice. Subsequently, we performed the bioengineering of carotenoids biosynthesis in rice endosperm by introducing other three carotenogenic genes, tHMG1, ZmPSY1, and PaCrtI, which encode the enzymes truncated 3-hydroxy-3-methylglutaryl-CoA reductase, phytoene synthase, and phytoene desaturase, respectively. Transgenic overexpression of all four genes (OsGLK1, tHMG1, ZmPSY1, and PaCrtI) driven by rice endosperm-specific promoter GluB-1 established a mini carotenoid biosynthetic pathway in the endosperm and exerted a roughly multiplicative effect on the carotenoid accumulation as compared with the overexpression of only three genes (tHMG1, ZmPSY1, and PaCrtI). In addition, the yield enhancement and quality reduction traits were also present in the transgenic rice overexpressing the selected four genes. Our results revealed that OsGLK1 confers favorable characters in rice endosperm and could help to refine strategies for the carotenoid and other plastid-synthesized micronutrient fortification in bioengineered plants.
Collapse
|
54
|
Zheng X, Yuan Y, Huang B, Hu X, Tang Y, Xu X, Wu M, Gong Z, Luo Y, Gong M, Gao X, Wu G, Zhang Q, Zhang L, Chan H, Zhu B, Li Z, Ferguson L, Deng W. Control of fruit softening and Ascorbic acid accumulation by manipulation of SlIMP3 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1213-1225. [PMID: 35258157 PMCID: PMC9129080 DOI: 10.1111/pbi.13804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/25/2022] [Indexed: 05/29/2023]
Abstract
Postharvest deterioration is among the major challenges for the fruit industry. Regulation of the fruit softening rate is an effective strategy for extending shelf-life and reducing the economic losses due postharvest deterioration. The tomato myoinositol monophosphatase 3 gene SlIMP3, which showed highest expression level in fruit, was expressed and purified. SlIMP3 demonstrated high affinity with the L-Gal 1-P and D-Ins 3-P, and acted as a bifunctional enzyme in the biosynthesis of AsA and myoinositol. Overexpression of SlIMP3 not only improved AsA and myoinositol content, but also increased cell wall thickness, improved fruit firmness, delayed fruit softening, decreased water loss, and extended shelf-life. Overexpression of SlIMP3 also increased uronic acid, rhamnose, xylose, mannose, and galactose content in cell wall of fruit. Treating fruit with myoinositol obtained similar fruit phenotypes of SlIMP3-overexpressed fruit, with increased cell wall thickness and delayed fruit softening. Meanwhile, overexpression of SlIMP3 conferred tomato fruit tolerance to Botrytis cinerea. The function of SlIMP3 in cell wall biogenesis and fruit softening were also verified using another tomato species, Ailsa Craig (AC). Overexpression of SlDHAR in fruit increased AsA content, but did not affect the cell wall thickness or fruit firmness and softening. The results support a critical role for SlIMP3 in AsA biosynthesis and cell wall biogenesis, and provide a new method of delaying tomato fruit softening, and insight into the link between AsA and cell wall metabolism.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yuwei Tang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Xueli Gao
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Lu Zhang
- Department of Horticulture and Landscape ArchitectureOklahoma State UniversityStillwaterOKUSA
| | - Helen Chan
- Department of Plant SciencesUniversity of California Davis, One Shields AvenueDavisCAUSA
| | - Benzhong Zhu
- Laboratory of Fruit BiologyCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California Davis, One Shields AvenueDavisCAUSA
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
55
|
Wang L, Tang X, Zhang S, Xie X, Li M, Liu Y, Wang S. Tea GOLDEN2- LIKE genes enhance catechin biosynthesis through activating R2R3-MYB transcription factor. HORTICULTURE RESEARCH 2022; 9:uhac117. [PMID: 35937860 PMCID: PMC9347013 DOI: 10.1093/hr/uhac117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The biosynthesis of catechins, a major type of flavonoids accumulated in tea, is mediated by developmental cues and environmental stimuli. Light enhances but shading treatment reduces catechin accumulation in tea leaves. However, the transcription factors involved in light-mediated catechin biosynthesis remain to be identified. Two GOLDEN2 LIKE genes from tea plant (CsGLK1 and CsGLK2) were isolated and characterized in both tomato and tea plants. Transcripts of both CsGLK1 and CsGLK2 were affected by light intensity in tea plants. Overexpression of CsGLK1 and CsGLK2 promoted chloroplast development and carotenoid accumulation in tomato fruits. An integrated metabolomic and transcriptomic approach revealed that both catechin content and related biosynthetic genes were upregulated in CsGLK-overexpressing tomato leaves. Our further studies in tea plants indicated that CsGLKs directly regulate the transcription of CsMYB5b, a transcription factor involved in catechin biosynthesis. Suppression of CsGLKs in tea leaves led to the reduction of both CsMYB5b expression and catechin accumulation. Taken together, the results show that CsGLKs are involved in light-regulated catechin accumulation in tea plants by regulating expression of CsMYB5b and have great potential for enhancing the accumulation of both carotenoids and flavonoids in fruits of horticultural crops.
Collapse
Affiliation(s)
- Lihuan Wang
- School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Shiqiang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Xiang Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009 China
| | - Mengfei Li
- School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | | | | |
Collapse
|
56
|
Yuan Y, Ren S, Liu X, Su L, Wu Y, Zhang W, Li Y, Jiang Y, Wang H, Fu R, Bouzayen M, Liu M, Zhang Y. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. THE NEW PHYTOLOGIST 2022; 234:164-178. [PMID: 35048386 DOI: 10.1111/nph.17977] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Carotenoids are vital phytonutrients widely recognised for their health benefits. Therefore, it is vital to thoroughly investigate the metabolic regulatory network underlying carotenoid biosynthesis and accumulation to open new leads towards improving their contents in vegetables and crops. The outcome of our study defines SlWRKY35 as a positive regulator of carotenoid biosynthesis in tomato. SlWRKY35 can directly activate the expression of the 1-deoxy-d-xylulose 5-phosphate synthase (SlDXS1) gene to reprogramme metabolism towards the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, leading to enhanced carotenoid accumulation. We also show that the master regulator SlRIN directly regulates the expression of SlWRKY35 during tomato fruit ripening. Compared with the SlLCYE overexpression lines, coexpression of SlWRKY35 and SlLCYE can further enhance lutein production in transgenic tomato fruit, indicating that SlWRKY35 represents a potential target towards designing innovative metabolic engineering strategies for carotenoid derivatives. In addition to providing new insights into the metabolic regulatory network associated with tomato fruit ripening, our data define a new tool for improving fruit content in specific carotenoid compounds.
Collapse
Affiliation(s)
- Yong Yuan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Siyan Ren
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liyang Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wen Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Yidan Jiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mondher Bouzayen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- GBF, University of Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
57
|
Wang ZY, Zhao S, Liu JF, Zhao HY, Sun XY, Wu TR, Pei T, Wang Y, Liu QF, Yang HH, Zhang H, Jiang JB, Li JF, Zhao TT, Xu XY. Genome-wide identification of Tomato Golden 2-Like transcription factors and abiotic stress related members screening. BMC PLANT BIOLOGY 2022; 22:82. [PMID: 35196981 PMCID: PMC8864820 DOI: 10.1186/s12870-022-03460-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND Golden 2-Like (G2-like) transcription factors play an important role in plant development. However, the roles of these G2-like regulatory genes in response to abiotic stresses in tomato are not well understood. RESULTS In this study, we identified 66 putative G2-like genes in tomato (Solanum lycopersicum) and classified them into 5 groups (I to V) according to gene structure, motif composition and phylogenetic analysis. The G2-like genes were unevenly distributed across all 12 chromosomes. There were nine pairs of duplicated gene segments and four tandem duplicated SlGlk genes. Analysis of the cis-regulatory elements (CREs) showed that the promoter regions of SlGlks contain many kinds of stress- and hormone-related CREs. Based on RNA-seq, SlGlks were expressed in response to three abiotic stresses. Thirty-six differentially expressed SlGlks were identified; these genes have multiple functions according to Gene Ontology (GO) analysis and are enriched mainly in the zeatin biosynthesis pathway. Further studies exhibited that silencing SlGlk16 in tomato would reduce drought stress tolerance by earlier wilted, lower superoxide dismutase (SOD), peroxidase (POD) activities, less Pro contents and more MDA contents. CONCLUSIONS Overall, the results of this study provide comprehensive information on G2-like transcription factors and G2-like genes that may be expressed in response to abiotic stresses.
