51
|
Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. THE NEW PHYTOLOGIST 2021; 229:259-271. [PMID: 32772392 DOI: 10.1111/nph.16865] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Root exudation stimulates microbial decomposition and enhances nutrient availability to plants. It remains difficult to measure and predict this carbon flux in natural conditions, especially for mature woody plants. Based on a known conceptual framework of root functional traits coordination, we proposed that root functional traits may predict root exudation. We measured root exudation and other seven root morphological/chemical/physiological traits for 18 coexisting woody species in a deciduous-evergreen mixed forest in subtropical China. Root exudation, respiration, diameter and nitrogen (N) concentration all exhibited significant phylogenetic signals. We found that root exudation positively correlated with competitive traits (root respiration, N concentration) and negatively with a conservative trait (root tissue density). Furthermore, these relationships were independent of phylogenetic signals. A principal component analysis showed that root exudation and morphological traits loaded on two perpendicular axes. Root exudation is a competitive trait in a multidimensional fine-root functional coordination. The metabolic dimension on which root exudation loaded was relatively independent of the morphological dimension, indicating that increasing nutrient availability by root exudation might be a complementary strategy for plant nutrient acquisition. The positive relationship between root exudation and root respiration and N concentration is a promising approach for the future prediction of root exudation.
Collapse
Affiliation(s)
- Lijuan Sun
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Mioko Ataka
- Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Mengguang Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yunfeng Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Dayong Gan
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianle Xu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanpei Guo
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
52
|
Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y. Linking functional traits to multiscale statistics of leaf venation networks. THE NEW PHYTOLOGIST 2020; 228:1796-1810. [PMID: 32712991 DOI: 10.1111/nph.16830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs. We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm2 , pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost. We show that these multiscale statistics clearly differentiate species' architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent. This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.
Collapse
Affiliation(s)
- Benjamin Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Sabine Both
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Miguel Jodra
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Hao Xu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Ilaíne S Matos
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Noreen Majalap
- Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, 90175, Malaysia
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Yit Arn Teh
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle, NE1 7RU, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| |
Collapse
|
53
|
Valverde-Barrantes OJ, Maherali H, Baraloto C, Blackwood CB. Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. THE NEW PHYTOLOGIST 2020; 228:541-553. [PMID: 32535912 DOI: 10.1111/nph.16729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Changes in fine-root morphology are typically associated with transitions from the ancestral arbuscular mycorrhizal (AM) to the alternative ectomycorrhizal (ECM) or nonmycorrhizal (NM) associations. However, the modifications in root morphology may also coincide with new modifications in leaf hydraulics and growth habit during angiosperm diversification. These hypotheses have not been evaluated concurrently, and this limits our understanding of the causes of fine-root evolution. To explore the evolution of fine-root systems, we assembled a 600+ species database to reconstruct historical changes in seed plants over time. We utilise ancestral reconstruction approaches together with phylogenetically informed comparative analyses to test whether changes in fine-root traits were most strongly associated with mycorrhizal affiliation, leaf hydraulics or growth form. Our findings showed significant shifts in root diameter, specific root length and root tissue density as angiosperms diversified, largely independent from leaf changes or mycorrhizal affiliation. Growth form was the only factor associated with fine-root traits in statistical models including mycorrhizal association and leaf venation, suggesting substantial modifications in fine-root morphology during transitions from woody to nonwoody habits. Divergences in fine-root systems were crucial in the evolution of seed plant lineages, with important implications for ecological processes in terrestrial ecosystems.
Collapse
Affiliation(s)
- Oscar J Valverde-Barrantes
- International Center for Tropical Biodiversity, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Christopher Baraloto
- International Center for Tropical Biodiversity, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | | |
Collapse
|
54
|
Comparison of the Scaling Relationships of Leaf Biomass versus Surface Area between Spring and Summer for Two Deciduous Tree Species. FORESTS 2020. [DOI: 10.3390/f11091010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The scaling relationship between either leaf dry or fresh mass (M) and surface area (A) can reflect the photosynthetic potential and efficiency of light harvesting in different broad-leaved plants. In growing leaves, lamina area expansion is typically finished before the completion of leaf biomass accumulation, thereby affecting the M vs. A scaling relationship at different developmental stages of leaves (e.g., young vs. adult leaves). In addition, growing plants can have different-sized leaves at different plant ages, potentially also changing M vs. A scaling. Furthermore, leaf shape can also change during the course of ontogeny and modify the M vs. A scaling relationship. Indeed, the effect of seasonal changes in leaf shape on M vs. A scaling has not been examined in any previous studies known to us. The study presented here was conducted using two deciduous tree species: Alangium chinense (saplings forming leaves through the growing season) and Liquidambar formosana (adult trees producing only one leaf flush in spring) that both have complex but nearly bilaterally symmetrical leaf shapes. We determined (i) whether leaf shapes differed in spring versus summer; (ii) whether the M vs. A scaling relationship varied over time; and (iii) whether there is a link between leaf shape and the scaling exponent governing the M vs. A scaling relationship. The data indicated that (i) the leaf dissection index in spring was higher than that in summer for both species (i.e., leaf-shape complexity decreased from young to adult leaves); (ii) there was a significant difference in the numerical value of the scaling exponent of leaf perimeter vs. area between leaves sampled at the two dates; (iii) spring leaves had a higher water content than summer leaves, and the scaling exponents of dry mass vs. area and fresh mass vs. area were all greater than unity; (iv) the scaling relationship between fresh mass and area was statistically more robust than that between leaf dry mass and area; (v) the scaling exponents of leaf dry and fresh mass vs. area of A. chinense leaves in spring were greater than those in summer (i.e., leaves in younger plants tend to be larger than leaves in older plants), whereas, for the adult trees of L. formosana, the scaling exponent in spring was smaller than that in summer, indicating increases in leaf dry mass per unit area with increasing leaf age; and (vi) leaf shape appears not to be related to the scaling relationship between either leaf dry or fresh mass and area, but is correlated with the scaling exponent of leaf perimeter vs. area (which tends to be a ½ power function). These trends indicate that studies of leaf morphometrics and scaling relationships must consider the influence of seasonality and plant age in sampling of leaves and the interpretation of data.
Collapse
|
55
|
Mo Q, Wang W, Chen Y, Peng Z, Zhou Q. Response of foliar functional traits to experimental N and P addition among overstory and understory species in a tropical secondary forest. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
56
|
Assessments of foliar functional traits of understory shrubs in two 13-year reforested plantations in subtropical China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
57
|
Leaf Habit and Stem Hydraulic Traits Determine Functional Segregation of Multiple Oak Species along a Water Availability Gradient. FORESTS 2020. [DOI: 10.3390/f11080894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oaks are a dominant woody plant genus in the northern hemisphere that occupy a wide range of habitats and are ecologically diverse. We implemented a functional trait approach that included nine functional traits related to leaves and stems in order to explain the species coexistence of 21 oak species along a water availability gradient in a temperate forest in Mexico. This particular forest is characterized as a biodiversity hotspot, with many oak species including some endemics. Our main aim was to investigate whether the different oak species had specific trait associations that allow them to coexist along an environmental gradient at regional scale. First, we explored trait covariation and determined the main functional dimensions in which oaks were segregated. Second, we explored how environmental variation has selected for restricted functional dimensions that shape oak distributions along the gradient, regardless of their leaf life span or phylogeny (section level). Third, we quantified the niche overlap between the oak functional spaces at different levels. The analyzed species showed three functional dimensions of trait variation: a primary axis related to the leaf economic spectrum, which corresponds to the segregation of the species according to leaf habit; a second axis that reflects the stem hydraulic properties and corresponds to species segregation followed by phylogenetic segregation, reflecting some degree of trait conservatism, and a third axis, represented mainly by leaf area and plant height, that corresponds to species segregation. Finally, our findings indicated that the functional space measured with leaf traits and stem traits such as hydraulic capacity was integrally linked to niche differentiation. This linkage suggests that the earliest mechanism of species segregation was related to habitat suitability and that the stem hydraulic trade-off reflects differences between phylogenetic sections; these traits may promote coexistence between distantly related oak species.
