51
|
Nano Modification of Antrodia Cinnamomea Exhibits Anti-Inflammatory Action and Improves the Migratory Potential of Myogenic Progenitors. Cells 2022; 11:cells11162512. [PMID: 36010589 PMCID: PMC9406806 DOI: 10.3390/cells11162512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
The skeletal muscle progenitors’ proliferation and migration are crucial stages of myogenesis. Identifying drug candidates that contribute to myogenesis can have a positive impact on atrophying muscle. The purpose of the study is to synthesize the Antrodia cinnamomea (AC)-β-cyclodextrin (BCD) inclusion complex (IC) and understand its in vitro pro-regenerative influence in murine skeletal C2C12 myoblasts. The IC was subjected to various nano-characterization studies. Fluorescent IC was synthesized to understand the cellular uptake of IC. Furthermore, 25 µg/mL, 12.5 µg/mL, and 6.25 µg/mL of IC were tested on murine C2C12 skeletal muscle cells for their anti-inflammatory, pro-migratory, and pro-proliferative action. The cellular internalization of IC occurred rapidly via pinocytosis. IC (252.6 ± 3.2 nm size and −37.24 ± 1.55 surface charge) exhibited anti-inflammatory action by suppressing the secretion of interleukin-6 and enhanced cell proliferation with promising cytocompatibility. A 12.5 μg/mL dose of IC promoted cell migration in 24 h, but the same dose of AC significantly reduced cell migration, suggesting modification by BCD. Molecular studies revealed that IC promoted C2C12 myoblasts migration by upregulating long non-coding RNA (lncRNA) NEAT-1, SYISL, and activating the pPKC/β-catenin pathway. Our study is the first report on the pro-proliferative and pro-migratory effects of BCD-modified extracts of AC.
Collapse
|
52
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
53
|
Sipka S, Bíró T, Czifra G, Griger Z, Gergely P, Brugós B, Tarr T. The role of protein kinase C isoenzymes in the pathogenesis of human autoimmune diseases. Clin Immunol 2022; 241:109071. [PMID: 35781096 DOI: 10.1016/j.clim.2022.109071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The physiological role of protein kinase C (PKC) enzymes in the immune system is presented briefly. From earlier publications of others data were collected how the defects of one/two isoenzymes of PKC system suggested their involvement in the pathogenesis of human autoimmune diseases. Our observations on the defects of seven PKC isoenzymes in the peripheral blood mononuclear cells (PBMC) demonstrate that these molecular impairments are not prerequisits of the pathogenesis of systemic lupus erythematosus (SLE), mixed connective tissue disease and Sjögren's syndrome. However, these defects can modulate the disease activity and symptoms especially in SLE by several pathways. The role of PKC system in other forms of autoimmune diseases is also very small. It was of note that we detected decreased expression of PKC isoenzymes in PBMC of a European white family with an X-linked genetic background showing seasonal undulations in the lupus patient and also in her healthy mother.
Collapse
Affiliation(s)
- Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Gabriella Czifra
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - Boglárka Brugós
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
54
|
Magierowska K, Magierowski M. COin Gastrointestinal Physiology and Protection. CARBON MONOXIDE IN DRUG DISCOVERY 2022:466-481. [DOI: 10.1002/9781119783435.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
55
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
56
|
Gu SH, Chen CH, Lin PL. Protein kinase C signalling involved in prothoracicotropic hormone-stimulated prothoracic glands in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:115-126. [PMID: 34709697 DOI: 10.1111/imb.12744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the participation of protein kinase C (PKC) signalling in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in Bombyx prothoracic glands (PGs) is demonstrated and characterized. PTTH stimulated phosphorylation of a 37-kDa protein in Bombyx PGs both in vitro and in vivo, as recognized by a PKC substrate antibody. Treatment with either A23187 or thapsigargin also stimulated this 37-kDa protein phosphorylation. PTTH-stimulated phosphorylation of the 37-kDa protein was markedly attenuated in the absence of Ca2+ . The phospholipase C (PLC) inhibitor, U73122, greatly inhibited PTTH-stimulated phosphorylation of this protein, indicating the involvement of Ca2+ and PLC. A mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) and a chemical activator of adenosine 5'-monophosphate-activated protein kinase (AMPK) (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) did not affect PTTH-stimulated phosphorylation of the 37-kDa protein, implying that ERK and PI3K/AMPK are not the upstream signalling pathways for PKC-dependent protein phosphorylation. The mitochondrial oxidative phosphorylation inhibitors (the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone and diphenylene iodonium) inhibited PTTH-stimulated phosphorylation of the 37-kDa protein, indicating its redox regulation. Treatment with PKC inhibitors (either calphostin C, chelerythrine C or rottlerin) reduced PTTH-stimulated phosphorylation of the 37-kDa protein. PTTH-stimulated ecdysteroidogenesis was also inhibited by treatment with rottlerin, thus further confirming participation of PKC-dependent phosphorylation in PTTH signalling. From these results, we demonstrated that redox-regulated PTTH-stimulated PKC signalling is involved in ecdysteroid secretion in Bombyx PGs.
Collapse
Affiliation(s)
- S-H Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - C-H Chen
- Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - P-L Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| |
Collapse
|
57
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
58
|
Transcriptome of the Maize Leafhopper ( Dalbulus maidis) and Its Transcriptional Response to Maize Rayado Fino Virus (MRFV), Which It Transmits in a Persistent, Propagative Manner. Microbiol Spectr 2021; 9:e0061221. [PMID: 34817206 PMCID: PMC8612151 DOI: 10.1128/spectrum.00612-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.
