51
|
Fernández JJ, Marín A, Rosales R, Penrice-Randal R, Mlcochova P, Alvarez Y, Villalón-Letelier F, Yildiz S, Pérez E, Rathnasinghe R, Cupic A, Kehrer T, Uccellini MB, Alonso S, Martínez F, McGovern BL, Clark JJ, Sharma P, Bayón Y, Alonso A, Albrecht RA, White KM, Schotsaert M, Miorin L, Stewart JP, Hiscox JA, Gupta RK, Irigoyen N, García-Sastre A, Crespo MS, Fernández N. The IRE1α-XBP1 arm of the unfolded protein response is a host factor activated in SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167193. [PMID: 38648902 DOI: 10.1016/j.bbadis.2024.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.
Collapse
Affiliation(s)
- Jose Javier Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marín
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Enrique Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Ciencias de la Salud, Universidad Europea Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Fernando Martínez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Briana Lynn McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Infectious Diseases, University of Georgia, GA 30602, USA
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore; Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain.
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
52
|
Aubé C, Murigneux É, Softic L, Judith D, Berlioz-Torrent C, Gallois-Montbrun S. [Role of G3BP proteins in SARS-CoV-2 replication]. Med Sci (Paris) 2024; 40:495-497. [PMID: 38986090 DOI: 10.1051/medsci/2024064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Corentin Aubé
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| | - Émilie Murigneux
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| | - Laurent Softic
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| | - Delphine Judith
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| | - Clarisse Berlioz-Torrent
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| | - Sarah Gallois-Montbrun
- Université Paris Cité, CNRS UMR8104, Inserm U1016, Institut Cochin, équipe Interactions hôte-virus, Paris, France
| |
Collapse
|
53
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
54
|
Khan WH, Ahmad R, Alam R, Khan N, Rather IA, Wani MY, Singh RB, Ahmad A. Role of ribosomal pathways and comorbidity in COVID-19: Insight from SARS-CoV-2 proteins and host proteins interaction network analysis. Heliyon 2024; 10:e29967. [PMID: 38694063 PMCID: PMC11059120 DOI: 10.1016/j.heliyon.2024.e29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The COVID-19 pandemic has become a significant global issue in terms of public health. While it is largely associated with respiratory complications, recent reports indicate that patients also experience neurological symptoms and other health issues. The objective of this study is to examine the network of protein-protein interactions (PPI) between SARS-CoV-2 proteins and human host proteins, pinpoint the central genes within this network implicated in disease pathology, and assess their viability as targets for drug development. The study adopts a network-based approach to construct a network of 29 SARS-CoV-2 proteins interacting with 2896 host proteins, with 176 host genes being identified as interacting genes with all the viral proteins. Gene ontology and pathway analysis of these host proteins revealed their role in biological processes such as translation, mRNA splicing, and ribosomal pathways. We further identified EEF2, RPS3, RPL9, RPS16, and RPL11 as the top 5 most connected hub genes in the disease-causing network, with significant interactions among each other. These hub genes were found to be involved in ribosomal pathways and cytoplasmic translation. Further a disease-gene interaction was also prepared to investigate the role of hub genes in other disorders and to understand the condition of comorbidity in COVID-19 patients. We also identified 13 drug molecules having interactions with all the hub genes, and estradiol emerged as the top potential drug target for the COVID-19 patients. Our study provides valuable insights using the protein-protein interaction network of SARS-CoV-2 proteins with host proteins and highlights the molecular basis of manifestation of COVID-19 and proposes drug for repurposing. As the pandemic continues to evolve, it is anticipated that investigating SARS-CoV-2 proteins will remain a critical area of focus for researchers globally, particularly in addressing potential challenges posed by specific SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ragib Alam
- Department of Microbiology, All India Institute of Medical Sciences, Delhi, 110029, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - R.K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
55
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
56
|
Jang GM, Annan Sudarsan AK, Shayeganmehr A, Prando Munhoz E, Lao R, Gaba A, Granadillo Rodríguez M, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein Interaction Map of APOBEC3 Enzyme Family Reveals Deamination-Independent Role in Cellular Function. Mol Cell Proteomics 2024; 23:100755. [PMID: 38548018 PMCID: PMC11070599 DOI: 10.1016/j.mcpro.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Arun Kumar Annan Sudarsan
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arzhang Shayeganmehr
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Amit Gaba
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA.
| | - Linda Chelico
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
57
|
Makio T, Zhang K, Love N, Mast FD, Liu X, Elaish M, Hobman T, Aitchison JD, Fontoura BMA, Wozniak RW. SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport. Mol Biol Cell 2024; 35:ar62. [PMID: 38507240 PMCID: PMC11151100 DOI: 10.1091/mbc.e23-10-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicole Love
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101
| | - Xue Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mohamed Elaish
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Tom Hobman
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Richard W. Wozniak
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
58
|
Su X, Wang X, Li N, Li L, Tuerhong Y, Yu Y, Wang Z, Shen T, Su Q, Zhang P. Study on the Performance Test of Fe-Ce-Al/MMT Catalysts with Different Fe/Ce Molar Ratios for Coking Wastewater Treatment. Molecules 2024; 29:1948. [PMID: 38731438 PMCID: PMC11085550 DOI: 10.3390/molecules29091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, China; (X.S.); (X.W.); (N.L.); (L.L.); (Y.T.); (Y.Y.); (Z.W.); (T.S.); (Q.S.)