Collapse
Affiliation(s)
- Zi-yu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Shuang Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jun-fang Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Hai-yan Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Xu-ying Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Tai-ru Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Tong Pei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Yue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Qi-feng Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Huan-huan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - He Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jing-bin Jiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jing-fu Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Ting-ting Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Xiang-yang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| |
Collapse
|
58
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
59
|
Yeh SY, Lin HH, Chang YM, Chang YL, Chang CK, Huang YC, Ho YW, Lin CY, Zheng JZ, Jane WN, Ng CY, Lu MY, Lai IL, To KY, Li WH, Ku MSB. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. PLANT PHYSIOLOGY 2022; 188:442-459. [PMID: 34747472 PMCID: PMC9049120 DOI: 10.1093/plphys/kiab511] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.
Collapse
Affiliation(s)
- Su-Ying Yeh
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Hsin-Hung Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Horticulture and Biotechnology,
Chinese Culture University, Taipei 11114, Taiwan
| | - Yao-Ming Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia
Sinica, Taipei 11529, Taiwan
| | - Yu-Lun Chang
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Chao-Kang Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Cin Huang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Wen Ho
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Chu-Yin Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Jun-Ze Zheng
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Chun-Yeung Ng
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National
Pingtung University of Science and Technology, Pingtung 912,
Taiwan
| | - Kin-Ying To
- Agricultural Biotechnology Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Ecology and Evolution, University of
Chicago, Chicago, Illinois 60637, USA
| | - Maurice S B Ku
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
- School of Biological Sciences, Washington State
University, Pullman, Washington 99164, USA
| |
Collapse
|
60
|
Oren E, Tzuri G, Dafna A, Rees ER, Song B, Freilich S, Elkind Y, Isaacson T, Schaffer AA, Tadmor Y, Burger J, Buckler ES, Gur A. QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon Recombinant Inbred Lines population supported by de novo assembly of their parental genomes. HORTICULTURE RESEARCH 2022; 9:uhab081. [PMID: 35043206 PMCID: PMC8968493 DOI: 10.1093/hr/uhab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation. Using Recombinant Inbred Lines (RILs) population derived from the parental lines "Dulce" (reticulatus, climacteric) and "Tam Dew" (inodorus, non-climacteric) that vary in earliness and ripening traits, we mapped QTLs for ethylene emission, fruit firmness and days to flowering and maturity. To further annotate the main QTL intervals and identify candidate genes, we used Oxford Nanopore long-read sequencing in combination with Illumina short-read resequencing, to assemble the parental genomes de-novo. In addition to 2.5 million genome-wide SNPs and short InDels detected between the parents, we also highlight here the structural variation between these lines and the reference melon genome. Through systematic multi-layered prioritization process, we identified 18 potential polymorphisms in candidate genes within multi-trait QTLs. The associations of selected SNPs with earliness and ripening traits were further validated across a panel of 177 diverse melon accessions and across a diallel population of 190 F1 hybrids derived from a core subset of 20 diverse parents. The combination of advanced genomic tools with diverse germplasm and targeted mapping populations is demonstrated as a way to leverage forward genetics strategies to dissect complex horticulturally important traits.
Collapse
Affiliation(s)
- Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Evan R Rees
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Baoxing Song
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Shiri Freilich
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yonatan Elkind
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
61
|
Aiese Cigliano R, Aversano R, Di Matteo A, Palombieri S, Termolino P, Angelini C, Bostan H, Cammareri M, Consiglio FM, Della Ragione F, Paparo R, Valkov VT, Vitiello A, Carputo D, Chiusano ML, D’Esposito M, Grandillo S, Matarazzo MR, Frusciante L, D’Agostino N, Conicella C. Multi-omics data integration provides insights into the post-harvest biology of a long shelf-life tomato landrace. HORTICULTURE RESEARCH 2022; 9:uhab042. [PMID: 35039852 PMCID: PMC8801724 DOI: 10.1093/hr/uhab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
In this study we investigated the transcriptome and epigenome dynamics of the tomato fruit during post-harvest in a landrace belonging to a group of tomatoes (Solanum lycopersicum L.) collectively known as "Piennolo del Vesuvio", all characterized by a long shelf-life. Expression of protein-coding genes and microRNAs as well as DNA methylation patterns and histone modifications were analysed in distinct post-harvest phases. Multi-omics data integration contributed to the elucidation of the molecular mechanisms underlying processes leading to long shelf-life. We unveiled global changes in transcriptome and epigenome. DNA methylation increased and the repressive histone mark H3K27me3 was lost as the fruit progressed from red ripe to 150 days post-harvest. Thousands of genes were differentially expressed, about half of which were potentially epi-regulated as they were engaged in at least one epi-mark change in addition to being microRNA targets in ~5% of cases. Down-regulation of the ripening regulator MADS-RIN and of genes involved in ethylene response and cell wall degradation was consistent with the delayed fruit softening. Large-scale epigenome reprogramming that occurred in the fruit during post-harvest likely contributed to delayed fruit senescence.
Collapse
Affiliation(s)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Samuela Palombieri
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Claudia Angelini
- Institute for Applied Calculus, National Research Council of Italy, Via P. Castellino 111, 80131, Napoli
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Maria Cammareri
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Federica Maria Consiglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council of Italy, Via P. Castellino 111, 80131, Napoli
| | - Rosa Paparo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Napoli, Italy
| | - Antonella Vitiello
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council of Italy, Via P. Castellino 111, 80131, Napoli
| | - Silvana Grandillo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| | - Maria Rosaria Matarazzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council of Italy, Via P. Castellino 111, 80131, Napoli
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita’ 100, 80055 Portici, Italy
| | - Clara Conicella
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Universita` 133, 80055 Portici, Italy
| |
Collapse
|
62
|
Dong C, Wang J, Hu Y, Xiao W, Hu H, Xie J. Analyses of key gene networks controlling carotenoid metabolism in Xiangfen 1 banana. BMC PLANT BIOLOGY 2022; 22:34. [PMID: 35038993 PMCID: PMC8762954 DOI: 10.1186/s12870-021-03415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Banana fruits are rich in various high-value metabolites and play a key role in the human diet. Of these components, carotenoids have attracted considerable attention due to their physiological role and human health care functions. However, the accumulation patterns of carotenoids and genome-wide analysis of gene expression during banana fruit development have not been comprehensively evaluated. RESULTS In the present study, an integrative analysis of metabolites and transcriptome profiles in banana fruit with three different development stages was performed. A total of 11 carotenoid compounds were identified, and most of these compounds showed markedly higher abundances in mature green and/or mature fruit than in young fruit. Results were linked to the high expression of carotenoid synthesis and regulatory genes in the middle and late stages of fruit development. Co-expression network analysis revealed that 79 differentially expressed transcription factor genes may be responsible for the regulation of LCYB (lycopene β-cyclase), a key enzyme catalyzing the biosynthesis of α- and β-carotene. CONCLUSIONS Collectively, the study provided new insights into the understanding of dynamic changes in carotenoid content and gene expression level during banana fruit development.
Collapse
Affiliation(s)
- Chen Dong
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Jiuxiang Wang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Yulin Hu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Weijun Xiao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Huigang Hu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China.
| | - Jianghui Xie
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China.