Collapse
|
58
|
Ramírez-Valiente JA, López R, Hipp AL, Aranda I. Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). THE NEW PHYTOLOGIST 2020; 227:794-809. [PMID: 31733106 DOI: 10.1111/nph.16320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
It is hypothesised that tree distributions in Europe are largely limited by their ability to cope with the summer drought imposed by the Mediterranean climate in the southern areas and by their competitive potential in central regions with more mesic conditions. We investigated the extent to which leaf and plant morphology, gas exchange, leaf and stem hydraulics and growth rates have evolved in a coordinated way in oaks (Quercus) as a result of adaptation to contrasting environmental conditions in this region. We implemented an experiment in which seedlings of 12 European/North African oaks were grown under two watering treatments, a well-watered treatment and a drought treatment in which plants were subjected to three cycles of drought. Consistent with our hypothesis, species from drier summers had traits conferring more tolerance to drought such as small sclerophyllous leaves and lower percent loss of hydraulic conductivity. However, these species did not have lower growth rates as expected by a trade-off with drought tolerance. Overall, our results revealed that climate is an important driver of functional strategies in oaks and that traits have evolved along two coordinated functional axes to adapt to different precipitation and temperature regimes.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL, 60532-1293, USA
- The Field Museum, Chicago, IL, 60605, USA
| | - Ismael Aranda
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa, Palma de Mallorca, 07122, Spain
| |
Collapse
|
59
|
Asao S, Hayes L, Aspinwall MJ, Rymer PD, Blackman C, Bryant CJ, Cullerne D, Egerton JJG, Fan Y, Innes P, Millar AH, Tucker J, Shah S, Wright IJ, Yvon-Durocher G, Tissue D, Atkin OK. Leaf trait variation is similar among genotypes of Eucalyptus camaldulensis from differing climates and arises in plastic responses to the seasons rather than water availability. THE NEW PHYTOLOGIST 2020; 227:780-793. [PMID: 32255508 DOI: 10.1111/nph.16579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
We used a widely distributed tree Eucalyptus camaldulensis subsp. camaldulensis to partition intraspecific variation in leaf functional traits to genotypic variation and phenotypic plasticity. We examined if genotypic variation is related to the climate of genotype provenance and whether phenotypic plasticity maintains performance in a changing environment. Ten genotypes from different climates were grown in a common garden under watering treatments reproducing the wettest and driest edges of the subspecies' distribution. We measured functional traits reflecting leaf metabolism and associated with growth (respiration rate, nitrogen and phosphorus concentrations, and leaf mass per area) and performance proxies (aboveground biomass and growth rate) each season over a year. Genotypic variation contributed substantially to the variation in aboveground biomass but much less in growth rate and leaf traits. Phenotypic plasticity was a large source of the variation in leaf traits and performance proxies and was greater among sampling dates than between watering treatments. The variation in leaf traits was weakly correlated to performance proxies, and both were unrelated to the climate of genotype provenance. Intraspecific variation in leaf traits arises similarly among genotypes in response to seasonal environmental variation, instead of long-term water availability or climate of genotype provenance.
Collapse
Affiliation(s)
- Shinichi Asao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Chris Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Callum J Bryant
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Darren Cullerne
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - John J G Egerton
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Yuzhen Fan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter Innes
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Josephine Tucker
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shahen Shah
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- The University of Agriculture Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Owen K Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
60
|
Cavender-Bares J, G Fontes C, Pinto-Ledezma J. Open questions in understanding the adaptive significance of plant functional trait variation within a single lineage. THE NEW PHYTOLOGIST 2020; 227:659-663. [PMID: 32535911 DOI: 10.1111/nph.16652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Clarissa G Fontes
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jesús Pinto-Ledezma
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
61
|
He N, Li Y, Liu C, Xu L, Li M, Zhang J, He J, Tang Z, Han X, Ye Q, Xiao C, Yu Q, Liu S, Sun W, Niu S, Li S, Sack L, Yu G. Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends Ecol Evol 2020; 35:908-918. [PMID: 32595068 DOI: 10.1016/j.tree.2020.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Functional traits are frequently used to evaluate plant adaptation across environments. Yet, traits tend to have multiple functions and interactions, which cannot be accounted for in traditional correlation analyses. Plant trait networks (PTNs) clarify complex relationships among traits, enable the calculation of metrics for the topology of trait coordination and the importance of given traits in PTNs, and how they shift across communities. Recent studies of PTNs provide new insights into some important topics, including trait dimensionality, trait spectra (including the leaf economic spectrum), stoichiometric principles, and the variation of phenotypic integration along gradients of resource availability. PTNs provide improved resolution of the multiple dimensions of plant adaptation across scales and responses to shifting resources, disturbance regimes, and global change.
Collapse
Affiliation(s)
- Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinsheng He
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
62
|
Delhaye G, Bauman D, Séleck M, Ilunga wa Ilunga E, Mahy G, Meerts P. Interspecific trait integration increases with environmental harshness: A case study along a metal toxicity gradient. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Guillaume Delhaye
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - David Bauman
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - Maxime Séleck
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Edouard Ilunga wa Ilunga
- Ecology, Restoration Ecology and Landscape Research Unit Faculty of Agronomy University of Lubumbashi Lubumbashi Democratic Republic of Congo
| | - Grégory Mahy
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Pierre Meerts
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
| |
Collapse
|
63
|
Shiklomanov AN, Cowdery EM, Bahn M, Byun C, Jansen S, Kramer K, Minden V, Niinemets Ü, Onoda Y, Soudzilovskaia NA, Dietze MC. Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02064. [PMID: 31872519 DOI: 10.1002/eap.2064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 05/25/2023]
Abstract
The leaf economic spectrum is a widely studied axis of plant trait variability that defines a trade-off between leaf longevity and productivity. While this has been investigated at the global scale, where it is robust, and at local scales, where deviations from it are common, it has received less attention at the intermediate scale of plant functional types (PFTs). We investigated whether global leaf economic relationships are also present within the scale of plant functional types (PFTs) commonly used by Earth System models, and the extent to which this global-PFT hierarchy can be used to constrain trait estimates. We developed a hierarchical multivariate Bayesian model that assumes separate means and covariance structures within and across PFTs and fit this model to seven leaf traits from the TRY database related to leaf longevity, morphology, biochemistry, and photosynthetic metabolism. Although patterns of trait covariation were generally consistent with the leaf economic spectrum, we found three approximate tiers to this consistency. Relationships among morphological and biochemical traits (specific leaf area [SLA], N, P) were the most robust within and across PFTs, suggesting that covariation in these traits is driven by universal leaf construction trade-offs and stoichiometry. Relationships among metabolic traits (dark respiration [Rd ], maximum RuBisCo carboxylation rate [Vc,max ], maximum electron transport rate [Jmax ]) were slightly less consistent, reflecting in part their much sparser sampling (especially for high-latitude PFTs), but also pointing to more flexible plasticity in plant metabolistm. Finally, relationships involving leaf lifespan were the least consistent, indicating that leaf economic relationships related to leaf lifespan are dominated by across-PFT differences and that within-PFT variation in leaf lifespan is more complex and idiosyncratic. Across all traits, this covariance was an important source of information, as evidenced by the improved imputation accuracy and reduced predictive uncertainty in multivariate models compared to univariate models. Ultimately, our study reaffirms the value of studying not just individual traits but the multivariate trait space and the utility of hierarchical modeling for studying the scale dependence of trait relationships.
