51
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
52
|
Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, Wang A, Dixit VD. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 2022; 55:1609-1626.e7. [PMID: 35963236 PMCID: PMC9474643 DOI: 10.1016/j.immuni.2022.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Maxim Artyomov
- Section of Immunology, Washington School of Medicine, St Louis, MO 63110, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
53
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
54
|
An Y, Zhu J, Wang X, Sun X, Luo C, Zhang Y, Ye Y, Li X, Abulizi A, Huang Z, Zhang H, Yang B, Xie Z. Oridonin Delays Aging Through the AKT Signaling Pathway. Front Pharmacol 2022; 13:888247. [PMID: 35662728 PMCID: PMC9157590 DOI: 10.3389/fphar.2022.888247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Aging is a major risk factor for chronic diseases and disability in humans. Nowadays, no effective anti-aging treatment is available clinically. In this study, oridonin was selected based on the drug screening strategy similar to Connectivity MAP (CMAP) but upon transcriptomes of 102 traditional Chinese medicines treated cell lines. Oridonin is a diterpenoid isolated from Rabdosia rubescens. As reported, Oridonin exhibits a variety of pharmacological activities, including antitumor, antibacterial and anti-inflammatory activities. Here, we found that oridonin inhibited cellular senescence in human diploid fibroblasts (2BS and WI-38), manifested by decreased senescence-associated β-galactosidase (SA-β-gal) staining. Compared with the elderly control group, the positive cell rate in the oridonin intervention group was reduced to 48.5%. Notably, oridonin prolonged the lifespan of yeast by 48.9%, and extended the average life span of naturally aged mice by 21.6%. Our mice behavior experiments exhibited that oridonin significantly improved the health status of naturally aged mice. In addition, oridonin also delayed doxorubicin-induced cellular senescence and mouse senescence. Compared with the model group, the percentage of SA-β-gal positive cells in the oridonin treatment group was reduced to 59.8%. It extended the average lifespan of mice by 53.8% and improved healthspan. Mechanistically, we showed that oridonin delayed aging through the AKT signaling pathway and reversed the genetic changes caused by doxorubicin-induced cell senescence. Therefore, oridonin is a potential candidate for the development of anti-aging drugs.
Collapse
Affiliation(s)
- Yongpan An
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Jie Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xinpei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Chunxiong Luo
- School of Physics, Peking University, Beijing, China
| | - Yukun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Yuwei Ye
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Abudumijiti Abulizi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhizhen Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University, Beijing, China.,Peking University-Yunnan Baiyao International Medical Research Center, Peking University Health Science Center, Peking University, Beijing, China.,Beijing Gigaceuticals Tech. Co. Ltd., Beijing, China
| |
Collapse
|
55
|
Jackson A, Engen PA, Forsyth CB, Shaikh M, Naqib A, Wilber S, Frausto DM, Raeisi S, Green SJ, Bradaric BD, Persons AL, Voigt RM, Keshavarzian A. Intestinal Barrier Dysfunction in the Absence of Systemic Inflammation Fails to Exacerbate Motor Dysfunction and Brain Pathology in a Mouse Model of Parkinson's Disease. Front Neurol 2022; 13:882628. [PMID: 35665034 PMCID: PMC9159909 DOI: 10.3389/fneur.2022.882628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disease associated with aging. PD patients have systemic and neuroinflammation which is hypothesized to contribute to neurodegeneration. Recent studies highlight the importance of the gut-brain axis in PD pathogenesis and suggest that gut-derived inflammation can trigger and/or promote neuroinflammation and neurodegeneration in PD. However, it is not clear whether microbiota dysbiosis, intestinal barrier dysfunction, or intestinal inflammation (common features in PD patients) are primary drivers of disrupted gut-brain axis in PD that promote neuroinflammation and neurodegeneration. Objective To determine the role of microbiota dysbiosis, intestinal barrier dysfunction, and colonic inflammation in neuroinflammation and neurodegeneration in a genetic rodent model of PD [α-synuclein overexpressing (ASO) mice]. Methods To distinguish the role of intestinal barrier dysfunction separate from inflammation, low dose (1%) dextran sodium sulfate (DSS) was administered in cycles for 52 days to ASO and control mice. The outcomes assessed included intestinal barrier integrity, intestinal inflammation, stool microbiome community, systemic inflammation, motor function, microglial activation, and dopaminergic neurons. Results Low dose DSS treatment caused intestinal barrier dysfunction (sugar test, histological analysis), intestinal microbiota dysbiosis, mild intestinal inflammation (colon shortening, elevated MPO), but it did not increase systemic inflammation (serum cytokines). However, DSS did not exacerbate motor dysfunction, neuroinflammation (microglial activation), or dopaminergic neuron loss in ASO mice. Conclusion Disruption of the intestinal barrier without overt intestinal inflammation is not associated with worsening of PD-like behavior and pathology in ASO mice.
Collapse
Affiliation(s)
- Aeja Jackson
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Ankur Naqib
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Sherry Wilber
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Shohreh Raeisi
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Stefan J. Green
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Brinda Desai Bradaric
- Bachelor of Science in Health Sciences Program, College of Health Sciences, Rush University Medical Center, Chicago, IL, United States
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States
| | - Amanda L. Persons
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States
- Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
56
|
Belcher EK, Culakova E, Gilmore NJ, Hardy SJ, Kleckner AS, Kleckner IR, Lei L, Heckler C, Sohn MB, Thompson BD, Lotta LT, Werner ZA, Geer J, Hopkins JO, Corso SW, Rich DQ, van Wijngaarden E, Janelsins MC. Inflammation, Attention, and Processing Speed in Patients With Breast Cancer Before and After Chemotherapy. J Natl Cancer Inst 2022; 114:712-721. [PMID: 35134984 PMCID: PMC9086766 DOI: 10.1093/jnci/djac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/20/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation may contribute to cognitive difficulties in patients with breast cancer. We tested 2 hypotheses: inflammation is elevated in patients with breast cancer vs noncancer control participants and inflammation in patients is associated with worse attention and processing speed over the course of chemotherapy. METHODS Serum cytokines (interleukin [IL]-4, 6, 8, 10; tumor necrosis factor [TNF]-α) and soluble receptors [sTNFRI, II]) were measured in 519 females with breast cancer before and after chemotherapy and 338 females without cancer serving as control participants. Attention and processing speed were measured by Rapid Visual Processing (RVP), Backward Counting (BCT), and Trail Making-A (TMT-A) tests. Linear regression models examined patient vs control cytokines and receptor levels, adjusting for covariates. Linear regression models also examined relationships between patient cytokines and receptor levels and test performance, adjusting for age, body mass index, anxiety, depression, cognitive reserve, and chemotherapy duration. Statistical tests were 2-sided (α = .05). RESULTS sTNFRI and sTNFRII increased over time in patients relative to controls, whereas IL-4, IL-6, and IL-10 decreased. Prechemotherapy, higher IL-8 associated with worse BCT (β = 0.610, SE = 0.241, P = .01); higher IL-4 (β = -1.098, SE = 0.516, P = .03) and IL-10 (β = -0.835, SE = 0.414, P = .04) associated with better TMT-A. Postchemotherapy, higher IL-8 (β = 0.841, SE = 0.260, P = .001), sTNFRI (β = 6.638, SE = 2.208, P = .003), and sTNFRII (β = 0.913, SE = 0.455, P = .045) associated with worse BCT; higher sTNFRII also associated with worse RVP (β = -1.316, SE = 0.587, P = .03). At prechemotherapy, higher IL-4 predicted RVP improvement over time (β = 0.820, SE = 0.336, P = .02); higher sTNFRI predicted worse BCT over time (β = 5.566, SE = 2.367, P = .02). Longitudinally, increases in IL-4 associated with BCT improvement (β = -0.564, SE = 0.253, P = .03). CONCLUSIONS Generally, worse attention and processing speed were associated with higher inflammatory cytokines and receptors and lower anti-inflammatory cytokines in patients; future confirmatory studies are needed.
Collapse
Affiliation(s)
- Elizabeth K Belcher
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva Culakova
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Nikesha J Gilmore
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Sara J Hardy
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
- Department of Radiation Oncology and Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber S Kleckner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Ian R Kleckner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianlian Lei
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Charles Heckler
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Sohn
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Bryan D Thompson
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Louis T Lotta
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary A Werner
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Jodi Geer
- Metro Minnesota Community Oncology Research Consortium, Louis Park, MN, USA
| | | | - Steven W Corso
- Upstate Carolina National Cancer Institute Community Oncology Research Program, Spartanburg Regional Medical Center, Spartanburg, SC, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Janelsins
- Department of Surgery, Supportive Care in Cancer Division, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
57
|
Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. GeroScience 2022; 44:1761-1778. [PMID: 35477832 PMCID: PMC9213615 DOI: 10.1007/s11357-022-00572-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue dysfunction is strongly linked to the development of chronic inflammation and cardiometabolic disorders in aging. While much attention has been given to the role of resident adipose tissue immune cells in the disruption of homeostasis in obesity, age-specific effects remain understudied. Here, we identified and characterized a population of γδ T cells, which show unique age-dependent accumulation in the visceral adipose tissue (VAT) of both mice and humans. Diet-induced obesity likewise increased γδ T cell numbers; however, the effect was greater in the aged where the increase was independent of fat mass. γδ T cells in VAT express a tissue-resident memory T cell phenotype (CD44hiCD62LlowCD69+) and are predominantly IL-17A-producing cells. Transcriptome analyses of immunomagnetically purified γδ T cells identified significant age-associated differences in expression of genes related to inflammation, immune cell composition, and adipocyte differentiation, suggesting age-dependent qualitative changes in addition to the quantitative increase. Genetic deficiency of γδ T cells in old age improved the metabolic phenotype, characterized by increased respiratory exchange ratio, and lowered levels of IL-6 both systemically and locally in VAT. Decreased IL-6 was predominantly due to reduced production by non-immune stromal cells, primarily preadipocytes, and adipose-derived stem cells. Collectively, these findings suggest that an age-dependent increase of tissue-resident γδ T cells in VAT contributes to local and systemic chronic inflammation and metabolic dysfunction in aging.
