51
|
Khan MN, Komatsu S. Proteomic analysis of soybean root including hypocotyl during recovery from drought stress. J Proteomics 2016; 144:39-50. [PMID: 27292084 DOI: 10.1016/j.jprot.2016.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Soybean is a nutritionally important crop that exhibits reductions in growth and yield under drought stress. To investigate soybean responses during post-drought recovery, a gel-free proteomic technique was used. Two-day-old soybeans were treated with drought stress for 4days and recovered for 4days. Root including hypocotyl was collected during the drought treatment and recovery stage. Seedling growth was suppressed by drought stress, but recovered following stress removal. The malondialdehyde content increased under drought stress, but decreased during the recovery stage. A total of 792 and 888 proteins were identified from the control and recovering seedlings, respectively. The identified proteins were related to functional categories of stress, hormone metabolism, cell wall, secondary metabolism, and fermentation. Cluster analysis indicated that abundances of peroxidase and aldehyde dehydrogenase were highly changed in the seedlings during the post-drought recovery. The activity of peroxidase decreased under drought conditions, but increased during recovery. In contrast, the activity of aldehyde dehydrogenase was increased in response to drought stress, but decreased during the recovery stage. These results suggest that peroxidase and aldehyde dehydrogenase play key roles in post-drought recovery in soybean by scavenging toxic reactive oxygen species and reducing the load of harmful aldehydes. BIOLOGICAL SIGNIFICANCE Post-drought recovery response mechanisms in soybean root including hypocotyl were analyzed using gel-free proteomic technique. A total of 643 common proteins between control and drought-stressed soybeans changed significantly in abundance over time. The proteins that changed during post-drought recovery were assigned to protein, stress, hormone metabolism, secondary metabolism, cell wall, redox, and glycolysis categories. The analysis revealed that peroxidase and aldehyde dehydrogenase were increased in protein abundance under drought stress. The enzyme activity of peroxidase decreased under drought but increased during recovery. The activity of aldehyde dehydrogenase was increased under drought stress but decreased during recovery stage. Peroxidase and aldehyde dehydrogenase reduce the toxic reactive oxygen species and aldehydes from the plant, respectively, and help to recover from drought stress. The study provides information about post-drought recovery mechanism in soybean.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
52
|
Zhang M, Ma Y, Horst WJ, Yang ZB. Spatial-temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris). ANNALS OF BOTANY 2016; 118:1-9. [PMID: 27106549 PMCID: PMC4934392 DOI: 10.1093/aob/mcw062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/28/2015] [Accepted: 02/24/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Aluminium (Al) toxicity and drought are two major limiting factors for common bean (Phaseolus vulgaris) production on tropical acid soils. Polyethylene glycol (PEG 6000)-induced osmotic stress (OS) simulating drought stress reduces Al accumulation in the entire root tips of common bean by alteration of cell-wall (CW) porosity, which might be regulated by two genes encoding xyloglucan endotransglucosylase/hydrolase, PvXTH9 and PvXTHb The aim of this research was to understand the spatial and temporal regulation of both XTH genes in PEG-mediated Al accumulation in the root tips. METHODS In this study the spatial and temporal expression patterns of Al-inhibited root elongation, Al accumulation, XTH gene expression and xyloglucan endotransglucosylase (XET) enzyme action in the root tips were analysed under PEG-induced OS by a combination of physiological and molecular approaches such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ fluorescence detection of XET in root tips. KEY RESULTS The results showed that Al accumulation, expression of XTH genes and XET action were distinctly reduced in the apical 0-2, 2-7 and 7-12 mm zones under OS, implying a potential regulatory role of XTH genes and XET enzyme in CW Al accumulation in these zones. CONCLUSIONS The results provide novel insights into the physiological and molecular mechanisms of CW structure modification as a response of plant roots to OS, which will contribute to mitigate Al and drought stresses, severely limiting crop yields on acid soils.
Collapse
Affiliation(s)
- Maolin Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Yanqi Ma
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
53
|
Aceves-García P, Álvarez-Buylla ER, Garay-Arroyo A, García-Ponce B, Muñoz R, Sánchez MDLP. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:858. [PMID: 27379140 PMCID: PMC4910468 DOI: 10.3389/fpls.2016.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/31/2016] [Indexed: 05/26/2023]
Abstract
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.