Collapse
Affiliation(s)
- Alexey N Shiklomanov
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland, 20740, USA
| | - Elizabeth M Cowdery
- Department of Earth & Environment, Boston University, 685 Commonwealth Avenue Boston, Massachusetts, 02215, USA
| | - Michael Bahn
- Institute of Ecology, University of Innsbruck, Innsbruck, 6020, Austria
| | - Chaeho Byun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Koen Kramer
- Department of Vegetation, Forest, and Landscape Ecology, Wageningen Environmental Research and Wageningen University, P.O. Box 6708, Droevendaalsesteeg 4, Wageningen, The Netherlands
| | - Vanessa Minden
- Institute for Biology and Environmental Sciences, Carl von Ossietzky-University of Oldenburg, Carl von Ossietzky Strasse 9-11, Oldenburg, 26129, Germany
- Department of Biology, Ecology and Evolution, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 605-8503, Japan
| | - Nadejda A Soudzilovskaia
- Conservation Biology Department, Institute of Environmental Sciences, Leiden University, Rapenburg 70, 2311, EZ Leiden, The Netherlands
| | - Michael C Dietze
- Department of Earth & Environment, Boston University, 685 Commonwealth Avenue Boston, Massachusetts, 02215, USA
| |
Collapse
|
64
|
Burton JI, Perakis SS, Brooks JR, Puettmann KJ. Trait integration and functional differentiation among co-existing plant species. AMERICAN JOURNAL OF BOTANY 2020; 107:628-638. [PMID: 32236958 PMCID: PMC8108537 DOI: 10.1002/ajb2.1451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 05/17/2023]
Abstract
PREMISE Determining which traits characterize strategies of coexisting species is important to developing trait-based models of plant communities. First, global dimensions may not exist locally. Second, the degree to which traits and trait spectra constitute independent dimensions of functional variation at various scales continues to be refined. Finally, traits may be associated with existing categorical groupings. METHODS We assessed trait integration and differentiation across 57 forest understory plant species in Douglas-fir forests of western Oregon, United States. We combined measurements for a range of traits with literature-based estimates of seed mass and species groupings. We used network analysis and nonmetric multidimensional scaling ordination (NMS) to determine the degree of integration. RESULTS We observed a strong leaf economics spectrum (LES) integrated with stem but not root traits. However, stem traits and intrinsic water-use efficiency integrated LES and root traits. Network analyses indicated a modest grouping of a priori trait dimensions. NMS indicated that multivariate differences among species were related primarily to (1) rooting depth and plant height vs. specific root length, (2) the LES, and (3) leaf size vs. seed mass. These differences were related to species groupings associated with growth and life form, leaf lifespan and seed dispersal mechanisms. CONCLUSIONS The strategies of coexisting understory plant species could not be reduced to a single dimension. Yet, species can be characterized efficiently and effectively for trait-based studies of plant communities by measuring four common traits: plant height, specific leaf area, leaf size, and seed mass.
Collapse
Affiliation(s)
- Julia I. Burton
- State University of New York College of Environmental Sciences and Forestry, Department of Sustainable Resources Management, 320 Bray Hall, 1 Forestry Dr., Syracuse, NY 13210, USA
| | - Steven S. Perakis
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - J. Renée Brooks
- U.S. Environmental Protection Agency, Western Ecology Division, 200 SW 35, Corvallis, OR 97331, USA
| | - Klaus J. Puettmann
- Oregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
65
|
Liu C, Li Y, Zhang J, Baird AS, He N. Optimal Community Assembly Related to Leaf Economic- Hydraulic-Anatomical Traits. FRONTIERS IN PLANT SCIENCE 2020; 11:341. [PMID: 32269584 PMCID: PMC7109333 DOI: 10.3389/fpls.2020.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Multi-dimensional trait mechanisms underlying community assembly at regional scales are largely unclear. In this study, we measured leaf economic, hydraulic and anatomical traits of 394 tree species from tropical to cold temperate forests, from which we calculated the leaf trait moments (mean, variance, skewness, and kurtosis) using community-weighted methods. Economic and hydraulic traits were decoupled at the species level, but coupled at the community level, and relationships between leaf traits in observed communities were stronger than that in null communities, suggesting that the adaptive mechanisms of plant species may be different. Furthermore, leaf economic traits were distributed more evenly across species occupying communities with lower temperature and precipitation, whereas hydraulic traits were distributed more evenly under lower water availability. This suggests that limiting similarity of specific leaf traits within communities would be enhanced when related-resources are limited, and highlights the independent assembly of leaf economics and hydraulic traits in terms of functional evenness. Importantly, the moments of leaf economic and hydraulic traits of observed communities explained more variation in ecosystem productivity than that of null communities, indicating ecosystem productivity depended on trait-based community assembly. Our results highlight the principles of community assembly regarding multi-dimensionsional traits in natural forests at a regional scale.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- The Key Laboratory for Forest Resources & Ecosystem Processes of Beijing, Beijing Forestry University, Beijing, China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Alec S. Baird
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Institute of Grassland Science, Northeast Normal University, and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
66
|
Fyllas NM, Michelaki C, Galanidis A, Evangelou E, Zaragoza-Castells J, Dimitrakopoulos PG, Tsadilas C, Arianoutsou M, Lloyd J. Functional Trait Variation Among and Within Species and Plant Functional Types in Mountainous Mediterranean Forests. FRONTIERS IN PLANT SCIENCE 2020; 11:212. [PMID: 32194599 PMCID: PMC7065597 DOI: 10.3389/fpls.2020.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/11/2020] [Indexed: 05/02/2023]
Abstract
Plant structural and biochemical traits are frequently used to characterise the life history of plants. Although some common patterns of trait covariation have been identified, recent studies suggest these patterns of covariation may differ with growing location and/or plant functional type (PFT). Mediterranean forest tree/shrub species are often divided into three PFTs based on their leaf habit and form, being classified as either needleleaf evergreen (Ne), broadleaf evergreen (Be), or broadleaf deciduous (Bd). Working across 61 mountainous Mediterranean forest sites of contrasting climate and soil type, we sampled and analysed 626 individuals in order to evaluate differences in key foliage trait covariation as modulated by growing conditions both within and between the Ne, Be, and Bd functional types. We found significant differences between PFTs for most traits. When considered across PFTs and by ignoring intraspecific variation, three independent functional dimensions supporting the Leaf-Height-Seed framework were identified. Some traits illustrated a common scaling relationship across and within PFTs, but others scaled differently when considered across PFTs or even within PFTs. For most traits much of the observed variation was attributable to PFT identity and not to growing location, although for some traits there was a strong environmental component and considerable intraspecific and residual variation. Nevertheless, environmental conditions as related to water availability during the dry season and to a smaller extend to soil nutrient status and soil texture, clearly influenced trait values. When compared across species, about half of the trait-environment relationships were species-specific. Our study highlights the importance of the ecological scale within which trait covariation is considered and suggests that at regional to local scales, common trait-by-trait scaling relationships should be treated with caution. PFT definitions by themselves can potentially be an important predictor variable when inferring one trait from another. These findings have important implications for local scale dynamic vegetation models.
Collapse
Affiliation(s)
- Nikolaos M Fyllas
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Chrysanthi Michelaki
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Alexandros Galanidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Eleftherios Evangelou
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organisation "Demeter", Larisa, Greece
| | | | | | - Christos Tsadilas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organisation "Demeter", Larisa, Greece
| | - Margarita Arianoutsou
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Jon Lloyd
- Department of Life Sciences, Silwood Park, Imperial College London, London, United Kingdom
- School of Marine and Tropical Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
67
|
Jiang P, Wang H, Meinzer FC, Kou L, Dai X, Fu X. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. THE NEW PHYTOLOGIST 2020; 225:222-233. [PMID: 31247133 DOI: 10.1111/nph.16027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.
Collapse
Affiliation(s)
- Peipei Jiang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| |
Collapse
|
68
|
Ji W, LaZerte SE, Waterway MJ, Lechowicz MJ. Functional ecology of congeneric variation in the leaf economics spectrum. THE NEW PHYTOLOGIST 2020; 225:196-208. [PMID: 31400239 DOI: 10.1111/nph.16109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/04/2019] [Indexed: 05/18/2023]
Abstract
Variation in resource availability can lead to phenotypic plasticity in the traits comprising the world-wide leaf economics spectrum (LES), potentially impairing plant function and complicating the use of tabulated values for LES traits in ecological studies. We compared 14 Carex (Cyperaceae) species in a factorial experiment (unshaded/shaded × sufficient/insufficient P) to analyze how changes in the network of allometric scaling relationships among LES traits influenced growth under favorable and resource-limited conditions. Changes in leaf mass per area (LMA) shifted the scaling relationships among LES traits expressed per unit area vs mass in ways that helped to sustain growth under resource limitation. Increases in area-normalized photosynthetic capacity and foliar nitrogen (N) were correlated with increased growth, offsetting losses associated with mass-normalized dark respiration and foliar N. These shifts increased the contributions to growth associated with photosynthetic N-use efficiency and the N : P ratio. Plasticity in LMA is at the hub of the functional role of the LES as an integrated and resilient complex system that balances the relationships among area- and mass-based aspects of gas exchange and foliar nutrient traits to sustain at least some degree of plant growth under differing availabilities of above- and below-ground resources.