| |
Collapse
|
63
|
Liu Z, Xiong T, Zhao Y, Qiu B, Chen H, Kang X, Yang J. Genome-wide characterization and analysis of Golden 2-Like transcription factors related to leaf chlorophyll synthesis in diploid and triploid Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:952877. [PMID: 35968152 PMCID: PMC9366356 DOI: 10.3389/fpls.2022.952877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 05/02/2023]
Abstract
Golden 2-Like (GLK) transcription factors play a crucial role in chloroplast development and chlorophyll synthesis in many plant taxa. To date, no systematic analysis of GLK transcription factors in tree species has been conducted. In this study, 40 EgrGLK genes in the Eucalyptus grandis genome were identified and divided into seven groups based on the gene structure and motif composition. The EgrGLK genes were mapped to 11 chromosomes and the distribution of genes on chromosome was uneven. Phylogenetic analysis of GLK proteins between E. grandis and other species provided information for the high evolutionary conservation of GLK genes among different species. Prediction of cis-regulatory elements indicated that the EgrGLK genes were involved in development, light response, and hormone response. Based on the finding that the content of chlorophyll in mature leaves was the highest, and leaf chlorophyll content of triploid Eucalyptus urophylla was higher than that of the diploid control, EgrGLK expression pattern in leaves of triploid and diploid E. urophylla was examined by means of transcriptome analysis. Differential expression of EgrGLK genes in leaves of E. urophylla of different ploidies was consistent with the trend in chlorophyll content. To further explore the relationship between EgrGLK expression and chlorophyll synthesis, co-expression networks were generated, which indicated that EgrGLK genes may have a positive regulatory relationship with chlorophyll synthesis. In addition, three EgrGLK genes that may play an important role in chlorophyll synthesis were identified in the co-expression networks. And the prediction of miRNAs targeting EgrGLK genes showed that miRNAs might play an important role in the regulation of EgrGLK gene expression. This research provides valuable information for further functional characterization of GLK genes in Eucalyptus.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tao Xiong
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Hao Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- *Correspondence: Jun Yang,
| |
Collapse
|
64
|
Zhang L, Qian J, Han Y, Jia Y, Kuang H, Chen J. Alternative splicing triggered by the insertion of a CACTA transposon attenuates LsGLK and leads to the development of pale-green leaves in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:182-195. [PMID: 34724596 DOI: 10.1111/tpj.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most important vegetable crops in the world. As a leafy vegetable, the polymorphism of lettuce leaves from dark to pale green is an important trait. However, the genetic and molecular mechanisms underlying such variations remain poorly understood. In this study, one major locus controlling the polymorphism of dark- and pale-green leaves in lettuce was identified using genome-wide association studies (GWAS). This locus was then fine mapped to an interval of 5375 bp on chromosome 4 using a segregating population containing 2480 progeny. Only one gene, homologous to the GLK genes in Arabidopsis and other plants, is present in the candidate region. A complementation test confirmed that the candidate gene, LsGLK, contributes to the variation of dark- and pale-green leaves. Sequence analysis showed that a CACTA transposon of 7434 bp was inserted 10 bp downstream of the stop codon of LsGLK, followed by a duplication of a 1826-bp fragment covering exons 3-6 of the LsGLK gene. The transposon insertion did not change the expression level of the LsGLK gene. However, because of alternative splicing, only 6% of the transcripts produced from the transposon insertion were wild-type transcripts, which led to the production of pale-green leaves. An evolutionary analysis revealed that the insertion of the CACTA transposon occurred in cultivated lettuce and might have been selected in particular cultivars to satisfy the diverse demands of consumers. In this study, we demonstrated that a transposon insertion near a gene may affect its splicing and consequently generate phenotypic variations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jinlong Qian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yuting Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
65
|
Shi Y, Pang X, Liu W, Wang R, Su D, Gao Y, Wu M, Deng W, Liu Y, Li Z. SlZHD17 is involved in the control of chlorophyll and carotenoid metabolism in tomato fruit. HORTICULTURE RESEARCH 2021; 8:259. [PMID: 34848692 PMCID: PMC8632997 DOI: 10.1038/s41438-021-00696-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 05/19/2023]
Abstract
Chlorophylls and carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality. In a previous study, we identified an R2R3-MYB transcription factor, SlMYB72, that plays an important role in chlorophyll and carotenoid metabolism in tomato fruit. Here, we demonstrated that the SlMYB72-interacting protein SlZHD17, which belongs to the zinc-finger homeodomain transcription factor family, also functions in chlorophyll and carotenoid metabolism. Silencing SlZHD17 in tomato improved multiple beneficial agronomic traits, including dwarfism, accelerated flowering, and earlier fruit harvest. More importantly, downregulating SlZHD17 in fruits resulted in larger chloroplasts and a higher chlorophyll content. Dual-luciferase, yeast one-hybrid and electrophoretic mobility shift assays clarified that SlZHD17 regulates the chlorophyll biosynthesis gene SlPOR-B and chloroplast developmental regulator SlTKN2 in a direct manner. Chlorophyll degradation and plastid transformation were also retarded after suppression of SlZHD17 in fruits, which was caused by the inhibition of SlSGR1, a crucial factor in chlorophyll degradation. On the other hand, the expression of the carotenoid biosynthesis genes SlPSY1 and SlZISO was also suppressed and directly regulated by SlZHD17, which induced uneven pigmentation and decreased the lycopene content in fruits with SlZHD17 suppression at the ripe stage. Furthermore, the protein-protein interactions between SlZHD17 and other pigment regulators, including SlARF4, SlBEL11, and SlTAGL1, were also presented. This study provides new insight into the complex pigment regulatory network and provides new options for breeding strategies aiming to improve fruit quality.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Xiaoqin Pang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wenjing Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Rui Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yushuo Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
66
|
Zhao Z, Shuang J, Li Z, Xiao H, Liu Y, Wang T, Wei Y, Hu S, Wan S, Peng R. Identification of the Golden-2-like transcription factors gene family in Gossypium hirsutum. PeerJ 2021; 9:e12484. [PMID: 34820202 PMCID: PMC8603818 DOI: 10.7717/peerj.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.
Collapse
Affiliation(s)
- Zilin Zhao
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| | - Jiaran Shuang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, China
| | - Huimin Xiao
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shoulin Hu
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Sumei Wan
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Renhai Peng
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| |
Collapse
|
67
|
Ma L, Liu Z, Cheng Z, Gou J, Chen J, Yu W, Wang P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2021; 12:716772. [PMID: 34659288 PMCID: PMC8517133 DOI: 10.3389/fpls.2021.716772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/26/2021] [Indexed: 05/24/2023]
Abstract
Peel color is an important factor affecting commodity quality in vegetables; however, the genes controlling this trait remain unclear in wax gourd. Here, we used two F2 genetic segregation populations to explore the inheritance patterns and to clone the genes associated with green and white skin in wax gourd. The F2 and BC1 trait segregation ratios were 3:1 and 1:1, respectively, and the trait was controlled by nuclear genes. Bulked segregant analysis of both F2 plants revealed peaks on Chr5 exceeding the confidence interval. Additionally, 6,244 F2 plants were used to compress the candidate interval into a region of 179 Kb; one candidate gene, Bch05G003950 (BhAPRR2), encoding two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2), which is involved in the regulation of peel color, was present in this interval. Two bases (GA) present in the coding sequence of BhAPRR2 in green-skinned wax gourd were absent from white-skinned wax gourd. The latter contained a frameshift mutation, a premature stop codon, and lacked 335 residues required for the protein functional region. The chlorophyll content and BhAPRR2 expression were significantly higher in green-skinned than in white-skinned wax gourd. Thus, BhAPRR2 may regulate the peel color of wax gourd. This study provides a theoretical foundation for further studies of the mechanism of gene regulation for the fruit peel color of wax gourd.
Collapse
Affiliation(s)
- Lianlian Ma
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhikui Cheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiquan Gou
- College of Agriculture, Guangxi University, Nanning, China
| | - Jieying Chen
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
68
|
Taketa S, Hattori M, Takami T, Himi E, Sakamoto W. Mutations in a�Golden2-Like�Gene Cause Reduced Seed Weight in�Barley�albino lemma 1�Mutants. PLANT & CELL PHYSIOLOGY 2021; 62:447-457. [PMID: 33439257 DOI: 10.1093/pcp/pcab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The albino lemma 1 (alm1) mutants of barley (Hordeum vulgare L.) exhibit obvious chlorophyll-deficient hulls. Hulls are seed-enclosing tissues on the spike, consisting of the lemma and palea. The alm1 phenotype is also expressed in the pericarp, culm nodes and basal leaf sheaths, but leaf blades and awns are normal green. A single recessive nuclear gene controls tissue-specific alm1 phenotypic expression. Positional cloning revealed that the ALM1 gene encodes a Golden 2-like (GLK) transcription factor, HvGLK2, belonging to the GARP subfamily of Myb transcription factors. This finding was validated by genetic evidence indicating that all 10 alm1 mutants studied had a lesion in functionally important regions of HvGLK2, including the three alpha-helix domains, an AREAEAA motif and the GCT box. Transmission electron microscopy revealed that, in lemmas of the alm1.g mutant, the chloroplasts lacked thylakoid membranes, instead of stacked thylakoid grana in wild-type chloroplasts. Compared with wild type, alm1.g plants showed similar levels of leaf photosynthesis but reduced spike photosynthesis by 34%. The alm1.g mutant and the alm1.a mutant showed a reduction in 100-grain weight by 15.8% and 23.1%, respectively. As in other plants, barley has HvGLK2 and a paralog, HvGLK1. In flag leaves and awns, HvGLK2 and HvGLK1 are expressed at moderate levels, but in hulls, HvGLK1 expression was barely detectable compared with HvGLK2. Barley alm1/Hvglk2 mutants exhibit more severe phenotypes than glk2 mutants of other plant species reported to date. The severe alm1 phenotypic expression in multiple tissues indicates that HvGLK2 plays some roles that are nonredundant with HvGLK1.
