51
|
Scheuffele H, Jutfelt F, Clark TD. Investigating the gill-oxygen limitation hypothesis in fishes: intraspecific scaling relationships of metabolic rate and gill surface area. CONSERVATION PHYSIOLOGY 2021; 9:coab040. [PMID: 35692494 PMCID: PMC8193116 DOI: 10.1093/conphys/coab040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 05/05/2023]
Abstract
Many ectotherms have shown a reduction in maximum body size in the past decades in parallel with climate warming. Indeed, some models forecast a maximum body size decline of 14%-24% by 2050 for numerous fish species. The gill-oxygen limitation (GOL) hypothesis is perhaps the most prominent concept regarding the physiological mechanisms underlying the observed trends, implicating oxygen uptake limitations in driving the decline in fish body size with warming. Current scientific debates, however, demonstrate a clear need for a synthesis of existing empirical evidence to test the fundamental assumptions of the GOL hypothesis. Here, we perform a systematic literature review of the intraspecific allometry of gill surface area (GSA) and metabolic rate. Additionally, we introduce a new parameter, the ratio S, which provides a measure of GSA in relation to the metabolic requirements for maintenance (S SMR) and maximum activity (S AMR). Support for the GOL hypothesis would be evidenced by a universal decline in S with increasing body mass within each species, such that gills become less equipped to supply metabolic requirements as fish grow. In contrast to the predictions of the GOL hypothesis, we show that the scaling exponents for S SMR and S AMR are consistently close to zero, with only a few exceptions where S either increased or decreased. These findings suggest that the GSA of each species is sufficient to meet its oxygen requirements throughout life, and that growth is not universally restricted by oxygen uptake limitations across the gills. We identify the need to investigate hypotheses other than the GOL hypothesis to help explain the observed declines in maximum fish body sizes concurrent with climate warming, in order to facilitate accurate predictions of fish community structure and manage fisheries in the face of climate change.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, 3216 Geelong, Australia
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, 3216 Geelong, Australia
| |
Collapse
|
52
|
Tremblay P, MacMillan HA, Kharouba HM. Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecol Evol 2021; 11:8332-8346. [PMID: 34188890 PMCID: PMC8216912 DOI: 10.1002/ece3.7663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Climate change is driving range shifts, and a lack of cold tolerance is hypothesized to constrain insect range expansion at poleward latitudes. However, few, if any, studies have tested this hypothesis during autumn when organisms are subjected to sporadic low-temperature exposure but may not have become cold-tolerant yet. In this study, we integrated organismal thermal tolerance measures into species distribution models for larvae of the Giant Swallowtail butterfly, Papilio cresphontes (Lepidoptera: Papilionidae), living at the northern edge of its actively expanding range. Cold hardiness of field-collected larvae was determined using three common metrics of cold-induced physiological thresholds: the supercooling point, critical thermal minimum, and survival following cold exposure. P. cresphontes larvae were determined to be tolerant of chilling but generally die at temperatures below their SCP, suggesting they are chill-tolerant or modestly freeze-avoidant. Using this information, we examined the importance of low temperatures at a broad scale, by comparing species distribution models of P. cresphontes based only on environmental data derived from other sources to models that also included the cold tolerance parameters generated experimentally. Our modeling revealed that growing degree-days and precipitation best predicted the distribution of P. cresphontes, while the cold tolerance variables did not explain much variation in habitat suitability. As such, the modeling results were consistent with our experimental results: Low temperatures in autumn are unlikely to limit the distribution of P. cresphontes. Understanding the factors that limit species distributions is key to predicting how climate change will drive species range shifts.
Collapse
|
53
|
Tan H, Hirst AG, Atkinson D, Kratina P. Body size and shape responses to warming and resource competition. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanrong Tan
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Andrew G. Hirst
- School of Animal, Rural and Environmental Sciences Nottingham Trent University Southwell UK
- Centre for Ocean Life National Institute for Aquatic ResourcesTechnical University of Denmark Lyngby Denmark
| | - David Atkinson
- Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Pavel Kratina
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| |
Collapse
|
54
|
Robinson SI, Mikola J, Ovaskainen O, O'Gorman EJ. Temperature effects on the temporal dynamics of a subarctic invertebrate community. J Anim Ecol 2021; 90:1217-1227. [PMID: 33625727 DOI: 10.1111/1365-2656.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015. Sample collection over several time points within a season allowed us to assess whether temperature alters temporal variance in terrestrial communities and compositional turnover. We found that seasonal fluctuations in species richness, diversity and evenness were dampened as soil temperature increased, whereas invertebrate biomass varied more. Body mass was found to be a good predictor of species occurrence, with smaller species found at higher soil temperatures and emerging earlier in the season. Our results provide more in-depth understanding of the temporal nature of community and population-level responses to temperature, and indicate that climate warming will likely dampen the seasonal turnover of community structure that is characteristic of high latitude invertebrate communities.
Collapse
Affiliation(s)
- Sinikka I Robinson
- Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Juha Mikola
- Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
55
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
56
|
Lira AFA, Foerster SIA, Albuquerque CMR, Moura GJB. Contrasting patterns at interspecific and intraspecific levels in scorpion body size across a climatic gradient from rainforest to dryland vegetation. ZOOLOGY 2021; 146:125908. [PMID: 33657447 DOI: 10.1016/j.zool.2021.125908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/26/2022]
Abstract
Body size is believed to be one of the most fundamental functional traits in animals and is evolutionarily conserved in order to guarantee the survival of the species. Besides the phylogenetic backgrounds, body size patterns might be a product of environmental filters, especially within fine taxonomic levels (i.e., within species or geographical lineages). Here, we evaluated the responses of scorpion body size at different organizational levels (inter and intraspecific) along a dry-wet climatic gradient in Brazilian forests. Scorpions were collected from 20 localities in northeastern Brazil, covering 12 sites of dry forests and eight sites in rainforest environments. As a proxy for body size, we measured the carapace length of 368 adult scorpions belonging to 11 species and applied linear mixed-effects models to investigate the potential effects of climatic features and geographical tendencies in this trait at inter- and intraspecific levels. Our findings suggest the existence of a longitudinal pattern of body size in scorpions with species becoming larger in an east-west direction (i.e., towards the continent); such geographical tendency was also detected for one of the three species analyzed at the population level. In addition, the warmer temperature had a negative effect on body size in scorpions at inter- and intraspecific levels. Based on these findings, we assert that body size in scorpions is not affected solely by their phylogenetic history, but also by the physiological constraints imposed by the environment, which becomes more evident across climatic gradients.