| |
Collapse
|
59
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
60
|
Jia H, Chang Y, Chen Y, Chen X, Zhang H, Hua X, Xu M, Sheng Y, Zhang N, Cui H, Han L, Zhang J, Fu X, Song J. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun Biol 2024; 7:427. [PMID: 38589700 PMCID: PMC11001898 DOI: 10.1038/s42003-024-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Jian Zhang
- Thoracic Surgery Department, the third affiliated hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
61
|
Wannigama DL, Hurst C, Phattharapornjaroen P, Hongsing P, Sirichumroonwit N, Chanpiwat K, Rad S.M. AH, Storer RJ, Ounjai P, Kanthawee P, Ngamwongsatit N, Kupwiwat R, Kupwiwat C, Brimson JM, Devanga Ragupathi NK, Charuluxananan S, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Badavath VN, Amarasiri M, Verhasselt V, Kicic A, Chatsuwan T, Pirzada K, Jalali F, Reiersen AM, Abe S, Ishikawa H. Early treatment with fluvoxamine, bromhexine, cyproheptadine, and niclosamide to prevent clinical deterioration in patients with symptomatic COVID-19: a randomized clinical trial. EClinicalMedicine 2024; 70:102517. [PMID: 38516100 PMCID: PMC10955208 DOI: 10.1016/j.eclinm.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background Repurposed drugs with host-directed antiviral and immunomodulatory properties have shown promise in the treatment of COVID-19, but few trials have studied combinations of these agents. The aim of this trial was to assess the effectiveness of affordable, widely available, repurposed drugs used in combination for treatment of COVID-19, which may be particularly relevant to low-resource countries. Methods We conducted an open-label, randomized, outpatient, controlled trial in Thailand from October 1, 2021, to June 21, 2022, to assess whether early treatment within 48-h of symptoms onset with combinations of fluvoxamine, bromhexine, cyproheptadine, and niclosamide, given to adults with confirmed mild SARS-CoV-2 infection, can prevent 28-day clinical deterioration compared to standard care. Participants were randomly assigned to receive treatment with fluvoxamine alone, fluvoxamine + bromhexine, fluvoxamine + cyproheptadine, niclosamide + bromhexine, or standard care. The primary outcome measured was clinical deterioration within 9, 14, or 28 days using a 6-point ordinal scale. This trial is registered with ClinicalTrials.gov (NCT05087381). Findings Among 1900 recruited, a total of 995 participants completed the trial. No participants had clinical deterioration by day 9, 14, or 28 days among those treated with fluvoxamine plus bromhexine (0%), fluvoxamine plus cyproheptadine (0%), or niclosamide plus bromhexine (0%). Nine participants (5.6%) in the fluvoxamine arm had clinical deterioration by day 28, requiring low-flow oxygen. In contrast, most standard care arm participants had clinical deterioration by 9, 14, and 28 days. By day 9, 32.7% (110) of patients in the standard care arm had been hospitalized without requiring supplemental oxygen but needing ongoing medical care. By day 28, this percentage increased to 37.5% (21). Additionally, 20.8% (70) of patients in the standard care arm required low-flow oxygen by day 9, and 12.5% (16) needed non-invasive or mechanical ventilation by day 28. All treated groups significantly differed from the standard care group by days 9, 14, and 28 (p < 0.0001). Also, by day 28, the three 2-drug treatments were significantly better than the fluvoxamine arm (p < 0.0001). No deaths occurred in any study group. Compared to standard care, participants treated with the combination agents had significantly decreased viral loads as early as day 3 of treatment (p < 0.0001), decreased levels of serum cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) as early as day 5 of treatment, and interleukin-8 (IL-8) by day 7 of treatment (p < 0.0001) and lower incidence of post-acute sequelae of COVID-19 (PASC) symptoms (p < 0.0001). 23 serious adverse events occurred in the standard care arm, while only 1 serious adverse event was reported in the fluvoxamine arm, and zero serious adverse events occurred in the other arms. Interpretation Early treatment with these combinations among outpatients diagnosed with COVID-19 was associated with lower likelihood of clinical deterioration, and with significant and rapid reduction in the viral load and serum cytokines, and with lower burden of PASC symptoms. When started very soon after symptom onset, these repurposed drugs have high potential to prevent clinical deterioration and death in vaccinated and unvaccinated COVID-19 patients. Funding Ped Thai Su Phai (Thai Ducks Fighting Danger) social giver group.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natchalaikorn Sirichumroonwit
- Institute of Medical Research and Technology Assessment, Department of Medical Services, Ministry of Public Health, Thailand
| | | | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9010, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rosalyn Kupwiwat
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chaisit Kupwiwat
- Department of Critical Care Medicine, Vibhavadi Hospital, Bangkok, Thailand
| | - James Michael Brimson
- Department of Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, 632009, India
| | - Somrat Charuluxananan
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Valerie Verhasselt
- Centre of Research for Immunology and Breastfeeding (CIBF), Medical School and School of Biomedical Science, University of Western Australia, Perth, Western Australia, 6009, Australia
- Immunology and Breastfeeding Group, Neonatal and Life Course Health Program, Telethon Kids Institute, Perth, Western Australia, 6009, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kashif Pirzada
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, CA, United States
| | - Angela M. Reiersen
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| |
Collapse
|
62
|
Gao L, Wang Y, Gao Q, Chen Y, Zhang Z. Transcriptional control of CCAAT/enhancer binding protein zeta gene in chicken adipose tissue. Poult Sci 2024; 103:103540. [PMID: 38417330 PMCID: PMC10907851 DOI: 10.1016/j.psj.2024.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
CCAAT/enhancer binding protein zeta (C/EBPZ) was differentially expressed in abdominal adipose tissues of fat and lean broilers and regulated adipogenesis in chicken. The objective of this study was to elucidate the transcriptional regulation of C/EBPZ gene in chicken adipose tissue. A 2,031-base pair (bp) chicken C/EBPZ sequence (2,025 nucleotides upstream to 6 nucleotides downstream from the initiator codon, -2,025/+6) was studied. The sequence exhibited a significant promoter activity (P < 0.05) and had some cis-acting elements, notably, a core promoter was identified in nucleotides -94 to +6. Additionally, DNA pull-down assay showed that proteins interacted with chicken C/EBPZ promoter (-173/+6) in preadipocytes were implicated in transcription, post-transcriptional regulation and translation. In addition, KLF2 facilitated the activities of chicken C/EBPZ promoter (-2,025/+6, -1,409/+6, -793/+6, -485/+6, -173/+6, and -94/+6) in preadipocytes (P < 0.05). The expression levels of KLF2 and C/EBPZ in chicken abdominal adipose tissue were substantially associated (r = 0.5978278, P < 0.0001), and KLF2 increased C/EBPZ expression in vitro (P < 0.05). Additionally, chromatin immunoprecipitation (ChIP)-PCR analysis revealed that KLF2 has the ability to interact with the chicken C/EBPZ promoter regions at least at the positions -1,245/-1,048 and -571/-397. Mutation analysis showed that the CGCAGCGCCCG motif located in the chicken C/EBPZ promoter at positions -45 to -35 is involved in regulating transcription and facilitates trans activation by KLF2. These results provided some information of transcription control of C/EBPZ in chicken adipose tissue.