Collapse
Affiliation(s)
- Shin Taketa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Momoko Hattori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
69
|
Aono Y, Asikin Y, Wang N, Tieman D, Klee H, Kusano M. High-Throughput Chlorophyll and Carotenoid Profiling Reveals Positive Associations with Sugar and Apocarotenoid Volatile Content in Fruits of Tomato Varieties in Modern and Wild Accessions. Metabolites 2021; 11:metabo11060398. [PMID: 34207208 PMCID: PMC8233878 DOI: 10.3390/metabo11060398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Flavor and nutritional quality has been negatively impacted during the course of domestication and improvement of the cultivated tomato (Solanum lycopersicum). Recent emphasis on consumers has emphasized breeding strategies that focus on flavor-associated chemicals, including sugars, acids, and aroma compounds. Carotenoids indirectly affect flavor as precursors of aroma compounds, while chlorophylls contribute to sugar production through photosynthesis. However, the relationships between these pigments and flavor content are still unclear. In this study, we developed a simple and high-throughput method to quantify chlorophylls and carotenoids. This method was applied to over one hundred tomato varieties, including S. lycopersicum and its wild relatives (S. l. var. cerasiforme and S. pimpinellifolium), for quantification of these pigments in fruits. The results obtained by integrating data of the pigments, soluble solids, sugars, and aroma compounds indicate that (i) chlorophyll-abundant varieties have relatively higher sugar accumulations and (ii) prolycopene is associated with an abundance of linear carotenoid-derived aroma compounds in one of the orange-fruited varieties, "Dixie Golden Giant". Our results suggest the importance of these pigments not only as components of fruit color but also as factors influencing flavor traits, such as sugars and aroma.
Collapse
Affiliation(s)
- Yusuke Aono
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan;
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan;
| | - Ning Wang
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Denise Tieman
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; (D.T.); (H.K.)
| | - Harry Klee
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; (D.T.); (H.K.)
| | - Miyako Kusano
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan;
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
- Correspondence:
| |
Collapse
|
70
|
Liu G, Yu H, Yuan L, Li C, Ye J, Chen W, Wang Y, Ge P, Zhang J, Ye Z, Zhang Y. SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. HORTICULTURE RESEARCH 2021; 8:128. [PMID: 34059638 PMCID: PMC8166902 DOI: 10.1038/s41438-021-00563-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 05/12/2023]
Abstract
In plants, chloroplasts are the sites at which photosynthesis occurs, and an increased abundance of chloroplasts increases the nutritional quality of plants and the resultant color of fruits. However, the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in tomato fruits remain unknown. In this study, we isolated a chlorophyll-deficient mutant, reduced chlorophyll mutant 1 (rcm1), by ethylmethanesulfonate mutagenesis; this mutant produced yellowish fruits with altered chloroplast development. MutMap revealed that Solyc08g005010 is the causal gene underlying the rcm1 mutant phenotype. A single-nucleotide base substitution in the second exon of SlRCM1 results in premature termination of its translated protein. SlRCM1 encodes a chloroplast-targeted metalloendopeptidase that is orthologous to the BCM1 protein of Arabidopsis and the stay-green G protein of soybean (Glycine max L. Merr.). Notably, the yellowish phenotype of the lutescent1 mutant can be restored with the allele of SlRCM1 from wild-type tomato. In contrast, knockout of SlRCM1 by the CRISPR/Cas9 system in Alisa Craig yielded yellowish fruits at the mature green stage, as was the case for lutescent1. Amino acid sequence alignment and functional complementation assays showed that SlRCM1 is indeed Lutescent1. These findings provide new insights into the regulation of chloroplast development in tomato fruits.
Collapse
Affiliation(s)
- Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Pingfei Ge
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
71
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
72
|
Chattopadhyay T, Hazra P, Akhtar S, Maurya D, Mukherjee A, Roy S. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. PLANT CELL REPORTS 2021; 40:767-782. [PMID: 33388894 DOI: 10.1007/s00299-020-02650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 05/22/2023]
Abstract
The genetics underlying the fruit colour variation in tomato is an interesting area of both basic and applied research in plant biology. There are several factors, like phytohormones, environmental signals and epistatic interactions between genes, which modulate the ripe fruit colour in tomato. However, three aspects: genetic regulation of skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation in tomato fruits are of pivotal importance. Different genes along with their mutant alleles governing the aforementioned characters have been characterized in detail. Moreover, the interaction of these mutant alleles has been explored, which has paved the way for developing novel tomato genotypes with unique fruit colour and beneficial phytonutrient composition. In this article, we review the genes and the corresponding mutant alleles underlying the variation in tomato skin pigmentation, carotenoid biosynthesis and ripening-associated chlorophyll degradation. The possibility of generating novel fruit colour-variants using different combinations of these mutant alleles is documented. Furthermore, the involvement of some other mutant alleles (like those governing purple fruit colour and high fruit pigmentation), not belonging to the aforementioned three categories, are discussed in brief. The simplified representation of the assembled information in this article should not only help a broad range of readers in their basic understanding of this complex phenomenon but also trigger them for further exploration of the same. The article would be useful for genetic characterization of fruit colour-variants and molecular breeding for fruit colour improvement in tomato using the well-characterized mutant alleles.
Collapse
Affiliation(s)
- Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Pranab Hazra
- Department of Vegetable Science, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shirin Akhtar
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Deepak Maurya
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Arnab Mukherjee
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Sheuli Roy
- Alumna, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- Bihar Agricultural College, Bihar Agricultural University, Qtr. No. C1/14, Sabour, Bhagalpur, Bihar, 813210, India
| |
Collapse
|
73
|
Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:941-958. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | | | - Grazieli B Pascoal
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, USP, São Paulo, Brazil
- Curso de Graduação em Nutrição, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Cláudia M Furlan
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, USP, São Paulo, Brazil
| | - José M Palma
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Universidade de São Paulo, USP, São Paulo, Brazil
| |
Collapse
|
74
|
Chen C, Zhou G, Chen J, Liu X, Lu X, Chen H, Tian Y. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber. Int J Mol Sci 2021; 22:ijms22031494. [PMID: 33540857 PMCID: PMC7867363 DOI: 10.3390/ijms22031494] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.
Collapse
Affiliation(s)
- Chen Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Juan Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
| | - Huiming Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| |
Collapse
|
75
|
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:615942. [PMID: 33584756 PMCID: PMC7876081 DOI: 10.3389/fpls.2020.615942] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/28/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Qing-Hua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng Bai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
76
|
Rutley N, Miller G, Wang F, Harper JF, Miller G, Lieberman-Lazarovich M. Enhanced Reproductive Thermotolerance of the Tomato high pigment 2 Mutant Is Associated With Increased Accumulation of Flavonols in Pollen. FRONTIERS IN PLANT SCIENCE 2021; 12:672368. [PMID: 34093629 PMCID: PMC8171326 DOI: 10.3389/fpls.2021.672368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Golan Miller
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
| | - Fengde Wang
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
- *Correspondence: Michal Lieberman-Lazarovich,
| |
Collapse
|
77
|
McQuinn RP, Gapper NE, Gray AG, Zhong S, Tohge T, Fei Z, Fernie AR, Giovannoni JJ. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2210-2224. [PMID: 32171044 PMCID: PMC7589306 DOI: 10.1111/pbi.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 05/20/2023]
Abstract
Spontaneous mutations in fruit-specific carotenoid biosynthetic genes of tomato (Solanum lycopersicum) have led to improved understanding of ripening-associated carotenogenesis. Here, we confirm that ZDS is encoded by a single gene in tomato transcriptionally regulated by ripening transcription factors RIN, NOR and ethylene. Manipulation of ZDS was achieved through transgenic repression and heterologous over-expression in tomato. CaMV 35S-driven RNAi repression inhibited carotenoid biosynthesis in all aerial tissues examined resulting in elevated levels of ζ-carotene isomers and upstream carotenoids, while downstream all trans-lycopene and subsequent photoprotective carotenes and xanthophylls were diminished. Consequently, immature fruit displayed photo-bleaching consistent with reduced levels of the photoprotective carotenes and developmental phenotypes related to a reduction in the carotenoid-derived phytohormone abscisic acid (ABA). ZDS-repressed ripe fruit was devoid of the characteristic red carotenoid, all trans-lycopene and displayed brilliant yellow pigmentation due to elevated 9,9' di-cis-ζ-carotene. Over-expression of the Arabidopsis thaliana ZDS (AtZDS) gene bypassed endogenous co-suppression and revealed ZDS as an additional bottleneck in ripening-associated carotenogenesis of tomato. Quantitation of carotenoids in addition to multiple ripening parameters in ZDS-altered lines and ABA-deficient fruit-specific carotenoid mutants was used to separate phenotypic consequences of ABA from other effects of ZDS manipulation and reveal a unique and dynamic ζ-carotene isomer profile in ripe fruit.