Collapse
|
58
|
Zhang W, Zhu Q. Punicalagin suppresses inflammation in ventilator-induced lung injury through protease-activated receptor-2 inhibition-induced inhibition of NLR family pyrin domain containing-3 inflammasome activation. Chem Biol Drug Des 2022; 100:218-229. [PMID: 35434894 DOI: 10.1111/cbdd.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Punicalagin is recorded to be a potent anti-inflammatory drug, while its effect on inflammation existing in ventilator-induced lung injury (VILI) requires further verification. Rats were pretreated with punicalagin, followed by VILI modeling. Lung histopathological examination was performed with hematoxylin-eosin staining accompanied by the lung injury score. The lung wet/dry (W/D) weight ratio and total bronchoalveolar lavage fluid (BALF) protein level were measured. After transfection with protease-activated receptor-2 (PAR2) overexpression plasmids, mouse alveolar epithelial MLE-12 cells were treated with punicalagin and then subjected to cyclic stretching. Punicalagin's cytotoxicity to MLE-12 cells were measured by MTT assay. The levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6), PAR2, NLR family pyrin domain containing-3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in the BALF, lung tissues or cells were analyzed by enzyme-linked immune-sorbent assay (ELISA), qRT-PCR or/and western blot. Punicalagin treatment attenuated VILI-induced lung histopathological changes and counteracted VILI-induced increases in the lung injury score, W/D weight ratio and total protein level in BALF. Also, punicalagin treatment counteracted in vivo VILI/cyclic stretching-induced increases in the levels of PAR2, inflammatory cytokines, NLRP3, and ASC. PAR2 overexpression potentiated the cyclic stretching-induced effects, while punicalagin treatment revoked this PAR2 overexpression-induced potentiation effect. In turn, PAR2 overexpression partly resisted the punicalagin treatment-induced counteractive effects on the cyclic stretching-induced effects. Punicalagin suppresses inflammation in VILI through PAR2 inhibition-induced inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| | - Qi Zhu
- Emergency and Critical Care Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou City, China
| |
Collapse
|
59
|
Ratiner K, Abdeen SK, Goldenberg K, Elinav E. Utilization of Host and Microbiome Features in Determination of Biological Aging. Microorganisms 2022; 10:668. [PMID: 35336242 PMCID: PMC8950177 DOI: 10.3390/microorganisms10030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
The term 'old age' generally refers to a period characterized by profound changes in human physiological functions and susceptibility to disease that accompanies the final years of a person's life. Despite the conventional definition of old age as exceeding the age of 65 years old, quantifying aging as a function of life years does not necessarily reflect how the human body ages. In contrast, characterizing biological (or physiological) aging based on functional parameters may better reflect a person's temporal physiological status and associated disease susceptibility state. As such, differentiating 'chronological aging' from 'biological aging' holds the key to identifying individuals featuring accelerated aging processes despite having a young chronological age and stratifying them to tailored surveillance, diagnosis, prevention, and treatment. Emerging evidence suggests that the gut microbiome changes along with physiological aging and may play a pivotal role in a variety of age-related diseases, in a manner that does not necessarily correlate with chronological age. Harnessing of individualized gut microbiome data and integration of host and microbiome parameters using artificial intelligence and machine learning pipelines may enable us to more accurately define aging clocks. Such holobiont-based estimates of a person's physiological age may facilitate prediction of age-related physiological status and risk of development of age-associated diseases.
Collapse
Affiliation(s)
- Karina Ratiner
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Suhaib K. Abdeen
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Kim Goldenberg
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
- Division of Cancer-Microbiome Research, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
60
|
Research Progress on the Relationship between the NLRP3 Inflammasome and Immune Reconstitution in HIV-Infected Patients Receiving Antiretroviral Therapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3179200. [PMID: 35309841 PMCID: PMC8930245 DOI: 10.1155/2022/3179200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection is characterized not only by severe immunodeficiency but also by persistent inflammation and immune activation. These characteristics persist in people living with HIV (PLHIV) receiving effective antiretroviral therapy (ART) and are associated with morbidity and mortality in nonacquired immunodeficiency syndrome (AIDS) events. ART can inhibit HIV replication and promote immune reconstitution, which is currently the most effective way to control AIDS. However, despite effective long-term ART and overall suppression of plasma HIV RNA level, PLHIV still shows chronic low-level inflammation. The exact mechanisms that trigger chronic inflammation are unknown. Activation of the inflammasome is essential for the host response to pathogens, and some recent studies have confirmed the role of the inflammasome in the pathogenesis of inflammatory diseases. The NLRP3 inflammasome has been widely studied, which is a pyrin domain-containing protein 3 belonging to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent studies suggest that inflammasome-mediated pyroptosis is associated with CD4+ T cell loss in the absence of persistent infectious HIV replication. This article reviews the mechanism of the NLRP3 inflammasome and its correlation with immune reconstitution in PLHIV treated with ART.
Collapse
|
61
|
Duggan MR, Lu A, Foster TC, Wimmer M, Parikh V. Exosomes in Age-Related Cognitive Decline: Mechanistic Insights and Improving Outcomes. Front Aging Neurosci 2022; 14:834775. [PMID: 35299946 PMCID: PMC8921862 DOI: 10.3389/fnagi.2022.834775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the most prominent risk factor for cognitive decline, yet behavioral symptomology and underlying neurobiology can vary between individuals. Certain individuals exhibit significant age-related cognitive impairments, while others maintain intact cognitive functioning with only minimal decline. Recent developments in genomic, proteomic, and functional imaging approaches have provided insights into the molecular and cellular substrates of cognitive decline in age-related neuropathologies. Despite the emergence of novel tools, accurately and reliably predicting longitudinal cognitive trajectories and improving functional outcomes for the elderly remains a major challenge. One promising approach has been the use of exosomes, a subgroup of extracellular vesicles that regulate intercellular communication and are easily accessible compared to other approaches. In the current review, we highlight recent findings which illustrate how the analysis of exosomes can improve our understanding of the underlying neurobiological mechanisms that contribute to cognitive variation in aging. Specifically, we focus on exosome-mediated regulation of miRNAs, neuroinflammation, and aggregate-prone proteins. In addition, we discuss how exosomes might be used to enhance individual patient outcomes by serving as reliable biomarkers of cognitive decline and as nanocarriers to deliver therapeutic agents to the brain in neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Anne Lu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mathieu Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
62
|
Miao XY, Zhu XX, Gu ZY, Fu B, Cui SY, Zu Y, Rong LJ, Hu F, Chen XM, Gong YP, Li CL. Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na +/Ca 2+ Exchanger. Cell Biochem Biophys 2022; 80:341-353. [PMID: 35107747 DOI: 10.1007/s12013-021-01058-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Vascular endothelial cells play a vital role in atherosclerotic changes and the progression of cardiovascular disease in older adults. Previous studies have indicated that Astragalus polysaccharides (APS), a main active component of the traditional Chinese medicine Astragalus, protect mitochondria and exert an antiaging effect in the mouse liver and brain. However, the effect of APS on rat aortic endothelial cell (RAEC) senescence and its underlying mechanism have not been investigated. In this study, we extracted RAECs from 2-month-old male Wistar rats by the tissue explant method and found that APS ameliorated the high-glucose-induced increase in the frequency of SA-β-Gal positivity and the levels of the senescence-related proteins p16, p21, and p53. APS increased the tube formation capacity of RAECs under high-glucose conditions. Moreover, APS enhanced the expression of the mitochondrial Na+/Ca2+ exchanger NCLX, and knockdown of NCLX by small interfering RNA (siRNA) transfection suppressed the antiaging effect of APS under high-glucose conditions. Additionally, APS ameliorated RAEC mitochondrial dysfunction, including increasing ATP production, cytochrome C oxidase activity and the oxygen consumption rate (OCR), and inhibited high-glucose-induced NLRP3 inflammasome activation and IL-1β release, which were reversed by siNCLX. These results indicate that APS reduces high-glucose-induced inflammasome activation and ameliorates mitochondrial dysfunction and senescence in RAECs by modulating NCLX. Additionally, APS enhanced the levels of autophagy-related proteins (LC3B-II/I, Atg7) and increased the quantity of autophagic vacuoles under high-glucose conditions. Therefore, these data demonstrate that APS may reduce vascular endothelial cell inflammation and senescence through NCLX.
Collapse
Affiliation(s)
- Xin-Yu Miao
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Xiao Zhu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhao-Yan Gu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shao-Yuan Cui
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuan Zu
- Department of Blood Purification, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ling-Jun Rong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fan Hu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yan-Ping Gong
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Chun-Lin Li
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
63
|
A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune-epithelial interface. Proc Natl Acad Sci U S A 2022; 119:2116853118. [PMID: 34969849 PMCID: PMC8740714 DOI: 10.1073/pnas.2116853118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 01/08/2023] Open
Abstract
By modeling in vitro the cross-talk between epithelial and immune cells, this work provides possible origins for the profound inflammatory perturbations that are a hallmark of COVID-19, and the relative protection of children from severe disease. The initial interaction between immune cells and epithelial cells infected with SARS-CoV-2, or transduced to express the proteins the virus encodes, elicits a specific response, not observed with other pathogenic viruses, that presages perturbations seen in patients with severe COVID-19. Thus, the severe manifestations of COVID-19 may be rooted in the very first response that it elicits from immunocytes. Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled, by in vitro coculture, the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV-2–specific inflammatory gene cluster distinct from that seen in influenza A or Ebola virus-infected cocultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV-2 proteins (Spike and some nonstructural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV-2 induces in epithelia.