Collapse
|
59
|
Herbst WA, Deng W, Wohlschlegel JA, Achiro JM, Martin KC. Neuronal activity regulates the nuclear proteome to promote activity-dependent transcription. J Cell Biol 2021; 220:e202103087. [PMID: 34617965 PMCID: PMC8504181 DOI: 10.1083/jcb.202103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.
Collapse
Affiliation(s)
- Wendy A. Herbst
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Weixian Deng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M. Achiro
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Kelsey C. Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
60
|
Yang C, He Z, Zhang Q, Lu M, Zhao J, Chen W, Gao L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021; 162:6225351. [PMID: 33851697 DOI: 10.1210/endocr/bqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Thyroid-stimulating hormone (TSH) treatment activates inhibitor of NF-κB/nuclear factor κB (IκB/NFκB) and extracellular signal-regulated kinase (ERK)-P38 in macrophages, but how these pathways are activated, and how they contribute to the proinflammatory effect of TSH on macrophages remain unknown. The TSH receptor (TSHR) is coupled to 4 subfamilies of G proteins (Gs, Gi/o, Gq/11, and G12/13) for its downstream signaling. This study investigated the G protein subtypes responsible for the proinflammatory effect of TSH on macrophages. qPCR showed that Gi2, Gi3, Gas, Gq, G11, G12, G13, and G15 are abundantly expressed by macrophages. The contribution of different G protein pathways to the proinflammatory effect was studied by the corresponding inhibitors or siRNA interference. While TSH-induced IκB phosphorylation was not inhibited by Gs inhibitor NF449, Gi inhibitor pertussis toxin, or Gq or G11 siRNA, it was blocked by phospholipase C inhibitor U73122 or G15 siRNA interference. TSH-induced ERK and P38 phosphorylation was blocked by G13 but not G12 siRNA interference. Interference of either G13 or G15 could block the proinflammatory effect of TSH on macrophages. The present study demonstrate that TSH activates macrophage inflammation by the G13/ERK-P38/Rho GTPase and G15/phospholipase C (PLC)/protein kinases C (PKCs)/IκB pathways.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
61
|
da Cunha LNOL, Tizziani T, Souza GB, Moreira MA, Neto JSS, Dos Santos CVD, de Carvalho MG, Dalmarco EM, Turqueti LB, Scotti MT, Scotti L, de Assis FF, Braga A, Sandjo LP. Natural Products with tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 effects: A Drug Discovery Perspective against SARS-CoV-2. Curr Med Chem 2021; 29:2530-2564. [PMID: 34313197 DOI: 10.2174/0929867328666210726094955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHOD The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
Collapse
Affiliation(s)
- Luana N O Leal da Cunha
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriella B Souza
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Monalisa A Moreira
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José S S Neto
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carlos V D Dos Santos
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maryelle G de Carvalho
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo M Dalmarco
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo B Turqueti
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marcus Tullius Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Francisco F de Assis
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio Braga
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
62
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
63
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
64
|
PRKCA Overexpression Is Frequent in Young Oral Tongue Squamous Cell Carcinoma Patients and Is Associated with Poor Prognosis. Cancers (Basel) 2021; 13:cancers13092082. [PMID: 33923093 PMCID: PMC8123332 DOI: 10.3390/cancers13092082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Oral tongue squamous cell carcinomas (OTSCCs) have an increasing incidence in young patients, and many have an aggressive course of disease. The objective of this study was to identify candidate prognostic protein markers associated with early-onset OTSCC. We performed an exploratory screening for differential protein expression in younger (≤45 years) versus older (>45 years) OTSCC patients in The Cancer Genome Atlas (TCGA) cohort (n = 97). Expression of candidate markers was then validated in an independent Austrian OTSCC patient group (n = 34) by immunohistochemistry. Kaplan-Meier survival estimates were computed, and genomic and mRNA enrichment in silico analyses were performed. Overexpression of protein kinase C alpha (PRKCA) was significantly more frequent among young patients of both the TCGA (p = 0.0001) and the Austrian cohort (p = 0.02), associated with a negative anamnesis for alcohol consumption (p = 0.009) and tobacco smoking (p = 0.02) and poorer overall survival (univariate p = 0.02, multivariate p< 0.01). Within the young subgroup, both overall and disease-free survival were significantly decreased in patients with PRKCA overexpression (both p < 0.001). TCGA mRNA enrichment analysis revealed 332 mRNAs with significant differential expression in PRKCA-upregulated versus PRKCA-downregulated OTSCC (all FDR ≤ 0.01). Our findings suggest that PRKCA overexpression may be a hallmark of a novel molecular subtype of early-onset alcohol- and tobacco-negative high-risk OTSCC. Further analysis of the molecular PRKCA interactome may decipher the underlying mechanisms of carcinogenesis and clinicopathological behavior of PRKCA-overexpressing OTSCC.
Collapse
|
65
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
66
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
67
|
Role of Protein Kinase C in Immune Cell Activation and Its Implication Chemical-Induced Immunotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:151-163. [PMID: 33539015 DOI: 10.1007/978-3-030-49844-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCβ and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCβ and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.
