51
|
Wu X, Chen H, Gao X, Gao H, He Q, Li G, Yao J, Liu Z. Natural Herbal Remedy Wumei Decoction Ameliorates Intestinal Mucosal Inflammation by Inhibiting Th1/Th17 Cell Differentiation and Maintaining Microbial Homeostasis. Inflamm Bowel Dis 2022; 28:1061-1071. [PMID: 35092428 DOI: 10.1093/ibd/izab348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Evidence has shown that the traditional Chinese herbal medicine Wumei decoction (WMD) has a protective effect on ulcerative colitis. Here, we studied the anti-inflammatory effects and potential mechanisms of WMD on chronic colitis in mice. METHODS A dextran sulfate sodium (DSS)-induced chronic colitis model and CD45RBhighCD4+ T cell transfer model were established in mice. Body weight, Disease Activity Index, and colon length were assessed, and histopathology was confirmed by hematoxylin and eosin staining. Colon tissue samples were collected to detect the frequencies of various immune cells, expression of cytokines, and tight junction-related proteins using flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. 16S ribosomal DNA sequencing was performed to distinguish differential microbiota of fecal samples. RESULTS Severe chronic colitis was observed in mice after DSS exposure and in Rag1-/- mice reconstituted with CD45RBhighCD4+ T cells, as manifested by weight loss, hematochezia, and shortening and thickening of the colon, which were reversed by WMD treatment. WMD markedly suppressed intestinal mucosal CD4+ T cell differentiation and the secretion of proinflammatory cytokines (eg, tumor necrosis factor α, interleukin-1β, interferon γ, and IL-17A) by flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Moreover, WMD promoted the expression of occludin, zonula occludens-1, and E-cadherin, thereby maintaining the epithelial barrier function. Additionally, 16S ribosomal DNA sequencing revealed that WMD regulated the dysbiosis of gut microbiota in CD45RBhighCD4+ T cell-reconstituted Rag1-/- mice, evidenced by an increase of Allobaculum and Bacteroides and a decrease of Ileibacterium. CONCLUSIONS WMD ameliorates chronic colitis in mice induced by DSS or reconstituted with CD45RBhighCD4+ T cells through suppressing Th1/Th17 cell differentiation and the secretion of proinflammatory cytokines, maintaining epithelial barrier function, and improving the dysbiosis.
Collapse
Affiliation(s)
- Xiaohan Wu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huimin Chen
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong He
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
52
|
González-Madrid E, Rangel-Ramírez MA, Mendoza-León MJ, Álvarez-Mardones O, González PA, Kalergis AM, Opazo MC, Riedel CA. Risk Factors from Pregnancy to Adulthood in Multiple Sclerosis Outcome. Int J Mol Sci 2022; 23:ijms23137080. [PMID: 35806081 PMCID: PMC9266360 DOI: 10.3390/ijms23137080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by a robust inflammatory response against myelin sheath antigens, which causes astrocyte and microglial activation and demyelination of the central nervous system (CNS). Multiple genetic predispositions and environmental factors are known to influence the immune response in autoimmune diseases, such as MS, and in the experimental autoimmune encephalomyelitis (EAE) model. Although the predisposition to suffer from MS seems to be a multifactorial process, a highly sensitive period is pregnancy due to factors that alter the development and differentiation of the CNS and the immune system, which increases the offspring’s susceptibility to develop MS. In this regard, there is evidence that thyroid hormone deficiency during gestation, such as hypothyroidism or hypothyroxinemia, may increase susceptibility to autoimmune diseases such as MS. In this review, we discuss the relevance of the gestational period for the development of MS in adulthood.
Collapse
Affiliation(s)
- Enrique González-Madrid
- Laboratorio Endocrinología-Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile; (E.G.-M.); (M.A.R.-R.); (M.J.M.-L.); (O.Á.-M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
| | - Ma. Andreina Rangel-Ramírez
- Laboratorio Endocrinología-Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile; (E.G.-M.); (M.A.R.-R.); (M.J.M.-L.); (O.Á.-M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
| | - María José Mendoza-León
- Laboratorio Endocrinología-Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile; (E.G.-M.); (M.A.R.-R.); (M.J.M.-L.); (O.Á.-M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
| | - Oscar Álvarez-Mardones
- Laboratorio Endocrinología-Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile; (E.G.-M.); (M.A.R.-R.); (M.J.M.-L.); (O.Á.-M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Manuel Montt 948, Providencia 7500000, Chile
| | - Claudia A. Riedel
- Laboratorio Endocrinología-Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile; (E.G.-M.); (M.A.R.-R.); (M.J.M.-L.); (O.Á.-M.)
- Millennium Institute on Immunology and Immunotherapy, Santiago 8320000, Chile; (P.A.G.); (A.M.K.); (M.C.O.)
- Correspondence:
| |
Collapse
|
53
|
Yuan S, Wang Q, Li J, Xue JC, Li Y, Meng H, Hou XT, Nan JX, Zhang QG. Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment. Chin Med 2022; 17:74. [PMID: 35717380 PMCID: PMC9206260 DOI: 10.1186/s13020-022-00633-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn’s disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China. .,Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China. .,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002, Jilin, China.
| |
Collapse
|
54
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
55
|
Zhang J, Qin H, Chang M, Yang Y, Lin J. Gut Microbiota Dysbiosis in BK Polyomavirus-Infected Renal Transplant Recipients: A Case-Control Study. Front Cell Infect Microbiol 2022; 12:860201. [PMID: 35694540 PMCID: PMC9186314 DOI: 10.3389/fcimb.2022.860201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background BK polyomavirus infection results in renal allograft dysfunction, and it is important to find methods of prediction and treatment. As a regulator of host immunity, changes in the gut microbiota are associated with a variety of infections. However, the correlation between microbiota dysbiosis and posttransplant BK polyomavirus infection was rarely studied. Thus, this study aimed to characterize the gut microbiota in BK polyomavirus-infected renal transplant recipients in order to explore the biomarkers that might be potential therapeutic targets and establish a prediction model for posttransplant BK polyomavirus infection based on the gut microbiota. Methods We compared the gut microbial communities of 25 BK polyomavirus-infected renal transplant recipients with 23 characteristic-matched controls, applying the 16S ribosomal RNA gene amplicon sequencing technique. Results At the phylum level, Firmicutes/Bacteroidetes ratio significantly increased in the BK polyomavirus group. Bacteroidetes was positively correlated with CD4/CD8 ratio. In the top 20 dominant genera, Romboutsia and Roseburia exhibited a significant difference between the two groups. No significant difference was observed in microbial alpha diversity. Beta diversity revealed a significant difference between the two groups. Nine distinguishing bacterial taxa were discovered between the two groups. We established a random forest model using genus taxa to predict BK polyomavirus infectious status, which achieved the best accuracy (80.71%) with an area under the curve of 0.82. Two genera were included in the best model, which were Romboutsia and Actinomyces. Conclusions BK polyomavirus-infected patients had gut microbiota dysbiosis in which the Firmicutes/Bacteroidetes ratio increased in the course of the viral infection. Nine distinguishing bacterial taxa might be potential biomarkers of BK polyomavirus infection. The random forest model achieved an accuracy of 80.71% in predicting the BKV infectious status, with Romboutsia and Actinomyces included.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Hao Qin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingyu Chang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Lin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
- *Correspondence: Jun Lin,
| |
Collapse
|
56
|
Han W, Tang H, Ye Y. Locality-Sensitive Hashing-Based k-Mer Clustering for Identification of Differential Microbial Markers Related to Host Phenotype. J Comput Biol 2022; 29:738-751. [PMID: 35584271 PMCID: PMC9464365 DOI: 10.1089/cmb.2021.0640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microbial organisms play important roles in many aspects of human health and diseases. Encouraged by the numerous studies that show the association between microbiomes and human diseases, computational and machine learning methods have been recently developed to generate and utilize microbiome features for prediction of host phenotypes such as disease versus healthy cancer immunotherapy responder versus nonresponder. We have previously developed a subtractive assembly approach, which focuses on extraction and assembly of differential reads from metagenomic data sets that are likely sampled from differential genomes or genes between two groups of microbiome data sets (e.g., healthy vs. disease). In this article, we further improved our subtractive assembly approach by utilizing groups of k-mers with similar abundance profiles across multiple samples. We implemented a locality-sensitive hashing (LSH)-enabled approach (called kmerLSHSA) to group billions of k-mers into k-mer coabundance groups (kCAGs), which were subsequently used for the retrieval of differential kCAGs for subtractive assembly. Testing of the kmerLSHSA approach on simulated data sets and real microbiome data sets showed that, compared with the conventional approach that utilizes all genes, our approach can quickly identify differential genes that can be used for building promising predictive models for microbiome-based host phenotype prediction. We also discussed other potential applications of LSH-enabled clustering of k-mers according to their abundance profiles across multiple microbiome samples.