Collapse
Affiliation(s)
- Pamela Aceves-García
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Rodrigo Muñoz
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, MéxicoMexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| |
Collapse
|
54
|
Song L, Prince S, Valliyodan B, Joshi T, Maldonado dos Santos JV, Wang J, Lin L, Wan J, Wang Y, Xu D, Nguyen HT. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. BMC Genomics 2016; 17:57. [PMID: 26769043 PMCID: PMC4714440 DOI: 10.1186/s12864-016-2378-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. RESULTS The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. CONCLUSIONS The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.
Collapse
Affiliation(s)
- Li Song
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Silvas Prince
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Babu Valliyodan
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Trupti Joshi
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| | - Joao V Maldonado dos Santos
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Jiaojiao Wang
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Li Lin
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Jinrong Wan
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqin Wang
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- MU Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Science and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
55
|
Tripathi P, Rabara RC, Shulaev V, Shen QJ, Rushton PJ. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective. FRONTIERS IN PLANT SCIENCE 2015; 6:1145. [PMID: 26734044 PMCID: PMC4685135 DOI: 10.3389/fpls.2015.01145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/02/2015] [Indexed: 05/26/2023]
Abstract
The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.
Collapse
Affiliation(s)
- Prateek Tripathi
- Department of Biology and Microbiology, South Dakota State University Brookings, SD, USA
| | - Roel C Rabara
- Department of Biology and Microbiology, South Dakota State University Brookings, SD, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas Denton, TX, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas Las Vegas, NV, USA
| | - Paul J Rushton
- Texas A&M AgriLife Research & Extension Center Dallas, TX, USA
| |
Collapse
|
56
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
57
|
García-Calderón M, Pons-Ferrer T, Mrázova A, Pal'ove-Balang P, Vilková M, Pérez-Delgado CM, Vega JM, Eliášová A, Repčák M, Márquez AJ, Betti M. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. FRONTIERS IN PLANT SCIENCE 2015; 6:760. [PMID: 26442073 PMCID: PMC4585329 DOI: 10.3389/fpls.2015.00760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/04/2015] [Indexed: 05/23/2023]
Abstract
This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2) in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L. japonicus plants in response to stress.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| | - Teresa Pons-Ferrer
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| | - Anna Mrázova
- Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik UniversityKošice, Slovakia
| | - Peter Pal'ove-Balang
- Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik UniversityKošice, Slovakia
| | - Mária Vilková
- Faculty of Natural Sciences, Institute of Chemistry, P. J. Šafárik UniversityKošice, Slovakia
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| | - José M. Vega
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| | - Adriana Eliášová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of PrešovPrešov, Slovakia
| | - Miroslav Repčák
- Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik UniversityKošice, Slovakia
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de SevillaSeville, Spain
| |
Collapse
|
58
|
Chai C, Wang Y, Joshi T, Valliyodan B, Prince S, Michel L, Xu D, Nguyen HT. Soybean transcription factor ORFeome associated with drought resistance: a valuable resource to accelerate research on abiotic stress resistance. BMC Genomics 2015; 16:596. [PMID: 26268547 PMCID: PMC4534118 DOI: 10.1186/s12864-015-1743-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome sequencing provides the most comprehensive collection of an organism's genetic information. The availability of complete genome sequences is expected to dramatically deliver a high impact on biology. However, to achieve this impact in the area of crop improvement, significant efforts are still required on functional genomics, including the areas of gene annotation, cloning, expression profiling, and functional validation. RESULTS Here we report our efforts in generating the first transcription factor (TF) open reading frame (ORF)eome resource associated with drought resistance in soybean (Glycine max), a major oil/protein crop grown worldwide. This study provides a highly annotated soybean TF-ORFeome associated with drought resistance. It contains information from experimentally verified protein-coding sequences (CDS), expression profiling under several abiotic stresses (drought, salinity, dehydration and ABA), and computationally predicted protein subcellular localization and cis-regulatory elements (CREs) analysis. All the information is available to plant researchers through a freely accessible and user-friendly database, Soybean Knowledge Base (SoyKB). CONCLUSIONS The soybean TF-ORFeome provides a valuable public resource for functional genomics studies, especially in the area of plant abiotic stresses. It will accelerate findings in the areas of abiotic stresses and lead to the generation of crops with enhanced resistance to multiple stresses.