Collapse
|
68
|
Arshad R, Meng Y, Qiu N, Sun H, Keast R, Rehman A. Phosphoproteomic analysis of duck egg white and insight into the biological functions of identified phosphoproteins. J Food Biochem 2020; 44:e13367. [PMID: 32729115 DOI: 10.1111/jfbc.13367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Phosphorylation of proteins is one of the most important and pleiotropic modifications. It plays a vital role in controlling protein functions. However, the phosphoproteome of duck egg white (DEW) has not been studied yet. To investigate the role of phosphorylation on DEW proteins, a detailed phosphoproteome analysis of DEW was performed using an immobilized metal affinity chromatography enrichment strategy. A total of 92 phosphosites representing 36 phosphoproteins were identified. [S-x-E] and [T-x-E] were found to be the most overrepresented motifs in DEW. The identified phosphoproteins in DEW were mainly involved in the binding, transport activity, biological regulation, and metabolic processes. Gene ontology analysis was used to elucidate the biological functions of DEW phosphoproteins and compare them with those of chicken egg white (CEW), which showed the differences mostly involved molecular functions and biological processes. PRACTICAL APPLICATIONS: These findings provide fundamental insight into the biological functions of identified phosphoproteins of DEW to better understand the roles of phosphorylated DEW proteins for food industries and human health. Phosphoproteomic study of DEW would be valuable for the food and nutrition industry to exploit the potential of this avian proteins in the processing of health benefit products.
Collapse
Affiliation(s)
- Rida Arshad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Haohao Sun
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| |
Collapse
|
69
|
Radaszkiewicz KA, Beckerová D, Woloszczuková L, Radaszkiewicz TW, Lesáková P, Blanářová OV, Kubala L, Humpolíček P, Pachernik J. 12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling. Sci Rep 2020; 10:15922. [PMID: 32985604 PMCID: PMC7522207 DOI: 10.1038/s41598-020-73074-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
12-O-Tetradecanoylphorbol-13-acetate (TPA) is the most widely used diacylglycerol (DAG) mimetic agent and inducer of protein kinase C (PKC)-mediated cellular response in biomedical studies. TPA has been proposed as a pluripotent cell differentiation factor, but results obtained have been inconsistent. In the present study we show that TPA can be applied as a cardiomyogenesis-promoting factor for the differentiation of mouse embryonic stem (mES) cells in vitro. The mechanism of TPA action is mediated by the induction of extracellular signal-regulated kinase (ERK) activity and the subsequent phosphorylation of GATA4 transcription factor. Interestingly, general mitogens (FGF, EGF, VEGF and serum) or canonical WNT signalling did not mimic the effect of TPA. Moreover, on the basis of our results, we postulate that a TPA-sensitive population of cardiac progenitor cells exists at a certain time point (after days 6–8 of the differentiation protocol) and that the proposed treatment can be used to increase the multiplication of ES cell-derived cardiomyocytes.
Collapse
Affiliation(s)
| | - Deborah Beckerová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Woloszczuková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Petra Lesáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01, Zlin, Czech Republic
| | - Jiří Pachernik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
70
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|
71
|
Cai S, Chen Y, Lin S, Ye C, Zheng F, Dong L. Multiple Processes May Involve in the IgG4-RD Pathogenesis: An Integrative Study via Proteomic and Transcriptomic Analysis. Front Immunol 2020; 11:1795. [PMID: 32973752 PMCID: PMC7468437 DOI: 10.3389/fimmu.2020.01795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a newly defined disease entity, while the exact pathogenesis is still not clear. Identifying the characters of IgG4-RD in proteomic and transcriptomic aspects will be critical to investigate the potential pathogenic mechanisms of IgG4-RD. We performed proteomic analysis realized with iTRAQ technique for serum samples from eight treatment-naive IgG4-RD patients and eight healthy volunteers, and tissue samples from two IgG4-RD patients and two non-IgG4-RD patients. Transcriptomic data (GSE40568 and GSE66465) was obtained from the GEO Dataset for validation. The weighted correlation network analysis (WGCNA) was applied to detect the gene modules correlated with IgG4-RD. KEGG pathway analysis was used to investigate pathways enriched in IgG4-RD samples. As a result, a total of 980 differentially expressed proteins (DEPs) in tissue and 94 DEPs in serum were identified between IgG4-RD and control groups. Three hundred fifty-four and two hundred forty-seven genes that most correlated with IgG4-RD were detected by WGCNA analysis in tissue and PBMC, respectively. We also found that DEPs in IgG4-RD samples were enriched in several immune-related activities including bacterial/viral infections and platelet activation as well as some immune related signaling pathways. In conclusion, we identified multiple processes/factors and several signaling pathways that may involve in the IgG4-RD pathogenesis, and found out some potential therapeutic targets for IgG4-RD.