Collapse
Affiliation(s)
- André F A Lira
- Programa de Pós-Graduação em Ciência Animal Tropical, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, 52171900, Brazil.
| | - Stênio I A Foerster
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Str, Tartu, 51014, Estonia
| | - Cleide M R Albuquerque
- Programa de Pós‑Graduação em Biologia Animal, Depto de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Recife, Pernambuco, Brazil
| | - Geraldo J B Moura
- Universidade Federal Rural de Pernambuco, Laboratório de Estudos Herpetológicos e Paleoherpetológicos. Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, 52171900, Brazil
| |
Collapse
|
57
|
Verberk WC, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol Rev Camb Philos Soc 2021; 96:247-268. [PMID: 32959989 PMCID: PMC7821163 DOI: 10.1111/brv.12653] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Collapse
Affiliation(s)
- Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - David Atkinson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - K. Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Faculty of Science and Engineering, Ocean Ecosystems — Energy and Sustainability Research Institute GroningenUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
- Centre for Ocean Life, DTU AquaTechnical University of DenmarkLyngbyDenmark
| | - Curtis R. Horne
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
58
|
Funk DH, Sweeney BW, Jackson JK. Oxygen limitation fails to explain upper chronic thermal limits and the temperature size rule in mayflies. J Exp Biol 2021; 224:jeb233338. [PMID: 33288530 DOI: 10.1242/jeb.233338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
An inability to adequately meet tissue oxygen demands has been proposed as an important factor setting upper thermal limits in ectothermic invertebrates (especially aquatic species) as well as explaining the observed decline in adult size with increased rearing temperature during the immature stages (a phenomenon known as the temperature size rule, or TSR). We tested this by rearing three aquatic insects (the mayflies Neocloeon triangulifer and two species of the Cloeon dipterum complex) through their entire larval life under a range of temperature and oxygen concentrations. Hyperoxia did not extend upper thermal limits, nor did it prevent the loss of size or fertility experienced near upper chronic thermal limits. At moderate temperatures, the TSR pattern was observed under conditions of hyperoxia, normoxia and hypoxia, suggesting little or no influence of oxygen on this trend. However, for a given rearing temperature, adults were smaller and less fecund under hypoxia as a result of a lowering of growth rates. These mayflies greatly increased the size of their gills in response to lower dissolved oxygen concentrations but not under oxygen-saturated conditions over a temperature range yielding the classic TSR response. Using ommatidium diameter as a proxy for cell size, we found the classic TSR pattern observed under moderate temperature conditions was due primarily to a change in the number of cells rather than cell size. We conclude overall that a failure to meet tissue oxygen demands is not a viable hypothesis for explaining either the chronic thermal limit or TSR pattern in these species.
Collapse
Affiliation(s)
- David H Funk
- Stroud Water Research Center, Avondale, PA 19311, USA
| | | | | |
Collapse
|
59
|
Sukhodolskaya RA, Ananina TL, Saveliev AA. Variation in Body Size and Sexual Size Dimorphism of Ground Beetle Pterostichus montanus Motsch. (Coleoptera, Carabidae) in Altitude Gradient. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s199542552101008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Symons CC, Schulhof MA, Cavalheri HB, Shurin JB. Legacy effects of fish but not elevation influence lake ecosystem response to environmental change. J Anim Ecol 2020; 90:662-672. [PMID: 33251623 DOI: 10.1111/1365-2656.13398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
How communities reorganize during climate change depends on the distribution of diversity within ecosystems and across landscapes. Understanding how environmental and evolutionary history constrain community resilience is critical to predicting shifts in future ecosystem function. The goal of our study was to understand how communities with different histories respond to environmental change with regard to shifts in elevation (temperature, nutrients) and introduced predators. We hypothesized that community responses to the environment would differ in ways consistent with local adaptation and initial trait structure. We transplanted plankton communities from lakes at different elevations with and without fish in the Sierra Nevada Mountains in California to mesocosms at different elevations with and without fish. We examined the relative importance of the historical and experimental environment on functional (size structure, effects on lower trophic levels), community (zooplankton composition, abundance and biomass) and population (individual species abundance and biomass) responses. Communities originating from different elevations produced similar biomass at each elevation despite differences in species composition; that is, the experimental elevation, but not the elevation of origin, had a strong effect on biomass. Conversely, we detected a legacy effect of predators on plankton in the fishless environment. Daphnia pulicaria that historically coexisted with fish reached greater biomass under fishless conditions than those from fishless lakes, resulting in greater zooplankton community biomass and larger average size. Therefore, trait variation among lake populations determined the top-down effects of fish predators. In contrast, phenotypic plasticity and local diversity were sufficient to maintain food web structure in response to changing environmental conditions associated with elevation.
Collapse
Affiliation(s)
- Celia C Symons
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Marika A Schulhof
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Hamanda B Cavalheri
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan B Shurin
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
61
|
Wilkes MA, Edwards F, Jones JI, Murphy JF, England J, Friberg N, Hering D, Poff NL, Usseglio-Polatera P, Verberk WCEP, Webb J, Brown LE. Trait-based ecology at large scales: Assessing functional trait correlations, phylogenetic constraints and spatial variability using open data. GLOBAL CHANGE BIOLOGY 2020; 26:7255-7267. [PMID: 32896934 DOI: 10.1111/gcb.15344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The growing use of functional traits in ecological research has brought new insights into biodiversity responses to global environmental change. However, further progress depends on overcoming three major challenges involving (a) statistical correlations between traits, (b) phylogenetic constraints on the combination of traits possessed by any single species, and (c) spatial effects on trait structure and trait-environment relationships. Here, we introduce a new framework for quantifying trait correlations, phylogenetic constraints and spatial variability at large scales by combining openly available species' trait, occurrence and phylogenetic data with gridded, high-resolution environmental layers and computational modelling. Our approach is suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding to a life-history model with axes of resistance, resilience and resource use, as relatively unaffected by correlations and phylogenetic constraints. Trait structure responded more consistently to environmental variation than taxonomic structure, regardless of location. A re-analysis of existing data on macroinvertebrate communities of European alpine streams supported this conclusion, and demonstrated that occurrence-based functional diversity indices are highly sensitive to the traits included in their calculation. Overall, our findings suggest that the search for quantitative trait-environment relationships using single traits or simple combinations of multiple traits is unlikely to be productive. Instead, there is a need to embrace the value of conceptual frameworks linking community responses to environmental change via traits which correspond to the axes of life-history models. Through a novel integration of tools and databases, our flexible framework can address this need.