Collapse
Affiliation(s)
- Chenglin Chai
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqin Wang
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Silvas Prince
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Lydia Michel
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Science, Informatics Institute, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
59
|
Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, Li X, Yan Y. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 2015; 15:1544-63. [DOI: 10.1002/pmic.201400179] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Pengchao Hao
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Jiantang Zhu
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Aiqin Gu
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Dongwen Lv
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Pei Ge
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Guanxing Chen
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Xiaohui Li
- College of Life Science; Capital Normal University; Beijing P. R. China
| | - Yueming Yan
- College of Life Science; Capital Normal University; Beijing P. R. China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI); Jingzhou P. R. China
| |
Collapse
|
60
|
Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Xu D, Nguyen HT. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genomics 2015; 16:148. [PMID: 25880563 PMCID: PMC4351908 DOI: 10.1186/s12864-015-1316-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. RESULTS In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. CONCLUSIONS Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression may contribute to resistance to multiple SCN HG Types in the resistant soybean PI lines. Ethylene, protein degradation, and phenylpropanoid pathways, as well as many other pathways reported previously, may play important roles in mediating the soybean-SCN interactions. The revealed genes, pathways, and promoter elements can be further explored to regulate or engineer soybean for resistance to SCN.
Collapse
Affiliation(s)
- Jinrong Wan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Tri Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqing Jiao
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
- Current address: Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - Trupti Joshi
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Hongxin Zhang
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
61
|
Bizet F, Hummel I, Bogeat-Triboulot MB. Length and activity of the root apical meristem revealed in vivo by infrared imaging. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1387-95. [PMID: 25540436 PMCID: PMC4339598 DOI: 10.1093/jxb/eru488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length.
Collapse
Affiliation(s)
- François Bizet
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Irène Hummel
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Marie-Béatrice Bogeat-Triboulot
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| |
Collapse
|
62
|
Duan L, Sebastian J, Dinneny JR. Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 2015; 1242:105-22. [PMID: 25408448 DOI: 10.1007/978-1-4939-1902-4_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In order to acclimate to the soil environment, plants need to constantly optimize their root system architecture for efficient resource uptake. Roots are highly sensitive to changes in their surrounding environment and root system responses to a stress such as salinity and drought can be very dynamic and complex in nature. These responses can be manifested differentially at the cellular, tissue, or organ level and between the types of roots in a root system. Therefore, various approaches must be taken to quantify and characterize these responses. In this chapter, we review methods to study basic root growth traits, such as root length, cell cycle activity and meristem size, cell shape and size that form the basis for the emergent properties of the root system. Methods for the detailed analysis of lateral root initiation and postemergence growth are described. Finally, several live-imaging systems, which allow for dynamic imaging of the root, will be explored. Together these tools provide insight into the regulatory steps that sculpt the root system upon environmental change and can be used as the basis for the evaluation of genetic variation affecting these pathways.
Collapse
Affiliation(s)
- Lina Duan
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USA,
| | | | | |
Collapse
|
63
|
Simova-Stoilova LP, Romero-Rodríguez MC, Sánchez-Lucas R, Navarro-Cerrillo RM, Medina-Aunon JA, Jorrín-Novo JV. 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. FRONTIERS IN PLANT SCIENCE 2015; 6:627. [PMID: 26322068 PMCID: PMC4536546 DOI: 10.3389/fpls.2015.00627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/29/2015] [Indexed: 05/19/2023]
Abstract
Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth, and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and separated by two-dimensional electrophoresis. Coomassie colloidal stained gel images were analyzed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defense against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defense system in roots to actively counteract drought stress.
Collapse
Affiliation(s)
- Lyudmila P. Simova-Stoilova
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Maria C. Romero-Rodríguez
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Rosa Sánchez-Lucas
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Rafael M. Navarro-Cerrillo
- Department of Forestry Engineering, School of Agricultural and Forestry Engineering, University of Coìrdoba, Agrifood Campus of International ExcellenceCoìrdoba, Spain
| | - J. Alberto Medina-Aunon
- Computational Proteomics, Proteomics Facility, Centro Nacional de Biotecnología – CSICMadrid, Spain
| | - Jesús V. Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
- *Correspondence: Jesús V. Jorrín-Novo, Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence, Campus de Rabanales, Ed. Severo Ochoa, Planta baja, 14071 Cordoba, Spain
| |
Collapse
|
64
|
Ji H, Liu L, Li K, Xie Q, Wang Z, Zhao X, Li X. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4863-72. [PMID: 24935621 PMCID: PMC4144773 DOI: 10.1093/jxb/eru255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress.