Collapse
Affiliation(s)
- Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShengYan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
72
|
Taheri F, Ebrahimi SO, Shareef S, Reiisi S. Regulatory and immunomodulatory role of miR-34a in T cell immunity. Life Sci 2020; 262:118209. [PMID: 32763292 DOI: 10.1016/j.lfs.2020.118209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
miRNAs are a class of non-coding RNAs and very conserve molecules that negatively regulate the expression of many genes by targeting the 3' UTR of mRNAs. miRNAs are involved in the modulation of T-cell biology during the earliest and last stages and key controllers of T-cell differentiation and function. The miR-34a, as a major hub of the regulatory network of T cells, plays an important role in T cell activation. miR-34a is widely expressed in immune cells (dendritic cells, macrophages, mast cells, B cells, and T cells) and regulates their development, function, and survival. This miRNA, by targeting over 30 genes across different cellular pathways controls immune response. miR-34a expression is controlled by p53 in transcription level. As well as, miR-34a by activating dendritic cells mediates innate immune response and increases tumor-infiltrating CD8 expression T lymphocytes. In various types of cancers and autoimmune diseases, miR-34a can regulate T cell function and become a possible significant target of microRNA-based therapy. Therefore, in this review, we focus on miR-34a-related regulatory mechanisms in T cell function and understanding mechanisms and molecules involved in this network.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of medical laboratory science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
73
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
74
|
Gao Y, Liu Z, Jia D, Hu Q, Li L, Tang R, Li D. Acute microcystin-LR exposure interfere thyroid hormones homeostasis in adult zebrafish (Danio rerio). CHEMOSPHERE 2020; 243:125258. [PMID: 31734598 DOI: 10.1016/j.chemosphere.2019.125258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Microcystin-LR (MC-LR) in the aquatic environment may disturb thyroid hormone (TH) homeostasis. It is not clear how MC-LR affects downstream biological processes after TH disturbance. After exposure to 50, 100, 200 and 400 μg/L MC-LR for 24, 48, 72, or 96 h, alterations of the TH metabolism of adult zebrafish at thyroxine (T4), triiodothyronine (T3) levels, and iodothyronine deiodinase (Dio) activity, were observed. After exposure to MC-LR at 400 μg/L, T3 and T4 levels decreased significantly in females (p < 0.05) and returned to normal levels at 96 h. In males, T4 levels were not significantly different between groups. The expression of corticotropin releasing hormone, thyroid-stimulating hormone beta subunit, transthyretin, sodium/iodide cotransporter, thrombopoietin, thyroid hormone receptor alpha and beta changed, but not in a dose-dependent manner. Acute MC-LR exposure induced a negative feedback regulation of the hypothalamic-pituitary-thyroid axis in adult zebrafish, and females were more sensitive than males. In conclusion, acute MC-LR exposure disrupted the TH metabolism by altering Dio activity and gene expression of the HPT axis; these changes may affect the complement system through regulation of c9 mRNA synthesis.
Collapse
Affiliation(s)
- Yu Gao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Zidong Liu
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Qing Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Kunming, 650201, China
| | - Li Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Rong Tang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Dapeng Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
75
|
Alack K, Weiss A, Krüger K, Höret M, Schermuly R, Frech T, Eggert M, Mooren FC. Profiling of human lymphocytes reveals a specific network of protein kinases modulated by endurance training status. Sci Rep 2020; 10:888. [PMID: 31964936 PMCID: PMC6972788 DOI: 10.1038/s41598-020-57676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
To date, the effects of endurance exercise training on lymphocyte physiology at the kinome level are largely unknown. Therefore, the present study used a highly sensitive peptide-based kinase activity profiling approach to investigate if the basal activity of tyrosine (Tyr) and serine/threonine (Ser/Thr) kinases of human lymphocytes is affected by the aerobic endurance training status. Results revealed that the activity of various tyrosine kinases of the FGFR family and ZAP70 was increased, whereas the activity of multiple Ser/Thr kinases such as IKKα, CaMK4, PKAα, PKCα+δ (among others) was decreased in lymphocytes of endurance trained athletes (ET). Moreover, functional associations between several differentially regulated kinases in ET-derived lymphocytes were demonstrated by phylogenetic mapping and network analysis. Especially, Ser/Thr kinases of the AGC-kinase (protein kinase A, G, and C) family represent exercise-sensitive key components within the lymphocytes kinase network that may mediate the long-term effects of endurance training. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) and Reactome pathway analysis indicate that Ras as well as intracellular signaling by second messengers were found to be enriched in the ET individuals. Overall, our data suggest that endurance exercise training improves the adaptive immune competence by modulating the activity of multiple protein kinases in human lymphocytes.
Collapse
Affiliation(s)
- Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany.
| | - Astrid Weiss
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - Mona Höret
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Ralph Schermuly
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - Martin Eggert
- Center for Extracorporeal Organ Support, Department of Internal Medicine, Universitätsmedizin Rostock, Rostock, Germany
| | | |
Collapse
|
76
|
Funsten JR, Murillo Brizuela KO, Swatzel HE, Ward AS, Scott TA, Eikenbusch SM, Shields MC, Meredith JL, Mitchell TY, Hanna ML, Bingham KN, Rawlings JS. PKC signaling contributes to chromatin decondensation and is required for competence to respond to IL-2 during T cell activation. Cell Immunol 2020; 347:104027. [PMID: 31864664 PMCID: PMC10731676 DOI: 10.1016/j.cellimm.2019.104027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The clonal proliferation of antigen-specific T cells during an immune response critically depends on the differential response to growth factors, such as IL-2. While activated T cells proliferate robustly in response to IL-2 stimulation, naïve (quiescent) T cells are able to ignore the potent effects of growth factors because they possess chromatin that is tightly condensed such that transcription factors, such as STAT5, cannot access DNA. Activation via the T cell receptor (TCR) induces a rapid decondensation of chromatin, permitting STAT5-DNA engagement and ultimately promoting proliferation of only antigen-specific T cells. Previous work demonstrated that the mobilization of intracellular calcium following TCR stimulation is a key event in the decondensation of chromatin. Here we examine PKC-dependent signaling mechanisms to determine their role in activation-induced chromatin decondensation and the subsequent acquisition of competence to respond to IL-2 stimulation. We found that a calcium-dependent PKC contributes to activation-induced chromatin decondensation and that the p38 MAPK and NFκB pathways downstream of PKC each contribute to regulating the proper decondensation of chromatin. Importantly, we found that p44/42 MAPK activity is required for peripheral T cells to gain competence to properly respond to IL-2 stimulation. Our findings shed light on the mechanisms that control the clonal proliferation of antigen-specific peripheral T cells during an immune response.