Collapse
Affiliation(s)
- Martin A Wilkes
- Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on-Dunsmore, UK
| | | | | | | | | | - Nikolai Friberg
- Norwegian Institute for Water Research, Oslo, Norway
- University of Copenhagen, Copenhagen, Denmark
| | | | - N LeRoy Poff
- Colorado State University, Fort Collins, CO, USA
| | | | | | | | - Lee E Brown
- School of Geography/water@leeds, University of Leeds, Leeds, UK
| |
Collapse
|
62
|
Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proc Natl Acad Sci U S A 2020; 117:31963-31968. [PMID: 33257544 PMCID: PMC7749359 DOI: 10.1073/pnas.2003292117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organismal responses to climate change are mediated through its effects on physiology and metabolism. In aquatic environments, both water temperature and oxygen availability may modulate these responses by altering the aerobic metabolism fueling physiological performance. However, ecological models aimed at predicting how environmental factors shape aerobic metabolism disregard the role of oxygen supply. Here, we expand on these models by explicitly incorporating oxygen supply. Our results show that warmer water increases oxygen demand relative to supply, and the resulting reduction in aerobic scope appears to be stronger in larger individuals. Smaller aerobic scopes in warming water imply that climate change will reduce energy budgets needed to support the activities of aquatic animals and their physiological performance in the future. Both oxygen and temperature are fundamental factors determining metabolic performance, fitness, ecological niches, and responses of many aquatic organisms to climate change. Despite the importance of physical and physiological constraints on oxygen supply affecting aerobic metabolism of aquatic ectotherms, ecological theories such as the metabolic theory of ecology have focused on the effects of temperature rather than oxygen. This gap currently impedes mechanistic models from accurately predicting metabolic rates (i.e., oxygen consumption rates) of aquatic organisms and restricts predictions to resting metabolism, which is less affected by oxygen limitation. Here, we expand on models of metabolic scaling by accounting for the role of oxygen availability and temperature on both resting and active metabolic rates. Our model predicts that oxygen limitation is more likely to constrain metabolism in larger, warmer, and active fish. Consequently, active metabolic rates are less responsive to temperature than are resting metabolic rates, and metabolism scales to body size with a smaller exponent whenever temperatures or activity levels are higher. Results from a metaanalysis of fish metabolic rates are consistent with our model predictions. The observed interactive effects of temperature, oxygen availability, and body size predict that global warming will limit the aerobic scope of aquatic ectotherms and may place a greater metabolic burden on larger individuals, impairing their physiological performance in the future. Our model reconciles the metabolic theory with empirical observations of oxygen limitation and provides a formal, quantitative framework for predicting both resting and active metabolic rate and hence aerobic scope of aquatic ectotherms.
Collapse
|
63
|
Taylor-Cox ED, Macgregor CJ, Corthine A, Hill JK, Hodgson JA, Saccheri IJ. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 2020; 8:e10352. [PMID: 33240660 PMCID: PMC7680626 DOI: 10.7717/peerj.10352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
Populations undergoing rapid climate-driven range expansion experience distinct selection regimes dominated both by increased dispersal at the leading edges and steep environmental gradients. Characterisation of traits associated with such expansions provides insight into the selection pressures and evolutionary constraints that shape demographic and evolutionary responses. Here we investigate patterns in three components of wing morphology (size, shape, colour) often linked to dispersal ability and thermoregulation, along latitudinal gradients of range expansion in the Speckled Wood butterfly (Pararge aegeria) in Britain (two regions of expansion in England and Scotland). We measured 774 males from 54 sites spanning 799 km with a 10-year mean average temperature gradient of 4 °C. A geometric morphometric method was used to investigate variation in size and shape of forewings and hindwings; colour, pattern, and contrast of the wings were examined using a measure of lightness (inverse degree of melanism). Overall, wing size increased with latitude by ∼2% per 100 km, consistent with Bergmann’s rule. Forewings became more rounded and hindwings more elongated with history of colonisation, possibly reflecting selection for increased dispersal ability. Contrary to thermal melanism expectations, wing colour was lighter where larvae developed at cooler temperatures and unrelated to long-term temperature. Changes in wing spot pattern were also detected. High heterogeneity in variance among sites for all of the traits studied may reflect evolutionary time-lags and genetic drift due to colonisation of new habitats. Our study suggests that temperature-sensitive plastic responses for size and colour interact with selection for dispersal traits (wing size and shape). Whilst the plastic and evolutionary responses may in some cases act antagonistically, the rapid expansion of P. aegeria implies an overall reinforcing effect between these two mechanisms.
Collapse
Affiliation(s)
- Evelyn D Taylor-Cox
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Callum J Macgregor
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom.,Energy and Environment Institute, University of Hull, Hull, United Kingdom
| | - Amy Corthine
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Jane K Hill
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom
| | - Jenny A Hodgson
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Ilik J Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
64
|
Connoy JW, Leivesley JA, Brooks RJ, Litzgus JD, Rollinson N. Body size of ectotherms constrains thermal requirements for reproductive activity in seasonal environments. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Body size may influence ectotherm behaviour by influencing heating and cooling rates, thereby constraining the time of day that some individuals can be active. The time of day at which turtles nest, for instance, is hypothesized to vary with body size at both inter- and intra-specific levels because large individuals have greater thermal inertia, retaining preferred body temperatures for a longer period of time. We use decades of data on thousands of individual nests from Algonquin Park, Ontario, Canada, to explore how body size is associated with nesting behaviour in Painted Turtles (Chrysemys picta (Schneider, 1783); small bodied) and Snapping Turtles (Chelydra serpentina (Linnaeus, 1758); large bodied). We found that (i) between species, Painted Turtles nest earlier in the evening and at higher mean temperatures than Snapping Turtles, and (ii) within species, relatively large individuals of both species nest at cooler temperatures and that relatively larger Painted Turtles nest later in the evening compared with smaller Painted Turtles. Our data support the thermal inertia hypothesis and may help explain why turtles in general exhibit geographic clines in body size: northern environments experience more daily variation in temperature, and larger size may evolve, in part, for retention of preferred body temperature during terrestrial forays.
Collapse
Affiliation(s)
- Jared W.H. Connoy
- School of the Environment, University of Toronto, 33 Wilcocks Street, Toronto, ON M5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON M5S 3B2, Canada
| | - Jessica A. Leivesley
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON M5S 3B2, Canada
| | - Ronald J. Brooks
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jacqueline D. Litzgus
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Njal Rollinson
- School of the Environment, University of Toronto, 33 Wilcocks Street, Toronto, ON M5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
65
|
Verberk WC, Buchwalter DB, Kefford BJ. Energetics as a lens to understanding aquatic insect's responses to changing temperature, dissolved oxygen and salinity regimes. CURRENT OPINION IN INSECT SCIENCE 2020; 41:46-53. [PMID: 32682316 DOI: 10.1016/j.cois.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/12/2023]
Abstract
Assemblages of aquatic insects are structured by multiple biotic and abiotic conditions, including temperature, salinity and oxygen. Here we highlight recent developments in our understanding of how high temperatures, elevated salinities and low oxygen levels affect physiological processes, responses at the organismal level, and impacts on species interaction and community assembly. As aquatic insects may be exposed to multiple stressors, we review their sensitivity to interactive effects of multiple stressors. While each of these stressors may operate via different physiological mechanisms, they all influence the overall energy budget as well as the allocation of energy to competing functions such as homeostatic maintenance, growth, development and reproduction. As such, there is potential for interaction whereby one stressor may exacerbate the effect of another stressor. Integrating research on these stressors can provide a powerful approach for delineating the sensitivity of aquatic insects to multiple stressors and developing sound management practices.