Collapse
|
64
|
Noren Hooten N, Pacheco NL, Smith JT, Evans MK. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res Rev 2022; 73:101536. [PMID: 34883202 PMCID: PMC10862389 DOI: 10.1016/j.arr.2021.101536] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The pursuit to discover the fundamental biology and mechanisms of aging within the context of the physical and social environment is critical to designing interventions to prevent and treat its complex phenotypes. Aging research is critically linked to understanding health disparities because these inequities shape minority aging, which may proceed on a different trajectory than the overall population. Health disparities are characteristically seen in commonly occurring age-associated diseases such as cardiovascular and cerebrovascular disease as well as diabetes mellitus and cancer. The early appearance and increased severity of age-associated disease among African American and low socioeconomic status (SES) individuals suggests that the factors contributing to the emergence of health disparities may also induce a phenotype of 'premature aging' or 'accelerated aging' or 'weathering'. In marginalized and low SES populations with high rates of early onset age-associated disease the interaction of biologic, psychosocial, socioeconomic and environmental factors may result in a phenotype of accelerated aging biologically similar to premature aging syndromes with increased susceptibility to oxidative stress, premature accumulation of oxidative DNA damage, defects in DNA repair and higher levels of biomarkers of oxidative stress and inflammation. Health disparities, therefore, may be the end product of this complex interaction in populations at high risk. This review will examine the factors that drive both health disparities and the accelerated aging phenotype that ultimately contributes to premature mortality.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T Smith
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
65
|
Shen S, Ji C, Wei K. Cellular Senescence and Regulated Cell Death of Tubular Epithelial Cells in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:924299. [PMID: 35837297 PMCID: PMC9273736 DOI: 10.3389/fendo.2022.924299] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is frequently evident at etiologic sites of chronic diseases and involves essentially irreversible arrest of cell proliferation, increased protein production, resistance to apoptosis, and altered metabolic activity. Regulated cell death plays a vital role in shaping fully functional organs during the developmental process, coordinating adaptive or non-adaptive responses, and coping with long-term harmful intracellular or extracellular homeostasis disturbances. In recent years, the concept of 'diabetic tubulopathy' has emerged. tubular epithelial cells are particularly susceptible to the derangements of diabetic state because of the virtue of the high energy requirements and reliance on aerobic metabolism render. Hyperglycemia, oxidative stress, persistent chronic inflammation, glucose toxicity, advanced glycation end-products (AGEs) accumulation, lipid metabolism disorders, and lipotoxicity contribute to the cellular senescence and different patterns of regulated cell death (apoptosis, autophagic cell death, necroptosis, pyroptosis, and ferroptosis) in tubular epithelial cells. We now explore the 'tubulocentric' view of diabetic kidney disease(DKD). And we summarize recent discoveries regarding the development and regulatory mechanisms of cellular senescence, apoptosis, autophagic cell death, necroptosis, pyroptosis, and ferroptosis in the pathogenesis of DKD. These findings provide new perspectives on the mechanisms of DKD and are useful for designing novel therapeutic approaches for the treatment of DKD.
Collapse
|
66
|
彭 喆, 丁 亚, 裴 林, 姚 海, 张 学, 唐 素. [Clinical characteristics of crystal deposits in joints and tendons in patients with gout]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:1067-1071. [PMID: 34916683 PMCID: PMC8695156 DOI: 10.19723/j.issn.1671-167x.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the abnormal manifestations and clinical features of patients with gout according to the location of crystal deposits: in articulars or in tendons. METHODS A total of 105 patients with gout who were continuously treated in the Department of Rheumatology and Immunology of Peking University People's Hospital from June 2019 to December 2019 were selected and their knees, ankles, toes and painful joints and tendons were examined by high-frequency ultrasound. Then we grouped them according to the presence or absence of sodium urate crystals and the location of the crystals, collected their clinical data, and analyzed the clinical characteristics. RESULTS Among the 105 patients, 25 patients had no crystal deposits in the joints or tendons (as the non-crystal group), 43 patients had intra-articular crystals (as the joint group), and 37 patients had intra-tendon crystals with or without intra-articular crystals (as the tendon group). Among them, the most involved part of sodium urate crystals deposited in the joints was the metatarsophalangeal joint (29 cases, 67.4%), followed by knee joints (10 cases, 23.2%), ankle joints (9 cases, 20.9%). The most involved part of sodium urate crystals deposited in the tendon was the quadriceps tendon (16 cases, 43.2%), followed by the Achilles tendon (13 cases, 35.1%), the patellar tendon (12 cases, 32.4%), and the three heads of brachii tendons (5 cases, 13.5%). The three groups were compared using multi-sample analysis of variance/multi-sample rank sum test. Age, age of first increase in uric acid (UA), serum glucose (Glu) level and C reactive protein (CRP) were all significantly different. After multiple comparisons, compared with the non-crystal group, age, the age of first increase in uric acid, and CRP were significantly higher in the tendon group. There was no significant difference between the non-crystal group and the joint group. There was no significant difference between the tendon group and the joint group. CONCLUSION In patients with gout, it is common for ultrasound to find crystals deposited in joints or tendons. The most commonly affected parts include the metatarsophalangeal joint, knee joint, ankle joint, quadriceps tendon, Achilles tendon, patellar tendon, and triceps tendon. There were significant differences among the three groups in age, age of first increase in uric acid, CRP and blood glucose, and the proportion of urinary calculi in patients with crystal deposits was significantly higher than those without crystal deposits.
Collapse
Affiliation(s)
- 喆 彭
- 北京大学人民医院风湿免疫科,北京 100044Department of Rheumatology, Peking University People's Hospital, Beijing 100044, China
| | - 亚敏 丁
- 北京大学人民医院风湿免疫科,北京 100044Department of Rheumatology, Peking University People's Hospital, Beijing 100044, China
| | - 林 裴
- 北京大学人民医院检验科,北京 100044Department of Laboratory Medicine, Peking University People's Hospital, Beijing 100044, China
| | - 海红 姚
- 北京大学人民医院风湿免疫科,北京 100044Department of Rheumatology, Peking University People's Hospital, Beijing 100044, China
| | - 学武 张
- 北京大学人民医院风湿免疫科,北京 100044Department of Rheumatology, Peking University People's Hospital, Beijing 100044, China
| | - 素玫 唐
- 北京大学人民医院风湿免疫科,北京 100044Department of Rheumatology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
67
|
Pi XJ, Zhao QQ, Wang JX, Zhang XL, Yuan D, Hu SS, He YM, Zhang CC, Zhou ZY, Wang T. Saponins from Panax japonicus attenuate cognitive impairment in ageing rats through regulating microglial polarisation and autophagy. PHARMACEUTICAL BIOLOGY 2021; 59:1117-1125. [PMID: 34403300 PMCID: PMC8381902 DOI: 10.1080/13880209.2021.1961824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-inflammatory and antioxidative effects. OBJECTIVE To explore the neuroprotective effect of SPJ on natural ageing of rat. MATERIALS AND METHODS Sprague-Dawley (SD) rats 18-month-old were divided into ageing control, ageing treated with SPJ 10 or 30 mg/kg (n = 8). Five-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed or feed containing SPJ for 4 months. Cognitive level was evaluated by Morris water maze (MWM) test. The mechanisms of SPJ's neuroprotection were evaluated by transmission electron microscope, western blot analysis, and immunofluorescence in vivo and in vitro. RESULTS SPJ attenuated ageing-induced cognitive impairment as indicated by elevated number of times crossing the target platform (from 1.63 to 3.5) and longer time spent in the target platform quadrant (from 1.33 to 1.98). Meanwhile, SPJ improved the morphology of microglia and synapse, and activated M2 microglia polarisation including increased hippocampus levels of CD206 (from 0.98 to 1.47) and YM-1 (from 0.67 to 1.1), and enhanced autophagy-related proteins LC3B (from 0.48 to 0.82), Beclin1 (from 0.32 to 0.51), Atg5 (from 0.22 to 0.89) whereas decreased p62 level (from 0.71 to 0.45) of ageing rats. In vitro study also showed that SPJ regulated the microglial polarisation and autophagy. DISCUSSION AND CONCLUSIONS SPJ improved cognitive deficits of ageing rats through attenuating microglial inflammation and enhancing microglial autophagy, which could be used to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Xue-Jiao Pi
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qing-Qing Zhao
- College of Medical Science, Three Gorges University, Yichang, China
| | - Jin-Xin Wang
- College of Medical Science, Three Gorges University, Yichang, China
| | - Xu-Lan Zhang
- College of Medical Science, Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, China
| | - Shan-Shan Hu
- College of Medical Science, Three Gorges University, Yichang, China
| | - Yu-Min He
- College of Medical Science, Three Gorges University, Yichang, China
| | | | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, China
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Ye Z, Wang B, Mu G, Zhou Y, Qiu W, Yang S, Wang X, Zhang Z, Chen W. Short-term effects of real-time individual fine particulate matter exposure on lung function: a panel study in Zhuhai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65140-65149. [PMID: 34231152 DOI: 10.1007/s11356-021-15246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is still the primary air pollutant in most Chinese cities and its adverse effects on lung function have been widely reported. However, short-term effects of individual exposure to PM2.5 on pulmonary expiration flow indices remain largely unknown. In this study, we examined the short-term effects of real-time individual exposure to PM2.5 on lung function in a panel of 115 healthy adults. We measured individual real-time PM2.5 exposure and lung function. Environmental PM2.5 concentrations in the same period were collected from the nearest monitoring station. Generalized linear model was used to assess the effects of individual PM2.5 exposure on lung function after adjusting for potential confounders. Individual PM2.5 exposure ranged from 18.5 to 42.4 μg/m3 with fluctuations over time and ambient PM2.5 concentrations presented a moderate trend of fluctuation at the same day. Except forced expiratory volume in 1 s (FEV1) decline related to 2-h moving average PM2.5 exposure, no significant associations between individual PM2.5 exposure and other volume indices including forced vital capacity (FVC) and FEV1/FVC ratio were observed. The adverse effects of individual PM2.5 exposure on pulmonary expiration flow indices including peak expiratory flow (PEF), maximal mid-expiratory flow (MMF) and forced expiratory flow at 50%, and 75% of vital capacity (FEF50% and FEF75%) were observed to be strongest at 2 moving average hours and could last for 24 h. Stratified analysis showed greater and longer effects among participants who were aged over 40 years, males, or smokers. These findings suggested that individual PM2.5 exposure was significantly associated with altered lung function, especially with pulmonary expiration flow indices decline, which was strongest at 2 moving average hours and could last for 24 h.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
