51
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
52
|
González-Fernández M, Vázquez-Coto D, Albaiceta GM, Amado-Rodríguez L, Clemente MG, Velázquez-Cuervo L, García-Lago C, Gómez J, Coto E. Chromosome-Y haplogroups in Asturias (Northern Spain) and their association with severe COVID-19. Mol Genet Genomics 2024; 299:49. [PMID: 38704518 PMCID: PMC11069473 DOI: 10.1007/s00438-024-02143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
The main objective of this study was to determine whether the common Y-haplogroups were be associated with the risk of developing severe COVID-19 in Spanish male. We studied 479 patients who required hospitalization due to COVID-19 and 285 population controls from the region of Asturias (northern Spain), They were genotyped for several polymorphisms that define the common European Y-haplogroups. We compared the frequencies between patients and controls aged ≤ 65 and >65 years. There were no different haplogroup frequencies between the two age groups of controls. Haplogroup R1b was less common in patients aged ≤65 years. Haplogroup I was more common in the two patient´s groups compared to controls (p = 0.02). Haplogroup R1b was significantly more frequent among hypertensive patients, without difference between the hypertensive and normotensive controls. This suggested that R1b could increase the risk for severe COVID-19 among male with pre-existing hypertension. In conclusion, we described the Y-haplogroup structure among Asturians. We found an increased risk of severe COVID-19 among haplogroup I carriers, and a significantly higher frequency of R1b among hypertensive patients. These results indicate that Y-chromosome variants could serve as markers to define the risk of developing a severe form of COVID-19.
Collapse
Affiliation(s)
| | - Daniel Vázquez-Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta G Clemente
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | - Claudia García-Lago
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain.
- Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
53
|
Huret C, Ferrayé L, David A, Mohamed M, Valentin N, Charlotte F, Savignac M, Goodhardt M, Guéry JC, Rougeulle C, Morey C. Altered X-chromosome inactivation predisposes to autoimmunity. SCIENCE ADVANCES 2024; 10:eadn6537. [PMID: 38701219 PMCID: PMC11068014 DOI: 10.1126/sciadv.adn6537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.
Collapse
Affiliation(s)
- Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Léa Ferrayé
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Antoine David
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nicolas Valentin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Frédéric Charlotte
- Sorbonne University, Department of Pathological Anatomy and Cytology, Hôpital Pitié-Salpêtrière Charles Foix, F-75013, Paris, France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Michele Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Céline Morey
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
54
|
Saheb Sharif-Askari N, Hafezi S, Saheb Sharif-Askari F, Ali Hussain Alsayed H, B. M. Ahmed S, Alsafar HS, Halwani R. Multiple inborn errors of type I IFN immunity in a 33-year-old male with a fatal case of COVID-19. Heliyon 2024; 10:e29338. [PMID: 38665565 PMCID: PMC11043952 DOI: 10.1016/j.heliyon.2024.e29338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The host genetic inborn errors of immunity (IEIs) have been shown to contribute to susceptibility to life-threatening coronavirus disease 2019 (COVID-19), as it had been associated previously with other viral infections. Most genetic association studies have described IEIs as a monogenic defect, while there have been no reports of patients with multiple inherited immune deficiencies. This is a complex case of IEIs predisposing to severe viral infections in an unvaccinated 33-year-old male patient. The patient was admitted with no respiratory symptoms, showed a SARS-CoV-2 PCR positive test on the second day of admission, started developing progressive lung consolidation within three days of hospitalization, and was moved from non-invasive to mechanical ventilation within 12 days of hospitalization. Impaired production of type I IFN was detected in patient PBMCs treated with poly(I:C), at both mRNA and protein levels. Whole exome sequencing revealed three mutations across type I IFN production pathway, which were predicted to be loss-of-function (pLOF). The three mutations were predicted to predispose to severe viral infections: monoallelic R488X TLR3, monoallelic His684Arg TLR3, and biallelic Val363Met IRF3. Functional analysis confirmed that all these mutations dysregulated the type I IFN pathway. Evaluation of TLR3 and IRF3 IFN-β1 luciferase reporter activity showed a hypomorphic suppression of function. TOPO TA cloning was used to ascertain the positioning of both TLR3 variants, indicating that both variants were on the same allele. We have described a unique complex IEI patient with multiple mutations, particularly along type I IFN production pathway.
Collapse
Affiliation(s)
- Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of pharmacy practice and pharmacotherapeutics, College of pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hawra Ali Hussain Alsayed
- Department of Pharmacy, Rashid Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates
| | - Samrein B. M. Ahmed
- Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, department of pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
55
|
Chan MMY, Gale DP. Using genomics to understand severe COVID-19. Nephrol Dial Transplant 2024; 39:731-734. [PMID: 38081206 DOI: 10.1093/ndt/gfad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 09/18/2024] Open
Affiliation(s)
- Melanie M Y Chan
- UCL Department of Renal Medicine, University College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Daniel P Gale
- UCL Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
56
|
Liu S, Zhang Y, Zhu X, He S, Liu X, Lv X, Zuo F, Wu J. Huang Lian Jie Du Decoction enhances the anti-tumor efficacy of immune checkpoint inhibitors by activating TLR7/8 signalling in melanoma. BMC Complement Med Ther 2024; 24:156. [PMID: 38605368 PMCID: PMC11007990 DOI: 10.1186/s12906-024-04444-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The clinical application of immune checkpoint inhibitors (ICIs) is limited by their drug resistance, necessitating the development of ICI sensitizers to improve cancer immunotherapy outcomes. Huang Lian Jie Du Decoction (HLJD, Oren-gedoku-to in Japanese, Hwangryunhaedok-tang in Korean), a famous traditional Chinese medicinal prescription, has exhibited potential in the field of cancer treatment. This study aims to investigate the impact of HLJD on the efficacy of ICIs in melanoma and elucidate the underlying mechanisms. METHODS The potential synergistic effects of HLJD and ICIs were investigated on the tumor-bearing mice model of B16F10 melanoma, and the tumor infiltration of immune cells was tested by flow cytometry. The differential gene expression in tumors between HLJD and ICIs group and ICIs alone group were analyzed by RNA-seq. The effects of HLJD on oxidative stress, TLR7/8, and type I interferons (IFN-Is) signaling were further validated by immunofluorescence, PCR array, and immunochemistry in tumor tissue. RESULTS HLJD enhanced the anti-tumor effect of ICIs, significantly inhibited tumor growth, and prolonged the survival duration in melanoma. HLJD increased the tumor infiltration of anti-tumor immune cells, especially DCs, CD4+ T cells and CD8+T cells. Mechanically, HLJD activated the oxidative stress and TLR7/8 signaling pathway and IFN-Is-related genes in tumors. CONCLUSIONS HLJD enhanced the therapeutic benefits of ICIs in melanoma, through increasing reactive oxygen species (ROS), promoting the TLR7/8 pathway, and activating IFN-Is signaling, which in turn activated DCs and T cells.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yaohua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Lv
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fuguo Zuo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
57
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
58
|
Sun YK, Wang C, Lin PQ, Hu L, Ye J, Gao ZG, Lin R, Li HM, Shu Q, Huang LS, Tan LH. Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World J Pediatr 2024; 20:307-324. [PMID: 38321331 PMCID: PMC11052880 DOI: 10.1007/s12519-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.