Collapse
Affiliation(s)
- Wilco Cep Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University. Box 7633, Raleigh, NC 27695, USA
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT 2601, Australia
| |
Collapse
|
66
|
Garcia‐Robledo C, Baer CS, Lippert K, Sarathy V. Evolutionary history, not ecogeographic rules, explains size variation of tropical insects along elevational gradients. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carlos Garcia‐Robledo
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | - Christina S. Baer
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | - Kes Lippert
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | - Vikas Sarathy
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
67
|
Kutcherov D. Stagewise resolution of temperature-dependent embryonic and postembryonic development in the cowpea seed beetle Callosobruchus maculatus (F.). BMC Ecol 2020; 20:50. [PMID: 32917176 PMCID: PMC7488527 DOI: 10.1186/s12898-020-00318-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thermal plasticity of life-history traits receives wide attention in the recent biological literature. Of all the temperature-dependent traits studied, developmental rates of ectotherms are especially often addressed, and yet surprisingly little is known about embryonic responses to temperature, including changes in the thermal thresholds and thermal sensitivity during early development. Even postembryonic development of many cryptically living species is understood superficially at best. RESULTS This study is the first to estimate the exact durations of developmental stages in the cowpea seed beetle C. maculatus from oviposition to adult emergence at five permissive constant temperatures from 20 to 32 °C. Early embryonic development was tracked and documented by means of destructive sampling and subsequent confocal imaging of fluorescently stained specimens. Late embryonic and early larval development was studied with the use of destructive sampling and light microscopy. Well-resolved temporal series based on thousands of embryos allowed precise timing of the following developmental events: formation of the blastoderm; formation, elongation, and retraction of the germ band; dorsal closure; the onset and completion of sclerotization of the cuticle; hatching, and penetration of the first-instar larva into the cowpea seed. Pupation and adult eclosion were observed directly through an incision in the seed coat. The thermal phenotype of C. maculatus was found to vary in the course of ontogeny and different stages scaled disproportionately with temperature, but pitfalls and caveats associated with analyses of relative durations of individual stages are also briefly discussed. CONCLUSION Disproportionate changes in developmental durations with temperature may have important implications when study design requires a high degree of synchronization among experimental embryos or when the occurrence of particular stages in the field is of interest, as well as in any other cases when development times need to be estimated with precision. This work provides one of the first examples of integration of embryological techniques with ecophysiological concepts and will hopefully motivate similar projects in the future. While experiments with Drosophila continue to be the main source of information on animal development, knowledge on other model species is instrumental to building a broader picture of developmental phenomena.
Collapse
Affiliation(s)
- Dmitry Kutcherov
- Department of Entomology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
68
|
Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc Biol Sci 2020; 287:20200608. [PMID: 32486974 PMCID: PMC7341922 DOI: 10.1098/rspb.2020.0608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish (Gambusia affinis) recently established (less than 100 years) from a common source across a strong thermal gradient (19–33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature–size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world.
Collapse
Affiliation(s)
- David C Fryxell
- School of Environment, University of Auckland, Auckland 1010, New Zealand.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Alexander N Hoover
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Daniel A Alvarez
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Finn J Arnesen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | | | - Emma R Moffett
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - Kevin S Simon
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| |
Collapse
|
69
|
Johnson DJ, Stahlschmidt ZR. City limits: Heat tolerance is influenced by body size and hydration state in an urban ant community. Ecol Evol 2020; 10:4944-4955. [PMID: 32551072 PMCID: PMC7297767 DOI: 10.1002/ece3.6247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/25/2022] Open
Abstract
Cities are rapidly expanding, and global warming is intensified in urban environments due to the urban heat island effect. Therefore, urban animals may be particularly susceptible to warming associated with ongoing climate change. We used a comparative and manipulative approach to test three related hypotheses about the determinants of heat tolerance or critical thermal maximum (CT max) in urban ants-specifically, that (a) body size, (b) hydration status, and (c) chosen microenvironments influence CT max. We further tested a fourth hypothesis that native species are particularly physiologically vulnerable in urban environments. We manipulated water access and determined CT max for 11 species common to cities in California's Central Valley that exhibit nearly 300-fold variation in body size. There was a moderate phylogenetic signal influencing CT max, and inter (but not intra) specific variation in body size influenced CT max where larger species had higher CT max. The sensitivity of ants' CT max to water availability exhibited species-specific thresholds where short-term water limitation (8 hr) reduced CT max and body water content in some species while longer-term water limitation (32 hr) was required to reduce these traits in other species. However, CT max was not related to the temperatures chosen by ants during activity. Further, we found support for our fourth hypothesis because CT max and estimates of thermal safety margin in native species were more sensitive to water availability relative to non-native species. In sum, we provide evidence of links between heat tolerance and water availability, which will become critically important in an increasingly warm, dry, and urbanized world that others have shown may be selecting for smaller (not larger) body size.
Collapse
Affiliation(s)
- Dustin J. Johnson
- Department of Biological SciencesUniversity of the PacificStocktonCalifornia
| | | |
Collapse
|
70
|
Kojima W, Nakakura T, Fukuda A, Lin C, Harada M, Hashimoto Y, Kawachi A, Suhama S, Yamamoto R. Latitudinal cline of larval growth rate and its proximate mechanisms in a rhinoceros beetle. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wataru Kojima
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Tatsunori Nakakura
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Ayumi Fukuda
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Chung‐Ping Lin
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Masahiro Harada
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Yuki Hashimoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Aika Kawachi
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Shiho Suhama
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Ryo Yamamoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| |
Collapse
|
71
|
Antoł A, Labecka AM, Horváthová T, Zieliński B, Szabla N, Vasko Y, Pecio A, Kozłowski J, Czarnoleski M. Thermal and oxygen conditions during development cause common rough woodlice (Porcellio scaber) to alter the size of their gas-exchange organs. J Therm Biol 2020; 90:102600. [DOI: 10.1016/j.jtherbio.2020.102600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
|
72
|
Teder T. Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. OIKOS 2020. [DOI: 10.1111/oik.07119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tiit Teder
- Dept of Zoology, Inst. of Ecology and Earth Sciences, Univ. of Tartu Vanemuise 46 EE‐51003 Tartu Estonia
- Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Kamýcká 129 Praha – Suchdol 165 00 Czech Republic
| |
Collapse
|
73
|
Rocha-Ortega M, Rodríguez P, Bried J, Abbott J, Córdoba-Aguilar A. Why do bugs perish? Range size and local vulnerability traits as surrogates of Odonata extinction risk. Proc Biol Sci 2020; 287:20192645. [PMID: 32228412 PMCID: PMC7209059 DOI: 10.1098/rspb.2019.2645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
Despite claims of an insect decline worldwide, our understanding of extinction risk in insects is incomplete. Using bionomic data of all odonate (603 dragonflies and damselflies) North American species, we assessed (i) regional extinction risk and whether this is related to local extirpation; (ii) whether these two patterns are similar altitudinally and latitudinally; and (iii) the areas of conservation concern. We used geographic range size as a predictor of regional extinction risk and body size, thermal limits and habitat association as predictors of local extirpation. We found that (i) greater regional extinction risk is related to narrow thermal limits, lotic habitat use and large body size (this in damselflies but not dragonflies); (ii) southern species are more climate tolerant but with more limited geographic range size than northern species; and (iii) two priority areas for odonate conservation are the cold temperate to sub-boreal northeastern USA and the transversal neo-volcanic system. Our approach can be used to estimate insect extinction risk as it compensates for the lack of abundance data.