Collapse
Affiliation(s)
- Wontack Han
- Computer Science Department, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Haixu Tang
- Computer Science Department, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Yuzhen Ye
- Computer Science Department, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
57
|
Gubert C, Gasparotto J, H. Morais L. Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep (Oxf) 2022; 10:goac017. [PMID: 35582476 PMCID: PMC9109005 DOI: 10.1093/gastro/goac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brasil
| | - Livia H. Morais
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
58
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
59
|
Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022; 14:nu14091977. [PMID: 35565943 PMCID: PMC9105144 DOI: 10.3390/nu14091977] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal microbiota has its role as an important component of human physiology. It produces metabolites that module key functions to establish a symbiotic crosstalk with their host. Among them, short chain fatty acids (SCFAs), produced by intestinal bacteria during the fermentation of partially and non-digestible polysaccharides, play key roles in regulating colon physiology and changing intestinal environment. Recent research has found that SCFAs not only influence the signal transduction pathway in the gut, but they also reach tissues and organs outside of the gut, through their circulation in the blood. Growing evidence highlights the importance of SCFAs level in influencing health maintenance and disease development. SCFAs are probably involved in the management of host health in a complicated (positive or negative) way. Here, we review the current understanding of SCFAs effects on host physiology and discuss the potential prevention and therapeutics of SCFAs in a variety of disorders. It provides a systematic theoretical basis for the study of mechanisms and precise intake level of SCFAs to promote human health.
Collapse
|
60
|
Leffler J, Trend S, Ward NC, Grau GE, Hawke S, Byrne SN, Kermode AG, French MA, Hart PH. Circulating Memory B Cells in Early Multiple Sclerosis Exhibit Increased IgA + Cells, Globally Decreased BAFF-R Expression and an EBV-Related IgM + Cell Signature. Front Immunol 2022; 13:812317. [PMID: 35250986 PMCID: PMC8888440 DOI: 10.3389/fimmu.2022.812317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system that results in demyelination of axons, inefficient signal transmission and reduced muscular mobility. Recent findings suggest that B cells play a significant role in disease development and pathology. To further explore this, B cell profiles in peripheral blood from 28 treatment-naive patients with early MS were assessed using flow cytometry and compared to 17 healthy controls. Conventional and algorithm-based analysis revealed a significant increase in MS patients of IgA+ memory B cells (MBC) including CD27+, CD27- and Tbet+ subsets. Screening circulating B cells for markers associated with B cell function revealed a significantly decreased expression of the B cell activation factor receptor (BAFF-R) in MS patients compared to controls. In healthy controls, BAFF-R expression was inversely associated with abundance of differentiated MBC but this was not observed in MS. Instead in MS patients, decreased BAFF-R expression correlated with increased production of proinflammatory TNF following B cell stimulation. Finally, we demonstrated that reactivation of Epstein Barr Virus (EBV) in MS patients was associated with several phenotypic changes amongst MBCs, particularly increased expression of HLA-DR molecules and markers of a T-bet+ differentiation pathway in IgM+ MBCs. Together, these data suggest that the B cell compartment is dysregulated in MS regarding aberrant MBC homeostasis, driven by reduced BAFF-R expression and EBV reactivation. This study adds further insights into the contribution of B cells to the pathological mechanisms of MS, as well as the complex role of BAFF/BAFF-R signalling in MS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia
| | - Georges E Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Simon Hawke
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Immunology Division, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
61
|
Cuthbertson L, Turner SE, Jackson A, Ranson C, Loosemore M, Kelleher P, Moffatt MF, Cookson WO, Hull JH, Shah A. Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine 2022; 79:104024. [PMID: 35490556 PMCID: PMC9062742 DOI: 10.1016/j.ebiom.2022.104024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
62
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
63
|
Méndez-López LF, Sosa de León D, López-Cabanillas Lomelí M, González-Martínez BE, Vázquez-Rodríguez JA. Phytochemicals From Vicia faba Beans as Ligands of the Aryl Hydrocarbon Receptor to Regulate Autoimmune Diseases. Front Nutr 2022; 9:790440. [PMID: 35308285 PMCID: PMC8931403 DOI: 10.3389/fnut.2022.790440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Legumes are associated with gut health benefits, and increasing evidence indicates that their consumption reduces the risk of chronic diseases that include autoimmunity. Beans are rich sources of compounds with health-promoting effects, and recent metabolomic approaches have enabled the comprehensive characterization of the chemical composition of Vicia faba L. This article reviewed whether the phytocompounds in broad beans might modulate the aryl hydrocarbon receptor (AhR), which plays an essential role in autoantigen tolerance as a potential dietary strategy for autoimmune disease management. Therefore, thirty molecules present in Vicia faba of the chemical classes of flavonoids, chalcones, stilbenes, jasmonates, alkaloids, and amino acids, and either a human- or microbiome-derived product of biotransformation, retrieved from the literature or predicted in silico were evaluated by docking for affinity against the ligand-binding domain of AhR. Most analyzed compounds showed high affinity even after their metabolism which indicate that some AhR modulators remain active despite several steps in their biotransformation. Hence, our results suggest that in similitude with the gut metabolism of the tryptophan, phytocompounds mainly polyphenols also lead to metabolites that induce the AhR pathway. Furthermore, wyerone acid, wyerone epoxide, jasmonic acid, stizolamine, vicine, and convicine and their metabolite derivatives are reported for the first time as potential AhR ligands. Overall, chronic consumption of phytochemicals in Vicia faba L. and their gut biotransformation may protect against autoimmune disease pathogenesis by AhR modulation.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | | | - Jesús Alberto Vázquez-Rodríguez
- Laboratorio de Alimentos, Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
64
|
Brauckmann V, Nambiar S, Potthoff A, Höxtermann S, Wach J, Kayser A, Tiemann C, Schuppe AK, Brockmeyer NH, Skaletz-Rorowski A. Influence of dietary supplementation of short-chain fatty acid sodium propionate in people living with HIV (PLHIV). J Eur Acad Dermatol Venereol 2022; 36:881-889. [PMID: 35176190 DOI: 10.1111/jdv.18006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-AIDS associated chronic diseases in HIV+ patients have been on the rise since the advent of antiretroviral therapy. Especially cardiovascular diseases and disruption in the gastrointestinal tract have limited health-related quality of life (QoL). Several of those complications have been associated with chronic systemic inflammation. Short chain fatty-acids (SCFA), with propionate as one of the major compounds, have been described as an important link between gut microbiota and the immune system, defining the pro- and the anti-inflammatory milieu through direct and indirect regulation of T-cell homeostasis. The effects of dietary supplementation of sodium propionate (SP) in people living with HIV (PLHIV) have not yet been investigated prior to this study. OBJECTIVES To investigate the impact of SP uptake among PLHIV and its relevance to improve QoL, the study aimed to investigate metabolic, immunological, microbiome and patient-reported QoL related changes post SP-supplementation with follow up. METHODS: A prospective, non-randomized, controlled, monocentric interventional study was conducted in WIR, Center for Sexual Health and Medicine, in Bochum, Germany. 32 HIV+ patients with unaltered ART-regimen in the last three months were included. Participants were given SP for a duration of 12 weeks in the form of daily oral supplementation and were additionally followed-up for another 12 weeks. RESULTS The supplementation of SP was well tolerated. We found an improvement in lipid profiles and long-term blood glucose levels. A decrease in pro-inflammatory cytokines and a depletion of effector T-Cells was observed. Regulatory T-Cells and IL-10 decreased. Furthermore, changes in taxonomic composition of the microbiome during follow-up were observed and improvement of items of self-reported life-quality assessment. CONCLUSION: Taken together, the beneficial impact of SP in PLHIV reflects its potential in improving metabolic parameters and modulating pro-inflammatory immune responses. Thus possibly reducing the risk of cardiovascular disorders and facilitating long-term improvement of the gut flora.