Collapse
Affiliation(s)
- Yi-Kan Sun
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Can Wang
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Pei-Quan Lin
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lei Hu
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jing Ye
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhi-Gang Gao
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ru Lin
- Department of Cardiopulmonary and Extracorporeal Life Support, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hao-Min Li
- Clinical Data Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Li-Su Huang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Lin-Hua Tan
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
59
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
60
|
Svensson Akusjärvi S, Zanoni I. Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Curr Opin Immunol 2024; 87:102423. [PMID: 38776716 PMCID: PMC11162909 DOI: 10.1016/j.coi.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The host immune response against severe acute respiratory syndrome coronavirus 2 includes the induction of a group of natural antiviral cytokines called interferons (IFNs). Although originally recognized for their ability to potently counteract infections, the mechanistic functions of IFNs in patients with varying severities of coronavirus disease 2019 (COVID-19) have highlighted a more complex scenario. Cellular and molecular analyses have revealed that timing, location, and subtypes of IFNs produced during severe acute respiratory syndrome coronavirus 2 infection play a major role in determining disease progression and severity. In this review, we summarize what the COVID-19 pandemic has taught us about the protective and detrimental roles of IFNs during the inflammatory response elicited against a new respiratory virus across different ages and its longitudinal consequences in driving the development of long COVID-19.
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Zanoni
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
61
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
62
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
63
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
64
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
65
|
Bucciol G, Delafontaine S, Meyts I, Poli C. Inborn errors of immunity: A field without frontiers. Immunol Rev 2024; 322:15-27. [PMID: 38062988 DOI: 10.1111/imr.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The study of primary immunodeficiencies or inborn errors of immunity continues to drive our knowledge of the function of the human immune system. From the outset, the study of inborn errors has focused on unraveling genetic etiologies and molecular mechanisms. Aided by the continuous growth in genetic diagnostics, the field has moved from the study of an infection dominated phenotype to embrace and unravel diverse manifestations of autoinflammation, autoimmunity, malignancy, and severe allergy in all medical disciplines. It has now moved from the study of ultrarare presentations to producing meaningful impact in conditions as diverse as inflammatory bowel disease, neurological conditions, and hematology. Beyond offering immunogenetic diagnosis, the study of underlying inborn errors of immunity in these conditions points to targeted treatment which can be lifesaving.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Cecilia Poli
- Facultad de Medicina Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
- Unidad de Inmunología y Reumatología, Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
66
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
67
|
Krause C, Bergmann E, Schmidt SV. Epigenetic modulation of myeloid cell functions in HIV and SARS-CoV-2 infection. Mol Biol Rep 2024; 51:342. [PMID: 38400997 PMCID: PMC10894183 DOI: 10.1007/s11033-024-09266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/26/2024]
Abstract
Myeloid cells play a vital role in innate immune responses as they recognize and phagocytose pathogens like viruses, present antigens, produce cytokines, recruit other immune cells to combat infections, and contribute to the attenuation of immune responses to restore homeostasis. Signal integration by pathogen recognition receptors enables myeloid cells to adapt their functions by a network of transcription factors and chromatin remodelers. This review provides a brief overview of the subtypes of myeloid cells and the main epigenetic regulation mechanisms. Special focus is placed on the epigenomic alterations in viral nucleic acids of HIV and SARS-CoV-2 along with the epigenetic changes in the host's myeloid cell compartment. These changes are important as they lead to immune suppression and promote the progression of the disease. Finally, we highlight some promising examples of 'epidrugs' that modulate the epigenome of immune cells and could be used as therapeutics for viral infections.