Collapse
Affiliation(s)
- Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| | - Pilar Rodríguez
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Liga Periférico-Insurgentes Sur 4903 Col. Parques del Pedregal, Tlalpan, CP 14010 México D.F., Mexico
| | - Jason Bried
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 South Oak Street, MC 652, Champaign, IL 61820, USA
| | - John Abbott
- Alabama Museum of Natural History, The University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| |
Collapse
|
74
|
Preston DB, Johnson SG. Generalist grasshoppers from thermally variable sites do not have higher thermal tolerance than grasshoppers from thermally stable sites - A study of five populations. J Therm Biol 2020; 88:102527. [PMID: 32126002 DOI: 10.1016/j.jtherbio.2020.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
Thermal tolerance allows many organisms, including insects, to withstand stressful temperatures. Thermal generalists are expected to have higher thermal tolerance than specialists, but the environmental conditions leading to the evolution of a thermal generalist life history are not fully understood. Thermal variability has been put forth as an evolutionary driver of high thermal tolerance, but rarely has this been empirically tested. We used a generalist agricultural pest grasshopper, Melanoplus differentialis, to test upper and lower thermal limits of populations that experienced different levels of thermal variability. We quantified thermal heterogeneity at five sites in a longitudinal transect in the Midwestern U.S. by examining, over a 101-year period, 1) variance in daily thermal maxima and minima; and 2) daily range. Also, as a measure of a biologically relevant thermal extreme, we depicted days per month at each site that reached a stressfully high temperature for M. differentialis. We collected individuals from these sites and tested their upper and lower thermal limits. We found that most of our metrics of thermal heterogeneity differed among sites, while all sites experienced an average of at least two stressfully high temperature events per month. We found that heavier males from these sites were able to withstand both warmer and colder temperatures than smaller males, while heavier females had no thermal advantage over lighter females. However, site of origin had no effect on thermal tolerance. Our findings indicate three things: 1) there is no clear correlation between thermal variability and thermal tolerance in the populations we studied; 2) weight affects thermal tolerance range among sites for M. differentialis males, and 3) thermal extremes may be more important than thermal variability in determining CTMax in this species.
Collapse
Affiliation(s)
- Devin B Preston
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - Steven G Johnson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| |
Collapse
|
75
|
Gérard M, Martinet B, Maebe K, Marshall L, Smagghe G, Vereecken NJ, Vray S, Rasmont P, Michez D. Shift in size of bumblebee queens over the last century. GLOBAL CHANGE BIOLOGY 2020; 26:1185-1195. [PMID: 31665557 DOI: 10.1111/gcb.14890] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Species can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century. Based on historical and contemporary databases, we first tested if queen body sizes changed during the last century at the intraspecific level among four common bumblebee species and if it could be linked to global warming and/or habitat fragmentation as well as by the replacement by individuals from new populations. Then, we assessed body size changes at the community level, among 22 species, taking into account species population trends (i.e. increasing, stable or decreasing relative abundance). Our results show that the average queen body size of all four bumblebee species increased over the last century. This size increase was significantly correlated to global warming and habitat fragmentation, but not explained by changes in the population genetic structure (i.e. colonization). At the community level, species with stable or increasing relative abundance tend to be larger than declining species. Contrary to theoretical expectations from Bergmann's rule (i.e. increasing body size in colder climates), temperature does not seem to be the main driver of bumblebee body size during the last century as we observed the opposite body size trend. However, agricultural intensification and habitat fragmentation could be alternative mechanisms that shape body size clines. This study stresses the importance of considering alternative global change factors when assessing body size change.
Collapse
Affiliation(s)
- Maxence Gérard
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Kevin Maebe
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Guy Smagghe
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Sarah Vray
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Pierre Rasmont
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| | - Denis Michez
- Laboratoire de Zoologie, Research Institute of Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
76
|
Mallard F, Le Bourlot V, Le Coeur C, Avnaim M, Péronnet R, Claessen D, Tully T. From individuals to populations: How intraspecific competition shapes thermal reaction norms. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- François Mallard
- Sorbonne Université UPEC, CNRS, IRD, INRAInstitut d'écologie et des sciences de l'environnementIEES F-75005Paris France
- Institut de Biologie de l'ENS (IBENS) Ecole Normale Supérieure Paris France
| | - Vincent Le Bourlot
- Institut de Biologie de l'ENS (IBENS) Ecole Normale Supérieure Paris France
| | - Christie Le Coeur
- Sorbonne Université UPEC, CNRS, IRD, INRAInstitut d'écologie et des sciences de l'environnementIEES F-75005Paris France
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | - Monique Avnaim
- Sorbonne Université UPEC, CNRS, IRD, INRAInstitut d'écologie et des sciences de l'environnementIEES F-75005Paris France
| | - Romain Péronnet
- Sorbonne Université UPEC, CNRS, IRD, INRAInstitut d'écologie et des sciences de l'environnementIEES F-75005Paris France
| | - David Claessen
- Institut de Biologie de l'ENS (IBENS) Ecole Normale Supérieure Paris France
| | - Thomas Tully
- Sorbonne Université UPEC, CNRS, IRD, INRAInstitut d'écologie et des sciences de l'environnementIEES F-75005Paris France
| |
Collapse
|
77
|
Marzec M, Kuźnik-Kowalska E, Proćków M. Shell morphology, growth pattern and population dynamics of the land snail Xerolenta obvia (Menke, 1828) in two areas of different climatic conditions within a temperate climate region. ACTA ZOOL ACAD SCI H 2020. [DOI: 10.17109/azh.66.1.69.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
78
|
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 2019; 10:4612. [PMID: 31601806 PMCID: PMC6787050 DOI: 10.1038/s41467-019-12655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming. Body size shifts under climate change may arise from species range shifts, intraspecific size shifts, or both. Here the authors show that body size reduction in moth assemblages on Mt. Kinabalu, Borneo, over 42 years are driven more by species range shifts than by within-species shrinkage.