Collapse
Affiliation(s)
- Vesta Brauckmann
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Nambiar
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Potthoff
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Höxtermann
- Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - J Wach
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Public Health Department Bochum, Bochum, Germany
| | - A Kayser
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Aidshilfe Bochum (Aids Service Organization Bochum) e.V, Bochum, Germany
| | - C Tiemann
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - A K Schuppe
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - N H Brockmeyer
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Skaletz-Rorowski
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany.,Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| |
Collapse
|
65
|
Liu H, Liu H, Liu C, Shang M, Wei T, Yin P. Gut Microbiome and the Role of Metabolites in the Study of Graves’ Disease. Front Mol Biosci 2022; 9:841223. [PMID: 35252357 PMCID: PMC8889015 DOI: 10.3389/fmolb.2022.841223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune thyroid disease (AITD), which is one of the most common organ-specific autoimmune disorders with an increasing prevalence worldwide. But the etiology of GD is still unclear. A growing number of studies show correlations between gut microbiota and GD. The dysbiosis of gut microbiota may be the reason for the development of GD by modulating the immune system. Metabolites act as mediators or modulators between gut microbiota and thyroid. The purpose of this review is to summarize the correlations between gut microbiota, microbial metabolites and GD. Challenges in the future study are also discussed. The combination of microbiome and metabolome may provide new insight for the study and put forward the diagnosis, treatment, prevention of GD in the future.
Collapse
Affiliation(s)
- Haihua Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengxue Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ,
| |
Collapse
|
66
|
MEJÍA-GRANADOS DM, VILLASANA-SALAZAR B, COAN AC, RIZZI L, BALTHAZAR MLF, GODOI ABD, CANTO AMD, ROSA DCD, SILVA LS, TACLA RDR, DAMASCENO A, DONATTI A, AVELAR WM, SOUSA A, LOPES-CENDES I. Gut microbiome in neuropsychiatric disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:192-207. [DOI: 10.1590/0004-282x-anp-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT Background: Neuropsychiatric disorders are a significant cause of death and disability worldwide. The mechanisms underlying these disorders include a constellation of structural, infectious, immunological, metabolic, and genetic etiologies. Advances in next-generation sequencing techniques have demonstrated that the composition of the enteric microbiome is dynamic and plays a pivotal role in host homeostasis and several diseases. The enteric microbiome acts as a key mediator in neuronal signaling via metabolic, neuroimmune, and neuroendocrine pathways. Objective: In this review, we aim to present and discuss the most current knowledge regarding the putative influence of the gut microbiome in neuropsychiatric disorders. Methods: We examined some of the preclinical and clinical evidence and therapeutic strategies associated with the manipulation of the gut microbiome. Results: targeted taxa were described and grouped from major studies to each disease. Conclusions: Understanding the complexity of these ecological interactions and their association with susceptibility and progression of acute and chronic disorders could lead to novel diagnostic biomarkers based on molecular targets. Moreover, research on the microbiome can also improve some emerging treatment choices, such as fecal transplantation, personalized probiotics, and dietary interventions, which could be used to reduce the impact of specific neuropsychiatric disorders. We expect that this knowledge will help physicians caring for patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ana Carolina COAN
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Liara RIZZI
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | | | | | - Amanda Morato do CANTO
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Douglas Cescon da ROSA
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Lucas Scárdua SILVA
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | | | - Alfredo DAMASCENO
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Amanda DONATTI
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| | - Wagner Mauad AVELAR
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Alessandro SOUSA
- Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil; Universidade de Campinas, Brazil
| | - Iscia LOPES-CENDES
- Universidade de Campinas, Brazil; Instituto Brasileiro de Neurociências e Neurotecnologia, Brazil
| |
Collapse
|
67
|
Huang Q, Cai G, Liu T, Liu Z. Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. Int J Gen Med 2022; 15:2003-2023. [PMID: 35795301 PMCID: PMC9252587 DOI: 10.2147/ijgm.s353276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
Stroke is a highly lethal disease and disabling illness while ischemic stroke accounts for the majority of stroke. It has been found that inflammation plays a key role in the initiation and progression of stroke, and atherosclerotic plaque rupture is considered to be the leading cause of ischemic stroke. Furthermore, chronic inflammatory diseases, such as obesity, type 2 diabetes mellitus (T2DM) and hypertension, are also considered as the high-risk factors for stroke. Recently, the topic on how gut microbiota affects human health has aroused great concern. The initiation and progression of ischemic stroke has been found to have close relation with gut microbiota dysbiosis. Hence, this manuscript briefly summarizes the roles of gut microbiota in ischemic stroke and its related risk factors, and the practicability of preventing and alleviating ischemic stroke by reconstructing gut microbiota.
Collapse
Affiliation(s)
- Qinhong Huang
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Guannan Cai
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
- Correspondence: Ting Liu; Zhihua Liu, Email ;
| | - Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
| |
Collapse
|
68
|
Wang H, Chao Y, Zhao H, Zhou X, Zhang F, Zhang Z, Li Z, Pan J, Wang J, Chen Q, Liu Z. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS NANO 2022; 16:664-674. [PMID: 34978418 DOI: 10.1021/acsnano.1c08120] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has shown tremendous promises in the treatment of various types of tumors. However, ICB therapy with antibodies appears to be less effective for glioma, partly owing to the existence of the blood-brain barrier (BBB) that impedes the entrance of therapeutics including most proteins to the central nervous system (CNS). Herein, considering the widely existing nicotinic acetylcholine receptors (nAChRs) and choline transporters (ChTs) on the surface of BBB, a choline analogue 2-methacryloyloxyethyl phosphorylcholine (MPC) is employed to fabricate the BBB-crossing copolymer via free-radical polymerization, followed by conjugation with antiprogrammed death-ligand 1 (anti-PD-L1) via a pH-sensitive traceless linker. The obtained nanoparticles exhibit significantly improved BBB-crossing capability owing to the receptor-mediated transportation after intravenous injection in an orthotopic glioma tumor model. Within the acidic glioma microenvironment, anti-PD-L1 would be released from such pH-responsive nanoparticles, further triggering highly effective ICB therapy of glioma to significantly prolong animal survival. This work thus realizes glioma microenvironment responsive BBB-crossing delivery of ICB antibodies, promising for the next generation immunotherapy of glioma.