Collapse
Affiliation(s)
- Ryan P. McQuinn
- Department of Plant BiologyCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
- Present address:
Australian Research Council Centre of Excellence in Plant Energy BiologyResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Nigel E. Gapper
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Amanda G. Gray
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Silin Zhong
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Takayuki Tohge
- Max‐Planck‐Institut fur Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut fur Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - James J. Giovannoni
- Department of Plant BiologyCornell UniversityIthacaNYUSA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
- Robert W. Holley Center for Agriculture and HealthUSDA‐ARSCornell UniversityIthacaNYUSA
| |
Collapse
|
78
|
Alves FRR, Lira BS, Pikart FC, Monteiro SS, Furlan CM, Purgatto E, Pascoal GB, Andrade SCDS, Demarco D, Rossi M, Freschi L. Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2027-2041. [PMID: 32068963 PMCID: PMC7540714 DOI: 10.1111/pbi.13362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 05/30/2023]
Abstract
Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr252 -to-His PHYB2 mutant version (PHYB2Y252H ) significantly enhances the accumulation of multiple health-promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2Y252H -overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2Y252H -overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild-type and PHYB2-overexpressing lines. The impacts of PHYB2 or PHYB2Y252H overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation-based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits.
Collapse
Affiliation(s)
- Frederico Rocha Rodrigues Alves
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
- Departamento de BotânicaUniversidade Federal de GoiásGoiásGOBrazil
| | | | | | | | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
| | - Grazieli Benedetti Pascoal
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
- Curso de Graduação em NutriçãoUniversidade Federal de UberlândiaMinas GeraisMGBrazil
| | | | - Diego Demarco
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Magdalena Rossi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Luciano Freschi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
79
|
Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, Zhang J, Zhou G, Zheng W, Ye Z, Zhang Y. GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and Chl synthesis in fruit. THE NEW PHYTOLOGIST 2020; 228:302-317. [PMID: 32463946 DOI: 10.1111/nph.16705] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Fruit development involves chloroplast development, carotenoid accumulation and fruit coloration. Although genetic regulation of fruit development has been extensively investigated, epigenetic regulation of fruit coloration remains largely unexplored. Here, we report a naturally occurring epigenetic regulation of TAGL1, and its impact on chloroplast development and fruit coloration. We used a genome-wide association study in combination with map-based cloning to identify the GREEN STRIPE (GS) locus, a methylated isoform of TAGL1 regulating diversified chloroplast development and carotenoid accumulation. Nonuniform pigmentation of fruit produced by GS was highly associated with methylation of the TAGL1 promoter, which is linked to a SNP at SL2.50ch07_63842838. High degrees of methylation of the TAGL1 promoter downregulated its expression, leading to green stripes. By contrast, low degrees of methylation led to light green stripes in gs. RNA-seq and ChIP collectively showed that the expression of genes involved with Chl synthesis and chloroplast development were significantly upregulated in green stripes relative to light green stripes. Quantitative PCR and dual luciferase assay confirmed that TAGL1 downregulates expression of SlMPEC, SlPsbQ, and SlCAB, and upregulates expression of PSY1 - genes which are associated with chloroplast development and carotenoid accumulation. Altogether, our findings regarding the GS locus demonstrate that naturally occurring methylation of TAGL1 has diverse effects on plastid development in fruit.
Collapse
Affiliation(s)
- Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peiwen Tao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfei Ge
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guolin Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan, 430065, China
| | - Wei Zheng
- Huazhong Agricultural University Chuwei Institute of Advanced Seeds, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Huazhong Agricultural University Chuwei Institute of Advanced Seeds, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Huazhong Agricultural University Chuwei Institute of Advanced Seeds, Wuhan, 430070, China
| |
Collapse
|
80
|
Jia T, Cheng Y, Khan I, Zhao X, Gu T, Hu X. Progress on Understanding Transcriptional Regulation of Chloroplast Development in Fleshy Fruit. Int J Mol Sci 2020; 21:ijms21186951. [PMID: 32971815 PMCID: PMC7555698 DOI: 10.3390/ijms21186951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/03/2023] Open
Abstract
Edible fleshy fruits are important food sources in the human diet. Their yield and nutritional quality have long been considered as breeding targets for improvement. Various developing fleshy fruits with functional chloroplasts are capable of photosynthesis and contribute to fruit photosynthate, leading to the accumulation of metabolites associated with nutritional quality in ripe fruit. Although tomato high-pigment mutants with dark-green fruits have been isolated for more than 100 years, our understanding of the mechanism of chloroplast development in fleshy fruit remain poor. During the past few years, several transcription factors that regulate chloroplast development in fleshy fruit were identified through map-based cloning. In addition, substantial progress has been made in elucidating the mechanisms that how these transcription factors regulate chloroplast development. This review provides a summary and update on this progress, with a framework for further investigations of the multifaceted and hierarchical regulation of chloroplast development in fleshy fruit.
Collapse
Affiliation(s)
- Ting Jia
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuting Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Imran Khan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Xuan Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Tongyu Gu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
| | - Xueyun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (I.K.); (X.Z.); (T.G.)
- Correspondence:
| |
Collapse
|
81
|
Li Z, Jiang G, Liu X, Ding X, Zhang D, Wang X, Zhou Y, Yan H, Li T, Wu K, Jiang Y, Duan X. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. THE NEW PHYTOLOGIST 2020; 227:1138-1156. [PMID: 32255501 DOI: 10.1111/nph.16590] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 05/22/2023]
Abstract
Fruit ripening is governed by a complex regulatory network. Reversible histone methylation and demethylation regulate chromatin structure and gene expression. However, little is known about the involvement of histone demethylases in regulating fruit ripening. Here, we found that the tomato (Solanum lycopersicum) SlJMJ6 encodes a histone lysine demethylase that specifically demethylates H3K27 methylation. Overexpression of SlJMJ6 accelerates tomato fruit ripening, which is associated with the upregulated expression of a large number of ripening-related genes. Integrated analysis of RNA-seq and chromatin immunoprecipitation followed by sequencing identified 32 genes directly targeted by SlJMJ6 and transcriptionally upregulated with decreased H3K27m3 in SlJMJ6-overexpressed fruit. Numerous SlJMJ6-regulated genes are involved in transcription regulation, ethylene biosynthesis, cell wall degradation and hormone signaling. Eleven ripening-related genes including RIPENING INHIBITOR (RIN), 1-aminocyclopropane 1-carboxylate synthase-4 (ACS4), 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1), pectate lyase (PL) and beta-galactosidase 4 (TBG4), and a DNA demethylase DML2, were confirmed to be regulated directly by SlJMJ6 through removing H3K27me3. Our results demonstrate that SlJMJ6 is a ripening-prompting H3K27me3 demethylase that activates the expression of the ripening-related genes by modulating H3K27me3, thereby facilitating tomato fruit ripening. Our work also reveals a novel link between histone demethylation and DNA demethylation in regulating fruit ripening. To our knowledge, this is the first report of the involvement of a histone lysine demethylase in the regulation of fruit ripening.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| | - Xiaochun Ding
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaowan Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| |
Collapse
|
82
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
83
|
Bianchetti R, De Luca B, de Haro LA, Rosado D, Demarco D, Conte M, Bermudez L, Freschi L, Fernie AR, Michaelson LV, Haslam RP, Rossi M, Carrari F. Phytochrome-Dependent Temperature Perception Modulates Isoprenoid Metabolism. PLANT PHYSIOLOGY 2020; 183:869-882. [PMID: 32409479 PMCID: PMC7333726 DOI: 10.1104/pp.20.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Belen De Luca
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Luis A de Haro
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Mariana Conte
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET (Instituto Nacional de Tecnología Agropecuaria). Hurlingham, 1686 Buenos Aires, Argentina
| | - Luisa Bermudez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET (Instituto Nacional de Tecnología Agropecuaria). Hurlingham, 1686 Buenos Aires, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm D-14476, Germany
| | - Louise V Michaelson
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
84
|
Wu M, Xu X, Hu X, Liu Y, Cao H, Chan H, Gong Z, Yuan Y, Luo Y, Feng B, Li Z, Deng W. SlMYB72 Regulates the Metabolism of Chlorophylls, Carotenoids, and Flavonoids in Tomato Fruit. PLANT PHYSIOLOGY 2020; 183:854-868. [PMID: 32414899 PMCID: PMC7333684 DOI: 10.1104/pp.20.00156] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) fruit ripening is accompanied by the degradation of chlorophylls and the accumulation of carotenoids and flavonoids. Tomato SlMYB72 belongs to the R2R3 MYB subfamily, is located in the nucleus, and possesses transcriptional activator activity. Down-regulation of the SlMYB72 gene produced uneven-colored fruits; that is, dark green spots appeared on immature and mature green fruits, whereas yellow spots appeared on red fruits. Down-regulation of SlMYB72 increased chlorophyll accumulation, chloroplast biogenesis and development, and photosynthesis rate in fruits. This down-regulation decreased lycopene content, promoted β-carotene production and chromoplast development, and increased flavonoid accumulation in fruits. RNA sequencing analysis revealed that down-regulation of SlMYB72 altered the expression levels of genes involved in the biosynthesis of chlorophylls, carotenoids, and flavonoids. SlMYB72 protein interacted with the auxin response factor SlARF4. SlMYB72 directly targeted protochlorophyllide reductase, Mg-chelatase H subunit, and knotted1-like homeobox2 genes and regulated chlorophyll biosynthesis and chloroplast development. SlMYB72 directly bound to phytoene synthase, ζ-carotene isomerase, and lycopene β-cyclase genes and regulated carotenoid biosynthesis. SlMYB72 directly targeted 4-coumarate-coenzyme A ligase and chalcone synthase genes and regulated the biosynthesis of flavonoids and phenolic acid. The uneven color phenotype in RNA interference-SlMYB72 fruits was due to uneven silencing of SlMYB72 and uneven expression of chlorophyll, carotenoid, and flavonoid biosynthesis genes. In summary, this study identified important roles for SlMYB72 in the regulation of chlorophyll, carotenoid, and flavonoid metabolism and provided a potential target to improve fruit nutrition in horticultural crops.