Collapse
Affiliation(s)
- Chung-Huey Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jane K Hill
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan. .,Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
79
|
Verheyen J, Tüzün N, Stoks R. Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. CURRENT OPINION IN INSECT SCIENCE 2019; 35:10-19. [PMID: 31301449 DOI: 10.1016/j.cois.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Demonstrating the likelihood of evolution in response to global warming is important, yet challenging. We discuss how three spatial thermal gradients (latitudinal, altitudinal, and urbanization) can be used as natural laboratories to inform about the gradual thermal evolution of populations by applying a space-for-time substitution (SFTS) approach. We compare thermal variables and confounding non-thermal abiotic variables, methodological approaches and evolutionary aspects associated with each type of gradient. On the basis of an overview of recent insect studies, we show that a key assumption of SFTS, local thermal adaptation along these gradients, is often but not always met, requiring explicit validation. To increase realism when applying SFTS, we highlight the importance of integrating daily temperature fluctuations, multiple stressors and multiple interacting species. Finally, comparative studies, especially across gradient types, are important to provide more robust inferences of evolution under gradual global warming. Integrating these research directions will further strengthen the still underused, yet powerful SFTS approach to infer gradual evolution under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
80
|
Boukal DS, Bideault A, Carreira BM, Sentis A. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. CURRENT OPINION IN INSECT SCIENCE 2019; 35:88-95. [PMID: 31445412 DOI: 10.1016/j.cois.2019.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Human-induced climate change, dominated by warming trends, poses a major threat to global biodiversity and ecosystem functioning. Species interactions relay the direct and indirect effects of climate warming on individuals to communities, and detailed understanding across these levels is crucial to predict ecological consequences of climate change. We provide a conceptual framework that links temperature effects on insect physiology and behaviour to altered species interactions and community dynamics. We highlight key features of this framework with recent studies investigating the impacts of warming climate on insects and other ectotherms and identify methodological, taxonomic and geographic biases. While the effects of increased constant temperatures are now well understood, future studies should focus on temperature variation, interactions with other stressors and cross-system comparisons.
Collapse
Affiliation(s)
- David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Azenor Bideault
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du Centre National de la Recherche Scientifique (CNRS), 2 Route du CNRS, 09200 Moulis, France
| | - Bruno M Carreira
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| |
Collapse
|
81
|
Wilson RJ, Brooks SJ, Fenberg PB. The influence of ecological and life history factors on ectothermic temperature-size responses: Analysis of three Lycaenidae butterflies (Lepidoptera). Ecol Evol 2019; 9:10305-10316. [PMID: 31632644 PMCID: PMC6787867 DOI: 10.1002/ece3.5550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature-size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature-size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature-size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature-size responses for species with complex life cycles.
Collapse
Affiliation(s)
- Rebecca J. Wilson
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Phillip B. Fenberg
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| |
Collapse
|
82
|
Loisel A, Isla A, Daufresne M. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures. J Therm Biol 2019; 84:460-468. [DOI: 10.1016/j.jtherbio.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
83
|
Jourdan J, Baranov V, Wagner R, Plath M, Haase P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J Anim Ecol 2019; 88:1498-1509. [DOI: 10.1111/1365-2656.13054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Jonas Jourdan
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
- Department Aquatic Ecotoxicology Johann Wolfgang Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Viktor Baranov
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Rüdiger Wagner
- FB 10 Nat. Sci., Biology, Zoology University of Kassel Kassel Germany
| | - Martin Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Peter Haase
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
- Faculty of Biology University of Duisburg‐Essen Essen Germany
| |
Collapse
|
84
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
85
|
Huss M, Lindmark M, Jacobson P, van Dorst RM, Gårdmark A. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. GLOBAL CHANGE BIOLOGY 2019; 25:2285-2295. [PMID: 30932292 PMCID: PMC6850025 DOI: 10.1111/gcb.14637] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 03/16/2019] [Indexed: 05/25/2023]
Abstract
A challenge facing ecologists trying to predict responses to climate change is the few recent analogous conditions to use for comparison. For example, negative relationships between ectotherm body size and temperature are common both across natural thermal gradients and in small-scale experiments. However, it is unknown if short-term body size responses are representative of long-term responses. Moreover, to understand population responses to warming, we must recognize that individual responses to temperature may vary over ontogeny. To enable predictions of how climate warming may affect natural populations, we therefore ask how body size and growth may shift in response to increased temperature over life history, and whether short- and long-term growth responses differ. We addressed these questions using a unique setup with multidecadal artificial heating of an enclosed coastal bay in the Baltic Sea and an adjacent reference area (both with unexploited populations), using before-after control-impact paired time-series analyses. We assembled individual growth trajectories of ~13,000 unique individuals of Eurasian perch and found that body growth increased substantially after warming, but the extent depended on body size: Only among small-bodied perch did growth increase with temperature. Moreover, the strength of this response gradually increased over the 24 year warming period. Our study offers a unique example of how warming can affect fish populations over multiple generations, resulting in gradual changes in body growth, varying as organisms develop. Although increased juvenile growth rates are in line with predictions of the temperature-size rule, the fact that a larger body size at age was maintained over life history contrasts to that same rule. Because the artificially heated area is a contemporary system mimicking a warmer sea, our findings can aid predictions of fish responses to further warming, taking into account that growth responses may vary both over an individual's life history and over time.
Collapse
Affiliation(s)
- Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Max Lindmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Philip Jacobson
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Renee M. van Dorst
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| |
Collapse
|
86
|
Leiva FP, Calosi P, Verberk WCEP. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190035. [PMID: 31203753 PMCID: PMC6606457 DOI: 10.1098/rstb.2019.0035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Global warming appears to favour smaller-bodied organisms, but whether larger species are also more vulnerable to thermal extremes, as suggested for past mass-extinction events, is still an open question. Here, we tested whether interspecific differences in thermal tolerance (heat and cold) of ectotherm organisms are linked to differences in their body mass and genome size (as a proxy for cell size). Since the vulnerability of larger, aquatic taxa to warming has been attributed to the oxygen limitation hypothesis, we also assessed how body mass and genome size modulate thermal tolerance in species with contrasting breathing modes, habitats and life stages. A database with the upper (CTmax) and lower (CTmin) critical thermal limits and their methodological aspects was assembled comprising more than 500 species of ectotherms. Our results demonstrate that thermal tolerance in ectotherms is dependent on body mass and genome size and these relationships became especially evident in prolonged experimental trials where energy efficiency gains importance. During long-term trials, CTmax was impaired in larger-bodied water-breathers, consistent with a role for oxygen limitation. Variation in CTmin was mostly explained by the combined effects of body mass and genome size and it was enhanced in larger-celled, air-breathing species during long-term trials, consistent with a role for depolarization of cell membranes. Our results also highlight the importance of accounting for phylogeny and exposure duration. Especially when considering long-term trials, the observed effects on thermal limits are more in line with the warming-induced reduction in body mass observed during long-term rearing experiments. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Collapse
Affiliation(s)
- Félix P Leiva
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| | - Piero Calosi
- 2 Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| | - Wilco C E P Verberk
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| |
Collapse
|
87
|
Baranovská E, Tajovský K, Knapp M. Changes in the Body Size of Carabid Beetles Along Elevational Gradients: A Multispecies Study of Between- and Within-Population Variation. ENVIRONMENTAL ENTOMOLOGY 2019; 48:583-591. [PMID: 30986299 DOI: 10.1093/ee/nvz036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Geographic variation in body size has fascinated biologists since the 19th century as it can provide insight into the evolution of the body size of various organisms. In this study, we investigated body size variation in eight carabid species/subspecies (Coleoptera: Carabidae) along elevational gradients in six Central European mountain ranges. First, we examined elevational variation in body size and whether female and male body sizes differed in their responses to elevation. Second, we examined intrapopulation variation in body size along an elevational gradient, and we compared the degrees of intrapopulation variation between males and females. The investigated species either followed a converse Bergmann's cline (Carabus auronitens auronitens Fabricius 1792; Carabus linnei Panzer 1810; Pterostichus melanarius (Illiger, 1798); Pterostichus pilosus (Host, 1789)) or their size was unaffected by elevation (Carabus auronitens escheri Palliardi, 1825; Carabus sylvestris sylvestris Panzer, 1796; Carabus sylvestris transsylvanicus Dejean, 1826; Pterostichus burmeisteri Heer, 1838). Females were the larger sex in all the investigated species, but the degree of sexual size dimorphism differed between species. In general, the degree of sexual size dimorphism showed no change with elevation. The degree of intrapopulation variation in body size slightly increased with elevation in C. sylvestris sylvestris and P. pilosus. Overall, the intrapopulation variation in body size significantly differed among the investigated carabid species. The existing literature on intrapopulation variation in the body size of insects is limited, but further investigation of this issue could provide a better understanding of the mechanisms that generate geographical clines.