Collapse
Affiliation(s)
- Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Xiuxia Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Fuyong Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zheng Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zhiheng Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Pan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| |
Collapse
|
69
|
Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022; 8:634897. [PMID: 35047537 PMCID: PMC8761849 DOI: 10.3389/fnut.2021.634897] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbours a complex microbial community, which interacts with the mucosal immune system closely. Gut microbiota plays a significant role in maintaining host health, which could supply various nutrients, regulate energy balance, modulate the immune response, and defence against pathogens. Therefore, maintaining a favourable equilibrium of gut microbiota through modulating bacteria composition, diversity, and their activity is beneficial to host health. Several studies have shown that probiotics and pre-biotics could directly and indirectly regulate microbiota and immune response. In addition, post-biotics, such as the bioactive metabolites, produced by gut microbiota, and/or cell-wall components released by probiotics, also have been shown to inhibit pathogen growth, maintain microbiota balance, and regulate an immune response. This review summarises the studies concerning the impact of probiotics, pre-biotics, and post-biotics on gut microbiota and immune systems and also describes the underlying mechanisms of beneficial effects of these substances. Finally, the future and challenges of probiotics, pre-biotics, and post-biotics are proposed.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiaqi Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
70
|
Guan Z, Luo L, Liu S, Guan Z, Zhang Q, Li X, Tao K. The Role of Depletion of Gut Microbiota in Osteoporosis and Osteoarthritis: A Narrative Review. Front Endocrinol (Lausanne) 2022; 13:847401. [PMID: 35418947 PMCID: PMC8996773 DOI: 10.3389/fendo.2022.847401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and osteoarthritis are common diseases in an aging society, are considered metabolic diseases, and affect the quality of life of older adults. In addition, the gut microbiome is considered an additional organ to regulate bone metabolism. In the past decade, people have been studying the relationship between gut microbiota and bone metabolism. The role and mechanism of the gut microbiota in regulating bone metabolism is very important to improve the development of osteoporosis and osteoarthritis. Depletion of the gut microbiota as a method of studying the role of the gut microbiota was provided strategies to enhance the role of the gut microbiota in regulating osteoporosis and osteoarthritis. In this review, we discuss how depletion of the gut microbiota affects osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Liying Luo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Qinggang Zhang
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Xu Li
- Spine Center, Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhiqiang Guan, ; Qinggang Zhang, ; Xu Li,
| |
Collapse
|
71
|
Sargin P, Roethle MF, Jia S, Pant T, Ciecko AE, Atkinson SN, Salzman NH, Teng RJ, Chen YG, Cabrera SM, Hessner MJ. Lactiplantibacillus plantarum 299v supplementation modulates β-cell ER stress and antioxidative defense pathways and prevents type 1 diabetes in gluten-free BioBreeding rats. Gut Microbes 2022; 14:2136467. [PMID: 36261888 PMCID: PMC9586621 DOI: 10.1080/19490976.2022.2136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in β-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.
Collapse
Affiliation(s)
- Pinar Sargin
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Gastroenterology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne M. Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
72
|
Effects of Lactococcus lactis subsp. cremoris YRC3780 daily intake on the HPA axis response to acute psychological stress in healthy Japanese men. Eur J Clin Nutr 2022; 76:574-580. [PMID: 34349248 PMCID: PMC8993685 DOI: 10.1038/s41430-021-00978-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lactococcus lactis subsp. cremoris (YRC3780), which is isolated from kefir, has been associated with anti-allergic effects in humans. However, it remains unknown whether daily intake of YRC3780 attenuates the response to psychological stress in humans in parallel with changes to the gut microbiome. We examined the fundamental role of YRC3780 in the gut microbiome, stress response, sleep, and mental health in humans. METHODS Effects of daily intake of YRC3780 on the hypothalamic-pituitary-adrenal (HPA) axis response to acute psychological stress were investigated in a double-blind, placebo-controlled clinical trial involving 27 healthy young men (mean age and body mass index: 23.5 years and 21.5 kg/m2) who were randomly assigned to placebo (n = 13) or YRC3780 (n = 14) groups. The HPA axis response to acute psychological stress, the diurnal rhythm of HPA axis activity, and gut microbiome were assessed and compared between the two groups. RESULTS The results showed that daily intake of YRC3780 significantly lowered morning salivary cortisol levels compared with placebo. In addition, salivary cortisol levels following a social stress test significantly decreased +40 min after beginning the TSST in the YRC3780-treated group compared to placebo. There were no significant differences between the two groups in terms of actigraphy-based sleep quality, but the subjective sleep quality and mental health were significantly improved in the YRC3780-treated group compared to placebo. CONCLUSIONS Our study suggests that daily intake of YRC3780 improves the HPA axis response to acute psychological stress, which might be associated with a decrease in morning cortisol levels.
Collapse
|
73
|
Diallo D, Somboro AM, Diabate S, Baya B, Kone A, Sarro YS, Kone B, Diarra B, Diallo S, Diakite M, Doumbia S, Toloba Y, Murphy RL, Maiga M. Antituberculosis Therapy and Gut Microbiota: Review of Potential Host Microbiota Directed-Therapies. Front Cell Infect Microbiol 2021; 11:673100. [PMID: 34950603 PMCID: PMC8688706 DOI: 10.3389/fcimb.2021.673100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a major public health concern with millions of deaths every year. The overlap with HIV infections, long treatment duration, and the emergence of drug resistance are significant obstacles to the control of the disease. Indeed, the standard first-line regimen TB treatment takes at least six months and even longer for the second-line therapy, resulting in relapses, drug resistance and re-infections. Many recent reports have also shown prolonged and significant damage of the gut microbial community (dysbiosis) from anti-TB drugs that can detrimentally persist several months after the cessation of treatment and could lead to the impairment of the immune response, and thus re-infections and drug resistance. A proposed strategy for shortening the treatment duration is thus to apply corrective measures to the dysbiosis for a faster bacterial clearance and a better treatment outcome. In this review, we will study the role of the gut microbiota in both TB infection and treatment, and its potential link with treatment duration. We will also discuss, the new concept of "Host Microbiota Directed-Therapies (HMDT)" as a potential adjunctive strategy to improve the treatment effectiveness, reduce its duration and or prevent relapses. These strategies include the use of probiotics, prebiotics, gut microbiota transfer, and other strategies. Application of this innovative solution could lead to HMDT as an adjunctive tool to shorten TB treatment, which will have enormous public health impacts for the End TB Strategy worldwide.