Collapse
Affiliation(s)
- Lingyu Gao
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China; Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, Henan, 450000, PR China
| | - Yingjun Wang
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China
| | - Qin Gao
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China
| | - Yuechan Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Zhiwei Zhang
- Department of Histology and Embryology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
63
|
Ramos RH, de Oliveira Lage Ferreira C, Simao A. Human protein-protein interaction networks: A topological comparison review. Heliyon 2024; 10:e27278. [PMID: 38562502 PMCID: PMC10982977 DOI: 10.1016/j.heliyon.2024.e27278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Protein-Protein Interaction Networks aim to model the interactome, providing a powerful tool for understanding the complex relationships governing cellular processes. These networks have numerous applications, including functional enrichment, discovering cancer driver genes, identifying drug targets, and more. Various databases make protein-protein networks available for many species, including Homo sapiens. This work topologically compares four Homo sapiens networks using a coarse-to-fine approach, comparing global characteristics, sub-network topology, specific nodes centrality, and interaction significance. Results show that the four human protein networks share many common protein-encoding genes and some global measures, but significantly differ in the interactions and neighbourhood. Small sub-networks from cancer pathways performed better than the whole networks, indicating an improved topological consistency in functional pathways. The centrality analysis shows that the same genes play different roles in different networks. We discuss how studies and analyses that rely on protein-protein networks for humans should consider their similarities and distinctions.
Collapse
Affiliation(s)
- Rodrigo Henrique Ramos
- University of São Paulo, São Carlos, SP, Brazil
- Federal Institute of São Paulo, São Carlos, SP, Brazil
| | | | | |
Collapse
|
64
|
Desantis J, Bazzacco A, Eleuteri M, Tuci S, Bianconi E, Macchiarulo A, Mercorelli B, Loregian A, Goracci L. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur J Med Chem 2024; 268:116202. [PMID: 38394929 DOI: 10.1016/j.ejmech.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Sara Tuci
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | | | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
65
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
66
|
Zhang Z, Wang S, Jiang L, Wei J, Lu C, Li S, Diao Y, Fang Z, He S, Tan T, Yang Y, Zou K, Shi J, Lin J, Chen L, Bao C, Fei J, Fang H. Priority index for critical Covid-19 identifies clinically actionable targets and drugs. Commun Biol 2024; 7:189. [PMID: 38366110 PMCID: PMC10873402 DOI: 10.1038/s42003-024-05897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lulu Jiang
- Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Jianwen Wei
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, W12 0HS, UK
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yizhu Diao
- College of Finance and Statistics, Hunan University, Changsha, 410079, Hunan, China
| | - Zhongcheng Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo He
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yisheng Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexin Zou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - James Lin
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
67
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
68
|
Jang GM, Sudarsan AKA, Shayeganmehr A, Munhoz EP, Lao R, Gaba A, Rodríguez MG, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein interaction map of APOBEC3 enzyme family reveals deamination-independent role in cellular function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579137. [PMID: 38370690 PMCID: PMC10871184 DOI: 10.1101/2024.02.06.579137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence is not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and map a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology.
Collapse
Affiliation(s)
- Gwendolyn M. Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arun Kumar Annan Sudarsan
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Centre for Commercialization of Regenerative Medicine (CCRM), 661 University Ave #1002, Toronto, ON M5G 1M1
| | - Arzhang Shayeganmehr
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW Calgary, AB T2N 4N1
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amit Gaba
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Faculty of Medicine & Dentistry, Department of Medicine, TB Program Evaluation & Research Unit, University of Alberta, 11402 University Avenue NW, Edmonton, AB, T6G 2J3
| | - Benjamin J. Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robyn M. Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Linda Chelico
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
69
|
Correa Marrero M, Capdevielle S, Huang W, Al-Subhi AM, Busscher M, Busscher-Lange J, van der Wal F, de Ridder D, van Dijk ADJ, Hogenhout SA, Immink RGH. Protein interaction mapping reveals widespread targeting of development-related host transcription factors by phytoplasma effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1281-1297. [PMID: 37965720 DOI: 10.1111/tpj.16546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Phytoplasmas are pathogenic bacteria that reprogram plant host development for their own benefit. Previous studies have characterized a few different phytoplasma effector proteins that destabilize specific plant transcription factors. However, these are only a small fraction of the potential effectors used by phytoplasmas; therefore, the molecular mechanisms through which phytoplasmas modulate their hosts require further investigation. To obtain further insights into the phytoplasma infection mechanisms, we generated a protein-protein interaction network between a broad set of phytoplasma effectors and a large, unbiased collection of Arabidopsis thaliana transcription factors and transcriptional regulators. We found widespread, but specific, interactions between phytoplasma effectors and host transcription factors, especially those related to host developmental processes. In particular, many unrelated effectors target specific sets of TCP transcription factors, which regulate plant development and immunity. Comparison with other host-pathogen protein interaction networks shows that phytoplasma effectors have unusual targets, indicating that phytoplasmas have evolved a unique and unusual infection strategy. This study contributes a rich and solid data source that guides further investigations of the functions of individual effectors, as demonstrated for some herein. Moreover, the dataset provides insights into the underlying molecular mechanisms of phytoplasma infection.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sylvain Capdevielle
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Ali M Al-Subhi
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 11 Al Khod 123, al-Seeb, Oman
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
70
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
71
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
72
|
Murigneux E, Softic L, Aubé C, Grandi C, Judith D, Bruce J, Le Gall M, Guillonneau F, Schmitt A, Parissi V, Berlioz-Torrent C, Meertens L, Hansen MMK, Gallois-Montbrun S. Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly. Nat Commun 2024; 15:640. [PMID: 38245532 PMCID: PMC10799903 DOI: 10.1038/s41467-024-44958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.
Collapse
Affiliation(s)
- Emilie Murigneux
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Laurent Softic
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Corentin Aubé
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Carmen Grandi
- Institute for Molecules and Materials, Radboud University, 6525, AJ, Nijmegen, the Netherlands
| | - Delphine Judith
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Johanna Bruce
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - François Guillonneau
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
- Institut de Cancérologie de l'Ouest (ICO), CRCi2NA-Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Angers, France
| | - Alain Schmitt
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Vincent Parissi
- Microbiologie Fondamentale et Pathogénicité Laboratory (MFP), UMR 5234, « Mobility of pathogenic genomes and chromatin dynamics » team (MobilVIR), CNRS-University of Bordeaux, DyNAVIR network, Bordeaux, France
| | | | - Laurent Meertens
- Université Paris Cité, Inserm U944, CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525, AJ, Nijmegen, the Netherlands
| | | |
Collapse
|
73
|
Hsieh MK, Klauda JB. Multiscale Molecular Dynamics Simulations of the Homodimer Accessory Protein ORF7b of SARS-CoV-2. J Phys Chem B 2024; 128:150-162. [PMID: 38147592 DOI: 10.1021/acs.jpcb.3c07105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The SARS-CoV-2 ORF7b protein has drawn attention for its potential role in viral pathogenesis, but its structural details and lateral membrane associations remain elusive. In this study, we conducted multiscale molecular dynamics simulations to provide detailed molecular insights of the protein's dimerization, which is crucial for unraveling its structural model of protein-protein interface important to regulating cellular immune response. To gain a deeper understanding of homodimer configurations, we employed a machine learning algorithm for structural-based clustering. Clusters were categorized into three distinct groups for both parallel and antiparallel orientations, highlighting the influence of the initial monomer conformation on dimer configurations. Analysis of hydrogen bonding and π-π and π-cation stacking interactions within clusters revealed variations in interactions between clusters. In parallel dimers, weak stacking interactions in the transmembrane (TM) region were observed. In contrast, antiparallel dimers exhibited strong hydrogen bonding and stacking interactions contributing to tight dimeric packing, both within and outside the TM domain. Overall, our study provides a comprehensive view of the structural dynamics of ORF7b homodimerization in both parallel and antiparallel orientations. These findings shed light on the molecular interactions involved in ORF7b dimerization, which are crucial for understanding its potential roles in SARS-CoV-2 pathogenesis. This knowledge could inform future research and therapeutic strategies targeting this viral protein.