69
|
Xu PC, Luan Y, Yu SY, Xu J, Coulter DW, Kim SY. Effects of PD-1 blockade on ovarian follicles in a prepubertal female mouse. J Endocrinol 2021; 252:15-30. [PMID: 34647523 PMCID: PMC8630981 DOI: 10.1530/joe-21-0209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has emerged at the forefront of cancer treatment. Checkpoint inhibitor pembrolizumab (KEYTRUDA), a chimeric antibody which targets programmed cell death protein 1 (PD-1), has been approved by the Food and Drug Administration (FDA) for use in pediatric patients with relapsed or refractory classical Hodgkin's lymphoma. However, there is currently no published data regarding the effects of pembrolizumab on the ovary of female pediatric patients. In this study, prepubertal immunocompetent and immunodeficient female mice were injected with pembrolizumab or anti-mouse PD-1 antibody. The number of primordial follicles significantly decreased post-injection of both pembrolizumab and anti-mouse PD-1 antibody in immunocompetent mice. However, no changes in follicle numbers were observed in immunodeficient nude mice. Superovulation test and vaginal opening experiments suggest that there is no difference in the number of cumulus-oocyte complexes (COCs) and the timing of puberty onset between the control and anti-mouse PD-1 antibody treatment groups, indicating that there is no effect on short-term fertility. Elevation of pro-inflammatory cytokine TNF-α following COX-2 upregulation was observed in the ovary. CD3+ T-cell infiltration was detected within some ovarian follicles and between stromal cells of the ovaries in mice following treatment with anti-mouse PD-1 antibody. Thus, PD-1 immune checkpoint blockade affects the ovarian reserve through a mechanism possibly involving inflammation following CD3+ T-cell infiltration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacology
- Cell Count
- Female
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/pharmacology
- Infertility, Female/chemically induced
- Infertility, Female/pathology
- Mice
- Mice, Nude
- Oocytes/cytology
- Oocytes/drug effects
- Ovarian Follicle/drug effects
- Ovarian Reserve/drug effects
- Ovary/drug effects
- Ovary/physiology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Sexual Maturation/drug effects
Collapse
Affiliation(s)
- Pauline C. Xu
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yi Luan
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Seok-Yeong Yu
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Donald W. Coulter
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
70
|
Pallikkuth S, Mendez R, Russell K, Sirupangi T, Kvistad D, Pahwa R, Villinger F, Banerjee S, Pahwa S. Age Associated Microbiome and Microbial Metabolites Modulation and Its Association With Systemic Inflammation in a Rhesus Macaque Model. Front Immunol 2021; 12:748397. [PMID: 34737748 PMCID: PMC8560971 DOI: 10.3389/fimmu.2021.748397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate the age associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 geriatric (age 19-24 years) and 4 young adult (age 3-4 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in peripheral blood mononuclear cells (PBMC) by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate, and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the gut microbiome in geriatric animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young adults. Highly abundant microbes in the geriatric animals showed a direct association with plasma biomarkers of inflammation and immune activation such as neopterin, CRP, TNF, IL-2, IL-6, IL-8 and IFN-γ. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of geriatric animals compared to the young adults. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile. Aging NHP can serve as a model for investigating the relationship of the gut microbiome to particular age-associated comorbidities and for strategies aimed at modulating the microbiome.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberto Mendez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kyle Russell
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tirupataiah Sirupangi
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Daniel Kvistad
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Miami Integrative Metabolomics Research Center (MIMRC), University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Scientific Review, National Institute of Health, Bethesda, MD, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
71
|
Goldberg EL, Shchukina I, Youm YH, Ryu S, Tsusaka T, Young KC, Camell CD, Dlugos T, Artyomov MN, Dixit VD. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab 2021; 33:2277-2287.e5. [PMID: 34473956 PMCID: PMC9067336 DOI: 10.1016/j.cmet.2021.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun-Hee Youm
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Seungjin Ryu
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Takeshi Tsusaka
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyrlia C Young
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christina D Camell
- Department of Biochemistry, Molecular Biology, and Molecular Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Tamara Dlugos
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale University, New Haven, CT, USA.
| |
Collapse
|
72
|
Turajane K, Ji G, Chinenov Y, Chao M, Ayturk U, Suhardi VJ, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. RNA-seq Analysis of Peri-Implant Tissue Shows Differences in Immune, Notch, Wnt, and Angiogenesis Pathways in Aged Versus Young Mice. JBMR Plus 2021; 5:e10535. [PMID: 34761143 PMCID: PMC8567488 DOI: 10.1002/jbm4.10535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
The number of total joint replacements (TJRs) in the United States is increasing annually. Cementless implants are intended to improve upon traditional cemented implants by allowing bone growth directly on the surface to improve implant longevity. One major complication of TJR is implant loosening, which is related to deficient osseointegration in cementless TJRs. Although poor osseointegration in aged patients is typically attributed to decreased basal bone mass, little is known about the molecular pathways that compromise the growth of bone onto porous titanium implants. To identify the pathways important for osseointegration that are compromised by aging, we developed an approach for transcriptomic profiling of peri-implant tissue in young and aged mice using our murine model of osseointegration. Based on previous findings of changes of bone quality associated with aging, we hypothesized that aged mice have impaired activation of bone anabolic pathways at the bone-implant interface. We found that pathways most significantly downregulated in aged mice relative to young mice are related to angiogenic, Notch, and Wnt signaling. Downregulation of these pathways is associated with markedly increased expression of inflammatory and immune genes at the bone-implant interface in aged mice. These results identify osseointegration pathways affected by aging and suggest that an increased inflammatory response in aged mice may compromise peri-implant bone healing. Targeting the Notch and Wnt pathways, promoting angiogenesis, or modulating the immune response at the peri-implant site may enhance osseointegration and improve the outcome of joint replacement in older patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Gang Ji
- Hospital for Special SurgeryNew YorkNYUSA
- The Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yurii Chinenov
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | - Max Chao
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | | | - Matthew B Greenblatt
- Hospital for Special SurgeryNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Lionel B Ivashkiv
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | - Xu Yang
- Hospital for Special SurgeryNew YorkNYUSA
| |
Collapse
|
73
|
Ismael S, Nasoohi S, Li L, Aslam KS, Khan MM, El-Remessy AB, McDonald MP, Liao FF, Ishrat T. Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiol Dis 2021; 156:105399. [PMID: 34029695 PMCID: PMC8277763 DOI: 10.1016/j.nbd.2021.105399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Immune system hypersensitivity is believed to contribute to mental frailty in the elderly. Solid evidence indicates NOD-like receptor pyrin domain containing-3 (NLRP3)-inflammasome activation intimately connects aging-associated chronic inflammation (inflammaging) to senile cognitive decline. Thioredoxin interacting protein (TXNIP), an inducible protein involved in oxidative stress, is essential for NLRP3 inflammasome activity. This study aims to find whether TXNIP/NLRP3 inflammasome pathway is involved in senile dementia. According to our studies on sex-matched mice, TXNIP was significantly upregulated in aged animals, paralleled by the NLRP3-inflammasome over-activity leading to enhanced caspase-1 cleavage and IL-1β maturation, in both sexes. This was closely associated with depletion of the anti-aging and cognition enhancing protein klotho, in aged males. Txnip knockout reversed age-related NLRP3-hyperactivity and enhanced thioredoxin (TRX) levels. Further, TXNIP inhibition along with verapamil replicated TXNIP/NLRP3-inflammasome downregulation in aged animals, with FOXO-1 and mTOR upregulation. These alterations concurred with substantial improvements in both cognitive and sensorimotor abilities. Together, these findings substantiate the pivotal role of TXNIP to drive inflammaging in parallel with klotho depletion and functional decline, and delineate thioredoxin system as a potential target to decelerate senile dementia.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lexiao Li
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America.
| | - Khurram S Aslam
- Center for Earthquake Research and Information, University of Memphis, Memphis, TN, United States of America
| | - Mohammad Moshahid Khan
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Azza B El-Remessy
- Department of Pharmacy, Doctors Hospital of Augusta, GA, United States of America.