Collapse
Affiliation(s)
- Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Helen Chan
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| |
Collapse
|
85
|
Lee SB, Kim JE, Kim HT, Lee GM, Kim BS, Lee JM. Genetic mapping of the c1 locus by GBS-based BSA-seq revealed Pseudo-Response Regulator 2 as a candidate gene controlling pepper fruit color. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1897-1910. [PMID: 32088729 DOI: 10.1007/s00122-020-03565-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
The Pseudo-Response Regulator 2 gene was identified in the c1 locus, representing a genetic factor regulating fruit color in pepper using GBS-based BSA-seq. The loci c1, c2, and y have been widely reported as genetic determinants of various ripe fruit colors in pepper. However, c1, which may impact reduced pigmentation in red, orange, and yellow fruits, is not well understood. Two cultivars showing peach or orange fruit in Capsicum chinense 'Habanero' were found to have c2 mutation and were hypothesized to segregate c1 locus in the F2 population. Habanero peach (HP) showed a reduced level of chlorophylls, carotenoids and total soluble solids in immature and ripe fruits. A microscopic examination of the fruit pericarps revealed smaller plastids and less stacked thylakoid grana in HP. The expression of many genes related to chlorophyll and carotenoid biosynthetic pathways were reduced in HP. To identify the genomic region of the c1 locus, bulked segregant analysis combined with genotyping-by-sequencing was employed on an F2 population derived from a cross between Habanero orange and HP. One SNP at chromosome 1 was strongly associated with the peach fruit color. Pepper Pseudo-Response Regulator 2 (PRR2) was located close to the SNP and cosegregated with the peach fruit color. A 41 bp deletion at the third exon-intron junction region of CcPRR2 in HP resulted in a premature termination codon. A nonsense mutation of CaPRR2 was found in C. annuum 'IT158782' which had white ripe fruit coupled with null mutations of capsanthin-capsorubin synthase (y) and phytoene synthase 1 (c2). These results will be useful for the genetic improvement in fruit color and nutritional quality in pepper.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong Eun Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hyoung Tae Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Gyu-Myung Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Byung-Soo Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Je Min Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
86
|
Yan H, Pengfei W, Brennan H, Ping Q, Bingxiang L, Feiyan Z, Hongbo C, Haijiang C. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:113-123. [PMID: 32213457 DOI: 10.1016/j.plaphy.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
The genus Prunus contains many fruits used in the human diet, which exhibit a variety of different flavors. However, publications on the diversity of carotenoid profiles and sequestering structures in Prunus fruits are limited. In this study, carotenoids and their associated sequestering structures in mature fruits of four Prunus species, including peach [Prunus persica (L.) Batschi], nectarine [Prunus persica (L.) Batschi var. nucipersica], plum (Prunus salicina L.), and apricot (Prunus armeniaca L.) were investigated. HPLC-PAD analysis revealed that mature fruits all accumulated carotenoid esters, while their profiles and levels differed significantly. Transcription analysis suggested a positive correlation between carotenogenic genes and carotenoid profiles. Transmission electron microscopy (TEM) analysis revealed a common globular chromoplast in Prunus. However, the number and size of plastids and plastoglobules varied between species. Noticeably, the white-flesh Ruiguang 19 nectarine contained plastids similar to chromoplasts, except with smaller plastoglobules. In addition, it seemed like a lipid-dissolved β-carotene form in apricot fruits, which is more effectively absorbed by humans than the solid-crystalline form. Moreover, the lowest transcriptions of plastid-related genes were found in Friar plum, and GLK2 and OR genes were presumed to be associated with the largest chromoplasts observed in apricot. We investigated the correlations among carotenoid accumulation, plastid characteristics and gene transcription and found that chromoplast development is likely more important in determining carotenoid accumulation than carotenogenic transcription in Prunus fruits. This study presents the first report on the diversity of carotenoid sequestering structures in Prunus fruits and suggests some crucial genes associated with diversity.
Collapse
Affiliation(s)
- Han Yan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Wang Pengfei
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Hyden Brennan
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Qu Ping
- Institute of Science and Technology, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Liu Bingxiang
- College of Forest, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Zhang Feiyan
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Cao Hongbo
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| | - Chen Haijiang
- College of Horticulture, Agricultural University of Hebei, Baoding Hebei, 071000, China.
| |
Collapse
|
87
|
Liu X, Li L, Zhang B, Zeng L, Li L. AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110461. [PMID: 32234234 DOI: 10.1016/j.plantsci.2020.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important crop that is adversely affected by drought. Post-drought growth is essential for improving peanut productivity and quality. Previous studies demonstrated that AhGLK1 (Arachis hypogaea L. Golden2-like 1) activates the expression of AhPORA to stimulate chlorophyll biosynthesis, and that AhGLK1 physically interacts with AhHDA1 (Arachis hypogaea L. histone deacetylase 1). However, the roles of the AhGLK1/AhHDA1 interaction in post-drought recovery remain to be elucidated. Herein, we report that AhHDA1 binds to AhGLK1 promoter and alters histone deacetylation levels to inhibit AhGLK1 expression. RNA-seq confirms that chlorophyll synthesis and photosynthesis-related genes are induced in AhGLK1-overexpressing, but reduced in AhGLK1 RNAi hairy roots. Furthermore, ChIP-seq shows that AhCAB (Arachis hypogaea L. chlorophyll A/B binding protein) is a target of both AhHDA1 and AhGLK1. Transactivation assays reveal that AhGLK1 activates AhCAB expression, while AhHDA1 inhibits the effect of AhGLK1 on AhCAB and AhPORA transcription. ChIP-qPCR shows that AhHDA1 and AhGLK1 bind to the promoters of AhCAB and AhPORA to regulate their expression during water stress and recovery. We propose that AhHDA1 and AhGLK1 consist of an ON/OFF switch for AhCAB and AhPORA expression during water stress and recovery. AhGLK1 activates, whereas AhHDA1 suppresses the expression of AhCAB and AhPORA.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China; Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
88
|
Sun S, Wang X, Wang K, Cui X. Dissection of complex traits of tomato in the post-genome era. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1763-1776. [PMID: 31745578 DOI: 10.1007/s00122-019-03478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
We present the main advances of dissection of complex traits in tomato by omics, the genes identified to control complex traits and the application of CRISPR/Cas9 in tomato breeding. Complex traits are believed to be under the control of multiple genes, each with different effects and interaction with environmental factors. Advance development of sequencing and molecular technologies has enabled the recognition of the genomic structure of most organisms and the identification of a nearly limitless number of markers that have made it to accelerate the speed of QTL identification and gene cloning. Meanwhile, multiomics have been used to identify the genetic variations among different tomato species, determine the expression profiles of genes in different tissues and at distinct developmental stages, and detect metabolites in different pathways and processes. The combination of these data facilitates to reveal mechanism underlying complex traits. Moreover, mutants generated by mutagens and genome editing provide relatively rich genetic variation for deciphering the complex traits and exploiting them in tomato breeding. In this article, we present the main advances of complex trait dissection in tomato by omics since the release of the tomato genome sequence in 2012. We provide further insight into some tomato complex traits because of the causal genetic variations discovered so far and explore the utilization of CRISPR/Cas9 for the modification of tomato complex traits.