Collapse
Affiliation(s)
- Min-Kang Hsieh
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, Maryland 20742, United States
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland College Park, College Park, Maryland 20742, United States
| |
Collapse
|
74
|
Kumar SA, Selvaa Kumar C, Dsouza N. Bitter taste receptors establish a stable binding affinity with the SARS-CoV-2-spike 1 protein akin to ACE2. J Biomol Struct Dyn 2024:1-14. [PMID: 38189335 DOI: 10.1080/07391102.2023.2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
COVID-19 is caused by the highly contagious SARS-CoV-2 virus, which originated in Wuhan, China, resulting in the highest worldwide mortality rate. Gustatory dysfunction is common among individuals infected with the Wild-type Wuhan strain. However, there are no reported cases of gustatory dysfunction among patients infected with the mutant delta variant. The reason behind this remains elusive to date. This in-silico-based study aims to unravel this clinical factor by evaluating the overall binding affinity of predominant bitter taste receptors associated with gustatory function (T2R-4, 10, 14, 19, 31, 38, 43, and 46) with the Receptor Binding Domain (RBD) of spike 1 (S1) protein of Wuhan (Wild)/delta-SARS-CoV-2 (mut1-T478K; mut2-E484K) variants. Based on docking and MM/PBSA free binding energy scores, the Wild RBD showed a stronger interaction with T2R-46 compared to the ACE2 protein. However, both delta variant mutants (mut1 and mut2) could not establish a stronger binding affinity with bitter taste receptor proteins, except for T2R-43 against mut1. In conclusion, the delta variants could not establish a better binding affinity with bitter taste receptors, contradicting the Wild variant that determines the severity of gustatory dysfunction among patients exposed to the delta and Wild SARS-CoV-2 variants. The study's inference also proposes T2R-46 as an alternate binding receptor target for RBD-S1 of Wild SARS-CoV-2, augmenting its virulence in all functional organs with compromised α-gustducin interaction and bitter sensitization. This in-silico-based study needs further wet-lab-based validation for a better understanding of the role of T2R-46-based viral entry in the human host.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Senthil Arun Kumar
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Sector-15, CBD Belapur, Navi Mumbai, India
| | - Norine Dsouza
- Department of Biotechnology, St. Xavier's College, Mumbai, India
| |
Collapse
|
75
|
Hou J, Wei Y, Zou J, Jaffery R, Sun L, Liang S, Zheng N, Guerrero AM, Egan NA, Bohat R, Chen S, Zheng C, Mao X, Yi SS, Chen K, McGrail DJ, Sahni N, Shi PY, Chen Y, Xie X, Peng W. Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nat Commun 2024; 15:109. [PMID: 38168026 PMCID: PMC10761986 DOI: 10.1038/s41467-023-44175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.
Collapse
Affiliation(s)
- Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Long Sun
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashley M Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Science, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative Sciences Program, MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
76
|
Wuchty S, White AK, Olthof AM, Drake K, Hume AJ, Olejnik J, Aguiar-Pulido V, Mühlberger E, Kanadia RN. Minor intron-containing genes as an ancient backbone for viral infection? PNAS NEXUS 2024; 3:pgad479. [PMID: 38274120 PMCID: PMC10810330 DOI: 10.1093/pnasnexus/pgad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Minor intron-containing genes (MIGs) account for <2% of all human protein-coding genes and are uniquely dependent on the minor spliceosome for proper excision. Despite their low numbers, we surprisingly found a significant enrichment of MIG-encoded proteins (MIG-Ps) in protein-protein interactomes and host factors of positive-sense RNA viruses, including SARS-CoV-1, SARS-CoV-2, MERS coronavirus, and Zika virus. Similarly, we observed a significant enrichment of MIG-Ps in the interactomes and sets of host factors of negative-sense RNA viruses such as Ebola virus, influenza A virus, and the retrovirus HIV-1. We also found an enrichment of MIG-Ps in double-stranded DNA viruses such as Epstein-Barr virus, human papillomavirus, and herpes simplex viruses. In general, MIG-Ps were highly connected and placed in central positions in a network of human-host protein interactions. Moreover, MIG-Ps that interact with viral proteins were enriched with essential genes. We also provide evidence that viral proteins interact with ancestral MIGs that date back to unicellular organisms and are mainly involved in basic cellular functions such as cell cycle, cell division, and signal transduction. Our results suggest that MIG-Ps form a stable, evolutionarily conserved backbone that viruses putatively tap to invade and propagate in human host cells.
Collapse
Affiliation(s)
- Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA 02118, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
77
|
Du R, Achi JG, Cui Q, Rong L. Paving new roads toward the advancement of broad-spectrum antiviral agents. J Med Virol 2024; 96:e29369. [PMID: 38180269 DOI: 10.1002/jmv.29369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Broad-spectrum antivirals (BSAs) have the advantageous property of being effective against a wide range of viruses with a single drug, offering a promising therapeutic solution for the largely unmet need in treating both existing and emerging viral infections. In this review, we summarize the current strategies for the development of novel BSAs, focusing on either targeting the commonalities during the replication of multiple viruses or the systemic immunity of humans. In comparison to BSAs that target viral replication, these immuno-modulatory agents possess an expanded spectrum of antiviral activity. However, antiviral immunity is a double-edged sword, and maintaining immune homeostasis ultimately dictates the health status of hosts during viral infections. Therefore, establishing an ideal goal for immuno-modulation in antiviral interventions is crucial. Herein we propose a bionic approach for immuno-modulation inspired by mimicking bats, which possess a more robust immune system for combating viral invasions, compared to humans. In addition, we discuss an empirical approach to treat diverse viral infections using traditional Chinese medicines (TCMs), mainly through bidirectional immuno-modulation to restore the disrupted homeostasis. Advancing our understanding of both the immune system of bats and the mechanisms underlying antiviral TCMs will significantly contribute to the future development of novel BSAs.