Collapse
Affiliation(s)
- Hongtao Ji
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Ling Liu
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Kexue Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Qingen Xie
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Zhijuan Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Xuhua Zhao
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
65
|
Aranjuelo I, Arrese-Igor C, Molero G. Nodule performance within a changing environmental context. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1076-90. [PMID: 24974334 DOI: 10.1016/j.jplph.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 05/09/2023]
Abstract
Global climate models predict that future environmental conditions will see alterations in temperature, water availability and CO2 concentration ([CO2]) in the atmosphere. Climate change will reinforce the need to develop highly productive crops. For this purpose it is essential to identify target traits conditioning plant performance in changing environments. N2 fixing plants represent the second major crop of agricultural importance worldwide. The current review provides a compilation of results from existing literature on the effects of several abiotic stress conditions on nodule performance and N2 fixation. The environmental factors analysed include water stress, salinity, temperature, and elevated [CO2]. Despite the large number of studies analysing [CO2] effects in plants, frequently they have been conducted under optimal growth conditions that are difficult to find in natural conditions where different stresses often occur simultaneously. This is why we have also included a section describing the current state of knowledge of interacting environmental conditions in nodule functioning. Regardless of the environmental factor considered, it is evident that some general patterns of nodule response are observed. Nodule carbohydrate and N compound availability, together with the presence of oxygen reactive species (ROS) have proven to be the key factors modulating N2 fixation at the physiological/biochemical levels. However, with the exception of water availability and [CO2], it should also be considered that nodule performance has not been characterised in detail under other limiting growth conditions. This highlights the necessity to conduct further studies considering these factors. Finally, we also observe that a better understanding of these metabolic effects of changing environment in nodule functioning would require an integrated and synergistic investigation based on widely used and novel protocols such as transcriptomics, proteomics, metabolomics and stable isotopes.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31192 Mutilva Baja, Spain.
| | - Cesar Arrese-Igor
- Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra, Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco CP 56130, Mexico
| |
Collapse
|
66
|
Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT. Integrating omic approaches for abiotic stress tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2014; 5:244. [PMID: 24917870 PMCID: PMC4042060 DOI: 10.3389/fpls.2014.00244] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/13/2014] [Indexed: 05/18/2023]
Abstract
Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of MissouriColumbia, MO, USA
| |
Collapse
|
67
|
Wang B, Du Q, Yang X, Zhang D. Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC PLANT BIOLOGY 2014; 14:81. [PMID: 24673936 PMCID: PMC3986721 DOI: 10.1186/1471-2229-14-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. RESULTS Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. CONCLUSIONS This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
68
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
69
|
Quach TN, Tran LSP, Valliyodan B, Nguyen HTM, Kumar R, Neelakandan AK, Guttikonda SK, Sharp RE, Nguyen HT. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis. PLoS One 2014; 9:e84886. [PMID: 24465446 PMCID: PMC3900428 DOI: 10.1371/journal.pone.0084886] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis, NAC (NAM, ATAF and CUC) transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA). They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D). The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT), while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA), lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.
Collapse
Affiliation(s)
- Truyen N. Quach
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Lam-Son Phan Tran
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Babu Valliyodan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Hanh TM. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Rajesh Kumar
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Anjanasree K. Neelakandan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Satish Kumar Guttikonda
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Robert E. Sharp
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
70
|
Yang ZB, Eticha D, Führs H, Heintz D, Ayoub D, Van Dorsselaer A, Schlingmann B, Rao IM, Braun HP, Horst WJ. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5569-86. [PMID: 24123251 PMCID: PMC3871817 DOI: 10.1093/jxb/ert328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, PR China
- Institute for Plant Nutrition, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | | | - Hendrik Führs
- Applied Research and Advisory Service Agro, K+S KALI GmbH, Bertha-von-Suttner-Strasse 7, 34131 Kassel, Germany
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes (IBMP), 28 rue Goethe, CNRS-UPR2357, Université de Strasbourg, 67083 Strasbourg, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France
| | - Barbara Schlingmann
- Institute of BioPhysics, Leibniz Universität Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany
| | | | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany
| | - Walter Johannes Horst
- Institute for Plant Nutrition, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
71
|
Liu Y, Lai N, Gao K, Chen F, Yuan L, Mi G. Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLoS One 2013; 8:e61031. [PMID: 23577185 PMCID: PMC3620058 DOI: 10.1371/journal.pone.0061031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways.