Collapse
Affiliation(s)
- Wenli Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Stefanie E LaZerte
- Department of Biology, Brandon University, 270 - 18th Street, Brandon, Manitoba, R7A 6A9, Canada
| | - Marcia J Waterway
- Department of Plant Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Martin J Lechowicz
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
69
|
Kawai K, Okada N. Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits. PLANTA 2019; 251:17. [PMID: 31776668 DOI: 10.1007/s00425-019-03295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Using 227 dicotyledonous species in temperate region, we found the relationships among densities of different-order veins, creating diversity of leaf vascular architectures. Dicotyledonous angiosperms commonly possess a hierarchical leaf vascular system, wherein veins of different orders have different functions. Minor vein spacing determines leaf hydraulic efficiency, whereas the major veins provide mechanical support. However, there is limited information on the coordination between these vein orders across species, limiting our understanding of how diversity in vein architecture is arrayed. We aimed to examine the (1) relationships between vein densities at two spatial scales (lower- vs. higher-order veins and among minor veins) and (2) relationships of vein densities with plant functional traits. We studied ten traits related to vein densities and three functional traits (leaf dry mass per area [LMA], leaf longevity [LL], and adult plant height [Hadult]) for 227 phylogenetically diverse plant species that occur in temperate regions and examined the vein-vein and vein-functional traits relationships across species. The densities of lower- and higher-order veins were positively correlated across species. The minor vein density was positively correlated with the densities of both areoles and free-ending veins, and vascular networks with higher minor vein density tended to have a lower ratio of free-ending veins to areoles across species. Neither densities of lower- nor higher-order veins were related to LMA and LL. On the other hand, the densities of veins and areoles tended to be positively correlated with Hadult. These results suggest that densities of different-order veins are developmentally coordinated across dicotyledonous angiosperms and form the independent axis in resource use strategies based on the leaf economics spectrum.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto, 606-8502, Japan.
- Center for Ecological Research, Kyoto University, 509-3 Hirano 2-Chome, Otsu, Shiga, 520-2113, Japan.
| | - Naoki Okada
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Skyo-Ku, 606-8501, Japan
| |
Collapse
|
70
|
Abo Gamar MI, Kisiala A, Emery RJN, Yeung EC, Stone SL, Qaderi MM. Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. PLANTA 2019; 250:1191-1214. [PMID: 31190116 DOI: 10.1007/s00425-019-03213-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
This study revealed that elevated carbon dioxide increases Arabidopsis tolerance to higher temperature and drought stress by mitigating oxidative stress and improving water status of plants. Few studies have considered multiple aspects of plant responses to key components of global climate change, including higher temperature, elevated carbon dioxide (ECO2), and drought. Hence, their individual and combinatorial effects on plants need to be investigated in the context of understanding climate change impact on plant growth and development. We investigated the interactive effects of temperature, CO2, watering regime, and genotype on Arabidopsis thaliana (WT and ABA-insensitive mutant, abi1-1). Plants were grown in controlled-environment growth chambers under two temperature regimes (22/18 °C and 28/24 °C, 16 h light/8 h dark), two CO2 concentrations (400 and 700 μmol mol-1), and two watering regimes (well-watered and water-stressed) for 18 days. Plant growth, anatomical, physiological, molecular, and hormonal responses were determined. Our study provided valuable information about plant responses to the interactive effects of multiple environmental factors. We showed that drought and ECO2 had larger effects on plants than higher temperatures. ECO2 alleviated the detrimental effects of temperature and drought by mitigating oxidative stress and plant water status, and this positive effect was consistent across multiple response levels. The WT plants performed better than the abi1-1 plants; the former had higher rosette diameter, total dry mass, leaf and soil water potential, leaf moisture, proline, ethylene, trans-zeatin, isopentyladenine, and cis-zeatin riboside than the latter. The water-stressed plants of both genotypes accumulated more abscisic acid (ABA) than the well-watered plants; however, higher temperatures decreased the ability of WT plants to produce ABA in response to drought. We conclude that drought strongly, while higher temperature to a lesser extent, affects Arabidopsis seedlings, and ECO2 reduces the adverse effects of these stressors more efficiently in the WT plants than in the abi1-1 plants. Findings from this study can be extrapolated to other plant species that share similar characteristics and/or family with Arabidopsis.
Collapse
Affiliation(s)
- Mohammad I Abo Gamar
- Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Sophia L Stone
- Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Mirwais M Qaderi
- Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada.
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
71
|
Liu X, Liu H, Gleason SM, Goldstein G, Zhu S, He P, Hou H, Li R, Ye Q. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species. TREE PHYSIOLOGY 2019; 39:1665-1674. [PMID: 31314105 DOI: 10.1093/treephys/tpz076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/28/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Coordination between sapwood-specific hydraulic conductivity (Ks) and stomatal conductance (gs) has been identified in previous studies; however, coordination between leaf hydraulic conductance (Kleaf) and gs, as well as between Kleaf and Ks is not always consistent. This suggests that there is a need to improve our understanding of the coordination among hydraulic and gas exchange traits. In this study, hydraulic traits (e.g., Ks and Kleaf) and gas exchange traits, including gs, transpiration (E) and net CO2 assimilation (Aarea), were measured across 33 co-occurring subtropical woody species. Kleaf was divided into two components: leaf hydraulic conductance inside the xylem (Kleaf-x) and outside the xylem (Kleaf-ox). We found that both Kleaf-x and Kleaf-ox were coordinated with gs and E, but the correlations between Kleaf-ox and gs (or E) were substantially weaker, and that Ks was coordinated with Kleaf-x, but not with Kleaf-ox. In addition, we found that Ks, Kleaf-x and Kleaf-ox together explained 63% of the variation in gs and 42% of the variation in Aarea across species, with Ks contributing the largest proportion of explanatory power, whereas Kleaf-ox contributed the least explanatory power. Our results demonstrate that the coordination between leaf water transport and gas exchange, as well as the hydraulic linkage between leaf and stem, were weakened by Kleaf-ox. This highlights the possibility that water transport efficiencies of stem and leaf xylem, rather than that of leaf tissues outside the xylem, are important determinants of stomatal conductance and photosynthetic capacity across species.
Collapse
Affiliation(s)
- Xiaorong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Guillermo Goldstein
- Laboratorio de Ecología Funcional, Instituto de Ecologia Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ronghua Li
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
72
|
Reichgelt T, D'Andrea WJ. Plant carbon assimilation rates in atmospheric CO 2 reconstructions. THE NEW PHYTOLOGIST 2019; 223:1844-1855. [PMID: 31081929 DOI: 10.1111/nph.15914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Fossil plant gas-exchange-based CO2 reconstructions use carbon (C) assimilation rates of extant plant species as substitutes for assimilation rates of fossil plants. However, assumptions in model species adoption can lead to systematic error propagation. We used a dataset of c. 2500 extant species to investigate the role of phylogenetic relatedness and ecology in determining C assimilation, an essential variable in gas-exchange-based CO2 models. We evaluated the effect on random and systematic error propagation in atmospheric CO2 caused by adopting different model species. Phylogenetic relatedness, growth form, and solar exposure are important predictors of C assimilation rate. CO2 reconstructions that apply C assimilation rates from modern species based solely on phylogenetic relatedness to fossil species can result in CO2 estimates that are systematically biased by a factor of > 2. C assimilation rates used in CO2 reconstructions should be determined by averaging assimilation rates of modern plant species that are (1) in the same family and (2) have a similar habit and habitat as the fossil plant. In addition, systematic bias potential and random error propagation are greatly reduced when CO2 is reconstructed from multiple fossil plant species with different modern relatives at the same site.