Collapse
Affiliation(s)
- Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jazmin G Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
78
|
Chen HM, Liu JX, Liu D, Hao GF, Yang GF. Human-virus protein-protein interactions maps assist in revealing the pathogenesis of viral infection. Rev Med Virol 2024; 34:e2517. [PMID: 38282401 DOI: 10.1002/rmv.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Many significant viral infections have been recorded in human history, which have caused enormous negative impacts worldwide. Human-virus protein-protein interactions (PPIs) mediate viral infection and immune processes in the host. The identification, quantification, localization, and construction of human-virus PPIs maps are critical prerequisites for understanding the biophysical basis of the viral invasion process and characterising the framework for all protein functions. With the technological revolution and the introduction of artificial intelligence, the human-virus PPIs maps have been expanded rapidly in the past decade and shed light on solving complicated biomedical problems. However, there is still a lack of prospective insight into the field. In this work, we comprehensively review and compare the effectiveness, potential, and limitations of diverse approaches for constructing large-scale PPIs maps in human-virus, including experimental methods based on biophysics and biochemistry, databases of human-virus PPIs, computational methods based on artificial intelligence, and tools for visualising PPIs maps. The work aims to provide a toolbox for researchers, hoping to better assist in deciphering the relationship between humans and viruses.
Collapse
Affiliation(s)
- Hui-Min Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Jia-Xin Liu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| |
Collapse
|
79
|
Bragazzi Cunha J, Leix K, Sherman EJ, Mirabelli C, Frum T, Zhang CJ, Kennedy AA, Lauring AS, Tai AW, Sexton JZ, Spence JR, Wobus CE, Emmer BT. Type I interferon signaling induces a delayed antiproliferative response in respiratory epithelial cells during SARS-CoV-2 infection. J Virol 2023; 97:e0127623. [PMID: 37975674 PMCID: PMC10734423 DOI: 10.1128/jvi.01276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex—IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.
Collapse
Affiliation(s)
- Juliana Bragazzi Cunha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Leix
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily J. Sherman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew A. Kennedy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adam S. Lauring
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew W. Tai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R. Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
80
|
Khan D, Fox PL. Aminoacyl-tRNA synthetase interactions in SARS-CoV-2 infection. Biochem Soc Trans 2023; 51:2127-2141. [PMID: 38108455 PMCID: PMC10754286 DOI: 10.1042/bst20230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases. Recent findings have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), utilizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA synthetases interact with a previously unknown RNA-element in the 3'-end of SARS-CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-CoV-2 interactions identified to date, with possible implications for the biology of host aaRSs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
81
|
Wong LYR, Odle A, Luhmann E, Wu DC, Wang Y, Teo QW, Ptak C, Sariol A, Lowery S, Mack M, Meyerholz DK, Wu NC, Radoshevich L, Perlman S. Contrasting roles of MERS-CoV and SARS-CoV-2 internal proteins in pathogenesis in mice. mBio 2023; 14:e0247623. [PMID: 37882568 PMCID: PMC10746224 DOI: 10.1128/mbio.02476-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The function of betacoronavirus internal protein has been relatively understudied. The earliest report on the internal protein of mouse hepatitis virus suggested that the internal protein is a structural protein without significant functions in virus replication and virulence. However, the internal proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus, and SARS-CoV-2 have been shown to evade immune responses. Despite the reported functions of the internal protein in these highly pathogenic human coronaviruses, its role in mediating pathogenesis in experimentally infected animals has not been characterized. Our data indicated that despite the similar genomic location and expression strategy of these internal proteins, their effects on virulence are vastly different and virus specific, highlighting the complexity between host-virus interaction and disease outcome.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Abby Odle
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Emma Luhmann
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Douglas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Celeste Ptak
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Alan Sariol
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Shea Lowery
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Matthias Mack
- Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lilliana Radoshevich
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
- Department of Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
82
|
Noh SS, Shin HJ. RSV Induces Activation of Intracellular EGFR on the Mitochondrial Membrane for Virus Propagation. Int J Mol Sci 2023; 24:17431. [PMID: 38139259 PMCID: PMC10744162 DOI: 10.3390/ijms242417431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects people of all ages and is one of the most common causative agents of lower respiratory tract infections, such as pneumonia, especially in infants under one year of age. However, no direct treatment has been developed for RSV infections. Maintenance of mitochondrial homeostasis and epidermal growth factor receptor (EGFR) activity is important for human cell growth. This study reported that RSV infection maintained the total cellular ATP levels and promoted the intracellular activity of EGFR to replicate RSV. RSV activates the intracellular EGFR-mediated cell survival signaling cascade and maintains mitochondrial EGFR expression for viral production during early events after infection. The approved EGFR inhibitor, vandetanib, markedly reduces RSV propagation, suggesting that EGFR is an attractive host target for RSV therapeutics. Our results suggest that RSV infection maintains cellular ATP levels and promotes the activation of intracellular EGFR in the mitochondrial membrane, significantly contributing to robust RSV propagation.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
83
|
Li X, Hu H, Liu W, Zhang Q, Wang Y, Chen X, Zhu Y, Hu Z, Wang M, Ma J, Leng L. SARS-CoV-2-infected hiPSC-derived cardiomyocytes reveal dynamic changes in the COVID-19 hearts. Stem Cell Res Ther 2023; 14:361. [PMID: 38087340 PMCID: PMC10717444 DOI: 10.1186/s13287-023-03603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The ongoing coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on our societies. Moreover, the disease's extensive and sustained symptoms are now becoming a nonnegligible medical challenge. In this respect, data indicate that heart failure is one of the most common readmission diagnoses among COVID-19 patients. METHODS In this study, we used human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes to develop an in vitro model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and studied the dynamic changes occurring in cardiomyocytes after SARS-CoV-2 infection. RESULTS To this end, we have created an effective time series SARS-CoV-2 infection model exhibiting different functional patterns of up- and downregulated proteins, and demonstrating that SARS-CoV-2 mainly affects (i) the lipid and the energy metabolism of hiPSC-derived cardiomyocytes during the early infection stage, and (ii) the DNA repair ability of cardiomyocytes during the late infection stage. By analyzing the proteome changes occurring at different infection timepoints, we were able to observe that the simulated disease (COVID-19) course developed rapidly, and that each of the studied timepoints was characterized by a distinct protein expression pattern. CONCLUSIONS Our findings highlight the importance of early detection and personalized treatment based on the disease stage. Finally, by combing the proteomics data with virus-host interaction network analysis, we were able to identify several potential drug targets for the disease.