Collapse
Affiliation(s)
- Dramane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Seydou Diabate
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bacar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya S Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mahamadou Diakite
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yacouba Toloba
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
74
|
The Effectiveness and Safety of Probiotic Supplements for Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Preclinical Trials. J Immunol Res 2021; 2021:7552546. [PMID: 34938815 PMCID: PMC8687811 DOI: 10.1155/2021/7552546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Patients with psoriasis need long-term medication to control their condition. Recent studies suggest that changing the intestinal flora may be a potential treatment. Methods The databases were utilized to search the randomized controlled trials (RCTs) and preclinical trials about probiotic supplement in the treatment of psoriasis. The retrieval time is from the establishment of these databases to December 2020. RevMan5.3 was used for the risk assessment of bias and meta-analysis. This systematic review was registered in PROSPERO (CRD42021232756). Results A total of 3 RCTs involving 164 participants were included. Two RCTs showed that probiotics can improve PASI and thereby improve the condition. For inflammation-related indicators, only one RCT showed that probiotics can improve the levels of CRP and TNF-α but have no obvious improvement effect on IL6. One RCT demonstrated the total effective rate of probiotics in the treatment of psoriasis. For adverse events, one RCT showed that the incidence of adverse events of probiotic treatment was low. Preclinical studies showed that continuous intervention with oral probiotics can significantly improve the progression of psoriasis and reduce the expression of inflammatory factors. The meta-analysis showed that the PASI between two groups was of no statistical significance (SMD 1.83 [-0.41, 4.07], P = 0.11). Meanwhile, probiotics may improve skin thickness (SMD -5.87 [-11.34, -0.41], P = 0.04) in animal model. Conclusion Prebiotics may have a positive effect on alleviating the clinical symptoms of psoriasis, but a large sample of RCTs is still needed to support its therapeutic effect in psoriasis.
Collapse
|
75
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
76
|
Ye S, Si C, Deng J, Chen X, Kong L, Zhou X, Wang W. Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1516855. [PMID: 34712726 PMCID: PMC8548099 DOI: 10.1155/2021/1516855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. The severity is classified as mild (MAP), moderately severe (MSAP), or severe (SAP). In patients with SAP, organ dysfunction can occur in the early stage of the disease course, accompanied by secondary infection, with a mortality rate of 36%-50%. In the late stage SAP, infection-related complications caused by pancreatic necrotic tissue and peripancreatic effusion are the main causes of death in patients. Dysbacteriosis of intestinal microflora, barrier dysfunction of intestinal mucosa, and translocation of enteric bacteria are considered to be the main causes of infection of pancreatic necrotic tissue and peripancreatic effusion. During the past few years, increasing attention has been paid to the metabolic activities of intestinal microflora in SAP, which plays an important role in the metabolic activities of the human body. This review is aimed at bringing together the most recent findings and advances regarding the gut microbial community and associated gut microbial community metabolites and illustrating the role of these metabolites in disease progression in severe acute pancreatitis. We hope that this review will provide new ideas and schemes for the treatment of SAP in the clinical settings.
Collapse
Affiliation(s)
- Shijie Ye
- Wenzhou Medical University, Wenzhou, China
| | - Chenli Si
- Wenzhou Medical University, Wenzhou, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
77
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
78
|
Microbiota and Its Impact on the Immune System in COVID-19-A Narrative Review. J Clin Med 2021; 10:jcm10194537. [PMID: 34640553 PMCID: PMC8509181 DOI: 10.3390/jcm10194537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The microbiota is of interest for the development of a therapeutic strategy against SARS-CoV-2 coronavirus disease 2019 (COVID-19) due to its impact on the host immune system. Proven communications of the gut microbiota with the pulmonary microbiota (gut-lung axis) and the pathway of neural connections between the gut and brain (gut-brain axis) may be important in the face of the pandemic. SARS-CoV-2 was shown to affect almost all organs because of the presence of a host receptor known as angiotensin converting enzyme 2 (ACE2). The ACE2 receptor is mainly present in the brush border of intestinal enterocytes, ciliary cells, and type II alveolar epithelial cells in the lungs. The transport function of ACE2 has been linked to the ecology of gut microbes in the digestive tract, suggesting that COVID-19 may be related to the gut microbiota. The severity of COVID-19 may be associated with a number of comorbidities, such as hypertension, diabetes, obesity, and/or old age; therefore, attention is also paid to multiple morbidities and the modulation of microbiota through comorbidities and medications. This paper reviews the research in the context of the state of the intestinal microbiota and its impact on the cells of the immune system during the SARS-CoV-2 pandemic.
Collapse
|
79
|
Sun H, Huang X, Fu L, Huo B, He T, Jiang X. A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels. J Genet Genomics 2021; 48:851-859. [PMID: 34411712 DOI: 10.1016/j.jgg.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
The dysbiosis of microbiome may have negative effects on a host phenotype. The microbes related to the host phenotype are regarded as microbial association signals. Recently, statistical methods based on microbiome-phenotype association tests have been extensively developed to detect these association signals. However, the currently available methods do not perform well to detect microbial association signals when dealing with diverse sparsity levels (i.e., sparse, low sparse, non-sparse). Actually, the real association patterns related to different host phenotypes are not unique. Here, we propose a powerful and adaptive microbiome-based association test to detect microbial association signals with diverse sparsity levels, designated as MiATDS. In particular, we define probability degree to measure the associations between microbes and the host phenotype and introduce the adaptive weighted sum of powered score tests by considering both probability degree and phylogenetic information. We design numerous simulation experiments for the task of detecting association signals with diverse sparsity levels to prove the performance of the method. We find that type I error rates can be well-controlled and MiATDS shows superior efficiency on the power. By applying to real data analysis, MiATDS displays reliable practicability too. The R package is available at https://github.com/XiaoyunHuang33/MiATDS.
Collapse
Affiliation(s)
- Han Sun
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China; School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Xiaoyun Huang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China; Collaborative & Innovative Center for Educational Technology, Central China Normal University, Wuhan 430079, China
| | - Lingling Fu
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China; School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Ban Huo
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China; School of Computer, Central China Normal University, Wuhan 430079, China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
80
|
Peralta-Marzal LN, Prince N, Bajic D, Roussin L, Naudon L, Rabot S, Garssen J, Kraneveld AD, Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci 2021; 22:10052. [PMID: 34576216 PMCID: PMC8470471 DOI: 10.3390/ijms221810052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lucía N. Peralta-Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Léa Roussin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Laurent Naudon
- CNRS, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sylvie Rabot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| |
Collapse
|
81
|
Boutin S, Hildebrand D, Boulant S, Kreuter M, Rüter J, Pallerla SR, Velavan TP, Nurjadi D. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 2021; 78:5953-5976. [PMID: 34223911 PMCID: PMC8256233 DOI: 10.1007/s00018-021-03889-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is the virus causing the major pandemic facing the world today. Although, SARS-CoV-2 primarily causes lung infection, a variety of symptoms have proven a systemic impact on the body. SARS-CoV-2 has spread in the community quickly infecting humans from all age, ethnicities and gender. However, fatal outcomes have been linked to specific host factors and co-morbidities such as age, hypertension, immuno-deficiencies, chronic lung diseases or metabolic disorders. A major shift in the microbiome of patients suffering of the coronavirus disease 2019 (COVID-19) have also been observed and is linked to a worst outcome of the disease. As many co-morbidities are already known to be associated with a dysbiosis of the microbiome such as hypertension, diabetes and metabolic disorders. Host factors and microbiome changes are believed to be involved as a network in the acquisition of the infection and the development of the diseases. We will review in detail in this manuscript, the immune response toward SARS-CoV-2 infection as well as the host factors involved in the facilitation and worsening of the infection. We will also address the impact of COVID-19 on the host's microbiome and secondary infection which also worsen the disease.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Kreuter
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
82
|
Protocol for a systematic review on the role of the gut microbiome in paediatric neurological disorders. Acta Neuropsychiatr 2021; 33:211-216. [PMID: 33818352 DOI: 10.1017/neu.2021.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The gut-brain axis refers to the bidirectional communication that occurs between the intestinal tract and central nervous system (CNS). Through a series of neural, immune, endocrine, and metabolic signalling pathways, commensal microbiota are able to influence CNS development and neurological function. Alterations in gut microbiota have been implicated in various neuropathologies. The purpose of this review is to evaluate and summarise existing literature assessing the role of specific bacterial taxa on the development of neurodevelopmental, neuropsychiatric, and neurodegenerative pathologies of childhood. We will also discuss microbiota-based therapies dietary interventions and their efficacy. METHODS AND ANALYSIS We will search PubMed, Cochrane Library, and OVID electronic databases for articles published between January 1980 and February 2021. A search method involving two rounds of reviewing the literature using a three-step method in each round will be performed. Two researchers will be selected, and screen titles and abstracts independently. The full text of selected articles will be assessed against inclusion criteria. Data will be extracted and evaluated using the appropriate Critical Appraisal Skills Programme (CASP) checklist. ETHICS AND DISSEMINATION Findings from this study will be shared across relevant paediatric neurology and gastroenterology societies and submitted for peer review. This study did not require institutional ethics approval.