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States of America; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
74
|
Zhang Y, de Boer M, van der Wel EJ, Van Eck M, Hoekstra M. PRMT4 inhibitor TP-064 inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo and induces peritonitis-associated neutrophilia in vivo. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166212. [PMID: 34311083 DOI: 10.1016/j.bbadis.2021.166212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023]
Abstract
Previous in vitro studies have shown that protein arginine N-methyltransferase 4 (PRMT4) is a co-activator for an array of cellular activities, including NF-κB-regulated pro-inflammatory responses. Here we investigated the effect of PRMT4 inhibitor TP-064 treatment on macrophage inflammation in vitro and in vivo. Exposure of RAW 264.7 monocyte/macrophages to TP-064 was associated with a significant decrease in the production of pro-inflammatory cytokines upon a lipopolysaccharide challenge. Similarly, thioglycollate-elicited peritoneal cells isolated from wildtype mice treated with TP-064 showed lowered mRNA expression levels and cytokine production of pro-inflammatory mediators interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor-α in response to lipopolysaccharide exposure. However, TP-064-treated mice exhibited an ongoing pro-inflammatory peritonitis after 5 days of thioglycollate exposure, as evident from a shift in the peritoneal macrophage polarization state from an anti-inflammatory LY6ClowCD206hi to a pro-inflammatory LY6ChiCD206low phenotype. In addition, TP-064-treated mice accumulated (activated) neutrophils within the peritoneum as well as in the blood (7-fold higher; P < 0.001) and major organs such as kidney and liver, without apparent tissue toxicity. TP-064 treatment downregulated hepatic mRNA expression levels of the PRMT4 target genes glucose-6-phosphatase catalytic subunit (-50%, P < 0.05) and the cyclin-dependent kinases 2 (-50%, P < 0.05) and 4 (-30%, P < 0.05), suggesting a direct transcriptional effect of PRMT4 also in hepatocytes. In conclusion, we have shown that the PRMT4 inhibitor TP-064 induces peritonitis-associated neutrophilia in vivo and inhibits the pro-inflammatory macrophage lipopolysaccharide response in vitro and ex vivo. Our findings suggest that TP-064 can possibly be applied as therapy in NF-κB-based inflammatory diseases.
Collapse
Affiliation(s)
- Yiheng Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Miriam de Boer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ezra J van der Wel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
75
|
Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, Tibshirani R, Hastie T, Alpert A, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr SS, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Davis MM, Furman D. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. ACTA ACUST UNITED AC 2021; 1:598-615. [PMID: 34888528 PMCID: PMC8654267 DOI: 10.1038/s43587-021-00082-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8-96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes.
Collapse
|
76
|
Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6:247. [PMID: 34210954 PMCID: PMC8249422 DOI: 10.1038/s41392-021-00650-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1β and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.
Collapse
|
77
|
Ryu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. eLife 2021; 10:e66522. [PMID: 34151773 PMCID: PMC8245129 DOI: 10.7554/elife.66522] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/15/2023] Open
Abstract
Increasing age is the strongest predictor of risk of COVID-19 severity and mortality. Immunometabolic switch from glycolysis to ketolysis protects against inflammatory damage and influenza infection in adults. To investigate how age compromises defense against coronavirus infection, and whether a pro-longevity ketogenic diet (KD) impacts immune surveillance, we developed an aging model of natural murine beta coronavirus (mCoV) infection with mouse hepatitis virus strain-A59 (MHV-A59). When inoculated intranasally, mCoV is pneumotropic and recapitulates several clinical hallmarks of COVID-19 infection. Aged mCoV-A59-infected mice have increased mortality and higher systemic inflammation in the heart, adipose tissue, and hypothalamus, including neutrophilia and loss of γδ T cells in lungs. Activation of ketogenesis in aged mice expands tissue protective γδ T cells, deactivates the NLRP3 inflammasome, and decreases pathogenic monocytes in lungs of infected aged mice. These data establish harnessing of the ketogenic immunometabolic checkpoint as a potential treatment against coronavirus infection in the aged.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Yun-Hee Youm
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Hua Qing
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Brandon Hilliard
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Tamara Dlugos
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
| | - Yuki Yasumoto
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of MedicineNew HavenUnited States
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of MedicineNew HavenUnited States
| | - Kamal Khanna
- Department of Microbiology, New York University Langone HealthNew YorkUnited States
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of MedicineNew HavenUnited States
- Yale Center for Research on AgingNew HavenUnited States
| | - Marcelo O Dietrich
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of MedicineNew HavenUnited States
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Andrew Wang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of MedicineNew HavenUnited States
- Yale Center for Research on AgingNew HavenUnited States
| |
Collapse
|
78
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
79
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
80
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
81
|
Ko MS, Yun JY, Baek IJ, Jang JE, Hwang JJ, Lee SE, Heo SH, Bader DA, Lee CH, Han J, Moon JS, Lee JM, Hong EG, Lee IK, Kim SW, Park JY, Hartig SM, Kang UJ, Moore DD, Koh EH, Lee KU. Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy 2021; 17:1205-1221. [PMID: 32400277 PMCID: PMC8143238 DOI: 10.1080/15548627.2020.1753002] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood. in this study, we showed that global or brown adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochondrial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3 was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3 induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differentiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1 knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy is different from general autophagy in regulating adipose tissue and whole-body energy metabolism. Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue; BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet; IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.
Collapse
Affiliation(s)
- Myoung Seok Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Young Yun
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Eun Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Ho Heo
- Convergence Medicine Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - David A. Bader
- Molecular and Cellular Biology and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun-Gyoung Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - In-Kyu Lee
- Department of Internal Medicine and Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joong Yeol Park
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sean M. Hartig
- Molecular and Cellular Biology and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Un Jung Kang
- Department of Neurology, Neuroscience and Physiology, Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, USA
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Eun Hee Koh
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-up Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
82
|
Alle Q, Le Borgne E, Milhavet O, Lemaitre JM. Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. Int J Mol Sci 2021; 22:3990. [PMID: 33924362 PMCID: PMC8070588 DOI: 10.3390/ijms22083990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency. Some of these approaches may eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Quentin Alle
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Enora Le Borgne
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Ollivier Milhavet
- IRMB, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| |
Collapse
|
83
|
Elangovan S, Xie XJ, McBrearty C, Caplan DJ. Electronic dental record-based surveillance of non-communicable conditions. Public Health 2021; 193:146-149. [PMID: 33845348 DOI: 10.1016/j.puhe.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The objective of the study is to demonstrate that electronic dental records (EDRs) can be used to mine meaningful public health information. STUDY DESIGN Retrospective electronic dental chart-based reporting of disease prevalence. METHODS Using dental EDRs (N = 104,768), the authors assessed the prevalence of common non-communicable medical conditions among unique patients seen at a United States (U.S.) dental college. RESULTS The prevalence of following conditions in patients visiting a U.S. dental college increased steadily with increasing age: hypertension, angina, stroke, myocardial infarction, congestive heart failure, diabetes, cancer, kidney disease, thyroid disease, and allergies. Prevalence of these conditions was several-fold higher in the 66+ years group than among younger adults. Prevalence of many of the assessed conditions approximated published national estimates. CONCLUSIONS In addition to the indispensable use of EDRs in dental education and patient management, EDRs can be mined to report on prevalence of non-communicable medical conditions among patients/population receiving dental care. Completeness and accuracy of entered information will significantly improve the usefulness of EDR for disease surveillance and research applications.
Collapse
Affiliation(s)
- S Elangovan
- Department of Periodontics, University of Iowa College of Dentistry and Dental Clinics, USA.
| | - X J Xie
- Department of Preventive & Community Dentistry and Associate Dean for Research, University of Iowa College of Dentistry and Dental Clinics, USA
| | - C McBrearty
- University of Iowa College of Dentistry and Dental Clinics, USA
| | - D J Caplan
- Department of Preventive & Community Dentistry, University of Iowa College of Dentistry and Dental Clinics, USA
| |
Collapse
|
84
|
Wu H, Liu X, Gao ZY, Lin M, Zhao X, Sun Y, Pu XP. Icaritin Provides Neuroprotection in Parkinson's Disease by Attenuating Neuroinflammation, Oxidative Stress, and Energy Deficiency. Antioxidants (Basel) 2021; 10:antiox10040529. [PMID: 33805302 PMCID: PMC8066334 DOI: 10.3390/antiox10040529] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation, oxidative stress, and mitochondrial dysfunction are all important pathogenic mechanisms underlying motor dysfunction and dopaminergic neuronal damage observed in patients with Parkinson’s disease (PD). However, despite extensive efforts, targeting inflammation and oxidative stress using various approaches has not led to meaningful clinical outcomes, and mitochondrial enhancers have also failed to convincingly achieve disease-modifying effects. We tested our hypothesis that treatment approaches in PD should simultaneously reduce neuroinflammation, oxidative stress, and improve alterations in neuronal energy metabolism using the flavonoid icaritin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Using matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MSI), coupled with biochemical analyses and behavioral tests, we demonstrate that icaritin improves PD by attenuating the the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome activity and stabilizing mitochondrial function, based on our extensive analyses showing the inhibition of NLRP3 inflammasome, reduction of NLRP3-mediated IL-1β secretion, and improvements in the levels of antioxidant molecules. Our data also indicated that icaritin stabilized the levels of proteins related to mitochondrial function, such as voltage-dependent anion channel (VDAC) and ATP synthase subunit beta (ATP5B), as well as those of molecules related to energy metabolism, such as ATP and ADP, ultimately improving mitochondrial dysfunction. By employing molecular docking, we also discovered that icaritin can interact with NLRP3, VDAC, ATP5B, and several blood–brain barrier (BBB)-related proteins. These data provide insights into the promising therapeutic potential of icaritin in PD.