Collapse
Affiliation(s)
- Xiao Li
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hengrui Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Qiyu Zhang
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yujie Wang
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Basic Medical School, Anhui Medical University, Anhui, 230032, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, 430071, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
84
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad MD, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A Pan-Respiratory Antiviral Chemotype Targeting a Host Multi-Protein Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.01.17.426875. [PMID: 34931190 PMCID: PMC8687465 DOI: 10.1101/2021.01.17.426875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral lifecycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Robert J. Hogan
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | - Ralph A. Tripp
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | | | | | - Jonathan C. Reed
- Dept. of Global Health, University of Washington, Seattle, WA, USA
| | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Vishwanath R. Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| |
Collapse
|
85
|
Pahmeier F, Lavacca TM, Goellner S, Neufeldt CJ, Prasad V, Cerikan B, Rajasekharan S, Mizzon G, Haselmann U, Funaya C, Scaturro P, Cortese M, Bartenschlager R. Identification of host dependency factors involved in SARS-CoV-2 replication organelle formation through proteomics and ultrastructural analysis. J Virol 2023; 97:e0087823. [PMID: 37905840 PMCID: PMC10688318 DOI: 10.1128/jvi.00878-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Felix Pahmeier
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Teresa-Maria Lavacca
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher J. Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | | | - Giulia Mizzon
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Pietro Scaturro
- Systems Arbovirology, Leibniz Institute of Virology, Hamburg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Center for Integrative Infectious Disease Research, Heidelberg, Germany
- German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
- Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
86
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
87
|
Stewart H, Lu Y, O’Keefe S, Valpadashi A, Cruz-Zaragoza LD, Michel HA, Nguyen SK, Carnell GW, Lukhovitskaya N, Milligan R, Adewusi Y, Jungreis I, Lulla V, Matthews DA, High S, Rehling P, Emmott E, Heeney JL, Davidson AD, Edgar JR, Smith GL, Firth AE. The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity. iScience 2023; 26:108080. [PMID: 37860693 PMCID: PMC10583119 DOI: 10.1016/j.isci.2023.108080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-β production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah O’Keefe
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anusha Valpadashi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Yasmin Adewusi
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Valeria Lulla
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Stephen High
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
88
|
Taher SM, Abdo JM, Merza MA. Phylogenetic, Sequencing, and Mutation Analysis of SARS-CoV-2 Omicron (BA.1) and Its Subvariants (BA.1.1, BA.2) During the Fifth Wave of the COVID-19 Pandemic in the Iraqi Kurdistan Region. Cureus 2023; 15:e48637. [PMID: 38090439 PMCID: PMC10711328 DOI: 10.7759/cureus.48637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 10/16/2024] Open
Abstract
Introduction In December 2019, a global outbreak of SARS-CoV-2 occurred in Wuhan, China, resulting in the COVID-19 pandemic. Since then, the virus has spread to all countries, necessitating a worldwide initiative to create effective treatments and vaccines. Methods The RNA of samples QIAamp Viral RNA Mini Kit (Qiagen, MD). SARS-CoV-2 RNA was reverse transcribed with SuperScript IV VILO (ThermoFisher Scientific, Waltham, MA). The virus cDNA was amplified in two multiplexed PCR reactions using Q5 DNA High-fidelity Polymerase (New England Biolabs, Ipswich, MA). The genome was entirely sequenced from 40 samples at the Scripps Research Institute (TSRI) in California, USA. The samples were sequenced using a NovaSeq 6000 SP Reagent Kit v1.5 (Illumina, USA). The TSRI then entered these sequences into the GISAID database. The virus sequence was matched to the SARS-COV-2 virus identified in Wuhan, China (accession number: NC 045512.2) using Illumina sequencing technology (Illumina, CA), finding 95 different changes. The NextClade (clades.nextstrain.org) and Mega 11 (https://www.megasoftware.net) software tools were used to analyze SARS-CoV-2 genome sequence alignment and mutation studies. Results Following a sequencing analysis, it was determined that the spike glycoprotein (S) included a total of 38 mutations. Thirty of these mutations were found in the ORF1a gene. Additionally, 11 mutations were found in the ORF1b gene, with the remaining mutations found in the nucleocapsid (N), membrane protein (M), open reading frames 6 (ORF6), open reading frames 9 (ORF9), and envelope (E) genes. The phylogenetic analysis and transmission studies indicated that the isolates discovered in Iraq had separate infection origins and were closely linked to those discovered in other nations and states. Conclusion According to the findings of this study, a new vaccine can be developed based on identifying new Omicron variant mutations and subvariants such as BA.2, which were identified for the first time in Iraq.
Collapse
Affiliation(s)
- Sherzad M Taher
- Department of Basic Sciences, University of Duhok, Duhok, IRQ
| | - Jassim M Abdo
- Department of Basic Sciences, University of Duhok, Duhok, IRQ
| | - Muayad A Merza
- Department of Internal Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
89
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
90
|
Devarkar SC, Vetick M, Balaji S, Lomakin IB, Yang L, Jin D, Gilbert WV, Chen S, Xiong Y. Structural basis for translation inhibition by MERS-CoV Nsp1 reveals a conserved mechanism for betacoronaviruses. Cell Rep 2023; 42:113156. [PMID: 37733586 DOI: 10.1016/j.celrep.2023.113156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
All betacoronaviruses (β-CoVs) encode non-structural protein 1 (Nsp1), an essential pathogenicity factor that potently restricts host gene expression. Among the β-CoV family, MERS-CoV is the most distantly related member to SARS-CoV-2, and the mechanism for host translation inhibition by MERS-CoV Nsp1 remains controversial. Herein, we show that MERS-CoV Nsp1 directly interacts with the 40S ribosomal subunit. Using cryogenic electron microscopy (cryo-EM), we report a 2.6-Å structure of the MERS-CoV Nsp1 bound to the human 40S ribosomal subunit. The extensive interactions between C-terminal domain of MERS-CoV Nsp1 and the mRNA entry channel of the 40S ribosomal subunit are critical for its translation inhibition function. This mechanism of MERS-CoV Nsp1 is strikingly similar to SARS-CoV and SARS-CoV-2 Nsp1, despite modest sequence conservation. Our results reveal that the mechanism of host translation inhibition is conserved across β-CoVs and highlight a potential therapeutic target for the development of antivirals that broadly restrict β-CoVs.