Collapse
|
83
|
Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules 2021; 11:biom11071000. [PMID: 34356624 PMCID: PMC8301955 DOI: 10.3390/biom11071000] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The brain–gut–microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.
Collapse
|
84
|
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa MDS. Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Curr Rheumatol Rep 2021; 23:67. [PMID: 34218340 DOI: 10.1007/s11926-021-01031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This Review evaluates the available information on the modification of the microbiota by diet, prebiotics, probiotics, or drugs and its association with the severity of arthritis in animals and humans and highlights how this modulation could have therapeutic applications in RA. RECENT FINDINGS The gut microbiota and microbiota-derived metabolites play a role in developing rheumatoid arthritis (RA) in animals and humans, making the intestinal microbiota an exciting novel approach to suppress autoimmunity. Studies in animal models of RA show that it is possible to modify the intestinal microbiota with drugs, natural products, diet, probiotics, and prebiotics. Furthermore, these changes showed beneficial effects on symptom relief in animal models of RA and that these effects were associated with modulation of the immune response. Therapies that modify the gut microbiota would significantly impact the preclinical stage of arthritis, based on the fact that dysbiosis occurs before clinical arthritis. The effects of interventions to modulate the microbiota could not reverse arthritis. Furthermore, the therapies modulating therapies in controlling symptoms were limited once arthritis developed. The results obtained in the study of acarbose, probiotics, and prebiotics suggest that these interventions may decrease the disease's incidence rather than treat or cure it.
Collapse
Affiliation(s)
- Gabriel Horta-Baas
- Servicio de Reumatología, Hospital General Regional número 1, Delegación Yucatán, Instituto Mexicano del Seguro Social, Calle 41 No. 439 x 34. Colonia Industrial, 97150, Mérida, Yucatán, Mexico.
| | - Antonio Sandoval-Cabrera
- Laboratorio de alta especialidad en Hemato-Oncología, Hospital para el Niño, IMIEM, Toluca, Mexico.,Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico
| | - María Del Socorro Romero-Figueroa
- Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico.,Centro de Investigación en Ciencias de la Salud, Campus Norte Huixquilucan, Universidad Anáhuac México, Mexico City, Mexico
| |
Collapse
|
85
|
Abstract
Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”
Collapse
Affiliation(s)
- Christopher D Link
- Department of Integrative Physiology/Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
86
|
Yi W, Cheng J, Wei Q, Pan R, Song S, He Y, Tang C, Liu X, Zhou Y, Su H. Effect of temperature stress on gut-brain axis in mice: Regulation of intestinal microbiome and central NLRP3 inflammasomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144568. [PMID: 33770895 DOI: 10.1016/j.scitotenv.2020.144568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Temperature stress was reported to impact the gut-brain axis including intestinal microbiome and neuroinflammation, but the molecular markers involved remain unclear. We aimed to examine the effects of different temperature stress on the intestinal microbiome and central nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes. MATERIALS AND METHODS Mice models were established under low temperature (LT), room temperature (RT), high temperature (HT), and temperature variation (TV) respectively for seven days. We examined temperature-induced changes of intestinal microbiome composition and the levels of its metabolites short-chain fatty acids (SCFAs), as well as the expressions of central NLRP3 inflammasomes and inflammatory cytokines. Redundancy analysis and Spearman correlation analysis were performed to explore the relationships between microbiome and NLRP3 inflammasomes and other indicators. RESULTS HT and LT significantly increased the Alpha diversity of intestinal microbiome. Compared with RT group, Bacteroidetes were most abundant in LT group while Actinobacteria were most abundant in HT and TV groups. Nineteen discriminative bacteria were identified among four groups. LT increased the expressions of acetate and propionate while decreased that of NLRP3 inflammasomes; HT decreased the expression of butyrate while increased that of NLRP3 inflammasomes, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α; TV decreased the expression of propionate while increased that of NLRP3 inflammasomes and TNF-α. Microbiome distribution could significantly explain the differences in NLRP3 between comparison groups (LT&RT: R2 = 0.82, HT&RT: R2 = 0.86, TV&RT: R2 = 0.94; P < 0.05). The discriminative bacteria were significantly correlated with SCFAs but were correlated with NLRP3 inflammasomes and cytokines in the opposite direction. CONCLUSIONS LT inhibits while HT and TV promote the activation of NLRP3 inflammasomes in brain, and intestinal microbiome and its metabolites may be the potential mediators. Findings may shed some light on the impact of temperature stress on gut-brain axis.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
87
|
Liu X, Liu S, Tang Y, Pu Z, Xiao H, Gao J, Yin Q, Jia Y, Bai Q. Intragastric Administration of Casein Leads to Nigrostriatal Disease Progressed Accompanied with Persistent Nigrostriatal-Intestinal Inflammation Activited and Intestinal Microbiota-Metabolic Disorders Induced in MPTP Mouse Model of Parkinson's Disease. Neurochem Res 2021; 46:1514-1539. [PMID: 33719004 DOI: 10.1007/s11064-021-03293-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Gut microbial dysbiosis and alteration of gut microbiota composition in Parkinson's disease (PD) have been increasingly reported, no recognized therapies are available to halt or slow progression of PD and more evidence is still needed to illustrate its causative impact on gut microbiota and PD and mechanisms for targeted mitigation. Epidemiological evidence supported an association between milk intake and a higher incidence of Parkinson's disease (PD), questions have been raised about prospective associations between dietary factors and the incidence of PD. Here, we investigated the significance of casein in the development of PD. The mice were given casein (6.75 g/kg i.g.) for 21 days after MPTP (25 mg/kg i.p. × 5 days) treatment, the motor function, dopaminergic neurons, inflammation, gut microbiota and fecal metabolites were observed. The experimental results revealed that the mice with casein gavage after MPTP treatment showed a persisted dyskinesia, the content of dopamine in striatum and the expression of TH in midbrain and ileum were decreased, the expression of Iba-1, CD4, IL-22 in midbrain and ileum increased continuously with persisted intestinal histopathology and intestinal barrier injury. Decreased intestinal bile secretion in addition with abnormal digestion and metabolism of carbohydrate, lipids and proteins were found, whereas these pathological status for the MPTP mice without casein intake had recovered after 24 days, no significant differences were observed with regard to only treated with casein. Our study demonstrates that intestinal pathologic injury, intestinal dysbacteriosis and metabolism changes promoted by casein in MPTP mice ultimately exacerbated the lesions to dopaminergic neurons.