Collapse
Affiliation(s)
- Carolyn Krause
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Microbiology and Immunology, the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Eva Bergmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Susanne Viktoria Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
68
|
Segura-Tudela A, López-Nevado M, Nieto-López C, García-Jiménez S, Díaz-Madroñero MJ, Delgado Á, Cabrera-Marante O, Pleguezuelo D, Morales P, Paz-Artal E, Gil-Niño J, Marco FM, Serrano C, González-Granado LI, Quesada-Espinosa JF, Allende LM. Enrichment of Immune Dysregulation Disorders in Adult Patients with Human Inborn Errors of Immunity. J Clin Immunol 2024; 44:61. [PMID: 38363452 PMCID: PMC10873437 DOI: 10.1007/s10875-024-01664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Human inborn errors of immunity (IEI) comprise a group of diseases resulting from molecular variants that compromise innate and adaptive immunity. Clinical features of IEI patients are dominated by susceptibility to a spectrum of infectious diseases, as well as autoimmune, autoinflammatory, allergic, and malignant phenotypes that usually appear in childhood, which is when the diagnosis is typically made. However, some IEI patients are identified in adulthood due to symptomatic delay of the disease or other reasons that prevent the request for a molecular study. The application of next-generation sequencing (NGS) as a diagnostic technique has given rise to an ever-increasing identification of IEI-monogenic causes, thus improving the diagnostic yield and facilitating the possibility of personalized treatment. This work was a retrospective study of 173 adults with IEI suspicion that were sequenced between 2005 and 2023. Sanger, targeted gene-panel, and whole exome sequencing were used for molecular diagnosis. Disease-causing variants were identified in 44 of 173 (25.43%) patients. The clinical phenotype of these 44 patients was mostly related to infection susceptibility (63.64%). An enrichment of immune dysregulation diseases was found when cohorts with molecular diagnosis were compared to those without. Immune dysregulation disorders, group 4 from the International Union of Immunological Societies Expert Committee (IUIS), were the most prevalent among these adult patients. Immune dysregulation as a new item in the Jeffrey Model Foundation warning signs for adults significantly increases the sensitivity for the identification of patients with an IEI-producing molecular defect.
Collapse
Affiliation(s)
- Alejandro Segura-Tudela
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Celia Nieto-López
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Sandra García-Jiménez
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - María J Díaz-Madroñero
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
| | - Ángeles Delgado
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
| | - Oscar Cabrera-Marante
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Daniel Pleguezuelo
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Pablo Morales
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Gil-Niño
- Department of Internal Medicine, University Hospital, 12 de Octubre, Madrid, Spain
| | - Francisco M Marco
- Unit of Immunology, University Hospital General Dr Balmis, Alicante, Spain
| | - Cristina Serrano
- Department of Immunology, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Unit of Immunodeficiencies, Department of Pediatrics, University Hospital, 12 de Octubre, Madrid, Spain
| | - Juan F Quesada-Espinosa
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- Department of Genetics, University Hospital, 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, University Hospital, 12 de Octubre, Avda. de Andalucía S/N, 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
69
|
Fernández-Soto D, García-Jiménez ÁF, Casasnovas JM, Valés-Gómez M, Reyburn HT. Elevated levels of cell-free NKG2D-ligands modulate NKG2D surface expression and compromise NK cell function in severe COVID-19 disease. Front Immunol 2024; 15:1273942. [PMID: 38410511 PMCID: PMC10895954 DOI: 10.3389/fimmu.2024.1273942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
70
|
David C, Badonyi M, Kechiche R, Insalaco A, Zecca M, De Benedetti F, Orcesi S, Chiapparini L, Comoli P, Federici S, Gattorno M, Ginevrino M, Giorgio E, Matteo V, Moran-Alvarez P, Politano D, Prencipe G, Sirchia F, Volpi S, Masson C, Rice GI, Frémond ML, Lepelley A, Marsh JA, Crow YJ. Interface Gain-of-Function Mutations in TLR7 Cause Systemic and Neuro-inflammatory Disease. J Clin Immunol 2024; 44:60. [PMID: 38324161 PMCID: PMC10850255 DOI: 10.1007/s10875-024-01660-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
TLR7 recognizes pathogen-derived single-stranded RNA (ssRNA), a function integral to the innate immune response to viral infection. Notably, TLR7 can also recognize self-derived ssRNA, with gain-of-function mutations in human TLR7 recently identified to cause both early-onset systemic lupus erythematosus (SLE) and neuromyelitis optica. Here, we describe two novel mutations in TLR7, F507S and L528I. While the L528I substitution arose de novo, the F507S mutation was present in three individuals from the same family, including a severely affected male, notably given that the TLR7 gene is situated on the X chromosome and that all other cases so far described have been female. The observation of mutations at residues 507 and 528 of TLR7 indicates the importance of the TLR7 dimerization interface in maintaining immune homeostasis, where we predict that altered homo-dimerization enhances TLR7 signaling. Finally, while mutations in TLR7 can result in SLE-like disease, our data suggest a broader phenotypic spectrum associated with TLR7 gain-of-function, including significant neurological involvement.
Collapse
Affiliation(s)
- Clémence David
- Laboratory of Neurogenetics and NeuroinflammationImagine Institute, INSERM UMR1163, Paris, France
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robin Kechiche
- Laboratory of Neurogenetics and NeuroinflammationImagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Antonella Insalaco
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Zecca
- Pediatric Haematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Simona Orcesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Luisa Chiapparini
- Neuroradiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marco Gattorno
- UOC Reumatologia E Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monia Ginevrino
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Matteo
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Davide Politano
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stefano Volpi
- UOC Reumatologia E Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università Degli Studi Di Genova, Genoa, Italy
| | - Cécile Masson
- Bioinformatics Core Facility, Paris-Cité University-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and NeuroinflammationImagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
- Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Paris, France
| | - Alice Lepelley
- Laboratory of Neurogenetics and NeuroinflammationImagine Institute, INSERM UMR1163, Paris, France
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- Laboratory of Neurogenetics and NeuroinflammationImagine Institute, INSERM UMR1163, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- University Paris Cité, Paris, France.