Collapse
Affiliation(s)
- Hao Wu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ze-Yu Gao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming Lin
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Z.-Y.G.); (M.L.); (X.Z.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-2431
| |
Collapse
|
85
|
Zhang Y, Zhang S, Li B, Luo Y, Gong Y, Jin X, Zhang J, Zhou Y, Zhuo X, Wang Z, Zhao X, Han X, Gao Y, Yu H, Liang D, Zhao S, Sun D, Wang D, Xu W, Qu G, Bo W, Li D, Wu Y, Li Y. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc Res 2021; 118:785-797. [PMID: 33757127 DOI: 10.1093/cvr/cvab114] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). The gut microbiota dysbiosis is involved in age-related diseases. However, whether the aged-associated dysbiosis contributes to age-related AF is still unknown. Direct demonstration that the aged gut microbiota is sufficient to transmit the enhanced AF susceptibility in a young host via microbiota-intestinal barrier-atria axis has not yet been reported. This study aimed to determine whether gut microbiota dysbiosis affects age-related AF. METHODS AND RESULTS Herein, by using a fecal microbiota transplantation (FMT) rat model, we demonstrated that the high AF susceptibility of aged rats could be transmitted to a young host. Specially, we found the dramatically increased levels of circulating lipopolysaccharide (LPS) and glucose led to the up-regulated expression of NLR family pyrin domain containing 3 (NLRP3)-inflammasome, promoting the development of AF which depended on the enhanced atrial fibrosis in recipient host. Inhibition of inflammasome by a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, resulted in a lower atrial fibrosis and AF susceptibility. Then we conducted cross-sectional clinical studies to explore the effect of aging on the altering trends with glucose levels and circulating LPS among clinical individuals in two China hospitals. We found that both of serum LPS and glucose levels were progressively increased in elderly patients as compared with those young. Furthermore, the aging phenotype of circulating LPS and glucose levels, intestinal structure and atrial NLRP3-inflammasome of rats were also confirmed in clinical AF patients. Finally, aged rats colonized with youthful microbiota restored intestinal structure and atrial NLRP3-inflammasome activity, which suppressed the development of aged-related AF. CONCLUSIONS Collectively, these studies described a novel causal role of aberrant gut microbiota in the pathogenesis of age-related AF, which indicates that the microbiota-intestinal barrier-atrial NLRP3 inflammasome axis may be a rational molecular target for the treatment of aged-related arrhythmia disease. TRANSLATIONAL PERSPECTIVE The current study demonstrates that aged-associated microbiota dysbiosis promotes AF in part through a microbiota-gut-atria axis. Increased AF susceptibility due to enhanced atrial NLRP3-inflammasome activity by LPS and high glucose was found in an aged FMT rat model, and also confirmed within elderly clinical individuals. In a long-term FMT rat study, the AF susceptibility was ameliorated by treatment with youthful microbiota. The present findings can further increase our understanding of aged-related AF and address a promising therapeutic strategy that involves modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bolin Li
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchun Luo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuexin Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiawei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhou
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaozhen Zhuo
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiology, Key Laboratory of Environment and Genes Related to Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixi Wang
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunlong Gao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Yu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shiqi Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Xu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangjin Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wanlan Bo
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wu
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.,The Cell Transplantation Key Laboratory of National Health Commission, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
86
|
Cybularz M, Wydra S, Berndt K, Poitz DM, Barthel P, Alkouri A, Heidrich FM, Ibrahim K, Jellinghaus S, Speiser U, Linke A, Christoph M, Pfluecke C. Frailty is associated with chronic inflammation and pro-inflammatory monocyte subpopulations. Exp Gerontol 2021; 149:111317. [PMID: 33744391 DOI: 10.1016/j.exger.2021.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/19/2023]
Abstract
AIM OF THE STUDY Frail patients with high grade aortic valve stenosis (AS) undergoing Transcatheter Aortic Valve Implantation (TAVI) have an increased mortality. A connection between frailty and inflammation has been suggested. Monocyte subpopulations are associated with both cardiovascular diseases and chronic inflammatory diseases. This study investigates the association of frailty with monocyte subpopulations and systemic inflammatory parameters in elderly patients undergoing TAVI. METHODS A total of 120 patients with symptomatic AS was examined. Before TAVI implantation, frailty was assessed by a bedside evaluation (eyeball test). In all patients a flow cytometry analysis has been performed. Monocyte subpopulations were defined as follows: classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++). Expression of CD11b was measured as a marker for monocyte activation. Pro-inflammatory cytokines such as interleukin IL-8, as well as CRP were measured with Cytometric Bead Array or standard laboratory methods. RESULTS 28 out of 120 patients were frail. These patients showed both, signs of elevated chronic systemic inflammation reflected by elevated CRP (3.7 (1.4-5.4) vs. 5.9 (3.7-29.1), p = 0.001) and an elevated level of intermediate monocytes (37 (24-54) vs. 53 (47-63), p = 0.001). At 6 months after TAVI, 19 of 120 patients died, primarily without relevant dysfunction of the implanted aortic valve. Mortality was significantly higher in the frail as compared with non-frail patients (9 of 28 frail patients vs. 10 of 92 non frail patients, p < 0.001). A binary logistic regression analysis validated frailty and intermediate monocytes as independent predictors for early mortality after TAVI. CONCLUSION Chronic systemic inflammation and increased levels of intermediate monocytes are associated with frailty in old patients with severe aortic valve stenosis. Both the syndrome of frailty and elevated intermediate monocytes showed an association with early mortality after TAVI.
Collapse
Affiliation(s)
- Maria Cybularz
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Sandy Wydra
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Katharina Berndt
- Department of Cardiology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Technical University Dresden, Dresden, Germany
| | - Peggy Barthel
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Ahmad Alkouri
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Felix M Heidrich
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Karim Ibrahim
- Department of Cardiology, Technische Universität Dresden, Klinikum Chemnitz, Germany
| | - Stefanie Jellinghaus
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Uwe Speiser
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Axel Linke
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Marian Christoph
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany
| | - Christian Pfluecke
- Internal medicine, cardiology and intensive care medicine, Heart Center Dresden, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
87
|
Lu RJ, Wang EK, Benayoun BA. Functional genomics of inflamm-aging and immunosenescence. Brief Funct Genomics 2021; 21:43-55. [PMID: 33690792 DOI: 10.1093/bfgp/elab009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The aging population is at a higher risk for age-related diseases and infections. This observation could be due to immunosenescence: the decline in immune efficacy of both the innate and the adaptive immune systems. Age-related immune decline also links to the concept of 'inflamm-aging,' whereby aging is accompanied by sterile chronic inflammation. Along with a decline in immune function, aging is accompanied by a widespread of 'omics' remodeling. Transcriptional landscape changes linked to key pathways of immune function have been identified across studies, such as macrophages having decreased expression of genes associated to phagocytosis, a major function of macrophages. Therefore, a key mechanism underlying innate immune cell dysfunction during aging may stem from dysregulation of youthful genomic networks. In this review, we discuss both molecular and cellular phenotypes of innate immune cells that contribute to age-related inflammation.
Collapse
Affiliation(s)
- Ryan J Lu
- Leonard Davis School of Gerontology at the University of Southern California
| | - Emily K Wang
- Leonard Davis School of Gerontology at the University of Southern California
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology at the University of Southern California
| |
Collapse
|
88
|
Gay F, Romeo B, Martelli C, Benyamina A, Hamdani N. Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: a Meta-analysis. Psychiatry Res 2021; 297:113735. [PMID: 33497973 DOI: 10.1016/j.psychres.2021.113735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
One third of depressive patients do not achieve remission after several steps of treatment and are considered as treatment resistant. Electroconvulsive therapy (ECT) improves symptoms in 70 to 90% of such cases. Resistant depression is associated with a dysregulation of the immune system with a dysbalance between the pro- and the anti-inflammatory cytokines. Therefore, we aimed to measure the kinetic of cytokines levels before, during and at the end of ECT. To test this hypothesis, we performed a meta-analysis assessing cytokines plasma levels before, during and after ECT in patients with major depressive disorders. After a systematic database search, means and standard deviations were extracted to calculate standardized mean differences. We found that IL-6 levels increased after 1 or 2 ECT session (p = 0.01) then decrease after 4 ECT sessions (p < 0.01) with no difference at the end of ECT (p = 0.94). A small number of studies were included and there was heterogeneity across them. The present meta-analysis reveals that ECT induces an initial increase of IL-6 levels and a potential decrease of TNF-α levels. No changes on IL-4 and IL-10 levels were found. Further work is necessary to clarify the impact of ECT on peripheral cytokines.