Collapse
Affiliation(s)
- Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
89
|
Li X, Wang P, Li J, Wei S, Yan Y, Yang J, Zhao M, Langdale JA, Zhou W. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun Biol 2020; 3:151. [PMID: 32238902 PMCID: PMC7113295 DOI: 10.1038/s42003-020-0887-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
Photosynthetic efficiency is a major target for improvement of crop yield potential under agricultural field conditions. Inefficiencies can occur in many steps of the photosynthetic process, from chloroplast biogenesis to functioning of the light harvesting and carbon fixation reactions. Nuclear-encoded GOLDEN2-LIKE (GLK) transcription factors regulate some of the earliest steps by activating target genes encoding chloroplast-localized and photosynthesis-related proteins. Here we show that constitutive expression of maize GLK genes in rice leads to enhanced levels of chlorophylls and pigment-protein antenna complexes, and that these increases lead to improved light harvesting efficiency via photosystem II in field-grown plants. Increased levels of xanthophylls further buffer the negative effects of photoinhibition under high or fluctuating light conditions by facilitating greater dissipation of excess absorbed energy as heat. Significantly, the enhanced photosynthetic capacity of field-grown transgenic plants resulted in increased carbohydrate levels and a 30–40% increase in both vegetative biomass and grain yield. Li et al. improve photosynthetic efficiency in rice by constitutively expressing maize GOLDEN2-like (GLK) genes (ZmG2 and ZmGLK1). They are able to reduce photoinhibition and enhance the photosynthetic potential as well as increase the carbohydrate, biomass and grain yield.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yanyan Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
90
|
Ectopic Expression of AhGLK1b (GOLDEN2-like Transcription Factor) in Arabidopsis Confers Dual Resistance to Fungal and Bacterial Pathogens. Genes (Basel) 2020; 11:genes11030343. [PMID: 32213970 PMCID: PMC7141132 DOI: 10.3390/genes11030343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
GOLDEN2-LIKE (GLK) is a member of the myeloblastosis (MYB) family transcription factor and it plays an important role in the regulation of plastid development and stress tolerance. In this study, a gene named AhGLK1b was identified from a cultivated peanut showing down-regulation in response to low calcium with a complete open reading frame (ORF) of 1212 bp. The AhGLK1b has 99.26% and 96.28% sequence similarities with its orthologs in Arachis ipaensis and A. duranensis, respectively. In the peanut, the AhGLK1b was localized in the nucleus and demonstrated the highest expression in the leaf, followed by the embryo. Furthermore, the expression of AhGLK1b was induced significantly in response to a bacterial pathogen, Ralstonia solanacearum infection. Ectopic expression of AhGLK1b in Arabidopsis showed stronger resistance against important phytopathogenic fungi S. sclerotiorum. It also exhibited high resistance to infection of the bacterial pathogen Pst DC3000. AhGLK1b-expressing Arabidopsis induced defense-related genes including PR10 and Phox/Bem 1 (PBI), which are involved in multiple disease resistance. Taken together, the results suggest that AhGLK1b might be useful in providing dual resistance to fungal and bacterial pathogens as well as tolerance to abiotic stresses.
Collapse
|
91
|
Cruet-Burgos C, Cox S, Ioerger BP, Perumal R, Hu Z, Herald TJ, Bean SR, Rhodes DH. Advancing provitamin A biofortification in sorghum: Genome-wide association studies of grain carotenoids in global germplasm. THE PLANT GENOME 2020; 13:e20013. [PMID: 33016639 DOI: 10.1002/tpg2.20013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/19/2020] [Indexed: 06/11/2023]
Abstract
Vitamin A deficiency is one of the most prevalent nutritional deficiencies worldwide. Sorghum [Sorghum bicolor L. (Moench)] is a major cereal crop consumed by millions of people in regions with high vitamin A deficiency. We quantified carotenoid concentrations in a diverse sorghum panel using high-performance liquid chromatography and conducted a genome-wide association study (GWAS) of grain carotenoids to identify genes underlying carotenoid variation. There was moderate variation for β-carotene (00.8 μg g-1 ), lutein (0.3-9.4 μg g-1 ), and zeaxanthin (0.2-9.1 μg g-1 ), but β-cryptoxanthin and α-carotene were nearly undetectable. Genotype had the largest effect size, at 81% for zeaxanthin, 62% for β-carotene, and 53% for lutein. Using multiple models, GWAS identified several significant associations between carotenoids and single nucleotide polymorphisms (SNPs), some of which colocalized with known carotenoid genes that have not been previously implicated in carotenoid variation. Several of the candidate genes identified have also been identified in maize (Zea mays L.) and Arabidopsis (Arabidopsis thaliana) carotenoid GWAS studies. Notably, an SNP inside the putative ortholog of maize zeaxanthin epoxidase (ZEP) had the most significant association with zeaxanthin and with the ratio between lutein and zeaxanthin, suggesting that ZEP is a major gene controlling sorghum carotenoid variation. Overall findings suggest there is oligogenic inheritance for sorghum carotenoids and suitable variation for marker-assisted selection. The high carotenoid germplasm and significant associations identified in this study can be used in biofortification efforts to improve the nutritional quality of sorghum.
Collapse
Affiliation(s)
- Clara Cruet-Burgos
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sarah Cox
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Brian P Ioerger
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Ramasamy Perumal
- Agricultural Research Center, Kansas State University, Hays, KS, 67601, USA
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Thomas J Herald
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Scott R Bean
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Davina H Rhodes
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
92
|
Zhou S, Cheng X, Li F, Feng P, Hu G, Chen G, Xie Q, Hu Z. Overexpression of SlOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2019; 10:1510. [PMID: 31850017 PMCID: PMC6896838 DOI: 10.3389/fpls.2019.01510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that OVATE family proteins (OFPs) participate in various aspects of plant growth and development. How OFPs affect leaf chlorophyll accumulation and leaf senescence has not been reported yet. Here, we found that overexpression of SlOFP20 in tomato not only impacted plant architecture but also enhanced the leaf chlorophyll accumulation and retarded leaf senescence. Gene expression analysis of SlGLK1, SlGLK2, and HY5, encoding transcription factors that are putatively involved in chloroplast development and chlorophyll levels, were significantly up-regulated in SlOFP20-OE lines. Both chlorophyll biosynthesis and degradation genes were distinctly regulated in transgenic plants. Moreover, SlOFP20-OE plants accumulated more starch and soluble sugar than wild-type plants, indicating that an increased chlorophyll content conferred some higher photosynthetic performance in SlOFP20-OE plants. Furthermore, The levels of leaf senescence-related indexes, such as hydrogen peroxide, malondialdehyde, and antioxidant enzymes activities, were differently altered, too. SlOFP20 overexpression repressed the expression of senescence-related genes, SAG12, RAV1, and WRKY53. Moreover, abscisic acid and ethylene synthesis genes were down-regulated in transgenic lines. These results provide new insights into how SlOFP20 regulates chlorophyll accumulation and leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiaoli Xie
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| | - Zongli Hu
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| |
Collapse
|
93
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
94
|
Borovsky Y, Monsonego N, Mohan V, Shabtai S, Kamara I, Faigenboim A, Hill T, Chen S, Stoffel K, Van Deynze A, Paran I. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:41-55. [PMID: 30828904 DOI: 10.1111/tpj.14305] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 05/03/2023]
Abstract
Chloroplast development and chlorophyll content in the immature fruit has a major impact on the morphology and quality in pepper (Capsicum spp.) fruit. Two major quantitative trait loci (QTLs), pc1 and pc10 that affect chlorophyll content in the pepper fruit by modulation of chloroplast compartment size were previously identified in chromosomes 1 and 10, respectively. The pepper homolog of GOLDEN2-LIKE transcription factor (CaGLK2) has been found as underlying pc10, similar to its effect on tomato chloroplast development. In the present study, we identified the pepper homolog of the zinc-finger transcription factor LOL1 (LSD ONE LIKE1; CcLOL1) as the gene underlying pc1. LOL1 has been identified in Arabidopsis as a positive regulator of programmed cell death and we report here on its role in controlling fruit development in the Solanaceae in a fruit-specific manner. The light-green C. chinense parent used for QTL mapping was found to carry a null mutation in CcLOL1. Verification of the function of the gene was done by generating CRISPR/Cas9 knockout mutants of the orthologous tomato gene resulting in light-green tomato fruits, indicating functional conservation of the orthologous genes in controlling chlorophyll content in the Solanaceae. Transcriptome profiling of light and dark-green bulks differing for pc1, showed that the QTL affects multiple photosynthesis and oxidation-reduction associated genes in the immature green fruit. Allelic diversity of three known genes CcLOL1, CaGLK2, and CcAPRR2 that influence pepper immature fruit color, was found to be associated with variation in chlorophyll content primarily in C. chinense.