| |
Collapse
|
71
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Maki Taniguchi
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Liisa Saare
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Takaki Asano
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Miyuki Tsumura
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alexandre Belot
- National Reference Center for Rheumatic, and Autoimmune and Systemic Diseases in Children, Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomohiro Morio
- Dept. of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junko Tanaka
- Dept. of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Filomeen Haerynck
- Dept. of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev”, Stip, Republic of Northern Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje, North Macedonia
| | - Tayfun Ozcelik
- Dept. of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yacine Tandjaoui-Lambiotte
- Pulmonology and Infectious Disease Department, Saint Denis Hospital, Saint Denis, France
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxia and Lung, Bobigny, France
| | - Simon Escoda
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Maya Husain
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Qiang Pan-Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gloria Ahlijah
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Anthony Abi Haidar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Vincent Arseguel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabina Sahanic
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Yoko Nukui
- Dept. of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | - Seiichi Hayakawa
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Michos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Filippatos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Agusti Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Dept. of Pediatrics, Germans Trias i Pujol University Hospital, UAB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesus Troya
- Dept. of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Imran Tipu
- University of Management and Technology, Lahore, Pakistan
| | - Isabelle Meyts
- Dept. of Immunology, Laboratory of Inborn Errors of Immunity, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Roussel
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laire Schidlowski
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Antonio Condino-Neto
- Dept. of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Ahmed A. Bousfiha
- Dept. of Pediatric Infectious Disease and Clinical Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Quartier
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Donald C. Vinh
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Trine H. Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlos Rodríguez-Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Dept., Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Spain
| | - Vallo Tillmann
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Bénédicte Neven
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Dept., Hospital Clínico Universitario de Santiago, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Alberto Gómez-Carballa
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital 12 de octubre, Research Institute Hospital 12 octubre, Madrid, Spain
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Satoshi Okada
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
72
|
Uslu K, Ozcelik F, Zararsiz G, Eldem V, Cephe A, Sahin IO, Yuksel RC, Sipahioglu H, Ozer Simsek Z, Baspinar O, Akalin H, Simsek Y, Gundogan K, Tutar N, Karayol Akin A, Ozkul Y, Yildiz O, Dundar M. Deciphering the host genetic factors conferring susceptibility to severe COVID-19 using exome sequencing. Genes Immun 2024; 25:14-42. [PMID: 38123822 DOI: 10.1038/s41435-023-00232-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic remains a significant public health concern despite the new vaccines and therapeutics. The clinical course of acute SARS-CoV-2 infection is highly variable and influenced by several factors related to the virus and the host. Numerous genetic studies, including candidate gene, exome, and genome sequencing studies, genome-wide association studies, and other omics efforts, have proposed various Mendelian and non-Mendelian associations with COVID-19 course. In this study, we conducted whole-exome sequencing on 90 unvaccinated patients from Turkey with no known comorbidities associated with severe COVID-19. Of these patients, 30 had severe, 30 had moderate, and 30 had mild/asymptomatic disease. We identified rare variants in genes associated with SARS-CoV-2 susceptibility and pathogenesis, with an emphasis on genes related to the regulation of inflammation, and discussed these in the context of the clinical course of the patients. In addition, we compared the frequencies of common variants between each group. Even though no variant remained statistically significant after correction for multiple testing, we observed that certain previously associated genes and variants showed significant associations before correction. Our study contributes to the existing literature regarding the genetic susceptibility to SARS-CoV-2. Future studies would be beneficial characterizing the host genetic properties in different populations.
Collapse
Affiliation(s)
- Kubra Uslu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ahu Cephe
- Institutional Data Management and Analytics Units, Erciyes University Rectorate, Kayseri, Turkey
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Recep Civan Yuksel
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioglu
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Zuhal Ozer Simsek
- Division of Intensive Care Medicine, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Osman Baspinar
- Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasin Simsek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuri Tutar
- Department of Chest Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Aynur Karayol Akin
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Orhan Yildiz
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders characterized by increased susceptibility to infection and/or aberrant regulation of immunological pathways. This review summarizes and highlights the new IEI disorders in the International Union of Immunological Societies (IUIS) 2022 report and current trends among new PIDs. RECENT FINDINGS Since the 2019 IUIS report and the 2021 IUIS interim update, the IUIS IEI classification now includes 485 validated IEIs. Increasing utilization of genetic testing and advances in the strategic evaluation of genetic variants has continued to drive the identification of, not only novel IEI disorders, but additional genetic etiologies for known IEI disorders and phenotypes. SUMMARY The recognition of new IEIs continues to advance at a rapid pace, which is due in part to increased performance and application of genetic modalities as well as expansion of the underlying science that is applied to convincingly establish causality. These disorders, as a whole, continue to emphasize the specificity of immunity, complexity of immune mechanisms, and the fine balance that defines immune homeostasis.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
74
|
Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, Konstantakatos G, Skentou AD, Triantafyllidis L, Kotsiou N, Braunstein E, Chen H, Brodsky R, Touloumenidou T, Sakellari I, Alkayem NF, Bardhan A, Cao M, Cavaleri L, Formisano A, Guney D, Hasanipanah M, Khandelwal M, Mohammed AS, Samui P, Zhou J, Terpos E, Dimopoulos MA. Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm. J Cell Mol Med 2024; 28:e18105. [PMID: 38339761 PMCID: PMC10863978 DOI: 10.1111/jcmm.18105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
Collapse
Affiliation(s)
- Panagiotis G. Asteris
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Amir H. Gandomi
- Faculty of Engineering & ITUniversity of Technology SydneySydneyNew South WalesAustralia
- University Research and Innovation Center (EKIK), Óbuda UniversityBudapestHungary
| | - Danial J. Armaghani
- School of Civil and Environmental EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Markos Z. Tsoukalas
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Gloria Gerber
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | - Gerasimos Konstantakatos
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Athanasia D. Skentou
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Leonidas Triantafyllidis
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | | | - Hang Chen
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | | | | | - Ioanna Sakellari
- Hematology Department – BMT UnitG Papanicolaou HospitalThessalonikiGreece
| | | | - Abidhan Bardhan
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Maosen Cao
- Department of Engineering MechanicsHohai UniversityNanjingChina
| | - Liborio Cavaleri
- Department of Civil, Environmental, Aerospace and Materials EngineeringUniversity of PalermoPalermoItaly
| | - Antonio Formisano
- Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly
| | - Deniz Guney
- Engineering FacultySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mahdi Hasanipanah
- Department of Geotechnics and Transportation, Faculty of Civil EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
| | - Manoj Khandelwal
- Institute of Innovation, Science and SustainabilityFederation University AustraliaBallaratVictoriaAustralia
| | | | - Pijush Samui
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Jian Zhou
- School of Resources and Safety EngineeringCentral South UniversityChangshaChina
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| |
Collapse
|
75
|
Chen Z, Yuan Y, Hu Q, Zhu A, Chen F, Li S, Guan X, Lv C, Tang T, He Y, Cheng J, Zheng J, Hu X, Zhao J, Zhao J, Sun J. SARS-CoV-2 immunity in animal models. Cell Mol Immunol 2024; 21:119-133. [PMID: 38238440 PMCID: PMC10806257 DOI: 10.1038/s41423-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.