Collapse
Affiliation(s)
- Tammo Reichgelt
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - William J D'Andrea
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| |
Collapse
|
73
|
Agudelo CM, Benavides AM, Taylor T, Feeley KJ, Duque A. Functional composition of epiphyte communities in the Colombian Andes. Ecology 2019; 100:e02858. [PMID: 31365762 DOI: 10.1002/ecy.2858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 01/07/2023]
Abstract
We identify changes in the functional composition of vascular epiphytes along a tropical elevational gradient with the aim of quantifying the role of climate in determining the assembly of epiphyte communities. We measured seven leaf functional traits (leaf area, specific leaf area, leaf dry-matter content, leaf thickness, force to punch, stomatal density, and potential conductance index) in the 163 most abundant epiphyte species recorded across 10 sites located along an elevational gradient between 60 and 2,900 m above sea level in the Colombian Andes. We grouped the epiphyte species into seven hierarchical functional groups according to their most characteristic leaf traits. Along the elevational gradient, the two main independent leaf trait dimensions that distinguished community assemblages were defined primarily by leaf area-photosynthetic (LAPS) and mass-carbon (LMCS) gradients. Mean annual temperature was the main determinant of species position along LAPS. In contrast, local changes in specific leaf area due to variation in the epiphytes' relative height of attachment was the main determinant of their position along the LMCS. Our findings indicate that epiphytic plant leaves have evolved to optimize and enhance photosynthesis through a leaf area-based strategy and carbon acquisition through investments in construction costs of leaf area per unit of biomass that aim to regulate light capture and tissue development. Given that most studies of plant functional traits neglect vascular epiphytes, our quantification of the multiple dimensions of epiphyte leaf traits greatly augments our understanding of vascular plant function and adaptation to changing environments.
Collapse
Affiliation(s)
- Claudia Milena Agudelo
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Cra 65 No. 59ª-110, Medellín, Colombia.,Corporación para Investigaciones Biológicas (CIB), Cra 72ª No. 78B-141, Medellín, Colombia
| | - Ana Maria Benavides
- Corporación para Investigaciones Biológicas (CIB), Cra 72ª No. 78B-141, Medellín, Colombia.,Jardín Botánico Joaquín Antonio Uribe, Calle 73 No. 51D-14, Medellín, Colombia
| | - Tyeen Taylor
- Department of Biology, The University of Miami, Coral Gables, Florida, 33146, USA
| | - Kenneth J Feeley
- Department of Biology, The University of Miami, Coral Gables, Florida, 33146, USA
| | - Alvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Cra 65 No. 59ª-110, Medellín, Colombia
| |
Collapse
|
74
|
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. THE NEW PHYTOLOGIST 2019; 223:632-646. [PMID: 30636323 DOI: 10.1111/nph.15684] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 05/18/2023]
Abstract
Trait variability in space and time allows plants to adjust to changing environmental conditions. However, we know little about how this variability is distributed and coordinated at different organizational levels. For six dominant tree species in northeastern Spain (three Fagaceae and three Pinaceae) we quantified the inter- and intraspecific variability of a set of traits along a water availability gradient. We measured leaf mass per area (LMA), leaf nitrogen (N) concentration, carbon isotope composition in leaves (δ13 C), stem wood density, the Huber value (Hv, the ratio of cross-sectional sapwood area to leaf area), sapwood-specific and leaf-specific stem hydraulic conductivity, vulnerability to xylem embolism (P50 ) and the turgor loss point (Ptlp ). Differences between families explained the largest amount of variability for most traits, although intraspecific variability was also relevant. Species occupying wetter sites showed higher N, P50 and Ptlp , and lower LMA, δ13 C and Hv. However, when trait relationships with water availability were assessed within species they held only for Hv and Ptlp . Overall, our results indicate that intraspecific adjustments along the water availability gradient relied primarily on changes in resource allocation between sapwood and leaf area and in leaf water relations.
Collapse
Affiliation(s)
- Teresa Rosas
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, 08010, Barcelona, Spain
| | - Josep Barba
- Plant and Soil Sciences Department, University of Delaware, Newark, DE, 19716, USA
| | - Hervé Cochard
- INRA, PIAF, Université Clermont-Auvergne, Site de Crouël 5, chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Sandra Saura-Mas
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
75
|
Fu X, Meinzer FC, Woodruff DR, Liu YY, Smith DD, McCulloh KA, Howard AR. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. PLANT, CELL & ENVIRONMENT 2019; 42:2245-2258. [PMID: 30820970 DOI: 10.1111/pce.13543] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The degree of plant iso/anisohydry, a widely used framework for classifying species-specific hydraulic strategies, integrates multiple components of the whole-plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD-induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade-off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.
Collapse
Affiliation(s)
- Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, China
| | | | - David R Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon
| | - Yan-Yan Liu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, Nanning, China
| | - Duncan D Smith
- Department of Botany, University of Wisconsin, Madison, Wisconsin
| | | | - Ava R Howard
- Department of Biology, Western Oregon University, Monmouth, Oregon
| |
Collapse
|
76
|
He P, Wright IJ, Zhu S, Onoda Y, Liu H, Li R, Liu X, Hua L, Oyanoghafo OO, Ye Q. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. THE NEW PHYTOLOGIST 2019; 223:607-618. [PMID: 30887533 DOI: 10.1111/nph.15803] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Leaf mechanical strength and photosynthetic capacity are critical plant life-history traits associated with tolerance and growth under various biotic and abiotic stresses. In principle, higher mechanical resistance achieved via higher relative allocation to cell walls should slow photosynthetic rates. However, interspecific relationships among these two leaf functions have not been reported. We measured leaf traits of 57 dominant woody species in a subtropical evergreen forest in China, focusing especially on photosynthetic rates, mechanical properties, and leaf lifespan (LLS). These species were assigned to two ecological strategy groups: shade-tolerant species and light-demanding species. On average, shade-tolerant species had longer LLS, higher leaf mechanical strength but lower photosynthetic rates, and exhibited longer LLS for a given leaf mass per area (LMA) or mechanical strength than light-demanding species. Depending on the traits and the basis of expression (per area or per mass), leaf mechanical resistance and photosynthetic capacity were either deemed unrelated, or only weakly negatively correlated. We found only weak support for the proposed trade-off between leaf biomechanics and photosynthesis among co-occurring woody species. This suggests there is considerable flexibility in these properties, and the observed relationships may result more so from trait coordination than any physically or physiologically enforced trade-off.
Collapse
Affiliation(s)
- Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Ronghua Li
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan Road 483, Guangzhou, 510642, China
| | - Xiaorong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Lei Hua
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Osazee O Oyanoghafo
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| |
Collapse
|
77
|
Li X, Xu C, Li Z, Feng J, Tissue DT, Griffin KL. Late growing season carbon subsidy in native gymnosperms in a northern temperate forest. TREE PHYSIOLOGY 2019; 39:971-982. [PMID: 31086983 DOI: 10.1093/treephys/tpz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 05/05/2023]
Abstract
Evergreen tree species that maintain positive carbon balance during the late growing season may subsidize extra carbon in a mixed forest. To test this concept of 'carbon subsidy', leaf gas exchange characteristics and related leaf traits were measured for three gymnosperm evergreen species (Chamaecyparis thyoides, Tsuga canadensis and Pinus strobus) native to the oak-hickory deciduous forest in northeast USA from March (early Spring) to October (late Autumn) in a single year. All three species were photosynthetically active in Autumn. During the Summer-Autumn transition, photosynthetic capacity (Amax) of T. canadensis and P. strobus increased (T-test, P < 0.001) and was maintained in C. thyoides (T-test, P = 0.49), while dark respiration at 20 °C (Rn) and its thermal sensitivity were generally unchanged for all species (one-way ANOVA, P > 0.05). In Autumn, reductions in mitochondrial respiration rate in the daylight (RL) and the ratio of RL to Rn (RL/Rn) were observed in P. strobus (46.3% and 44.0% compared to Summer, respectively). Collectively, these physiological adjustments resulted in higher ratios of photosynthesis to respiration (A/Rnand A/RL) in Autumn for all species. Across season, photosynthetic biochemistry and respiratory variables were not correlated with prevailing growth temperature. Physiological adjustments allowed all three gymnosperm species to maintain positive carbon balance into late Autumn, suggesting that gymnosperm evergreens may benefit from Autumn warming trends relative to deciduous trees that have already lost their leaves.