Collapse
Affiliation(s)
- Xinrong Liu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Shuya Liu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Chongqing, 400039, P.R. China
| | - Zhengjia Pu
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Hong Xiao
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Qi Yin
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Yan Jia
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China
| | - Qunhua Bai
- School of Public Health and Management, Chongqing Medical University, 1Yi Xue Yuan Road, Chongqing, 400016, P.R. China.
| |
Collapse
|
88
|
Guo Y, Zhu X, Zeng M, Qi L, Tang X, Wang D, Zhang M, Xie Y, Li H, Yang X, Chen D. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl Psychiatry 2021; 11:328. [PMID: 34045460 PMCID: PMC8160265 DOI: 10.1038/s41398-021-01443-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) metabolites can modulate the physiology of the host brain through the gut-brain axis. We wished to discover connections between the GM, neurotransmitters, and brain function using direct and indirect methods. A diet with increased amounts of sugar and fat (high-sugar and high-fat (HSHF) diet) was employed to disturb the host GM. Then, we monitored the effect on pathology, neurotransmitter metabolism, transcription, and brain circularRNAs (circRNAs) profiles in mice. Administration of a HSHF diet-induced dysbacteriosis, damaged the intestinal tract, changed the neurotransmitter metabolism in the intestine and brain, and then caused changes in brain function and circRNA profiles. The GM byproduct trimethylamine-n-oxide could degrade some circRNAs. The basal level of the GM decided the conversion rate of choline to trimethylamine-n-oxide. A change in the abundance of a single bacterial strain could influence neurotransmitter secretion. These findings suggest that a new link between metabolism, brain circRNAs, and GM. Our data could enlarge the "microbiome-transcriptome" linkage library and provide more information on the gut-brain axis. Hence, our findings could provide more information on the interplay between the gut and brain to aid the identification of potential therapeutic markers and mechanistic solutions to complex problems encountered in studies of pathology, toxicology, diet, and nutrition development.
Collapse
Affiliation(s)
- Yinrui Guo
- grid.411866.c0000 0000 8848 7685School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510120 China
| | - Xiangxiang Zhu
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China ,grid.258164.c0000 0004 1790 3548Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou, 510000 China
| | - Miao Zeng
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China ,grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Longkai Qi
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Xiaocui Tang
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Dongdong Wang
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Mei Zhang
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Yizhen Xie
- grid.464309.c0000 0004 6431 5677State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070 China
| | - Hongye Li
- grid.258164.c0000 0004 1790 3548Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou, 510000 China
| | - Xin Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application; Guangdong Open Laboratory of Applied Microbiology; Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
89
|
Zhang H, Ma W, Sun Z, Zhu C, Werid GM, Ibrahim YM, Zhang W, Pan Y, Shi D, Chen H, Wang Y. Abundance of Lactobacillus in porcine gut microbiota is closely related to immune response following PRRSV immunization. Vet Microbiol 2021; 259:109134. [PMID: 34087673 DOI: 10.1016/j.vetmic.2021.109134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence shows that gut microbiota plays a critical role in host immune system development and immune regulation, thus the composition of gut microbiota may affect how individuals respond to immunizations. Currently, little evidence is available on the correlation between porcine gut microbiota and vaccine immune response. Here, we investigated the influence of gut microbiota on immune response in pigs to porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Based on the antibody levels for PRRSV, the immunized pigs were divided into three groups (high, low, and others), and followed by virulent PRRSV challenge. The comprehensive analysis of microbial composition revealed that gut microbiota was similar in the richness and diversity among different groups before immunization. After immunization, the richness and diversity of gut microbial community in the high group were still similar to the low group, although there was a decrease in community diversity overtime. Interestingly, the antibody titer was positively correlated with the abundance of Lactobacillus in gut microbiota in immunized pigs. Further analysis indicated that gut microbial composition might be correlated to the clinical parameters such as body weight and rectal temperature after virus challenge. Taken together, our findings suggest that certain specific members of gut microbiota, such as Lactobacillus may serve as a mechanism for regulating the immune response following immunization in pigs.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Wenjie Ma
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Changkang Zhu
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yassein M Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
90
|
Wu CY, Zhou J, Long F, Zhang W, Shen H, Zhu H, Xu JD, Li SL. Similar hypoglycemic effects of glucomannan and its enzyme degraded products from Amorphophallus albus on type 2 diabetes mellitus in mice and potential mechanisms. Food Funct 2021; 11:9740-9751. [PMID: 33064121 DOI: 10.1039/d0fo02434a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, the hypoglycemic effects of glucomannan (AGM) and its enzyme-degraded products from Amorphophallus albus were investigated. Four degraded products were prepared through ultrafiltration of β-glucanase-degraded products of AGM. The hypoglycemic activities were evaluated in HFD-STZ-induced type 2 diabetes mellitus (T2DM) mice, and the diversity of gut bacteria was analyzed by 16S rRNA gene sequencing; the fecal short chain fatty acids (SCFAs) and endogenous metabolites were determined by UPLC-QTOF-MS/MS. It was found that AGM and its enzyme-degraded products, though with different molecular weights, had similar β-glycosidic bonds and monosaccharide compositions, exerted similar strength of hypoglycemic effects, and reinstated with a similar extent the disordered gut microbiota and the contents of SCFAs and endogenous metabolites. It was speculated that the hypoglycemic activity of AGM is decided by not the molecular weight but the glycosidic bonds/monosaccharide composition of AGM, which might be structurally specific to the gut bacteria, and thus certain SCFAs and endogenous metabolites that are related to the occurrence and therapy of T2DM. This study provides a scientific basis for using AGM as potential prebiotics beneficial for prevention or therapeutic treatment of T2DM.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Wang Q, Guo A, Sheng M, Zhou H. The changes of respiratory microbiome between mild and severe asthma patients. Microbiol Immunol 2021; 65:204-213. [PMID: 33629787 DOI: 10.1111/1348-0421.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Abstract
Due to the increased number of patients suffering from asthma, the mechanism of this disease has been subject to much attention from the public and finding a cure for this disease is urgent. A changed abundance of the microbiome has been proven to play an important role in the genesis and development of asthma. In this study, the abundance and the function of the microbiome were studied. It was found that there were significant changes in the components and the function of the microbiome when asthma changed from mild to severe. This study could help us to better understand the relationship between asthma and the respiratory microbiome.