Collapse
Affiliation(s)
- Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Chao Lv
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xiaoyu Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
76
|
Arango-Franco CA, Rojas J, Firacative C, Agudelo CI, Franco JL, Casanova JL, Puel A, Lizarazo J, Castañeda E, Arias AA. Autoantibodies neutralizing GM-CSF in HIV-negative Colombian patients infected with Cryptococcus gattii and C. neoformans. RESEARCH SQUARE 2024:rs.3.rs-3873029. [PMID: 38313298 PMCID: PMC10836105 DOI: 10.21203/rs.3.rs-3873029/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Autoantibodies (auto-Abs) neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera from Colombian patients with non-HIV related cryptococcosis in a retrospective national cohort collected from 1997 to 2016. Methods We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs in 30 HIV (-) adults presenting cryptococcosis (13 by C. gattii, and 17 by C. neoformans). Results We detected auto-Abs neutralizing GM-CSF in the plasma of 9 out of 13 (69%) patients infected with C. gattii and 1 out of 17 (6%) patients with C. neoformans. Conclusions We report ten Colombian patients with cryptococcosis due to auto-Abs neutralizing GM-CSF. Nine of the ten patients were infected with C. gattii, and only one with C. neoformans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne Puel
- INSERM U1163, Necker Hospital for Sick Children
| | | | | | | |
Collapse
|
77
|
Covill LE, Sendel A, Campbell TM, Piiroinen I, Enoksson SL, Borgström EW, Hansen S, Ma K, Marits P, Norlin AC, Smith CIE, Kåhlin J, Eriksson LI, Bergman P, Bryceson YT. Evaluation of Genetic or Cellular Impairments in Type I IFN Immunity in a Cohort of Young Adults with Critical COVID-19. J Clin Immunol 2024; 44:50. [PMID: 38231281 PMCID: PMC10794435 DOI: 10.1007/s10875-023-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Several genetic and immunological risk factors for severe COVID-19 have been identified, with monogenic conditions relating to 13 genes of type I interferon (IFN) immunity proposed to explain 4.8% of critical cases. However, previous cohorts have been clinically heterogeneous and were not subjected to thorough genetic and immunological analyses. We therefore aimed to systematically investigate the prevalence of rare genetic variants causing inborn errors of immunity (IEI) and functionally interrogate the type I IFN pathway in young adults that suffered from critical COVID-19 yet lacked comorbidities. We selected and clinically characterized a cohort of 38 previously healthy individuals under 50 years of age who were treated in intensive care units due to critical COVID-19. Blood samples were collected after convalescence. Two patients had IFN-α autoantibodies. Genome sequencing revealed very rare variants in the type I IFN pathway in 31.6% of the patients, which was similar to controls. Analyses of cryopreserved leukocytes did not indicate any defect in plasmacytoid dendritic cell sensing of TLR7 and TLR9 agonists in patients carrying variants in these pathways. However, lymphocyte STAT phosphorylation and protein upregulation upon IFN-α stimulation revealed three possible cases of impaired type I IFN signaling in carriers of rare variants. Together, our results suggest a strategy of functional screening followed by genome analyses and biochemical validation to uncover undiagnosed causes of critical COVID-19.
Collapse
Affiliation(s)
- L E Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - A Sendel
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - T M Campbell
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - I Piiroinen
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - S Lind Enoksson
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - E Wahren Borgström
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - S Hansen
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - K Ma
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - P Marits
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - A C Norlin
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I E Smith
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J Kåhlin
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - L I Eriksson
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - P Bergman
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Y T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
78
|
Fam BSDO, Feira MF, Cadore NA, Sbruzzi R, Hünemeier T, Abel L, Zhang Q, Casanova JL, Vianna FSL. Human genetic determinants of COVID-19 in Brazil: challenges and future plans. Genet Mol Biol 2024; 46:e20230128. [PMID: 38226654 PMCID: PMC10792479 DOI: 10.1590/1678-4685-gmb-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
COVID-19 pandemic represented a worldwide major challenge in different areas, and efforts undertaken by the scientific community led to the understanding of some of the genetic determinants that influence the different COVID-19 outcomes. In this paper, we review the studies about the role of human genetics in COVID-19 severity and how Brazilian studies also contributed to those findings. Rare variants in genes related to Inborn Errors of Immunity (IEI) in the type I interferons pathway, and its phenocopies, have been described as being causative of severe outcomes. IEI and its phenocopies are present in Brazil, not only in COVID-19 patients, but also in autoimmune conditions and severe reactions to yellow fever vaccine. In addition, studies focusing on common variants and GWAS studies encompassing worldwide patients have found several loci associated with COVID-19 severity. A GWAS study including only Brazilian COVID-19 patients identified a new locus 1q32.1 associated with COVID-19 severity. Thus, more comprehensive studies considering the Brazilian genomic diversity should be performed, since they can help to reveal not only what are the genetic determinants that contribute to the different outcomes for COVID-19 in the Brazilian population, but in the understanding of human genetics in different health conditions.