Collapse
Affiliation(s)
- Ying Liu
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ningwei Lai
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Kun Gao
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fanjun Chen
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment, and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
72
|
Voothuluru P, Sharp RE. Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1223-33. [PMID: 23071257 DOI: 10.1093/jxb/ers277] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous work on the adaptation of maize (Zea mays L.) primary root growth to water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. Cell wall proteomic analysis suggested that levels of apoplastic reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), may be modified in a region-specific manner within the growth zone of water-stressed roots. Apoplastic ROS may have wall loosening or tightening effects and may also have other growth regulatory functions. To gain an understanding of how apoplastic ROS levels change under water stress, cerium chloride staining was used in conjunction with transmission electron microscopy to examine the spatial distribution of apoplastic H2O2. The results revealed that apoplastic H2O2 levels increased specifically in the apical region of the growth zone under water stress, correlating spatially with the maintenance of cell elongation. The basal regions of the growth zone of water-stressed roots and the entire growth zone of well-watered roots exhibited relatively low levels of apoplastic H2O2. The increase in apoplastic H2O2 in the apical region under water stress probably resulted, at least in part, from a pronounced increase in oxalate oxidase activity in this region. By contrast, well-watered roots showed negligible oxalate oxidase activity throughout the growth zone. The results show that changes in apoplastic ROS levels in the root growth zone under water-deficit conditions are regulated in a spatially-specific manner, suggesting that this response may play an important role in maize root adaptation to water stress.
Collapse
Affiliation(s)
- Priyamvada Voothuluru
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
73
|
Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 2013; 78:254-72. [DOI: 10.1016/j.jprot.2012.09.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/06/2012] [Accepted: 09/19/2012] [Indexed: 02/03/2023]
|
74
|
Baskin TI. Patterns of root growth acclimation: constant processes, changing boundaries. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:65-73. [DOI: 10.1002/wdev.94] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
75
|
Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M. Relevance of Proteomic Investigations in Plant Abiotic Stress Physiology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:621-35. [DOI: 10.1089/omi.2012.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khalid Rehman Hakeem
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Ruby Chandna
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Parvaiz Ahmad
- Department of Botany, Amar Singh College, University of Kashmir, Srinagar, India
| | - Muhammad Iqbal
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Munir Ozturk
- Department of Botany, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
76
|
Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One 2012; 7:e42946. [PMID: 23077481 PMCID: PMC3471899 DOI: 10.1371/journal.pone.0042946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.
Collapse
|
77
|
Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:792-805. [PMID: 22551450 DOI: 10.1111/j.1467-7652.2012.00697.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Drought conditions limit agricultural production by preventing crops from reaching their genetically predetermined maximum yields. Here, we present the results of field evaluations of rice overexpressing OsNAC9, a member of the rice NAC domain family. Root-specific (RCc3) and constitutive (GOS2) promoters were used to overexpress OsNAC9 and produced the transgenic RCc3:OsNAC9 and GOS2:OsNAC9 plants. Field evaluations over two cultivating seasons showed that grain yields of the RCc3:OsNAC9 and the GOS2:OsNAC9 plants were increased by 13%-18% and 13%-32% under normal conditions, respectively. Under drought conditions, RCc3:OsNAC9 plants showed an increased grain yield of 28%-72%, whilst the GOS2:OsNAC9 plants remained unchanged. Both transgenic lines exhibited altered root architecture involving an enlarged stele and aerenchyma. The aerenchyma of RCc3:OsNAC9 roots was enlarged to a greater extent than those of GOS2:OsNAC9 and non-transgenic (NT) roots, suggesting the importance of this phenotype for enhanced drought resistance. Microarray experiments identified 40 up-regulated genes by more than threefold (P < 0.01) in the roots of both transgenic lines. These included 9-cis-epoxycarotenoid dioxygenase, an ABA biosynthesis gene, calcium-transporting ATPase, a component of the Ca(2+) signalling pathway involved in cortical cell death and aerenchyma formation, cinnamoyl CoA reductase 1, a gene involved in lignin biosynthesis, and wall-associated kinases¸ genes involved in cell elongation and morphogenesis. Interestingly, O-methyltransferase, a gene necessary for barrier formation, was specifically up-regulated only in the RCc3:OsNAC9 roots. Such up-regulated genes that are commonly and specifically up-regulated in OsNAC9 transgenic roots may account for the altered root architecture conferring increased drought resistance phenotype.