Collapse
Affiliation(s)
- Qunzhi Wang
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - An Guo
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Meiling Sheng
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
92
|
Becker A, Abuazab M, Schwiertz A, Walter S, Faßbender KC, Fousse M, Unger MM. Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products? AUTOIMMUNITY HIGHLIGHTS 2021; 12:7. [PMID: 33827656 PMCID: PMC8028206 DOI: 10.1186/s13317-021-00149-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune-mediated disease of the central nervous system. Experimental data suggest a role of intestinal microbiota and microbial products such as short-chain fatty acids (SCFAs) in the pathogenesis of MS. A recent clinical study reported beneficial effects (mediated by immunomodulatory mechanisms) after oral administration of the SCFA propionate in MS patients. Based on available evidence, we investigated whether SCFAs and the fecal inflammation marker calprotectin are altered in MS. METHODS 76 subjects (41 patients with relapsing-remitting MS and 35 age-matched controls) were investigated in this case-control study. All subjects underwent clinical assessment with established clinical scales and provided fecal samples for a quantitative analysis of fecal SCFA and fecal calprotectin concentrations. Fecal markers were compared between MS patients and controls, and were analyzed for an association with demographic as well as clinical parameters. RESULTS Median fecal calprotectin concentrations were within normal range in both groups without any group-specific differences. Fecal SCFA concentrations showed a non-significant reduction in MS patients compared to healthy subjects. Female subjects showed significantly reduced SCFA concentrations compared to male subjects. CONCLUSIONS In our cohort of MS patients, we found no evidence of an active intestinal inflammation. Yet, the vast majority of the investigated MS patients was under immunotherapy which might have affected the outcome measures. The sex-associated difference in fecal SCFA concentrations might at least partially explain female predominance in MS. Large-scale longitudinal studies including drug-naïve MS patients are required to determine the role of SCFAs in MS and to distinguish between disease-immanent effects and those caused by the therapeutic regime.
Collapse
Affiliation(s)
- Anouck Becker
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.
| | - Mosab Abuazab
- Klinik für Neurologie, Gesundheitszentrum Glantal, Liebfrauenberg 32, 55590, Meisenheim, Germany
| | | | - Silke Walter
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany.,Neuroscience Unit, Faculty of Medicine, Anglia Ruskin University, Chelmsford, Essex, UK
| | - Klaus C Faßbender
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Mathias Fousse
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| | - Marcus M Unger
- Department of Neurology, Saarland University, Kirrberger Str. 100, 66421, Homburg, Germany
| |
Collapse
|
93
|
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021; 18:269-283. [PMID: 33589829 PMCID: PMC7883337 DOI: 10.1038/s41575-021-00416-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.
Collapse
Affiliation(s)
- Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, China.
- CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
94
|
Boahen CK, Joosten LA, Netea MG, Kumar V. Conceptualization of population-specific human functional immune-genomics projects to identify factors that contribute to variability in immune and infectious diseases. Heliyon 2021; 7:e06755. [PMID: 33912719 PMCID: PMC8066384 DOI: 10.1016/j.heliyon.2021.e06755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
The human immune system presents remarkable inter-individual variability in response to pathogens or perturbations. Recent high-throughput technologies have enabled the identification of both heritable and non-heritable determinants of immune response variation between individuals. In this review, we summarize the advances made through the Human Functional Genomics Projects (HFGPs), challenges and the need for more refined strategies. Inter-individual variability in stimulation-induced cytokine responses is influenced in part by age, gender, seasonality, and gut microbiome. Host genetic regulators especially single nucleotide polymorphisms in multiple immune gene loci, particularly the TLR1-TLR6-TLR10 locus, have been identified using individuals of predominantly European descent. However, transferability of such findings to other populations is challenging. We are beginning to incorporate diverse population cohorts and leverage multi-omics approaches at single cell level to bridge the current knowledge gap. We believe that such an approach presents the opportunities to comprehensively assess both genetic and environmental factors driving variation seen in immune response phenotype and a better understanding of the molecular and biological mechanisms involved.
Collapse
Affiliation(s)
- Collins K. Boahen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700 RB, the Netherlands
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
95
|
Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, Lu H, Zheng B, Zhang J, Yan R, Zhang H, Jiang H, Xu Q, Guo J, Gong Y, Tang L, Li L. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis 2021; 71:2669-2678. [PMID: 32497191 PMCID: PMC7314193 DOI: 10.1093/cid/ciaa709] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an emerging serious global health problem. Gastrointestinal symptoms are common in COVID-19 patients, and SARS-CoV-2 RNA has been detected in stool specimens. However, the relationship between the gut microbiome and disease remains to be established. Methods We conducted a cross-sectional study of 30 COVID-19 patients, 24 influenza A (H1N1) patients, and 30 matched healthy controls (HC) to identify differences in the gut microbiota by 16S ribosomal RNA (rRNA) gene V3-V4 region sequencing. Results Compared with HC, COVID-19 patients had significantly reduced bacterial diversity, a significantly higher relative abundance of opportunistic pathogens, such as Streptococcus, Rothia, Veillonella and Actinomyces, and a lower relative abundance of beneficial symbionts. Five biomarkers showed high accuracy for distinguishing COVID-19 patients from HC with an area under the curve (AUC) up to 0.89. Patients with H1N1 displayed lower diversity and different overall microbial composition compared with COVID-19 patients. Seven biomarkers were selected to distinguish the two cohorts with an AUC of 0.94. Conclusion The gut microbial signature of patients with COVID-19 was different from that of H1N1 patients and HC. Our study suggests the potential value of the gut microbiota as a diagnostic biomarker and therapeutic target for COVID-19, but further validation is needed.
Collapse
Affiliation(s)
- Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hainv Gao
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feifei Guo
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xuewu Zhang
- Department of Hematology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Tang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
96
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
97
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
98
|
Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol 2021; 16:9. [PMID: 33436010 PMCID: PMC7805150 DOI: 10.1186/s13014-020-01735-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
An ever-growing body of evidence has linked the gut microbiome with both the effectiveness and the toxicity of cancer therapies. Radiotherapy is an effective way to treat tumors, although large variations exist among patients in tumor radio-responsiveness and in the incidence and severity of radiotherapy-induced side effects. Relatively little is known about whether and how the microbiome regulates the response to radiotherapy. Gut microbiota may be an important player in modulating “hot” versus “cold” tumor microenvironment, ultimately affecting treatment efficacy. The interaction of the gut microbiome and radiotherapy is a bidirectional function, in that radiotherapy can disrupt the microbiome and those disruptions can influence the effectiveness of the anticancer treatments. Limited data have shown that interactions between the radiation and the microbiome can have positive effects on oncotherapy. On the other hand, exposure to ionizing radiation leads to changes in the gut microbiome that contribute to radiation enteropathy. The gut microbiome can influence radiation-induced gastrointestinal mucositis through two mechanisms including translocation and dysbiosis. We propose that the gut microbiome can be modified to maximize the response to treatment and minimize adverse effects through the use of personalized probiotics, prebiotics, or fecal microbial transplantation. 16S rRNA sequencing is the most commonly used approach to investigate distribution and diversity of gut microbiome between individuals though it only identifies bacteria level other than strain level. The functional gut microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, as well as metabolomics. Multiple ‘-omic’ approaches can be applied simultaneously to the same sample to obtain integrated results. That said, challenges and remaining unknowns in the future that persist at this time include the mechanisms by which the gut microbiome affects radiosensitivity, interactions between the gut microbiome and combination treatments, the role of the gut microbiome with regard to predictive and prognostic biomarkers, the need for multi “-omic” approach for in-depth exploration of functional changes and their effects on host-microbiome interactions, and interactions between gut microbiome, microbial metabolites and immune microenvironment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
99
|
Hattori N, Yamashiro Y. The Gut-Brain Axis. ANNALS OF NUTRITION AND METABOLISM 2021; 77 Suppl 2:1-3. [PMID: 33406517 DOI: 10.1159/000512226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan,
| |
Collapse
|
100
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|