Collapse
Affiliation(s)
- Ximeng Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Chengyuan Xu
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg QLD, Australia
| | - Zhengzhen Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, China
| | - Jinchao Feng
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Departments of Earth and Environmental Sciences, and Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
78
|
Hydraulic and Photosynthetic Traits Vary with Successional Status of Woody Plants on the Loess Plateau. FORESTS 2019. [DOI: 10.3390/f10040327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research highlights: Water transport and CO2 diffusion are two important processes that determine the CO2 assimilation efficiency in leaves. The integration of leaf economic and hydraulic traits will help to present a more comprehensive view of the succession of woody plants in arid regions. However, studies on hydraulic traits of plants from different successional stages are still rare compared to that on economic traits in arid regions. Materials and methods: We selected 31 species from shrub stage, pioneer tree stage and late successional stage on the Loess Plateau, and measured five economic traits and five hydraulic traits of these species. Results: We found species from the pioneer tree stage exhibited "fast-growing" characteristics with high maximum net photosynthesis rate (Pmax) and vein density (VD). Species from the late successional stage exhibited "slow-growing" characteristics with low Pmax and VD. Economic traits showed no significant differences among the three stages except for Pmax. Hydraulic traits, such as VD, leaf area to sapwood area ratio and vessel frequency, exhibited significant differences among different stages. Conclusions: Hydraulics may play an important role in the succession of woody plants in arid regions. Hydraulic traits and Pmax, should be combined to investigate succession of woody plants in future studies. The "fast-growing" characteristics of pioneer trees and "slow-growing" characteristics of late successional trees may induce the succession of woody plants.
Collapse
|
79
|
Liu C, Li Y, Xu L, Chen Z, He N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci Rep 2019; 9:5803. [PMID: 30967600 PMCID: PMC6456615 DOI: 10.1038/s41598-019-42335-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
Leaf functional traits have attracted the attention of ecologists for several decades, but few studies have systematically assessed leaf morphological traits (termed "economic traits"), stomatal (termed "hydraulic"), and anatomical traits of entire forest communities, thus it is unclear whether their relationships are consistent among trees, shrubs, and herbs, and which anatomical traits should be assigned to economical or hydraulic traits. In this study, we collected leaf samples of 106 plant species in temperate forests and 164 plant species in subtropical forests and determined nine key functional traits. We found that functional traits differed between temperate and subtropical forests. Leaf traits also differed between different plant functional groups, irrespective of forest type; dry matter content, stomatal density, and cell tense ratio followed the order trees > shrubs > herbs, whereas specific leaf area and sponginess ratio showed the opposite pattern. The correlations of leaf traits were not consistent among trees, shrubs, and herbs, which may reflect different adaptive strategies. Principal component analysis indicated that leaf economics and hydraulic traits were uncoupled in temperate and subtropical forests, and correlations of anatomical traits and economic and hydraulic traits were weak, indicating anatomical traits should be emphasized in future studies.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Li
- The Key Laboratory for Forest Resources& Ecosystem Processes of Beijing, Beijing Forestry University, Beijing, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Grassland Science, Northeast Normal University and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| |
Collapse
|
80
|
Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR. Intraspecific variation in soy across the leaf economics spectrum. ANNALS OF BOTANY 2019; 123:107-120. [PMID: 30107396 PMCID: PMC6344108 DOI: 10.1093/aob/mcy147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Background and Aims Intraspecific trait variation (ITV) is an important dimension of plant ecological diversity, particularly in agroecosystems, where phenotypic ITV (within crop genotypes) is an important correlate of key agroecosystem processes including yield. There are few studies that have evaluated whether plants of the same genotype vary along well-defined axes of biological variation, such as the leaf economics spectrum (LES). There is even less information disentangling environmental and ontogenetic determinants of crop ITV along an intraspecific LES, and whether or not a plant's position along an intraspecific LES is correlated with reproductive output. Methods We sought to capture the extent of phenotypic ITV within a single cultivar of soy (Glycine max) - the world's most commonly cultivated legume - using a data set of nine leaf traits measured on 402 leaves, sampled from 134 plants in both agroforestry and monoculture management systems, across three distinct whole-plant ontogenetic stages (while holding leaf age and canopy position stable). Key Results Leaf traits covaried strongly along an intraspecific LES, in patterns that were largely statistically indistinguishable from the 'universal LES' observed across non-domesticated plants. Whole-plant ontogenetic stage explained the highest proportion of phenotypic ITV in LES traits, with plants progressively expressing more 'resource-conservative' LES syndromes throughout development. Within ontogenetic stages, leaf traits differed systematically across management systems, with plants growing in monoculture expressing more 'resource-conservative' trait syndromes: trends largely owing to an approximately ≥50% increases in leaf mass per area (LMA) in high-light monoculture vs. shaded agroforestry systems. Certain traits, particularly LMA, leaf area and maximum photosynthetic rates, correlated closely with plant-level reproductive output. Conclusions Phenotypic ITV in soy is governed by constraints in trait trade-offs along an intraspecific LES, which in turn (1) underpins plant responses to managed environmental gradients, and (2) reflects shifts in plant functional biology and resource allocation that occur throughout whole-plant ontogeny.
Collapse
Affiliation(s)
- Fallon J Hayes
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Serra W Buchanan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
| | - Brent Coleman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Andrew M Gordon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Canada
- Centre for Critical Development Studies, University of Toronto Scarborough, Canada
| |
Collapse
|
81
|
Medeiros CD, Scoffoni C, John GP, Bartlett MK, Inman‐Narahari F, Ostertag R, Cordell S, Giardina C, Sack L. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13229] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Camila D. Medeiros
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
| | - Christine Scoffoni
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
- Department of Biological Sciences California State University Los Angeles California
| | - Grace P. John
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
| | - Megan K. Bartlett
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey
| | - Faith Inman‐Narahari
- Department of Natural Resources and Environmental Management University of Hawai'i at Manoa Honolulu Hawai'i
| | - Rebecca Ostertag
- Department of Biology University of Hawai'i at Hilo Hilo Hawai'i
| | - Susan Cordell
- Institute of Pacific Islands Forestry Pacific Southwest Research Station USDA Forest Service Hilo Hawai'i
| | - Christian Giardina
- Institute of Pacific Islands Forestry Pacific Southwest Research Station USDA Forest Service Hilo Hawai'i
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology University of California Los Angeles California
| |
Collapse
|
82
|
Xiong D, Flexas J. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5599-5609. [PMID: 30189099 PMCID: PMC6255696 DOI: 10.1093/jxb/ery322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
The leaf economics spectrum (LES) is an ecophysiological concept describing the trade-offs of leaf structural and physiological traits, and has been widely investigated on multiple scales. However, the effects of the breeding process on the LES in crops, as well as the mechanisms of the trait trade-offs underlying the LES, have not been thoroughly elucidated to date. In this study, a dataset that included leaf anatomical, biochemical, and functional traits was constructed to evaluate the trait covariations and trade-offs in domesticated species, namely rice (Oryza species). The slopes and intercepts of the major bivariate correlations of the leaf traits in rice were significantly different from the global LES dataset (Glopnet), which is based on multiple non-crop species in natural ecosystems, although the general patterns were similar. The photosynthetic traits responded differently to leaf structural and biochemical changes, and mesophyll conductance was the most sensitive to leaf nitrogen (N) status. A further analysis revealed that the relative limitation of mesophyll conductance declined with leaf N content; however, the limitation of the biochemistry increased relative to leaf N content. These findings indicate that breeding selection and high-resource agricultural environments lead crops to deviate from the leaf trait covariation in wild species, and future breeding to increase the photosynthesis of rice should primarily focus on improvement of the efficiency of photosynthetic enzymes.