Collapse
Affiliation(s)
- F Gay
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France
| | - B Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay.
| | - C Martelli
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay; Institut National de la Santé et de la Recherche Médicale U1000, Research unit, NeuroImaging and Psychiatry, Paris Sud University, Paris Saclay University, Paris Descartes University, Digiteo Labs, Bâtiment 660, Gif-sur-Yvette, France
| | - A Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800 Villejuif, France; Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay
| | - N Hamdani
- Unité de recherche Psychiatrie-Comorbidités-Addictions - PSYCOMADD 4872 - Université Paris-Sud - AP-HP - Université Paris Saclay; Cédiapsy, 1 avenue Jean Moulin 75014 Paris
| |
Collapse
|
89
|
Gordon S. Remembering Metchnikoff in the time of COVID-19. J Leukoc Biol 2021; 109:509-512. [PMID: 33630386 PMCID: PMC8014620 DOI: 10.1002/jlb.4ce0520-304rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
90
|
Nagai N, Kudo Y, Aki D, Nakagawa H, Taniguchi K. Immunomodulation by Inflammation during Liver and Gastrointestinal Tumorigenesis and Aging. Int J Mol Sci 2021; 22:ijms22052238. [PMID: 33668122 PMCID: PMC7956754 DOI: 10.3390/ijms22052238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation is thought to promote tumorigenesis and metastasis by several mechanisms, such as affecting tumor cells directly, establishing a tumor-supporting microenvironment, enhancing tumor angiogenesis, and suppressing antitumor immunity. In this review, we discuss the recent advances in our understanding of how inflammation induces the immunosuppressive tumor microenvironment, such as increasing the level of pro-inflammatory cytokines, chemokines, and immunosuppressive molecules, inducing immune checkpoint molecules and cytotoxic T-cell exhaustion, and accumulating regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). The suppression of antitumor immunity by inflammation is especially examined in the liver and colorectal cancer. In addition, chronic inflammation is induced during aging and causes age-related diseases, including cancer, by affecting immunity. Therefore, we also discuss the age-related diseases regulated by inflammation, especially in the liver and colon.
Collapse
Affiliation(s)
- Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (D.A.)
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (H.N.)
| | - Daisuke Aki
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (D.A.)
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (H.N.)
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (D.A.)
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Correspondence: ; Tel.: +81-3-5363-3483
| |
Collapse
|
91
|
Lliberos C, Liew SH, Mansell A, Hutt KJ. The Inflammasome Contributes to Depletion of the Ovarian Reserve During Aging in Mice. Front Cell Dev Biol 2021; 8:628473. [PMID: 33644037 PMCID: PMC7905095 DOI: 10.3389/fcell.2020.628473] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian aging is a natural process characterized by follicular depletion and a reduction in oocyte quality, resulting in loss of ovarian function, cycle irregularity and eventually infertility and menopause. The factors that contribute to ovarian aging have not been fully characterized. Activation of the NLRP3 inflammasome has been implicated in age-associated inflammation and diminished function in several organs. In this study, we used Asc−/− and Nlrp3−/− mice to investigate the possibility that chronic low-grade systemic inflammation mediated by the inflammasome contributes to diminished ovarian reserves as females age. Pro-inflammatory cytokines, IL-6, IL-18, and TNF-α, were decreased in the serum of aging Asc−/− mice compared to WT. Within the ovary of reproductively aged Asc−/− mice, mRNA levels of major pro-inflammatory genes Tnfa, Il1a, and Il1b were decreased, and macrophage infiltration was reduced compared to age-matched WT controls. Notably, suppression of the inflammatory phenotype in Asc−/− mice was associated with retention of follicular reserves during reproductive aging. Similarly, the expression of intra-ovarian pro-inflammatory cytokines was reduced, and follicle numbers were significantly elevated, in aging Nlrp3−/− mice compared to WT controls. These data suggest that inflammasome-dependent inflammation contributes to the age-associated depletion of follicles and raises the possibility that ovarian aging could be delayed, and fertile window prolonged, by suppressing inflammatory processes in the ovary.
Collapse
Affiliation(s)
- Carolina Lliberos
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Seng H Liew
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
92
|
Lopes I, Altab G, Raina P, de Magalhães JP. Gene Size Matters: An Analysis of Gene Length in the Human Genome. Front Genet 2021; 12:559998. [PMID: 33643374 PMCID: PMC7905317 DOI: 10.3389/fgene.2021.559998] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
While it is expected for gene length to be associated with factors such as intron number and evolutionary conservation, we are yet to understand the connections between gene length and function in the human genome. In this study, we show that, as expected, there is a strong positive correlation between gene length, transcript length, and protein size as well as a correlation with the number of genetic variants and introns. Among tissue-specific genes, we find that the longest transcripts tend to be expressed in the blood vessels, nerves, thyroid, cervix uteri, and the brain, while the smallest transcripts tend to be expressed in the pancreas, skin, stomach, vagina, and testis. We report, as shown previously, that natural selection suppresses changes for genes with longer transcripts and promotes changes for genes with smaller transcripts. We also observe that genes with longer transcripts tend to have a higher number of co-expressed genes and protein-protein interactions, as well as more associated publications. In the functional analysis, we show that bigger transcripts are often associated with neuronal development, while smaller transcripts tend to play roles in skin development and in the immune system. Furthermore, pathways related to cancer, neurons, and heart diseases tend to have genes with longer transcripts, with smaller transcripts being present in pathways related to immune responses and neurodegenerative diseases. Based on our results, we hypothesize that longer genes tend to be associated with functions that are important in the early development stages, while smaller genes tend to play a role in functions that are important throughout the whole life, like the immune system, which requires fast responses.
Collapse
Affiliation(s)
| | | | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
93
|
Patel C, Keller L, Welsche S, Hattendorf J, Sayasone S, Ali SM, Ame SM, Coulibaly JT, Hürlimann E, Keiser J. Assessment of fecal calprotectin and fecal occult blood as point-of-care markers for soil-transmitted helminth attributable intestinal morbidity in a case-control substudy conducted in Côte d'Ivoire, Lao PDR and Pemba Island, Tanzania. EClinicalMedicine 2021; 32:100724. [PMID: 33554091 PMCID: PMC7851339 DOI: 10.1016/j.eclinm.2021.100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Infections with soil-transmitted helminths (STHs) may result in chronic inflammatory disorders affecting the human host. The objective of this study was to evaluate Fecal Calprotectin (FC) and Fecal Occult Blood (FOB) in individuals infected and non-infected with STHs to identify potential intestinal morbidity markers. METHODS Stool from participants diagnosed positive for Trichuris trichiura and concomitant STH infections from three countries was used to perform FC and FOB point-of-care assays. Simultaneously, identified STH negative participants underwent FC and FOB testing as controls. Potential associations between test results and determinants were analyzed using multivariable logistic regression. FINDINGS In total, 1034 T. trichiura infected cases (mostly light infections) and 157 STH negative controls were tested for FC and FOB. Among all participants tested, 18·5% had ≥ 50 µg/g FC concentration, while 14 (1·2%) were positive for FOB. No statistically significant association was found between T. trichiura infection or Ascaris lumbricoides co-infection and FC concentration, while an inverse association (odds ratio (OR): 0·45, 95% credible intervals (CrI): 0·26, 0·75) was found between hookworm co-infection and FC concentration. In Lao PDR, the proportion of participants in the ≥ 50 µg/g FC category was significantly higher in the oldest age category compared to the 5-11 years group (OR: 3·31, 95% CrI: 1·62, 7·24). Too few participants were found positive for FOB to derive any conclusions. INTERPRETATION Studies are needed to better understand the relationship between intestinal morbidity and STH infections. Suitable, standardized, low-cost markers of STH attributable morbidity to better monitor the impact of STH control interventions are necessary. FUNDING BMGF (OPP1153928).
Collapse
Affiliation(s)
- Chandni Patel
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ladina Keller
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sophie Welsche
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jan Hattendorf
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Somphou Sayasone
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of International Program for Health in the Tropics, Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Said M. Ali
- Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba, Zanzibar, Tanzania
| | - Shaali M. Ame
- Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba, Zanzibar, Tanzania
| | - Jean Tenena Coulibaly
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Department of Research and Development, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eveline Hürlimann
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
94
|
Cullen NC, Mälarstig AN, Stomrud E, Hansson O, Mattsson-Carlgren N. Accelerated inflammatory aging in Alzheimer's disease and its relation to amyloid, tau, and cognition. Sci Rep 2021; 11:1965. [PMID: 33479445 PMCID: PMC7820414 DOI: 10.1038/s41598-021-81705-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is unclear how pathological aging of the inflammatory system relates to Alzheimer's disease (AD). We tested whether age-related inflammatory changes in cerebrospinal fluid (CSF) and plasma exist across different stages of AD, and whether such changes related to AD pathology. Linear regression was first used model chronological age in amyloid-β negative, cognitively unimpaired individuals (Aβ- CU; n = 312) based on a collection of 73 inflammatory proteins measured in both CSF and plasma. Fitted models were then applied on protein levels from Aβ+ individuals with mild cognitive impairment (Aβ+ MCI; n = 150) or Alzheimer's disease dementia (Aβ+ AD; n = 139) to test whether the age predicted from proteins alone ("inflammatory age") differed significantly from true chronological age. Aβ- individuals with subjective cognitive decline (Aβ- SCD; n = 125) or MCI (Aβ- MCI; n = 104) were used as an independent contrast group. The difference between inflammatory age and chronological age (InflammAGE score) was then assessed in relation to core AD biomarkers of amyloid, tau, and cognition. Both CSF and plasma inflammatory proteins were significantly associated with age in Aβ- CU individuals, with CSF-based proteins predicting chronological age better than plasma-based counterparts. Meanwhile, the Aβ- SCD and validation Aβ- CU groups were not characterized by significant inflammatory aging, while there was increased inflammatory aging in Aβ- MCI patients for CSF but not plasma inflammatory markers. Both CSF and plasma inflammatory changes were seen in the Aβ+ MCI and Aβ+ AD groups, with varying degrees of change compared to Aβ- CU and Aβ- SCD groups. Finally, CSF inflammatory changes were highly correlated with amyloid, tau, general neurodegeneration, and cognition, while plasma changes were mostly associated with amyloid and cognition. Inflammatory pathways change during aging and are specifically altered in AD, tracking closely with pathological hallmarks. These results have implications for tracking AD progression and for suggesting possible pathways for drug targeting.