Collapse
Affiliation(s)
- Mark C F R Redillas
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Vessal S, Siddique KH, Atkins CA. Comparative Proteomic Analysis of Genotypic Variation in Germination and Early Seedling Growth of Chickpea under Suboptimal Soil–Water Conditions. J Proteome Res 2012; 11:4289-307. [DOI: 10.1021/pr300415w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Saeedreza Vessal
- School
of Plant Biology, Faculty of Natural and Agricultural Sciences and ‡Institute of Agriculture, The University of Western Australia,
35 Stirling Highway, Crawley WA 6009, Australia
| | - Kadambot H.M. Siddique
- School
of Plant Biology, Faculty of Natural and Agricultural Sciences and ‡Institute of Agriculture, The University of Western Australia,
35 Stirling Highway, Crawley WA 6009, Australia
| | - Craig A. Atkins
- School
of Plant Biology, Faculty of Natural and Agricultural Sciences and ‡Institute of Agriculture, The University of Western Australia,
35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
79
|
Yang ZB, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3109-25. [PMID: 22371077 PMCID: PMC3350927 DOI: 10.1093/jxb/ers038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/06/2012] [Accepted: 01/17/2012] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al-drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (-0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Dejene Eticha
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Alfonso Albacete
- Institute of Plant Science, Karl-Franzens-Universität Graz, Schubertstrasse 51, A-8010 Graz, Austria
| | | | - Thomas Roitsch
- Institute of Plant Science, Karl-Franzens-Universität Graz, Schubertstrasse 51, A-8010 Graz, Austria
| | - Walter Johannes Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
80
|
Kang Y, Udvardi M. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. PLANT SIGNALING & BEHAVIOR 2012; 7:539-43. [PMID: 22516821 PMCID: PMC3419014 DOI: 10.4161/psb.19780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) production and scavenging in plants under drought stress have been studied intensively in recent years. Here we report a global analysis of gene expression for the major ROS generating and scavenging proteins in alfalfa root and shoot under gradual drought stress followed by one-day recovery. Data from two alfalfa varieties, one drought tolerant and one drought sensitive, were compared and no qualitative differences in ROS gene regulation between the two were found. Conserved, tissue-specific patterns of gene expression in response to drought were observed for several ROS-scavenging gene families, including ascorbate peroxidase, monodehydroascorbate reductase, and peroxiredoxin. In addition, differential gene expression within families was observed. Genes for the ROS-generating enzyme, NADPH oxidase were generally induced under drought, while those for glycolate oxidase were repressed. Among the ROS-scavenging protein genes, Ferritin, Cu/Zn superoxide dismutase (SOD), and the majority of the glutathione peroxidase family members were induced under drought in both roots and shoots of both alfalfa varieties. In contrast, Fe-SOD, CC-type glutaredoxins, and thoiredoxins were downregulated.
Collapse
|
81
|
Yun Z, Jin S, Ding Y, Wang Z, Gao H, Pan Z, Xu J, Cheng Y, Deng X. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2873-93. [PMID: 22323274 PMCID: PMC3350911 DOI: 10.1093/jxb/err390] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 05/18/2023]
Abstract
Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)-CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses.
Collapse
|
82
|
Jogaiah S, Govind SR, Tran LSP. Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 2012; 33:23-39. [PMID: 22364373 DOI: 10.3109/07388551.2012.659174] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, India
| | | | | |
Collapse
|
83
|
Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M, Udvardi M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:871-89. [PMID: 21838776 DOI: 10.1111/j.1365-313x.2011.04738.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Systems analysis of two alfalfa varieties, Wisfal (Medicago sativa ssp. falcata var. Wisfal) and Chilean (M. sativa ssp. sativa var. Chilean), with contrasting tolerance/sensitivity to drought revealed common and divergent responses to drought stress. At a qualitative level, molecular, biochemical, and physiological responses to drought stress were similar in the two varieties, indicating that they employ the same strategies to cope with drought. However, quantitative differences in responses at all levels were revealed that may contribute to greater drought tolerance in Wisfal. These included lower stomatal density and conductance in Wisfal; delayed leaf senescence compared with Chilean; greater root growth following a drought episode, and greater accumulation of osmolytes, including raffinose and galactinol, and flavonoid antioxidants in roots and/or shoots of Wisfal. Genes encoding transcription factors and other regulatory proteins, and genes involved in the biosynthesis of osmolytes and (iso)flavonoids were differentially regulated between the two varieties and represent potential targets for improving drought tolerance in alfalfa in the future.