Collapse
Affiliation(s)
- Dongliang Xiong
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Centre for Carbon, Water and Food, University of Sydney, Brownlow Hill, New South Wales, Australia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)–Universitat de les Illes Balears (UIB), Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
83
|
Li F, McCulloh KA, Sun S, Bao W. Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses. AMERICAN JOURNAL OF BOTANY 2018; 105:1858-1868. [PMID: 30449045 DOI: 10.1002/ajb2.1185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/20/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Leaf venation and its hierarchal traits are crucial to the hydraulic and mechanical properties of leaves, reflecting plant life-history strategies. However, there is an extremely limited understanding of how variation in leaf hydraulics affects the leaf economic spectrum (LES) or whether venation correlates more strongly with hydraulic conductance or biomechanical support among hierarchal orders. METHODS We examined correlations of leaf hydraulics, indicated by vein density, conduit diameter, and stomatal density with light-saturated photosynthetic rates, leaf lifespan (LLS), and leaf morpho-anatomical traits of 39 xerophytic species grown in a common garden. KEY RESULTS We found positive relationships between light-saturated, area-based photosynthetic rates, and vein densities, regardless of vein orders. Densities of leaf veins had positive correlations with stomatal density. We also found positive relationships between LLS and vein densities. Leaf area was negatively correlated with the density of major veins but not with minor veins. Most anatomical traits were not related to vein densities. CONCLUSIONS We developed a network diagram of the correlations among leaf hydraulics and leaf economics, which suggests functional trade-offs between hydraulic costs and lifetime carbon gain. Leaf hydraulics efficiency and carbon assimilation were coupled across species. Vein construction costs directly coordinated with the LLS. Our findings indicate that hierarchal orders of leaf veins did not differ in the strength of their correlations between hydraulic conductance and biomechanical support. These findings clarify how leaf hydraulics contributes to the LES and provide new insight into life-history strategies of these xerophytic species.
Collapse
Affiliation(s)
- Fanglan Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 610041
| | | | - Sujing Sun
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 610041
| | - Weikai Bao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 610041
| |
Collapse
|
84
|
Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. REMOTE SENSING 2018. [DOI: 10.3390/rs10101532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The leaf economic spectrum (LES) describes a set of universal trade-offs between leaf mass per area (LMA), leaf nitrogen (N), leaf phosphorus (P) and leaf photosynthesis that influence patterns of primary productivity and nutrient cycling. Many questions regarding vegetation-climate feedbacks can be addressed with a better understanding of LES traits and their controls. Remote sensing offers enormous potential for generating large-scale LES trait data. Yet so far, canopy studies have been limited to imaging spectrometers onboard aircraft, which are rare, expensive to deploy and lack fine-scale resolution. In this study, we measured VNIR (visible-near infrared (400–1050 nm)) reflectance of individual sun and shade leaves in 7 one-ha tropical forest plots located along a 1200–2000 mm precipitation gradient in West Africa. We collected hyperspectral imaging data from 3 of the 7 plots, using an octocopter-based unmanned aerial vehicle (UAV), mounted with a hyperspectral mapping system (450–950 nm, 9 nm FWHM). Using partial least squares regression (PLSR), we found that the spectra of individual sun leaves demonstrated significant (p < 0.01) correlations with LMA and leaf chemical traits: r2 = 0.42 (LMA), r2 = 0.43 (N), r2 = 0.21 (P), r2 = 0.20 (leaf potassium (K)), r2 = 0.23 (leaf calcium (Ca)) and r2 = 0.14 (leaf magnesium (Mg)). Shade leaf spectra displayed stronger relationships with all leaf traits. At the airborne level, four of the six leaf traits demonstrated weak (p < 0.10) correlations with the UAV-collected spectra of 58 tree crowns: r2 = 0.25 (LMA), r2 = 0.22 (N), r2 = 0.22 (P), and r2 = 0.25 (Ca). From the airborne imaging data, we used LMA, N and P values to map the LES across the three plots, revealing precipitation and substrate as co-dominant drivers of trait distributions and relationships. Positive N-P correlations and LMA-P anticorrelations followed typical LES theory, but we found no classic trade-offs between LMA and N. Overall, this study demonstrates the application of UAVs to generating LES information and advancing the study and monitoring tropical forest functional diversity.
Collapse
|
85
|
Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00064] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
86
|
Griffin‐Nolan RJ, Bushey JA, Carroll CJW, Challis A, Chieppa J, Garbowski M, Hoffman AM, Post AK, Slette IJ, Spitzer D, Zambonini D, Ocheltree TW, Tissue DT, Knapp AK. Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13135] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert J. Griffin‐Nolan
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Julie A. Bushey
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado
| | - Charles J. W. Carroll
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Anthea Challis
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Jeff Chieppa
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Magda Garbowski
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
- Department of Bio‐agricultural Sciences and Pest Management Colorado State University Fort Collins Colorado
| | - Ava M. Hoffman
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Alison K. Post
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Ingrid J. Slette
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Daniel Spitzer
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado
| | - Dario Zambonini
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado
- Università degli studi di Trieste, TS Trieste Italy
| | - Troy W. Ocheltree
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado
| | - David T. Tissue
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Alan K. Knapp
- Department of Biology Colorado State University Fort Collins Colorado
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| |
Collapse
|
87
|
Yin Q, Wang L, Lei M, Dang H, Quan J, Tian T, Chai Y, Yue M. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:245-252. [PMID: 29182967 DOI: 10.1016/j.scitotenv.2017.11.171] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 05/18/2023]
Abstract
Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO2, but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (gwmax). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions.
Collapse
Affiliation(s)
- Qiulong Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Lei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Maolin Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Han Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Tingting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi' an City, Shaanxi Province, China.
| |
Collapse
|
88
|
Werden LK, Waring BG, Smith-Martin CM, Powers JS. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. TREE PHYSIOLOGY 2018; 38:517-530. [PMID: 29087514 DOI: 10.1093/treephys/tpx135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.
Collapse
Affiliation(s)
- Leland K Werden
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Ave., Saint Paul, MN 55108, USA
| | - Bonnie G Waring
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA
| | - Christina M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Ave., Saint Paul, MN 55108, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Ave., Saint Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA
| |
Collapse
|
89
|
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J. Within‐species patterns challenge our understanding of the leaf economics spectrum. Ecol Lett 2018; 21:734-744. [DOI: 10.1111/ele.12945] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 02/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Leander D. L. Anderegg
- Department of Biology University of Washington Box 351800 Seattle WA 98195 USA
- Department of Global Ecology Carnegie Institution for Science 260 Panama StStanford CA 94305 USA
| | - Logan T. Berner
- Department of Forest Ecosystems and Society Oregon State University 330 Richardson Hall Corvallis OR 97331 USA
- School of Informatics, Cumputing, and Cyber Systems Northern Arizona University 1295 S. Knoles Drive Flagstaff AZ, 86011 USA
| | - Grayson Badgley
- Department of Global Ecology Carnegie Institution for Science 260 Panama StStanford CA 94305 USA
| | - Meera L. Sethi
- Department of Biology University of Washington Box 351800 Seattle WA 98195 USA
| | - Beverly E. Law
- Department of Forest Ecosystems and Society Oregon State University 330 Richardson Hall Corvallis OR 97331 USA
| | | |
Collapse
|
90
|
Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. PLANT, CELL & ENVIRONMENT 2018; 41:646-660. [PMID: 29314083 DOI: 10.1111/pce.13129] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate-of-origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross-species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs ], xylem vulnerability to cavitation [Px ], and branch capacitance [Cbranch ]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade-offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
91
|
Reconstructing Paleoclimate and Paleoecology Using Fossil Leaves. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2018. [DOI: 10.1007/978-3-319-94265-0_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
92
|
Jiang F, Xun Y, Cai H, Jin G. What factors potentially influence the ability of phylogenetic distance to predict trait dispersion in a temperate forest? Ecol Evol 2018; 8:1107-1116. [PMID: 29375783 PMCID: PMC5773330 DOI: 10.1002/ece3.3691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/11/2022] Open
Abstract
Although phylogenetic-based approaches have been frequently used to infer ecological processes, they have been increasingly criticized in recent years. To date, the factors that affect phylogenetic signals and further the ability of phylogenetic distance to predict trait dispersion have been assumed but not empirically tested. Therefore, we investigate which factors potentially influence the ability of phylogenetic distance to predict trait dispersion. We quantified the phylogenetic and trait dispersions across size classes and spatial scales in a 9-ha old-growth temperate forest dynamics plot in northeastern China. Phylogenetic signals at the community level were generally lower than those at the species pool level, and phylogenetically clustered communities showed lower phylogenetic signals than did overdispersed communities. This pattern might explain the other three findings of our study. First, phylogenetically overdispersed communities performed better at predicting trait dispersion than did clustered communities. Second, the mean pairwise distance (MPD)-based metric exhibited a stronger correlation with trait dispersion than did the mean nearest taxon distance (MNTD)-based metric. Finally, the MNTD-based metric showed that the prediction accuracy for trait dispersion decreased with increasing spatial scales, whereas its effects were weak on the MPD-based metric. In addition, phylogeny could not determine the dispersions of all functional axes but was able to predict certain traits depending on whether they were evolutionarily conserved. These results were conserved when we removed the effects of space and environment. Our findings highlighted that using phylogenetic distance as a proxy of trait similarity might work in a temperate forest depending on the species in local communities sampled from total pool as well as the traits measured. Utilizing these rules, we should rethink the conclusions of previous studies that were based on phylogenetic-based approaches.