Collapse
Affiliation(s)
- Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Michael Vetick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Shravani Balaji
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luojia Yang
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Danni Jin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Sidi Chen
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
91
|
Bouhaddou M, Reuschl AK, Polacco BJ, Thorne LG, Ummadi MR, Ye C, Rosales R, Pelin A, Batra J, Jang GM, Xu J, Moen JM, Richards AL, Zhou Y, Harjai B, Stevenson E, Rojc A, Ragazzini R, Whelan MVX, Furnon W, De Lorenzo G, Cowton V, Syed AM, Ciling A, Deutsch N, Pirak D, Dowgier G, Mesner D, Turner JL, McGovern BL, Rodriguez ML, Leiva-Rebollo R, Dunham AS, Zhong X, Eckhardt M, Fossati A, Liotta NF, Kehrer T, Cupic A, Rutkowska M, Mena I, Aslam S, Hoffert A, Foussard H, Olwal CO, Huang W, Zwaka T, Pham J, Lyons M, Donohue L, Griffin A, Nugent R, Holden K, Deans R, Aviles P, Lopez-Martin JA, Jimeno JM, Obernier K, Fabius JM, Soucheray M, Hüttenhain R, Jungreis I, Kellis M, Echeverria I, Verba K, Bonfanti P, Beltrao P, Sharan R, Doudna JA, Martinez-Sobrido L, Patel AH, Palmarini M, Miorin L, White K, Swaney DL, Garcia-Sastre A, Jolly C, Zuliani-Alvarez L, Towers GJ, Krogan NJ. SARS-CoV-2 variants evolve convergent strategies to remodel the host response. Cell 2023; 186:4597-4614.e26. [PMID: 37738970 PMCID: PMC10604369 DOI: 10.1016/j.cell.2023.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ann-Kathrin Reuschl
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lucy G Thorne
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Manisha R Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Chengjin Ye
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Romel Rosales
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bhavya Harjai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Abdullah M Syed
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alison Ciling
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noa Deutsch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Pirak
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Giulia Dowgier
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Briana L McGovern
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rocio Leiva-Rebollo
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden, UK
| | - Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nicholas F Liotta
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kehrer
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasija Cupic
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Rutkowska
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alyssa Hoffert
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Charles Ochieng' Olwal
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Weiqing Huang
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Pham
- Synthego Corporation, Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ignacia Echeverria
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kliment Verba
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Pedro Beltrao
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Jennifer A Doudna
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Luis Martinez-Sobrido
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lisa Miorin
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris White
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Clare Jolly
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Greg J Towers
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
92
|
Salvador E, Mazzi C, De Santis N, Bertoli G, Jonjić A, Coklo M, Majdan M, Peñalvo JL, Buonfrate D. Impact of domiciliary administration of NSAIDs on COVID-19 hospital outcomes: an unCoVer analysis. Front Pharmacol 2023; 14:1252800. [PMID: 37876733 PMCID: PMC10591104 DOI: 10.3389/fphar.2023.1252800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Effective domiciliary treatment can be useful in the early phase of COVID-19 to limit disease progression, and pressure on hospitals. There are discrepant data on the use of non-steroidal anti-inflammatory drugs (NSAIDs). Aim of this study is to evaluate whether the clinical outcome of patients who were hospitalized for COVID-19 is influenced by domiciliary treatment with NSAIDs. Secondary objective was to explore the association between other patient characteristics/therapies and outcome. Methods: A large dataset of COVID-19 patients was created in the context of a European Union-funded project (unCoVer). The primary outcome was explored using a study level random effects meta-analysis for binary (multivariate logistic regression models) outcomes adjusted for selected factors, including demographics and other comorbidities. Results: 218 out of 1,144 patients reported use of NSAIDs before admission. No association between NSAIDs use and clinical outcome was found (unadj. OR: 0.96, 95%CI: 0.68-1.38). The model showed an independent upward risk of death with increasing age (OR 1.06; 95% CI 1.05-1.07) and male sex (1.36; 95% CI 1.04-1.76). Conclusion: In our study, the domiciliary use of NSAIDs did not show association with clinical outcome in patients hospitalized with COVID-19. Older ages and male sex were associated to an increased risk of death.
Collapse
Affiliation(s)
- Elena Salvador
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Cristina Mazzi
- Clinical Research Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Nicoletta De Santis
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Giulia Bertoli
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Antonija Jonjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Miran Coklo
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Trnava University, Trnava, Slovakia
| | - José L. Peñalvo
- Unit of Non-Communicable Diseases, Institute of Tropical Medicine, Antwerp, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dora Buonfrate
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| |
Collapse
|
93
|
Sunshine S, Puschnik AS, Replogle JM, Laurie MT, Liu J, Zha BS, Nuñez JK, Byrum JR, McMorrow AH, Frieman MB, Winkler J, Qiu X, Rosenberg OS, Leonetti MD, Ye CJ, Weissman JS, DeRisi JL, Hein MY. Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq. Nat Commun 2023; 14:6245. [PMID: 37803001 PMCID: PMC10558542 DOI: 10.1038/s41467-023-41788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley-UCSF Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliane Winkler
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oren S Rosenberg
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Marco Y Hein
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
94
|
Adam L, Stanifer M, Springer F, Mathony J, Brune M, Di Ponzio C, Eils R, Boulant S, Niopek D, Kallenberger SM. Transcriptomics-inferred dynamics of SARS-CoV-2 interactions with host epithelial cells. Sci Signal 2023; 16:eabl8266. [PMID: 37751479 DOI: 10.1126/scisignal.abl8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Virus-host interactions can reveal potentially effective and selective therapeutic targets for treating infection. Here, we performed an integrated analysis of the dynamics of virus replication and the host cell transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using human Caco-2 colon cancer cells as a model. Time-resolved RNA sequencing revealed that, upon infection, cells immediately transcriptionally activated genes associated with inflammatory pathways that mediate the antiviral response, which was followed by an increase in the expression of genes involved in ribosome and mitochondria function, thus suggesting rapid alterations in protein production and cellular energy supply. At later stages, between 24 and 48 hours after infection, the expression of genes involved in metabolic processes-in particular, those related to xenobiotic metabolism-was decreased. Mathematical modeling incorporating SARS-CoV-2 replication suggested that SARS-CoV-2 proteins inhibited the host antiviral response and that virus transcripts exceeded the translation capacity of the host cells. Targeting kinase-dependent pathways that exhibited increases in transcription in host cells was as effective as a virus-targeted inhibitor at repressing viral replication. Our findings in this model system delineate a sequence of SARS-CoV-2 virus-host interactions that may facilitate the identification of druggable host pathways to suppress infection.