Collapse
Affiliation(s)
- Yun Kang
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Sengupta D, Kannan M, Reddy AR. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. PLANTA 2011; 233:1111-27. [PMID: 21298284 DOI: 10.1007/s00425-011-1365-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 05/20/2023]
Abstract
To understand the complex drought response mechanism in crop plants, a systematic root proteomics approach was adopted to identify and analyze the expression patterns of differentially expressed major root proteins of Vigna radiata during short-term (3 days) and consecutive long-term water-deficit (6 days) as well as during recovery (6 days after re-watering). Photosynthetic gas exchange parameters of the plant were measured simultaneously during the stress treatment and recovery period. A total of 26 major protein spots were successfully identified by mass spectrometry, which were grouped according to their expression pattern during short-term stress as significantly up-regulated (9), down-regulated (10), highly down-regulated, beyond detection level of the software (2) and unchanged (5). The subsequent changes in the expression patterns of these proteins during long-term stress treatment and recovery period was analyzed to focus on the dynamic regulation of these functionally important proteins during progressive drought and recovery period. Cytoskeleton-related proteins were down-regulated initially (3d) but regained their expression levels during subsequent water-deficit (6d) while glycoprotein like lectins, which were primarily known to be involved in legume-rhizobia symbiosis, maintained their enhanced expression levels during both short and long-term drought treatment indicating their possible role in drought stress response of legumes. Oxidative stress-related proteins including Cu/Zn superoxide dismutase, oxidoreductase and aldehyde reductase were also up-regulated. The analyses of the dynamic regulation of these root proteins during short- and long-term water-deficit as well as recovery period may prove crucial for further understanding of drought response mechanisms in food legumes.
Collapse
Affiliation(s)
- Debashree Sengupta
- Photosynthesis and Plant Stress Biology Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
85
|
Mathesius U, Djordjevic MA, Oakes M, Goffard N, Haerizadeh F, Weiller GF, Singh MB, Bhalla PL. Comparative proteomic profiles of the soybean (Glycine max) root apex and differentiated root zone. Proteomics 2011; 11:1707-19. [PMID: 21438152 DOI: 10.1002/pmic.201000619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/29/2010] [Indexed: 11/06/2022]
Abstract
The root apical meristem (RAM) is responsible for the growth of the plant root system. Because of the importance of root architecture in the performance of crop plants, we established a proteome reference map of the soybean root apex and compared this with the proteome of the differentiated root zone. The root apex samples contained the apical 1 mm of the root, comprising the RAM, quiescent center and root cap. We identified 342 protein spots from 550 excised proteins (∼62%) of root apex samples by MALDI-TOF MS/MS analysis. All these proteins were also present in the differentiated root, but differed in abundance. Functional classification showed that the most numerous protein categories represented in the root were those of stress response, glycolysis, redox homeostasis and protein processing. Using DIGE, we identified 73 differentially accumulated proteins between root apex and differentiated root. Proteins overrepresented in the root apex belonged primarily to the pathways for protein synthesis and processing, cell redox homeostasis and flavonoid biosynthesis. Proteins underrepresented in the root apex were those of glycolysis, tricarboxylic acid metabolism and stress response. Our results highlight the importance of stress and defense response, redox control and flavonoid metabolism in the root apex.
Collapse
Affiliation(s)
- Ulrike Mathesius
- ARC Centre of Excellence for Integrative Legume Research, Australia; Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Tran LSP, Mochida K. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 2010; 10:447-62. [PMID: 20582712 DOI: 10.1007/s10142-010-0178-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/01/2010] [Accepted: 06/16/2010] [Indexed: 01/07/2023]
Abstract
Global soybean production is frequently impacted by various stresses, including both abiotic and biotic stresses. To develop soybean plants with enhanced tolerance to different stressors, functional genomics of soybean and a comprehensive understanding of available biotechnological resources and approaches are essential. In this review, we will discuss recent advances in soybean functional genomics which provide unprecedented opportunities to understand global patterns of gene expression, gene regulatory networks, various physiological, biochemical, and metabolic pathways as well as their association with the development of specific phenotypes. Soybean functional genomics, therefore, will ultimately enable us to develop new soybean varieties with improved productivity under adverse conditions by genetic engineering.
Collapse
|