Collapse
Affiliation(s)
- Feng Jiang
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
| | - Yanhan Xun
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
| | - Huiying Cai
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
| | - Guangze Jin
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
| |
Collapse
|
93
|
Silva JLA, Souza AF, Caliman A, Voigt EL, Lichston JE. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol Evol 2018; 8:4-12. [PMID: 29321846 PMCID: PMC5756860 DOI: 10.1002/ece3.3547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 01/29/2023] Open
Abstract
A core question involving both plant physiology and community ecology is whether traits from different organs are coordinated across species, beyond pairwise trait correlations. The strength of within-community trait coordination has been hypothesized to increase along gradients of environmental harshness, due to the cost of adopting ecological strategies out of the viable niche space supported by the abiotic conditions. We evaluated the strength of trait relationship and coordination in a stressful environment using 21 leaf and stem traits of 21 deciduous and evergreen woody species from a heath vegetation growing on coastal sandy plain in northeastern South America. The study region faces marked dry season, high soil salinity and acidity, and poor nutritional conditions. Results from multiple factor analyses supported two weak and independent axes of trait coordination, which accounted for 25%-29% of the trait variance using phylogenetically independent contrasts. Trait correlations on the multiple factor analyses main axis fit well with the global plant economic spectrum, with species investing in small leaves and dense stems as opposed to species with softer stems and large leaves. The species' positions on the main functional axis corresponded to the competitor-stress-tolerant side of Grime's CSR triangle of plant strategies. The weak degree of trait coordination displayed by the heath vegetation species contradicted our expectation of high trait coordination in stressful environmental habitats. The distinct biogeographic origins of the species occurring in the study region and the prevalence of a regional environmental filter coupled with local homogeneous conditions could account for prevalence of trait independence we observed.
Collapse
Affiliation(s)
- José L. A. Silva
- Programa de Pós‐Graduação em EcologiaUniversidade Federal do Rio Grande do Norte (UFRN)NatalBrazil
| | | | | | | | | |
Collapse
|
94
|
Prieto I, Querejeta JI, Segrestin J, Volaire F, Roumet C. Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iván Prieto
- CEFECNRSUniv MontpellierUniv Paul Valéry Montpellier 3EPHEIRD Montpellier France
- Centro de Edafología y Biología Aplicada del Segura‐Consejo Superior de Investigaciones Científicas (CEBAS‐CSIC) Murcia Spain
| | - José I. Querejeta
- Centro de Edafología y Biología Aplicada del Segura‐Consejo Superior de Investigaciones Científicas (CEBAS‐CSIC) Murcia Spain
| | - Jules Segrestin
- CEFECNRSUniv MontpellierUniv Paul Valéry Montpellier 3EPHEIRD Montpellier France
| | - Florence Volaire
- CEFEINRACNRSUniv. MontpellierUniv Paul Valéry Montpellier 3EPHEIRD Montpellier France
| | - Catherine Roumet
- CEFECNRSUniv MontpellierUniv Paul Valéry Montpellier 3EPHEIRD Montpellier France
| |
Collapse
|
95
|
Powell TL, Wheeler JK, de Oliveira AAR, da Costa ACL, Saleska SR, Meir P, Moorcroft PR. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. GLOBAL CHANGE BIOLOGY 2017; 23:4280-4293. [PMID: 28426175 DOI: 10.1111/gcb.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 05/24/2023]
Abstract
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.
Collapse
Affiliation(s)
- Thomas L Powell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - James K Wheeler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alex A R de Oliveira
- Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Biodiversidade e Evolução, Belém, Pará, Brazil
| | | | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
96
|
Maréchaux I, Chave J. An individual-based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Isabelle Maréchaux
- CNRS; Université Toulouse 3 Paul Sabatier; ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
- AgroParisTech-ENGREF; 19 avenue du Maine F-75015 Paris France
| | - Jérôme Chave
- CNRS; Université Toulouse 3 Paul Sabatier; ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
97
|
Li L, Ma Z, Niinemets Ü, Guo D. Three Key Sub-leaf Modules and the Diversity of Leaf Designs. FRONTIERS IN PLANT SCIENCE 2017; 8:1542. [PMID: 28932233 PMCID: PMC5592238 DOI: 10.3389/fpls.2017.01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/23/2017] [Indexed: 05/29/2023]
Abstract
Earth harbors a highly diverse array of plant leaf forms. A well-known pattern linking diverse leaf forms with their photosynthetic function across species is the global leaf economics spectrum (LES). However, within homogeneous plant functional groups such as tropical woody angiosperms or temperate deciduous woody angiosperms, many species can share a similar position in the LES but differ in other vital leaf traits, and thus function differently under the given suite of environmental drivers. How diverse leaves differentiate from each other has yet to be fully explained. Here, we propose a new perspective for linking leaf structure and function by arguing that a leaf may be divided into three key sub-modules, the light capture module, the water-nutrient flow module and the gas exchange module. Each module consists of a set of leaf tissues corresponding to a certain resource acquisition function, and the combination and configuration of different modules may differ depending on overall leaf functioning in a given environment. This modularized-leaf perspective differs from the whole-leaf perspective used in leaf economics theory and may serve as a valuable tool for tracing the evolution of leaf form and function. This perspective also implies that the evolutionary direction of various leaf designs is not to optimize a single critical trait, but to optimize the combination of different traits to better adapt to the historical and current environments. Future studies examining how different modules are synchronized for overall leaf functioning should offer critical insights into the diversity of leaf designs worldwide.
Collapse
Affiliation(s)
- Le Li
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Zeqing Ma
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life SciencesTartu, Estonia
- Estonian Academy of SciencesTallinn, Estonia
| | - Dali Guo
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
98
|
Liu MC, Kong DL, Lu XR, Huang K, Wang S, Wang WB, Qu B, Feng YL. Higher photosynthesis, nutrient- and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China. PHYSIOLOGIA PLANTARUM 2017; 160:373-382. [PMID: 28321883 DOI: 10.1111/ppl.12566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (Pmax ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher Pmax , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.
Collapse
Affiliation(s)
- Ming-Chao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - De-Liang Kong
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Xiu-Rong Lu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Kai Huang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shuo Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Wei-Bin Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Bo Qu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| |
Collapse
|
99
|
Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, Van den Meersche K. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients. FRONTIERS IN PLANT SCIENCE 2017; 8:1196. [PMID: 28747919 PMCID: PMC5506091 DOI: 10.3389/fpls.2017.01196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 05/23/2023]
Abstract
Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.
Collapse
Affiliation(s)
- Marney E. Isaac
- Department of Physical and Environmental Sciences and Centre for Critical Development Studies, University of Toronto Scarborough, TorontoON, Canada
- Department of Geography, University of Toronto, TorontoON, Canada
| | - Adam R. Martin
- Department of Physical and Environmental Sciences and Centre for Critical Development Studies, University of Toronto Scarborough, TorontoON, Canada
| | | | - Bruno Rapidel
- Centro Agronómico Tropical de Investigación y EnseñanzaTurrialba, Costa Rica
- CIRAD, UMR SYSTEMMontpellier, France
| | - Olivier Roupsard
- Centro Agronómico Tropical de Investigación y EnseñanzaTurrialba, Costa Rica
- CIRAD, UMR Eco&SolsMontpellier, France
| | - Karel Van den Meersche
- Centro Agronómico Tropical de Investigación y EnseñanzaTurrialba, Costa Rica
- CIRAD, UMR Eco&SolsMontpellier, France
| |
Collapse
|
100
|
Coordination and Determinants of Leaf Community Economics Spectrum for Canopy Trees and Shrubs in a Temperate Forest in Northeastern China. FORESTS 2017. [DOI: 10.3390/f8060202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|