Collapse
Affiliation(s)
- Bibiana S. de Oliveira Fam
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Marilea Furtado Feira
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Nathan Araujo Cadore
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Renan Sbruzzi
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas/Universitat Pompeu Fabra), Barcelona, Spain
| | - Laurent Abel
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jean-Laurent Casanova
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Necker Hospital for Sick Children, Department of Pediatrics, Paris, France
| | - Fernanda Sales Luiz Vianna
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| |
Collapse
|
79
|
Lafont Rapnouil B, Zaarour Y, Arrestier R, Bastard P, Peiffer B, Moncomble E, Parfait M, Bellaïche R, Casanova JL, Mekontso Dessap A, Mule S, de Prost N. Chest Computed Tomography Characteristics of Critically Ill COVID-19 Patients with Auto-antibodies Against Type I Interferons. J Clin Immunol 2023; 44:15. [PMID: 38129345 PMCID: PMC10739505 DOI: 10.1007/s10875-023-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/22/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Patients with auto-antibodies neutralizing type I interferons (anti-IFN auto-Abs) are at risk of severe forms of coronavirus disease 19 (COVID-19). The chest computed tomography (CT) scan characteristics of critically ill COVID-19 patients harboring these auto-Abs have never been reported. METHODS Bicentric ancillary study of the ANTICOV study (observational prospective cohort of severe COVID-19 patients admitted to the intensive care unit (ICU) for hypoxemic acute respiratory failure between March 2020 and May 2021) on chest CT scan characteristics (severity score, parenchymal, pleural, vascular patterns). Anti-IFN auto-Abs were detected using a luciferase neutralization reporting assay. Imaging data were collected through independent blinded reading of two thoracic radiologists of chest CT studies performed at ICU admission (± 72 h). The primary outcome measure was the evaluation of severity by the total severity score (TSS) and the CT severity score (CTSS) according to the presence or absence of anti-IFN auto-Abs. RESULTS Two hundred thirty-one critically ill COVID-19 patients were included in the study (mean age 59.5 ± 12.7 years; males 74.6%). Day 90 mortality was 29.5% (n = 72/244). There was a trend towards more severe radiological lesions in patients with anti-IFN auto-Abs than in others, not reaching statistical significance (median CTSS 27.5 (21.0-34.8) versus 24.0 (19.0-30.0), p = 0.052; median TSS 14.5 (10.2-17.0) versus 12.0 (9.0-15.0), p = 0.070). The extra-parenchymal evaluation found no difference in the proportion of patients with pleural effusion, mediastinal lymphadenopathy, or thymal abnormalities in the two populations. The prevalence of pulmonary embolism was not significantly different between groups (8.7% versus 5.3%, p = 0.623, n = 175). CONCLUSION There was no significant difference in disease severity as evaluated by chest CT in severe COVID-19 patients admitted to the ICU for hypoxemic acute respiratory failure with or without anti-IFN auto-Abs.
Collapse
Affiliation(s)
- Baptiste Lafont Rapnouil
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
| | - Youssef Zaarour
- Département d'imagerie médicale, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
| | - Romain Arrestier
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France
- INSERM, IMRB, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Bastien Peiffer
- Service de Santé Publique, Hôpitaux Universitaires Henri-Mondor, F-94010, Créteil, France
| | - Elsa Moncomble
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
| | - Mélodie Parfait
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
| | - Raphaël Bellaïche
- Service d'Anesthésie-Réanimation Chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, 94010, Créteil, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Armand Mekontso Dessap
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France
- INSERM, IMRB, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France
| | - Sébastien Mule
- Département d'imagerie médicale, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France
- INSERM, IMRB, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, CEDEX, Créteil, 94010, Paris, France.
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France.
- INSERM, IMRB, Université Paris Est Créteil, CEDEX, Créteil, 94010, Paris, France.
| |
Collapse
|
80
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, COVID Human Genetic Effort, COVIDeF Study Group, French COVID Cohort Study Group, CoV-Contact Cohort, COVID-STORM Clinicians, COVID Clinicians, Orchestra Working Group, Amsterdam UMC Covid-19 Biobank, NIAID-USUHS COVID Study Group, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between HLA and asymptomatic SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299623. [PMID: 38168184 PMCID: PMC10760282 DOI: 10.1101/2023.12.06.23299623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified. These findings suggest that memory T-cell immunity to seasonal coronaviruses does not strongly influence the outcome of SARS-CoV-2 infection in unvaccinated individuals.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ryan S. Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, EU
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France, EU
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France, EU
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France, EU
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d’immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France, EU
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, CIC-1901, Paris, France, EU
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France, EU
- GRC-14 BIOFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France, EU
| | | | | | | | | | | | | | | | | | | | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J. Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
- Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
81
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
82
|
Marone R, Landmann E, Devaux A, Lepore R, Seyres D, Zuin J, Burgold T, Engdahl C, Capoferri G, Dell’Aglio A, Larrue C, Simonetta F, Rositzka J, Rhiel M, Andrieux G, Gallagher DN, Schröder MS, Wiederkehr A, Sinopoli A, Do Sacramento V, Haydn A, Garcia-Prat L, Divsalar C, Camus A, Xu L, Bordoli L, Schwede T, Porteus M, Tamburini J, Corn JE, Cathomen T, Cornu TI, Urlinger S, Jeker LT. Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy. J Exp Med 2023; 220:e20231235. [PMID: 37773046 PMCID: PMC10541312 DOI: 10.1084/jem.20231235] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML). However, shared CD123 expression on healthy hematopoietic stem and progenitor cells (HSPCs) bears the risk for myelotoxicity. We demonstrate that epitope-engineered HSPCs were shielded from CD123-targeted immunotherapy but remained functional, while CD123-deficient HSPCs displayed a competitive disadvantage. Transplantation of genome-edited HSPCs could enable tumor-selective targeted immunotherapy while rebuilding a fully functional hematopoietic system. We envision that this approach is broadly applicable to other targets and cells, could render hitherto undruggable targets accessible to immunotherapy, and will allow continued posttransplant therapy, for instance, to treat minimal residual disease (MRD).