Collapse
Affiliation(s)
- Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Noam Monsonego
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Vijee Mohan
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Sara Shabtai
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Itzhak Kamara
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, CA, USA
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
95
|
Gang H, Li R, Zhao Y, Liu G, Chen S, Jiang J. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3125-3138. [PMID: 30921458 DOI: 10.1093/jxb/erz128] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/06/2019] [Indexed: 05/14/2023]
Abstract
Birch (Betula platyphylla × B. pendula) is an important tree for landscaping due to its attractive white bark and straight trunk. In this study, we characterized a T-DNA yellow-green leaf mutant, yl. We identified six insertion sites (ISs) in the mutant by genome resequencing and found a 40-kb deletion containing BpGLK1 around IS2 on chromosome 2. Complementation experiments with the yl mutant and repression of BpGLK1 in wild-type plants confirmed that BpGLK1 was responsible for the mutated phenotype. Physiological and ultrastructural analyses showed that the leaves of the yl mutant and BpGLK1-repression lines had decreased chlorophyll content and defective chloroplast development compared to the wild-type. Furthermore, the loss function of BpGLK1 also affected photosynthesis in leaves. Transcriptomics, proteomics, and ChIP-PCR analysis revealed that BpGLK1 directly interacted with the promoter of genes related to antenna proteins, chlorophyll biosynthesis, and photosystem subunit synthesis, and regulated their expression. Overall, our research not only provides new insights into the mechanism of chloroplast development and chlorophyll biosynthesis regulated by BpGLK1, but also provides new transgenic birch varieties with various levels of yellowing leaves by repressing BpGLK1 expression.
Collapse
Affiliation(s)
- Huixin Gang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ranhong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
96
|
Brazel AJ, Ó'Maoiléidigh DS. Photosynthetic activity of reproductive organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1737-1754. [PMID: 30824936 DOI: 10.1093/jxb/erz033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 05/06/2023]
Abstract
During seed development, carbon is reallocated from maternal tissues to support germination and subsequent growth. As this pool of resources is depleted post-germination, the plant begins autotrophic growth through leaf photosynthesis. Photoassimilates derived from the leaf are used to sustain the plant and form new organs, including other vegetative leaves, stems, bracts, flowers, fruits, and seeds. In contrast to the view that reproductive tissues act only as resource sinks, many studies demonstrate that flowers, fruits, and seeds are photosynthetically active. The photosynthetic contribution to development is variable between these reproductive organs and between species. In addition, our understanding of the developmental control of photosynthetic activity in reproductive organs is vastly incomplete. A further complication is that reproductive organ photosynthesis (ROP) appears to be particularly important under suboptimal growth conditions. Therefore, the topic of ROP presents the community with a challenge to integrate the fields of photosynthesis, development, and stress responses. Here, we attempt to summarize our understanding of the contribution of ROP to development and the molecular mechanisms underlying its control.
Collapse
Affiliation(s)
- Ailbhe J Brazel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
97
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
98
|
Lupi ACD, Lira BS, Gramegna G, Trench B, Alves FRR, Demarco D, Peres LEP, Purgatto E, Freschi L, Rossi M. Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner. PLoS One 2019; 14:e0212224. [PMID: 30753245 PMCID: PMC6372215 DOI: 10.1371/journal.pone.0212224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.
Collapse
Affiliation(s)
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna Trench
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lazaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ¨Luiz de Queiroz¨, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
99
|
Jiang F, Lopez A, Jeon S, de Freitas ST, Yu Q, Wu Z, Labavitch JM, Tian S, Powell ALT, Mitcham E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. HORTICULTURE RESEARCH 2019; 6:17. [PMID: 30729007 PMCID: PMC6355925 DOI: 10.1038/s41438-018-0105-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
Fruit cracking is an important problem in horticultural crop production. Polygalacturonase (SlPG) and expansin (SlEXP1) proteins cooperatively disassemble the polysaccharide network of tomato fruit cell walls during ripening and thereby, enable softening. A Golden 2-like (GLK2) transcription factor, SlGLK2 regulates unripe fruit chloroplast development and results in elevated soluble solids and carotenoids in ripe fruit. To determine whether SlPG, SlEXP1, or SlGLK2 influence the rate of tomato fruit cracking, the incidence of fruit epidermal cracking was compared between wild-type, Ailsa Craig (WT) and fruit with suppressed SlPG and SlEXP1 expression (pg/exp) or expressing a truncated nonfunctional Slglk2 (glk2). Treating plants with exogenous ABA increases xylemic flow into fruit. Our results showed that ABA treatment of tomato plants greatly increased cracking of fruit from WT and glk2 mutant, but not from pg/exp genotypes. The pg/exp fruit were firmer, had higher total soluble solids, denser cell walls and thicker cuticles than fruit of the other genotypes. Fruit from the ABA treated pg/exp fruit had cell walls with less water-soluble and more ionically and covalently-bound pectins than fruit from the other lines, demonstrating that ripening-related disassembly of the fruit cell wall, but not elimination of SlGLK2, influences cracking. Cracking incidence was significantly correlated with cell wall and wax thickness, and the content of cell wall protopectin and cellulose, but not with Ca2+ content.
Collapse
Affiliation(s)
- Fangling Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Alfonso Lopez
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shinjae Jeon
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Gangwon Agricultural Research and Extension Services, Chuncheon, 200-150 South Korea
| | | | - Qinghui Yu
- Department of Plant Sciences, University of California, Davis, 95616 USA
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, 830091 Urumchi, China
| | - Zhen Wu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - John M. Labavitch
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Shengke Tian
- Department of Plant Sciences, University of California, Davis, 95616 USA
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, Davis, 95616 USA
| | - Elizabeth Mitcham
- Department of Plant Sciences, University of California, Davis, 95616 USA
| |
Collapse
|
100
|
Zhang G, Chen D, Zhang T, Duan A, Zhang J, He C. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res 2019; 25:465-476. [PMID: 29873696 PMCID: PMC6191307 DOI: 10.1093/dnares/dsy017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/10/2018] [Indexed: 01/22/2023] Open
Abstract
Fruit ripening is a developmental process regulated by a complex network of endogenous and exogenous cues. Sea buckthorn is an excellent material for fruit ripening studies due to its dramatic ripening process and high contents of nutritional and anti-oxidant compounds in berries. Here, the whole transcriptome of sea buckthorn fruit at three development stages were analysed using multiple high-throughput sequencings. We assembled and annotated 9,008 long non-coding RNAs (lncRNAs) in sea buckthorn fruits, and identified 118 differentially expressed lncRNAs (DE-lncRNAs) and 32 differentially expressed microRNAs in fruit developmental process. In addition, we predicted 1,061 cis-regulated and 782 trans-regulated targets of DE-lncRNAs, and these DE-lncRNAs are specifically enriched in the biosynthesis of ascorbic acid, carotenoids and flavonoids. Moreover, the silencing of two lncRNAs (LNC1 and LNC2) in vivo and expression analysis revealed that LNC1 and LNC2 can act as endogenous target mimics of miR156a and miR828a to reduce SPL9 and induce MYB114 expression, respectively, which lead to increased and decreased anthocyanin content as revealed by high-performance liquid chromatography analysis. Our results present the first global functional analysis of lncRNA in sea buckthorn and provide two essential regulators of anthocyanin biosynthesis, which provides new insights into the regulation of fruit quality.
Collapse
Affiliation(s)
- Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Daoguo Chen
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|