Collapse
Affiliation(s)
- Eliška Baranovská
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká, Praha - Suchdol, Czech Republic
| | - Karel Tajovský
- Department of Soil Zoology, Institute of Soil Biology, Biology Centre of the Czech Academy of Sciences, Na Sádkách, České Budějovice, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká, Praha - Suchdol, Czech Republic
| |
Collapse
|
88
|
A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia 2019; 190:343-353. [PMID: 31161468 PMCID: PMC6571078 DOI: 10.1007/s00442-019-04428-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 12/02/2022]
Abstract
Body size at maturity often varies with environmental conditions, as well as between males and females within a species [termed Sexual Size Dimorphism (SSD)]. Variation in body size clines between the sexes can determine the degree to which SSD varies across environmental gradients. We use a meta-analytic approach to investigate whether major biogeographical and temporal (intra-annually across seasons) body size clines differ systematically between the sexes in arthropods. We consider 329 intra-specific environmental gradients in adult body size across latitude, altitude and with seasonal temperature variation, representing 126 arthropod species from 16 taxonomic orders. On average, we observe greater variability in male than female body size across latitude, consistent with the hypothesis that, over evolutionary time, directional selection has acted more strongly on male than female size. In contrast, neither sex exhibits consistently greater proportional changes in body size than the other sex across altitudinal or seasonal gradients, akin to earlier findings for plastic temperature-size responses measured in the laboratory. Variation in the degree to which body size gradients differ between the sexes cannot be explained by a range of potentially influential factors, including environment type (aquatic vs. terrestrial), voltinism, mean species’ body size, degree of SSD, or gradient direction. Ultimately, if we are to make better sense of the patterns (or lack thereof) in SSD across environmental gradients, we require a more detailed understanding of the underlying selective pressures driving clines in body size. Such understanding will provide a more comprehensive hypothesis-driven approach to explaining biogeographical and temporal variation in SSD.
Collapse
|
89
|
Sasaki M, Hedberg S, Richardson K, Dam HG. Complex interactions between local adaptation, phenotypic plasticity and sex affect vulnerability to warming in a widespread marine copepod. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182115. [PMID: 31032052 PMCID: PMC6458359 DOI: 10.1098/rsos.182115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
Collapse
Affiliation(s)
- Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
- Author for correspondence: Matthew Sasaki e-mail:
| | | | | | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
90
|
Lindmark M, Ohlberger J, Huss M, Gårdmark A. Size-based ecological interactions drive food web responses to climate warming. Ecol Lett 2019; 22:778-786. [PMID: 30816635 PMCID: PMC6849876 DOI: 10.1111/ele.13235] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023]
Abstract
Predicting climate change impacts on animal communities requires knowledge of how physiological effects are mediated by ecological interactions. Food-dependent growth and within-species size variation depend on temperature and affect community dynamics through feedbacks between individual performance and population size structure. Still, we know little about how warming affects these feedbacks. Using a dynamic stage-structured biomass model with food-, size- and temperature-dependent life history processes, we analyse how temperature affects coexistence, stability and size structure in a tri-trophic food chain, and find that warming effects on community stability depend on ecological interactions. Predator biomass densities generally decline with warming - gradually or through collapses - depending on which consumer life stage predators feed on. Collapses occur when warming induces alternative stable states via Allee effects. This suggests that predator persistence in warmer climates may be lower than previously acknowledged and that effects of warming on food web stability largely depend on species interactions.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, Öregrund, 742 42, Sweden
| | - Jan Ohlberger
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Box 355020, Seattle, WA, 98195-5020, USA
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, SE-742 42, Öregrund, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, SE-742 42, Öregrund, Sweden
| |
Collapse
|
91
|
Davies WJ. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology 2019; 100:e02612. [DOI: 10.1002/ecy.2612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- W. James Davies
- Institute of Integrative Biology University of Liverpool Biosciences Building, Crown Street Liverpool L69 7ZB UK
| |
Collapse
|
92
|
Horne CR, Hirst AG, Atkinson D, Almeda R, Kiørboe T. Rapid shifts in the thermal sensitivity of growth but not development rate causes temperature–size response variability during ontogeny in arthropods. OIKOS 2019. [DOI: 10.1111/oik.06016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Curtis R. Horne
- School of Environmental Sciences, Univ. of Liverpool Liverpool L69 3GP UK
| | - Andrew G. Hirst
- School of Environmental Sciences, Univ. of Liverpool Liverpool L69 3GP UK
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| | - David Atkinson
- Inst. of Integrative Biology, Univ. of Liverpool Liverpool UK
| | - Rodrigo Almeda
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| |
Collapse
|
93
|
Fernández-Torres F, Martínez PA, Olalla-Tárraga MÁ. Shallow water ray-finned marine fishes follow Bergmann’s rule. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Matsuda N, Tanaka K, Watari Y, Shintani Y, Goto SG, Nisimura T, Izumi Y, Numata H. Northward expansion of the bivoltine life cycle of the cricket over the last four decades. GLOBAL CHANGE BIOLOGY 2018; 24:5622-5628. [PMID: 30284375 DOI: 10.1111/gcb.14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Recent climate warming has affected some life-history traits of insects, including voltinism and body size. The magnitude of changes in these traits may differ latitudinally within a species because of the differing lengths of season available for growth. The present study aims to estimate the change in voltinism of the lawn ground cricket, Polionemobius mikado (Shiraki) (Orthoptera: Trigonidiidae), over the last four decades by comparing the body size between adults collected from a wide range of latitudes in Japan in recent years (2015-2017) and those collected four decades ago (1969-1976). The body size of adults collected in recent years showed a latitudinal saw-tooth cline, in the same way as body size did four decades ago, and the cline shifted northward over the last four decades: In 2015-2017, the body size decreased slightly with increasing latitude from 31°N to 36°N, and then increased to 40°N, and again decreased from 40°N to 44°N. Comparison of the body size between recent years and four decades ago revealed that the body size has decreased significantly at the middle latitudes (36-40°N), suggesting that the proportion of smaller bivoltine individuals there has increased over the last four decades. The sum of effective temperatures for postdiapause embryonic development at around 36°N in recent years was comparable to that at 31-35°N four decades ago, at which P. mikado populations were bivoltine. Taken together, these findings suggested that the latitudinal range suitable for the bivoltine life cycle of P. mikado has expanded northward over the last four decades because of climate warming. This is the first report that shows that a decrease in body size can be caused by climate warming via an increase in voltinism.