Collapse
Affiliation(s)
- Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Emmanuelle Landmann
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Anna Devaux
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Rosalba Lepore
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
- Cimeio Therapeutics AG, Basel, Switzerland
- Ridgeline Discovery GmbH, Basel, Switzerland
| | - Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Jessica Zuin
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Thomas Burgold
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Corinne Engdahl
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Giuseppina Capoferri
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Alessandro Dell’Aglio
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Clément Larrue
- Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Translational Research Center for Onco-Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julia Rositzka
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Danielle N. Gallagher
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Markus S. Schröder
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Anna Haydn
- Ridgeline Discovery GmbH, Basel, Switzerland
| | | | | | - Anna Camus
- Cimeio Therapeutics AG, Basel, Switzerland
| | - Liwen Xu
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lorenza Bordoli
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Matthew Porteus
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jérôme Tamburini
- Department of Medicine, Translational Research Center for Onco-Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jacob E. Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tatjana I. Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Urlinger
- Cimeio Therapeutics AG, Basel, Switzerland
- Ridgeline Discovery GmbH, Basel, Switzerland
| | - Lukas T. Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
83
|
Çakan E, Ah Kioon MD, Garcia-Carmona Y, Glauzy S, Oliver D, Yamakawa N, Vega Loza A, Du Y, Schickel JN, Boeckers JM, Yang C, Baldo A, Ivashkiv LB, Young RM, Staudt LM, Moody KL, Nündel K, Marshak-Rothstein A, van der Made CI, Hoischen A, Hayward A, Rossato M, Radstake TR, Cunningham-Rundles C, Ryu C, Herzog EL, Barrat FJ, Meffre E. TLR9 ligand sequestration by chemokine CXCL4 negatively affects central B cell tolerance. J Exp Med 2023; 220:e20230944. [PMID: 37773045 PMCID: PMC10541333 DOI: 10.1084/jem.20230944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yolanda Garcia-Carmona
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David Oliver
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Vega Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | | | - Joshua M. Boeckers
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Alessia Baldo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Krishna L. Moody
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony Hayward
- Warren Alper School of Medicine, Brown University, Providence, RI, USA
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Timothy R.D.J. Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L. Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
84
|
Martinot M, Gravier S, Mohseni-Zadeh M, Fabien N, Casanova JL, Puel A, Goncalves D. Severe acute herpes virus type 2 primo-infection and its association with anti-type 1 interferon autoantibodies. Eur J Clin Microbiol Infect Dis 2023; 42:1531-1535. [PMID: 37870714 DOI: 10.1007/s10096-023-04688-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Herpes simplex virus type 2 (HSV-2) is a common cause of infection, which is usually self-limited and asymptomatic. A 71-year-old patient with HSV-2 primo-infection developed acute hepatitis and secondary hemophagocytic lymphohistiocytosis. The patient had high levels of autoantibodies against type I interferon (IFN) (> 1000 ng/mL), neutralizing high concentration (10 ng/mL) of both IFN-α and IFN-ω but not IFN-β. Anti-IFN-I auto-antibodies are rarely observed in healthy individuals; however, their prevalence increases in individuals over 70 years of age and have been identified as a cause of some severe viral diseases, including critical COVID-19. Considering the function of IFN-I in innate immunity, the pathological role of these autoantibodies in severe viral diseases following primo-infections in elderly patient appears crucial.
Collapse
Affiliation(s)
- Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 39 Avenue de La Liberté 68024, CEDEX, Colmar, France.
| | - Simon Gravier
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 39 Avenue de La Liberté 68024, CEDEX, Colmar, France
| | - Mahsa Mohseni-Zadeh
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 39 Avenue de La Liberté 68024, CEDEX, Colmar, France
| | - Nicole Fabien
- Immunology Department, Lyon Sud Hospital Hospices Civils de Lyon, Pierre-Bénite, Lyon, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - David Goncalves
- Immunology Department, Lyon Sud Hospital Hospices Civils de Lyon, Pierre-Bénite, Lyon, France
| |
Collapse
|
85
|
McKinnon JE, Santiaguel J, Murta de Oliveira C, Yu D, Khursheed M, Moreau F, Klopp‐Schulze L, Shaw J, Roy S, Kao AH. Enpatoran in COVID-19 pneumonia: Safety and efficacy results from a phase II randomized trial. Clin Transl Sci 2023; 16:2640-2653. [PMID: 37873555 PMCID: PMC10719456 DOI: 10.1111/cts.13658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Enpatoran is a selective inhibitor of toll-like receptors 7 and 8 (TLR7/8) that potentially targets pro-inflammatory pathways induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A phase II study conducted in Brazil, the Philippines, and the USA during the early pandemic phase assessed the safety and efficacy of enpatoran in patients hospitalized with COVID-19 pneumonia (NCT04448756). A total of 149 patients, who scored 4 on the World Health Organization's (WHO) 9-point ordinal severity scale, were randomized 1:1:1 and received enpatoran 50 mg (n = 54) or 100 mg (n = 46), or placebo (n = 49) twice daily (b.i.d.) for 14 days plus standard of care. The primary objectives were safety and time to recovery (WHO 9-point scale ≤3). Clinical deterioration (WHO 9-point scale ≥ 5) was a key secondary objective. Treatment-emergent adverse events (TEAEs) were comparable across groups (56.5%-63.0%). Treatment-related TEAEs were numerically higher with enpatoran 50 mg (14.8%) than 100 mg (10.9%) or placebo (8.2%). Serious TEAEs were numerically lower with enpatoran (50 mg 9.3%, 100 mg 2.2%) than placebo (18.4%). The primary efficacy objective was not met; median time to recovery was 3.4-3.9 days across groups, with placebo-treated patients recovering on average faster than anticipated. Clinical deterioration event-free rates up to Day 7 were 90.6%, 95.6%, and 81.6% with enpatoran 50 mg, 100 mg, and placebo, respectively. Enpatoran was well tolerated by patients acutely ill and hospitalized with COVID-19 pneumonia. Positive signals in some secondary end points suggested potential beneficial effects, supporting further evaluation of enpatoran in patients with hyperinflammation due to infection or autoimmunity.