Collapse
Affiliation(s)
| | | | - Hayley E Swatzel
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Audrey S Ward
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Tia A Scott
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Molly C Shields
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jenna L Meredith
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | | | - Megan L Hanna
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Kellie N Bingham
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Jason S Rawlings
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
77
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
78
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
79
|
Hart M, Walch-Rückheim B, Krammes L, Kehl T, Rheinheimer S, Tänzer T, Glombitza B, Sester M, Lenhof HP, Keller A, Meese E. miR-34a as hub of T cell regulation networks. J Immunother Cancer 2019; 7:187. [PMID: 31311583 PMCID: PMC6636054 DOI: 10.1186/s40425-019-0670-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Micro(mi)RNAs are increasingly recognized as central regulators of immune cell function. While it has been predicted that miRNAs have multiple targets, the majority of these predictions still await experimental confirmation. Here, miR-34a, a well-known tumor suppressor, is analyzed for targeting genes involved in immune system processes of leucocytes. METHODS Using an in-silico approach, we combined miRNA target prediction with GeneTrail2, a web tool for Multi-omics enrichment analysis, to identify miR-34a target genes, which are involved in the immune system process subcategory of Gene Ontology. RESULTS Out of the 193 predicted target genes in this subcategory we experimentally tested 22 target genes and confirmed binding of miR-34a to 14 target genes including VAMP2, IKBKE, MYH9, MARCH8, KLRK1, CD11A, TRAFD1, CCR1, PYDC1, PRF1, PIK3R2, PIK3CD, AP1B1, and ADAM10 by dual luciferase assays. By transfecting Jurkat, primary CD4+ and CD8+ T cells with miR-34a, we demonstrated that ectopic expression of miR-34a leads to reduced levels of endogenous VAMP2 and CD11A, which are central to the analyzed subcategories. Functional downstream analysis of miR-34a over-expression in activated CD8+ T cells exhibits a distinct decrease of PRF1 secretion. CONCLUSIONS By simultaneous targeting of 14 mRNAs miR-34a acts as major hub of T cell regulatory networks suggesting to utilize miR-34a as target of intervention towards a modulation of the immune responsiveness of T-cells in a broad tumor context.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany.
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Birgit Glombitza
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| |
Collapse
|
80
|
Dubé CE, Ky CL, Planes S. Microbiome of the Black-Lipped Pearl Oyster Pinctada margaritifera, a Multi-Tissue Description With Functional Profiling. Front Microbiol 2019; 10:1548. [PMID: 31333634 PMCID: PMC6624473 DOI: 10.3389/fmicb.2019.01548] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Elucidating the role of prokaryotic symbionts in mediating host physiology has emerged as an important area of research. Since oysters are the world’s most heavily cultivated bivalve molluscs, numerous studies have applied molecular techniques to understand the taxonomic and functional diversity of their associated bacteria. Here, we expand on this research by assessing the composition and putative functional profiles of prokaryotic communities from different organs/compartments of the black-lipped pearl oyster Pinctada margaritifera, a commercially important shellfish valued for cultured pearl production in the Pacific region. Seven tissues, in addition to mucous secretions, were targeted from P. margaritifera individuals: the gill, gonad, byssus gland, haemolymph, mantle, adductor muscle, mucus, and gut. Richness of bacterial Operational Taxonomic Units (OTUs) and phylogenetic diversity differed between host tissues, with mucous layers displaying the highest richness and diversity. This multi-tissues approach permitted the identification of consistent microbial members, together constituting the core microbiome of P. margaritifera, including Alpha- and Gammaproteobacteria, Flavobacteriia, and Spirochaetes. We also found a high representation of Endozoicimonaceae symbionts, indicating that they may be of particular importance to oyster health, survival and homeostasis, as in many other coral reef animals. Our study demonstrates that the microbial communities and their associated predicted functional profiles are tissue specific. Inferred physiological functions were supported by current physiological data available for the associated bacterial taxa specific to each tissue. This work provides the first baseline of microbial community composition in P. margaritifera, providing a solid foundation for future research into this commercially important species and emphasises the important effects of tissue differentiation in structuring the oyster microbiome.
Collapse
Affiliation(s)
- Caroline Eve Dubé
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| | - Chin-Long Ky
- Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia.,Ifremer, UMR 241, Centre du Pacifique, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes Pathogènes Environnements, Université de Montpellier, Montpellier, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| |
Collapse
|
81
|
Validation of monoclonal anti-PKC isozyme antibodies for flow cytometry analyses in human T cell subsets and expression in cord blood T cells. Sci Rep 2019; 9:9263. [PMID: 31239481 PMCID: PMC6592917 DOI: 10.1038/s41598-019-45507-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
T cells from neonates (cord blood) with a tendency to develop allergic diseases express low PKCζ levels. More extensive investigations into PKC isozyme levels in T cell subsets and changes during neonatal T cell maturation are hampered by limitations of Western blot analyses. We have undertaken to validating the specificity of commercially available antibodies marketed for flow cytometry to measure PKCα, βI, βII, δ, ε, η, θ, ζ, ι/λ and μ. Western blot analyses of human peripheral blood mononuclear cell (PBMC) lysates demonstrated that some antibodies were unsuitable for flow cytometry assays. A panel of antibodies with the desirable specificity and reliability in the flow cytometry assay were identified using both PBMC and whole blood assays. The results showed that all PKC isozymes were expressed in CD4+ and CD8+ T cells, monocytes and neutrophils. Murine lymphocytes showed similar patterns of expression. A major finding was that 35.2% and 38.5% of cord blood samples have low PKCζ (≤the 5th percentile of adult levels) in the CD4+ and CD8+ subsets, respectively, consistent with the incidence of allergy development in the population. Furthermore, these low PKCζ levels ‘normalised’ within 24 h after initiation of maturation of these cells in culture, providing a ‘window of opportunity’ for altering PKCζ levels.