Collapse
Affiliation(s)
- Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 19, BMC - C11, 223 62, Lund, Sweden.
| | - A Nders Mälarstig
- Pfizer Worldwide Research & Development, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 19, BMC - C11, 223 62, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 19, BMC - C11, 223 62, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 19, BMC - C11, 223 62, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
95
|
Lliberos C, Liew SH, Zareie P, La Gruta NL, Mansell A, Hutt K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep 2021; 11:278. [PMID: 33432051 PMCID: PMC7801638 DOI: 10.1038/s41598-020-79488-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Reproductive ageing in females is defined by a progressive decline in follicle number and oocyte quality. This is a natural process that leads to the loss of fertility and ovarian function, cycle irregularity and eventually menopause or reproductive senescence. The factors that underlie the natural depletion of follicles throughout reproductive life are poorly characterised. It has been proposed that inflammatory processes and fibrosis might contribute to ovarian ageing. To further investigate this possibility, we evaluated key markers of inflammation and immune cell populations in the ovaries of 2, 6, 12 and 18-month-old C57BL/6 female mice. We report that the decrease in follicle numbers over the reproductive lifespan was associated with an increase in the intra-ovarian percentage of CD4 + T cells, B cells and macrophages. Serum concentration and intra-ovarian mRNA levels of several pro-inflammatory cytokines, including IL-1α/β, TNF-α, IL-6, and inflammasome genes ASC and NLRP3, were significantly increased with age. Fibrosis levels, as determined by picrosirius red staining for collagen I and III, were unchanged up to 18 months of age. Collectively, these data suggest that inflammation could be one of the mechanisms responsible for the age-related regulation of follicle number, but the role of fibrosis is unclear. Further studies are now required to determine if there is a causative relationship between inflammation and follicle depletion as females age.
Collapse
Affiliation(s)
- Carolina Lliberos
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Seng H Liew
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Karla Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
96
|
Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun 2021; 22:289-303. [PMID: 33875817 PMCID: PMC8054695 DOI: 10.1038/s41435-021-00126-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
The microbiome plays a fundamental role in the maturation, function, and regulation of the host-immune system from birth to old age. In return, the immune system has co-evolved a mutualistic relationship with trillions of beneficial microbes residing our bodies while mounting efficient responses to fight invading pathogens. As we age, both the immune system and the gut microbiome undergo significant changes in composition and function that correlate with increased susceptibility to infectious diseases and reduced vaccination responses. Emerging studies suggest that targeting age-related dysbiosis can improve health- and lifespan, in part through reducing systemic low-grade inflammation and immunosenescence-two hallmarks of the aging process. However-a cause and effect relationship of age-related dysbiosis and associated functional declines in immune cell functioning have yet to be demonstrated in clinical settings. This review aims to (i) give an overview on hallmarks of the aging immune system and gut microbiome, (ii) discuss the impact of age-related changes in the gut commensal community structure (introduced as microb-aging) on host-immune fitness and health, and (iii) summarize prebiotic- and probiotic clinical intervention trials aiming to reinforce age-related declines in immune cell functioning through microbiome modulation or rejuvenation.
Collapse
Affiliation(s)
- Nabil Bosco
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, Nestlé SA, Lausanne, Switzerland
| | - Mario Noti
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Gastrointestinal Health, Immunology, Vers-Chez-les-Blancs, Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
97
|
Tissue-specific Gene Expression Changes Are Associated with Aging in Mice. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:430-442. [PMID: 33309863 PMCID: PMC8242333 DOI: 10.1016/j.gpb.2020.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Aging is a complex process that can be characterized by functional and cognitive decline in an individual. Aging can be assessed based on the functional capacity of vital organs and their intricate interactions with one another. Thus, the nature of aging can be described by focusing on a specific organ and an individual itself. However, to fully understand the complexity of aging, one must investigate not only a single tissue or biological process but also its complex interplay and interdependencies with other biological processes. Here, using RNA-seq, we monitored changes in the transcriptome during aging in four tissues (including brain, blood, skin and liver) in mice at 9 months, 15 months, and 24 months, with a final evaluation at the very old age of 30 months. We identified several genes and processes that were differentially regulated during aging in both tissue-dependent and tissue-independent manners. Most importantly, we found that the electron transport chain (ETC) of mitochondria was similarly affected at the transcriptome level in the four tissues during the aging process. We also identified the liver as the tissue showing the largest variety of differentially expressed genes (DEGs) over time. Lcn2 (Lipocalin-2) was found to be similarly regulated among all tissues, and its effect on longevity and survival was validated using its orthologue in Caenorhabditis elegans. Our study demonstrated that the molecular processes of aging are relatively subtle in their progress, and the aging process of every tissue depends on the tissue’s specialized function and environment. Hence, individual gene or process alone cannot be described as the key of aging in the whole organism.
Collapse
|
98
|
Xu J, Zhou L, Liu Y. Cellular Senescence in Kidney Fibrosis: Pathologic Significance and Therapeutic Strategies. Front Pharmacol 2020; 11:601325. [PMID: 33362554 PMCID: PMC7759549 DOI: 10.3389/fphar.2020.601325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
Age-related disorders such as chronic kidney disease (CKD) are increasingly prevalent globally and pose unprecedented challenges. In many aspects, CKD can be viewed as a state of accelerated and premature aging. Aging kidney and CKD share many common characteristic features with increased cellular senescence, a conserved program characterized by an irreversible cell cycle arrest with altered transcriptome and secretome. While developmental senescence and acute senescence may positively contribute to the fine-tuning of embryogenesis and injury repair, chronic senescence, when unresolved promptly, plays a crucial role in kidney fibrogenesis and CKD progression. Senescent cells elicit their fibrogenic actions primarily by secreting an assortment of inflammatory and profibrotic factors known as the senescence-associated secretory phenotype (SASP). Increasing evidence indicates that senescent cells could be a promising new target for therapeutic intervention known as senotherapy, which includes depleting senescent cells, modulating SASP and restoration of senescence inhibitors. In this review, we discuss current understanding of the role and mechanism of cellular senescence in kidney fibrosis. We also highlight potential options of targeting senescent cells for the treatment of CKD.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
99
|
Dysregulation of leukocyte trafficking in ageing: Causal factors and possible corrective therapies. Pharmacol Res 2020; 163:105323. [PMID: 33276099 DOI: 10.1016/j.phrs.2020.105323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a universal biological phenomenon that is accompanied by the development of chronic, low-grade inflammation and remodelling of the immune system resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under homeostatic and inflammatory conditions is dysregulated in ageing. We particularly highlight the age-related changes in the expression of adhesion molecules and chemokine receptor/ligands, and the accumulation of senescent cells that drive modulated leukocyte trafficking. These age-related changes to leukocyte trafficking are multifactorial and specific to leukocyte subset, tissue, type of vascular bed, and inflammatory status. However, dysregulated leukocyte trafficking ultimately affects immune responses in older adults. We therefore go on to discuss approved drugs, including anti-integrins, anti-chemokines and statins, as well as novel therapeutics that may be used to target dysregulated leukocyte trafficking in ageing, improve immune responses and delay the onset of age-related diseases.
Collapse
|
100
|
Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J 2020; 18:28. [PMID: 33132762 PMCID: PMC7592591 DOI: 10.1186/s12959-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Onset, development and progression of atherosclerosis are complex multistep processes. Many aspects of atherogenesis are not yet properly known. This study investigates the changes in vasculature that contribute to switching of vascular cells towards atherogenesis, focusing mainly on ageing. Methods Databases including PubMed, MEDLINE and Google Scholar were searched for published articles without any date restrictions, involving atherogenesis, vascular homeostasis, aging, gene expression, signaling pathways, angiogenesis, vascular development, vascular cell differentiation and maintenance, vascular stem cells, endothelial and vascular smooth muscle cells. Results Atherogenesis is a complex multistep process that unfolds in a sequence. It is caused by alterations in: epigenetics and genetics, signaling pathways, cell circuitry, genome stability, heterotypic interactions between multiple cell types and pathologic alterations in vascular microenvironment. Such alterations involve pathological changes in: Shh, Wnt, NOTCH signaling pathways, TGF beta, VEGF, FGF, IGF 1, HGF, AKT/PI3K/ mTOR pathways, EGF, FOXO, CREB, PTEN, several apoptotic pathways, ET - 1, NF-κB, TNF alpha, angiopoietin, EGFR, Bcl - 2, NGF, BDNF, neurotrophins, growth factors, several signaling proteins, MAPK, IFN, TFs, NOs, serum cholesterol, LDL, ephrin, its receptor pathway, HoxA5, Klf3, Klf4, BMPs, TGFs and others.This disruption in vascular homeostasis at cellular, genetic and epigenetic level is involved in switching of the vascular cells towards atherogenesis. All these factors working in pathologic manner, contribute to the development and progression of atherosclerosis. Conclusion The development of atherosclerosis involves the switching of gene expression towards pro-atherogenic genes. This happens because of pathologic alterations in vascular homeostasis. When pathologic alterations in epigenetics, genetics, regulatory genes, microenvironment and vascular cell biology accumulate beyond a specific threshold, then the disease begins to express itself phenotypically. The process of biological ageing is one of the most significant factors in this aspect as it is also involved in the decline in homeostasis, maintenance and integrity.The process of atherogenesis unfolds sequentially (step by step) in an interconnected loop of pathologic changes in vascular biology. Such changes are involved in 'switching' of vascular cells towards atherosclerosis.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|