Collapse
Affiliation(s)
- Lukas Adam
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Megan Stanifer
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg 69120, Germany
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Fabian Springer
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Jan Mathony
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Center for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- BZH Graduate School, Heidelberg University, Heidelberg 69120, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany
| | - Maik Brune
- Clinic of Endocrinology, Diabetology, Metabolism, and Clinical Chemistry, Central Laboratory, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Chiara Di Ponzio
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
| | - Roland Eils
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg 69120, Germany
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominik Niopek
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Center for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany
| | - Stefan M Kallenberger
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| |
Collapse
|
95
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
96
|
Wang Y, Li P, Xu L, de Vries AC, Rottier RJ, Wang W, Crombag MRB, Peppelenbosch MP, Kainov DE, Pan Q. Combating pan-coronavirus infection by indomethacin through simultaneously inhibiting viral replication and inflammatory response. iScience 2023; 26:107631. [PMID: 37664584 PMCID: PMC10474465 DOI: 10.1016/j.isci.2023.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Severe infections with coronaviruses are often accompanied with hyperinflammation, requiring therapeutic strategies to simultaneously tackle the virus and inflammation. By screening a safe-in-human broad-spectrum antiviral agents library, we identified that indomethacin can inhibit pan-coronavirus infection in human cell and airway organoids models. Combining indomethacin with oral antiviral drugs authorized for treating COVID-19 results in synergistic anti-coronavirus activity. Coincidentally, screening a library of FDA-approved drugs identified indomethacin as the most potent potentiator of interferon response through increasing STAT1 phosphorylation. Combining indomethacin with interferon-alpha exerted synergistic antiviral effects against multiple coronaviruses. The anti-coronavirus activity of indomethacin is associated with activating interferon response. In a co-culture system of lung epithelial cells with macrophages, indomethacin inhibited both viral replication and inflammatory response. Collectively, indomethacin is a pan-coronavirus inhibitor that can simultaneously inhibit virus-triggered inflammatory response. The therapeutic potential of indomethacin can be further augmented by combining it with oral antiviral drugs or interferon-alpha.
Collapse
Affiliation(s)
- Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Annemarie C. de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Marie-Rose B.S. Crombag
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
97
|
Mihalič F, Benz C, Kassa E, Lindqvist R, Simonetti L, Inturi R, Aronsson H, Andersson E, Chi CN, Davey NE, Överby AK, Jemth P, Ivarsson Y. Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets. Nat Commun 2023; 14:5636. [PMID: 37704626 PMCID: PMC10499821 DOI: 10.1038/s41467-023-41312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 μM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
98
|
Schafer JW, Porter LL. Evolutionary selection of proteins with two folds. Nat Commun 2023; 14:5478. [PMID: 37673981 PMCID: PMC10482954 DOI: 10.1038/s41467-023-41237-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Although most globular proteins fold into a single stable structure, an increasing number have been shown to remodel their secondary and tertiary structures in response to cellular stimuli. State-of-the-art algorithms predict that these fold-switching proteins adopt only one stable structure, missing their functionally critical alternative folds. Why these algorithms predict a single fold is unclear, but all of them infer protein structure from coevolved amino acid pairs. Here, we hypothesize that coevolutionary signatures are being missed. Suspecting that single-fold variants could be masking these signatures, we developed an approach, called Alternative Contact Enhancement (ACE), to search both highly diverse protein superfamilies-composed of single-fold and fold-switching variants-and protein subfamilies with more fold-switching variants. ACE successfully revealed coevolution of amino acid pairs uniquely corresponding to both conformations of 56/56 fold-switching proteins from distinct families. Then, we used ACE-derived contacts to (1) predict two experimentally consistent conformations of a candidate protein with unsolved structure and (2) develop a blind prediction pipeline for fold-switching proteins. The discovery of widespread dual-fold coevolution indicates that fold-switching sequences have been preserved by natural selection, implying that their functionalities provide evolutionary advantage and paving the way for predictions of diverse protein structures from single sequences.
Collapse
Affiliation(s)
- Joseph W Schafer
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Lauren L Porter
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA.
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
99
|
Wei X, Pan C, Zhang X, Zhang W. Total network controllability analysis discovers explainable drugs for Covid-19 treatment. Biol Direct 2023; 18:55. [PMID: 37670359 PMCID: PMC10478273 DOI: 10.1186/s13062-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural controllability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. RESULTS We developed an efficient algorithm to identify all control hubs, applying it to a largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. CONCLUSIONS Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery. Our new approach is general and applicable to repurposing drugs for other diseases.
Collapse
Affiliation(s)
- Xinru Wei
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
100
|
Chenna A, Khan WH, Dash R, Saraswat S, Chugh A, Rathore AS, Goel G. An efficient computational protocol for template-based design of peptides that inhibit interactions involving SARS-CoV-2 proteins. Proteins 2023; 91:1222-1234. [PMID: 37283297 DOI: 10.1002/prot.26511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) complex of SARS-CoV-2 lies at the core of its replication and transcription processes. The interfaces between holo-RdRp subunits are highly conserved, facilitating the design of inhibitors with high affinity for the interaction interface hotspots. We, therefore, take this as a model protein complex for the application of a structural bioinformatics protocol to design peptides that inhibit RdRp complexation by preferential binding at the interface of its core subunit nonstructural protein, nsp12, with accessory factor nsp7. Here, the interaction hotspots of the nsp7-nsp12 subunit of RdRp, determined from a long molecular dynamics trajectory, are used as a template. A large library of peptide sequences constructed from multiple hotspot motifs of nsp12 is screened in-silico to determine sequences with high geometric complementarity and interaction specificity for the binding interface of nsp7 (target) in the complex. Two lead designed peptides are extensively characterized using orthogonal bioanalytical methods to determine their suitability for inhibition of RdRp complexation. Binding affinity of these peptides to accessory factor nsp7, determined using a surface plasmon resonance (SPR) assay, is slightly better than that of nsp12: dissociation constant of 133nM and 167nM, respectively, compared to 473nM for nsp12. A competitive ELISA is used to quantify inhibition of nsp7-nsp12 complexation, with one of the lead peptides giving an IC50 of 25μM . Cell penetrability and cytotoxicity are characterized using a cargo delivery assay and MTT cytotoxicity assay, respectively. Overall, this work presents a proof-of-concept of an approach for rational discovery of peptide inhibitors of SARS-CoV-2 protein-protein interactions.
Collapse
Affiliation(s)
- Akshay Chenna
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Virology Unit, Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Saurabh Saraswat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|