Collapse
|
82
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
83
|
Developmental protein kinase C hyper-activation results in microcephaly and behavioral abnormalities in zebrafish. Transl Psychiatry 2018; 8:232. [PMID: 30352990 PMCID: PMC6199330 DOI: 10.1038/s41398-018-0285-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Susceptible genetic polymorphisms and altered expression levels of protein kinase C (PKC)-encoding genes suggest overactivation of PKC in autism spectrum disorder (ASD) development. To delineate the pathological role of PKC, we pharmacologically stimulated its activity during the early development of zebrafish. Results demonstrated that PKC hyper-activation perturbs zebrafish development and induces a long-lasting head size deficit. The anatomical and cellular analysis revealed reduced neural precursor proliferation and newborn neuron formation. β-Catenin that is essential for brain growth is dramatically degraded. Stabilization of β-catenin by gsk3β inhibition partially restores the head size deficit. In addition, the neuropathogenic effect of developmental PKC hyper-activation was further supported by the alterations in the behavioral domain including motor abnormalities, heightened stress reactivity and impaired habituation learning. Taken together, by causally connecting early-life PKC hyper-activation to these neuropathological traits and the impaired neurogenesis, these results suggest that PKC could be a critical pathway in ASD pathogenesis.
Collapse
|
84
|
Addi T, Poitevin S, McKay N, El Mecherfi KE, Kheroua O, Jourde-Chiche N, de Macedo A, Gondouin B, Cerini C, Brunet P, Dignat-George F, Burtey S, Dou L. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Arch Toxicol 2018; 93:121-136. [PMID: 30324315 DOI: 10.1007/s00204-018-2328-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is associated with high risk of thrombosis. Indole-3 acetic acid (IAA), an indolic uremic toxin, induces the expression of tissue factor (TF) in human umbilical vein endothelial cells (HUVEC) via the transcription factor aryl hydrocarbon receptor (AhR). This study aimed to understand the signaling pathways involved in AhR-mediated TF induction by IAA. We incubated human endothelial cells with IAA at 50 µM, the maximal concentration found in patients with CKD. IAA induced TF expression in different types of human endothelial cells: umbilical vein (HUVEC), aortic (HAoEC), and cardiac-derived microvascular (HMVEC-C). Using AhR inhibition and chromatin immunoprecipitation experiments, we showed that TF induction by IAA in HUVEC was controlled by AhR and that AhR did not bind to the TF promoter. The analysis of TF promoter activity using luciferase reporter plasmids showed that the NF-κB site was essential in TF induction by IAA. In addition, TF induction by IAA was drastically decreased by an inhibitor of the NF-κB pathway. IAA induced the nuclear translocation of NF-κB p50 subunit, which was decreased by AhR and p38MAPK inhibition. Finally, in a cohort of 92 CKD patients on hemodialysis, circulating TF was independently related to serum IAA in multivariate analysis. In conclusion, TF up-regulation by IAA in human endothelial cells involves a non-genomic AhR/p38 MAPK/NF-κB pathway. The understanding of signal transduction pathways related to AhR thrombotic/inflammatory pathway is of interest to find therapeutic targets to reduce TF expression and thrombotic risk in patients with CKD.
Collapse
Affiliation(s)
- Tawfik Addi
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Nathalie McKay
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Kamel Eddine El Mecherfi
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
- Université Mohamed Boudiaf USTO, Dpt génétique Moléculaire Appliquée (GMA), Oran, Algeria
| | - Omar Kheroua
- Département de Biologie, Université d'Oran 1 Ahmed Benbella, LPNSA, Oran, Algeria
| | - Noémie Jourde-Chiche
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Alix de Macedo
- Service de Pédiatrie-Néonatologie, Hôpital Fondation Saint Joseph, Marseille, France
| | | | - Claire Cerini
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Philippe Brunet
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Françoise Dignat-George
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Marseille, France
| | - Laetitia Dou
- Faculté de pharmacie, Aix-Marseille Université, INSERM, INRA, C2VN, 27 bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
85
|
Rubíková Z, Sulimenko V, Paulenda T, Dráber P. Mast Cell Activation and Microtubule Organization Are Modulated by Miltefosine Through Protein Kinase C Inhibition. Front Immunol 2018; 9:1563. [PMID: 30038620 PMCID: PMC6046399 DOI: 10.3389/fimmu.2018.01563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022] Open
Abstract
Mast cells play an effector role in innate immunity, allergy, and inflammation. Antigen-mediated activation of mast cells initiates signaling events leading to Ca2+ response and the release of inflammatory and allergic mediators from granules. Diseases associated with deregulated mast cell functions are hard to treat and there is an increasing demand for new therapeutic strategies. Miltefosine (hexadecylphosphocholine) is a new candidate for treatment of mast cell-driven diseases as it inhibits activation of mast cells. It has been proposed that miltefosine acts as a lipid raft modulator through its interference with the structural organization of surface receptors in the cell membrane. However, molecular mechanisms of its action are not fully understood. Here, we report that in antigen-activated bone marrow-derived mast cells (BMMCs), miltefosine inhibits degranulation, reorganization of microtubules, as well as antigen-induced chemotaxis. While aggregation and tyrosine phosphorylation of IgE receptors were suppressed in activated cells pre-treated with miltefosine, overall tyrosine phosphorylation levels of Lyn and Syk kinases, and Ca2+ influx were not inhibited. In contrast, lipid raft disruptor methyl-β-cyclodextrin attenuated the Ca2+ influx. Tagged-miltefosine rapidly localized into the cell interior, and live-cell imaging of BMMCs with labeled intracellular granules disclosed that miltefosine inhibited movement of some granules. Immunoprecipitation and in vitro kinase assays revealed that miltefosine inhibited Ca2+- and diacylglycerol-regulated conventional protein kinase C (cPKC) isoforms that are important for mast cell degranulation. Inhibition of cPKCs by specific inhibitor Ly333531 affected activation of BMMCs in the same way as miltefosine. Collectively, our data suggest that miltefosine modulates mast cells both at the plasma membrane and in the cytosol by inhibition of cPKCs. This alters intracellular signaling pathway(s) directed to microtubules, degranulation, and migration.