Collapse
Affiliation(s)
- Naoki Matsuda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazuhiro Tanaka
- General Education Division, Miyagi Gakuin Women's University, Sendai, Japan
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Ashiya, Japan
| | - Yoshinori Shintani
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Japan
| | - Shin G Goto
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Yohei Izumi
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | |
Collapse
|
95
|
Dahirel M, De Cock M, Vantieghem P, Bonte D. Urbanization-driven changes in web building and body size in an orb web spider. J Anim Ecol 2018; 88:79-91. [PMID: 30280386 DOI: 10.1111/1365-2656.12909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/07/2018] [Indexed: 12/23/2022]
Abstract
In animals, behavioural responses may play an important role in determining population persistence in the face of environmental changes. Body size is a key trait central to many life-history traits and behaviours. Correlations with body size may constrain behavioural variation in response to environmental changes, especially when size itself is influenced by environmental conditions. Urbanization is an important human-induced rapid environmental change that imposes multiple selection pressures on both body size and (size-constrained) behaviour. How these combine to shape behavioural responses of urban-dwelling species is unclear. Using web building, an easily quantifiable behaviour linked to body size and the garden spider Araneus diadematus as a model, we evaluated direct behavioural responses to urbanization and body size constraints across a network of 63 selected populations differing in urbanization intensity. We additionally studied urbanization at two spatial scales to account for some environmental pressures varying across scales and to obtain first qualitative insights about the role of plasticity and genetic selection. Spiders were smaller in highly urbanized sites (local scale only), in line with expectations based on reduced prey biomass availability and the Urban Heat Island effect. Web surface and mesh width decreased with urbanization at the local scale, while web surface also increased with urbanization at the landscape scale. The latter two responses are expected to compensate, at least in part, for reduced prey biomass availability in cities. The use of multivariate mixed modelling reveals that although web traits and body size are correlated within populations, behavioural responses to urbanization do not appear to be constrained by size: there is no evidence of size-web correlations among populations or among landscapes, and web traits appear independent from each other. Our results demonstrate that responses in size-dependent behaviours may be decoupled from size changes, thereby allowing fitness maximization in novel environments. The spatial scale at which traits respond suggests contributions of both genetic adaptation (for web investment) and plasticity (for mesh width). Although fecundity decreased with local-scale urbanization, A. diadematus abundances were similar across urbanization gradients; behavioural responses thus appear overall successful at the population level.
Collapse
Affiliation(s)
- Maxime Dahirel
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Gent, Belgium.,Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes, France
| | - Maarten De Cock
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Gent, Belgium
| | - Pieter Vantieghem
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Gent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Gent, Belgium
| |
Collapse
|
96
|
Elevational variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae). Polar Biol 2018. [DOI: 10.1007/s00300-018-2391-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
97
|
Bauerfeind SS, Schäfer MA, Berger D, Blanckenhorn WU, Fox CW. Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies. OIKOS 2018. [DOI: 10.1111/oik.05421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Martin A. Schäfer
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - David Berger
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
- Dept of Ecology and Genetics, Univ. of Uppsala; Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - Charles W. Fox
- Dept of Entomology, Univ. of Kentucky; S225 Ag Science Center North Lexington KY 40546-0091 USA
| |
Collapse
|
98
|
Brans KI, De Meester L. City life on fast lanes: Urbanization induces an evolutionary shift towards a faster lifestyle in the water flea
Daphnia. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13184] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and ConservationKU Leuven Leuven Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and ConservationKU Leuven Leuven Belgium
| |
Collapse
|
99
|
Leiva FP, Garcés C, Verberk WCEP, Care M, Paschke K, Gebauer P. Differences in the respiratory response to temperature and hypoxia across four life-stages of the intertidal porcelain crab Petrolisthes laevigatus. MARINE BIOLOGY 2018; 165:146. [PMID: 30220736 PMCID: PMC6132507 DOI: 10.1007/s00227-018-3406-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 08/14/2018] [Indexed: 05/29/2023]
Abstract
For aquatic breathers, hypoxia and warming can act synergistically causing a mismatch between oxygen supply (reduced by hypoxia) and oxygen demand (increased by warming). The vulnerability of these species to such interactive effects may differ during ontogeny due to differing gas exchange systems. This study examines respiratory responses to temperature and hypoxia across four life-stages of the intertidal porcelain crab Petrolisthes laevigatus. Eggs, megalopae, juveniles and adults were exposed to combinations of temperatures from 6 to 18 °C and oxygen tensions from 2 to 21 kPa. Metabolic rates differed strongly across life-stages which could be partly attributed to differences in body mass. However, eggs exhibited significantly lower metabolic rates than predicted for their body mass. For the other three stages, metabolic rates scaled with a mass exponent of 0.89. Mass scaling exponents were similar across all temperatures, but were significantly influenced by oxygen tension (the highest at 9 and 14 kPa, and the lowest at 2 kPa). Respiratory responses across gradients of oxygen tension were used to calculate the response to hypoxia, whereby eggs, megalopae and juveniles responded as oxyconformers and adults as oxyregulators. The thermal sensitivity of the metabolic rates (Q10) were dependent on the oxygen tension in megalopae, and also on the interaction between oxygen tension and temperature intervals in adults. Our results thus provide evidence on how the oxygen tension can modulate the mass dependence of metabolic rates and demonstrate changes in respiratory control from eggs to adults. In light of our results indicating that adults show a good capacity for maintaining metabolism independent of oxygen tension, our study highlights the importance of assessing responses to multiple stressors across different life-stages to determine how vulnerability to warming and hypoxia changes during development.
Collapse
Affiliation(s)
- Félix P. Leiva
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Cristóbal Garcés
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Wilco C. E. P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Macarena Care
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Paulina Gebauer
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| |
Collapse
|
100
|
Ejsmond MJ, McNamara JM, Søreide J, Varpe Ø. Gradients of season length and mortality risk cause shifts in body size, reserves and reproductive strategies of determinate growers. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maciej J. Ejsmond
- Institute of Environmental SciencesJagiellonian University Kraków Poland
- Department of Arctic BiologyUniversity Centre in Svalbard Longyearbyen Norway
| | | | - Janne Søreide
- Department of Arctic BiologyUniversity Centre in Svalbard Longyearbyen Norway
| | - Øystein Varpe
- Department of Arctic BiologyUniversity Centre in Svalbard Longyearbyen Norway
- Akvaplan‐nivaFram Centre Tromsø Norway
| |
Collapse
|