Collapse
Affiliation(s)
- Zuzana Rubíková
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Paulenda
- Department of Signal Transduction, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
86
|
Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, Grässer F, Keller A, Meese E. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 2018; 7:34288-99. [PMID: 27144431 PMCID: PMC5085156 DOI: 10.18632/oncotarget.9103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
Circulating miRNAs have been associated with numerous human diseases. The lack of understanding the functional roles of blood-born miRNAs limits, however, largely their value as disease marker. In a systems biology analysis we identified miR-34a as strongly associated with pathogenesis. Genome-wide analysis of miRNAs in blood cell fractions highlighted miR-34a as most significantly up-regulated in CD3+ cells of lung cancer patients. By our in silico analysis members of the protein kinase C family (PKC) were indicated as miR-34a target genes. Using a luciferase assay, we confirmed binding of miR-34a-5p to target sequences within the 3′UTRs of five PKC family members. To verify the biological effect, we transfected HEK 293T and Jurkat cells with miR-34a-5p causing reduced endogenous protein levels of PKC isozymes. By combining bioinformatics approaches with experimental validation, we demonstrate that one of the most relevant disease associated miRNAs has the ability to control the expression of a gene family.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
87
|
Kasten-Jolly J, Lawrence DA. The cationic (calcium and lead) and enzyme conundrum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:400-413. [PMID: 30917763 DOI: 10.1080/10937404.2019.1592728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The environmental toxicant lead (Pb) and the essential element calcium (Ca) play an interactive role in extracellular and intracellular regulatory functions that affect health. Lead's usurping calcium binding sites, as well as its interactions with thiols and phosphates have been suggested to be the basis for adverse effects on many organ systems especially the nervous system. Among regulatory processes controlled by Ca are calmodulin-dependent phosphodiesterase, calmodulin-dependent protein kinases, calmodulin inhibitor sensitive potassium channels, and calmodulin-independent protein kinase C (PKC) activation. This review focused on Pb studies describing the modulation of PKC, which is also regulated by steroids. Steroid hormone regulation may relate to a focal point for the sex differences of Pb and cellular signaling events. Picomolar concentrations of Pb may stimulate partially purified PKC, but higher concentrations inhibit activity. Although knowledge exists regarding Pb and PKC isoforms, especially interaction of Pb with the purified enzyme, there are conflicting reports concerning metal-mediated activation or inhibition of PKC and downstream signaling events. The effect of Pb on PKC in vivo remains elusive. Most reports of Pb and PKC in whole animal and human studies indicated that Pb either inhibits PKC or exerts no significant effect. However, most of the animal studies were performed with males. Recent studies performed with females and males separately revealed that females and males respond to Pb quite differently, and for this reason, it is suggested that future Pb studies of PKC and other biomedical investigations be performed with females and males.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- a New York State Department of Health , Wadsworth Center , Albany , NY , USA
| | - David A Lawrence
- a New York State Department of Health , Wadsworth Center , Albany , NY , USA
- b Department of Environmental Health Sciences , University at Albany School of Public Health , Rensselaer , NY , USA
| |
Collapse
|
88
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
89
|
Cai X, Zhu H, Li Y. PKCζ, MMP‑2 and MMP‑9 expression in lung adenocarcinoma and association with a metastatic phenotype. Mol Med Rep 2017; 16:8301-8306. [PMID: 28983601 DOI: 10.3892/mmr.2017.7634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate protein kinase C ζ type (PKCζ), matrix metalloproteinase (MMP)‑2 and MMP‑9 expression in lung adenocarcinoma and to define their association with in vitro invasion and metastatic capacity. PKCζ, MMP‑2 and MMP‑9 expression was assessed by immunohistochemistry in 110 cases of lung adenocarcinoma. PKCζ small interfering (si)RNA was transfected into A549 cells, and western blotting was used to confirm PKCζ‑knockdown in transfected cells and to measure MMP‑2 and MMP‑9 levels. A Transwell invasion assay was used to detect in vitro invasive capacity. The rates of positive PKCζ, MMP‑2 and MMP‑9 staining in lung adenocarcinoma tissues were 52.73, 55.45 and 61.82%, respectively. PKCζ expression was increased in malignant tissues compared with adjacent normal lung tissues and was associated with lymph node metastasis (P<0.05), although it was not associated with any other clinicopathological parameters, including sex, age, tumor size, smoking status or distant metastases (all P>0.05). PKCζ, MMP‑2 and MMP‑9 expression was markedly decreased in siPKCζ‑treated A549 cells, which exhibited a significantly decreased invasive capacity in the Transwell invasion assay (P<0.05). In conclusion, PKCζ promoted lung adenocarcinoma invasion and metastasis, and its expression was associated with MMP‑2 and MMP‑9 expression. PKCζ may be a potential target for gene therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| | - Hongguang Zhu
- Department of Dentistry, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Ying Li
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
90
|
A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Mol Cell Biol 2017; 37:MCB.00192-17. [PMID: 28716951 DOI: 10.1128/mcb.00192-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.
Collapse
|
91
|
Brutkiewicz RR. Cell Signaling Pathways That Regulate Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2017; 197:2971-2979. [PMID: 27824592 DOI: 10.4049/jimmunol.1600460] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation, a necessary first step in the activation of innate and adaptive T cells. In this brief review, I discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s), if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
92
|
From the research laboratory to the database: the Caenorhabditis elegans kinome in UniProtKB. Biochem J 2017; 474:493-515. [PMID: 28159896 PMCID: PMC5290486 DOI: 10.1042/bcj20160991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Protein kinases form one of the largest protein families and are found in all species, from viruses to humans. They catalyze the reversible phosphorylation of proteins, often modifying their activity and localization. They are implicated in virtually all cellular processes and are one of the most intensively studied protein families. In recent years, they have become key therapeutic targets in drug development as natural mutations affecting kinase genes are the cause of many diseases. The vast amount of data contained in the primary literature and across a variety of biological data collections highlights the need for a repository where this information is stored in a concise and easily accessible manner. The UniProt Knowledgebase meets this need by providing the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information. Here, we describe the expert curation process for kinases, focusing on the Caenorhabditis elegans kinome. The C. elegans kinome is composed of 438 kinases and almost half of them have been functionally characterized, highlighting that C. elegans is a valuable and versatile model organism to understand the role of kinases in biological processes.
Collapse
|
93
|
Dos Santos FM, Piffer AC, Schneider RDO, Ribeiro NS, Garcia AWA, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Alterations of zinc homeostasis in response to Cryptococcus neoformans in a murine macrophage cell line. Future Microbiol 2017; 12:491-504. [DOI: 10.2217/fmb-2016-0160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes – metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families – was analyzed by quantitative PCR. Results: Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. Conclusion: These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.
Collapse
Affiliation(s)
- Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Alícia Corbellini Piffer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Rafael de Oliveira Schneider
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Nicole Sartori Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Ane Wichine Acosta Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Lívia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
94
|
Toricelli M, Melo FHM, Hunger A, Zanatta D, Strauss BE, Jasiulionis MG. Timp1 Promotes Cell Survival by Activating the PDK1 Signaling Pathway in Melanoma. Cancers (Basel) 2017; 9:cancers9040037. [PMID: 28430130 PMCID: PMC5406712 DOI: 10.3390/cancers9040037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023] Open
Abstract
High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and β1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), generated under phosphatidylinositol-3-kinase (PI3K) activation, enables the recruitment and activation of protein kinase B (PKB/AKT) and phosphoinositide-dependent kinase 1 (PDK1) at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC) inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKTThr308 is highly expressed, contributing to anoikis resistance. We showed that PDK1Ser241 and PKCβIISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Mariana Toricelli
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil.
| | - Fabiana H M Melo
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil.
| | - Aline Hunger
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil.
| | - Daniela Zanatta
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil.
| | - Bryan E Strauss
- Center for Translational Investigation in Oncology/LIM 24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil.
| | - Miriam G Jasiulionis
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil.
| |
Collapse
|
95
|
van Eis MJ, Evenou J, Schuler W, Zenke G, Vangrevelinghe E, Wagner J, von Matt P. Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β. Bioorg Med Chem Lett 2017; 27:781-786. [DOI: 10.1016/j.bmcl.2017.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
|
96
|
Du L, Liu Y, Du Y, Wang H, Zhang M, Du Y, Feng WH. Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-15 through PKCβ1-TAK1-NF-κB signaling pathway. Virology 2016; 496:166-174. [PMID: 27318153 DOI: 10.1016/j.virol.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most important infectious diseases in swine industry. IL-15 is a pleiotropic cytokine and has been shown to be essential to transform NKs, CD8 T cells, and other cells of the immune systems into functional effectors. Here, we demonstrated that the broad-spectrum or conventional PKC inhibitors repressed PRRSV-induced IL-15 expression and NF-κB activation. Subsequently, we found that the PKCβ specific inhibitor inhibited PRRSV-induced IL-15 production, which was also confirmed by knock-down of PKCβ1, suggesting that PKCβ1 is involved in the PRRSV-induced IL-15 expression. In addition, we demonstrated that PRRSV activated NF-κB through PKCβ1-induced TAK1 activation. Finally, we demonstrated that PRRSV activated PKCβ1 dependent on the participation of TRIF and MAVS. These data indicate that PRRSV up-regulates IL-15 through TRIF/MAVS-PKCβ1-TAK1-NF-κB signaling pathway. These findings will provide new insights into the molecular mechanisms of IL-15 production induced by PRRSV.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinping Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meijie Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China.
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|