Collapse
Affiliation(s)
- John E. McKinnon
- Division of Infectious Disease, Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Joel Santiaguel
- Division of Pulmonary MedicineUniversity of the PhilippinesManilaPhilippines
| | | | - Dongzi Yu
- Global Clinical Development, EMD SeronoBillericaMassachusettsUSA
| | - Mukhy Khursheed
- Global Patient SafetyMerck Serono Ltd. Feltham, UK, an affiliate of Merck KGaADarmstadtGermany
| | - Flavie Moreau
- Global Biostatistics, EMD SeronoBillericaMassachusettsUSA
| | - Lena Klopp‐Schulze
- Translational Medicine, the healthcare business of Merck KGaADarmstadtGermany
| | - Jamie Shaw
- Translational Medicine, EMD SeronoBillericaMassachusettsUSA
| | - Sanjeev Roy
- Global Clinical DevelopmentAres Trading SA, Eysins, Switzerland, an affiliate of Merck KGaADarmstadtGermany
| | - Amy H. Kao
- Research Unit – Neuroscience & ImmunologyEMD SeronoBillericaMassachusettsUSA
| |
Collapse
|
86
|
Joly C, Desjardins D, Porcher R, Péré H, Bruneau T, Zhang Q, Bastard P, Cobat A, Resmini L, Lenoir O, Savale L, Lécuroux C, Verstuyft C, Roque-Afonso AM, Veyer D, Baron G, Resche-Rigon M, Ravaud P, Casanova JL, Le Grand R, Hermine O, Tharaux PL, Mariette X. More rapid blood interferon α2 decline in fatal versus surviving COVID-19 patients. Front Immunol 2023; 14:1250214. [PMID: 38077399 PMCID: PMC10703045 DOI: 10.3389/fimmu.2023.1250214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background The clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection. Objective To study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19. Methods One hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome. Results Although the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14-8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19. Conclusion These findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs. Clinical trial registration https://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584.
Collapse
Affiliation(s)
- Candie Joly
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Raphael Porcher
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Hélène Péré
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
| | - Thomas Bruneau
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Léa Resmini
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Olivia Lenoir
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Laurent Savale
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Camille Lécuroux
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Laboratoire de Virologie, Villejuif, France
| | - David Veyer
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Gabriel Baron
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Matthieu Resche-Rigon
- Centre of Research in Epidemiology and Statistics (CRESS), Université de Paris, INSERM, Hôpital Saint Louis, Paris, France
| | - Philippe Ravaud
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, New York, NY, United States
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Olivier Hermine
- Université de Paris, Institut Imagine, INSERM UMR1183, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Département d’Hématologie, Paris, France
| | | | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Rhumatologie, Le Kremlin Bicêtre, France
| |
Collapse
|
87
|
Badla BA, Hanifa MS, Jain R, Naofal ME, Halabi N, Yaslam S, Ramaswamy S, Taylor A, Alfalasi R, Shenbagam S, Khansaheb H, Al Suwaidi H, Nowotny N, Popatia R, Al Khayat A, Alsheikh-Ali A, Loney T, AlDabal LM, Abou Tayoun A. Genetic determinants of severe COVID-19 in young Asian and Middle Eastern patients: a case series. Sci Rep 2023; 13:20294. [PMID: 37985737 PMCID: PMC10661561 DOI: 10.1038/s41598-023-47718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Studies of genetic factors associated with severe COVID-19 in young adults have been limited in non-Caucasian populations. Here, we clinically characterize a case series of patients with COVID-19, who were otherwise healthy, young adults (N = 55; mean age 34.1 ± SD 5.0 years) from 16 Asian, Middle Eastern, and North African countries. Using whole exome sequencing, we identify rare, likely deleterious variants affecting 16 immune-related genes in 17 out of 55 patients (31%), including 7 patients (41% of all carriers or 12.7% of all patients) who harbored multiple such variants mainly in interferon and toll-like receptor genes. Protein network analysis as well as transcriptomic analysis of nasopharyngeal swabs from an independent COVID-19 cohort (N = 50; 42% Asians and 22% Arabs) revealed that most of the altered genes, as identified by whole exome sequencing, and the associated molecular pathways were significantly altered in COVID-19 patients. Genetic variants tended to be associated with mortality, intensive care admission, and ventilation support. Our clinical cases series, genomic and transcriptomic findings suggest a possible role for interferon pathway genes in severe COVID-19 and highlight the importance of extending genetic studies to diverse populations to better understand the human genetics of disease.
Collapse
Affiliation(s)
- Beshr Abdulaziz Badla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Mohamed Samer Hanifa
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Ruchi Jain
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Maha El Naofal
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Nour Halabi
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Sawsan Yaslam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Sathishkumar Ramaswamy
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Alan Taylor
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Roudha Alfalasi
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE
| | - Hamda Khansaheb
- Medical Education and Research Department, Dubai Health, Dubai, UAE
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rizwana Popatia
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
88
|
Sahanic S, Hilbe R, Dünser C, Tymoszuk P, Löffler-Ragg J, Rieder D, Trajanoski Z, Krogsdam A, Demetz E, Yurchenko M, Fischer C, Schirmer M, Theurl M, Lener D, Hirsch J, Holfeld J, Gollmann-Tepeköylü C, Zinner CP, Tzankov A, Zhang SY, Casanova JL, Posch W, Wilflingseder D, Weiss G, Tancevski I. SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19. Heliyon 2023; 9:e21893. [PMID: 38034686 PMCID: PMC10686889 DOI: 10.1016/j.heliyon.2023.e21893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Dünser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Krogsdam
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carl P. Zinner
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
89
|
Chen X, Xie M, Zhang S, Monguió-Tortajada M, Yin J, Liu C, Zhang Y, Delacrétaz M, Song M, Wang Y, Dong L, Ding Q, Zhou B, Tian X, Deng H, Xu L, Liu X, Yang Z, Chang Q, Na J, Zeng W, Superti-Furga G, Rebsamen M, Yang M. Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling. Nat Commun 2023; 14:6627. [PMID: 37863913 PMCID: PMC10589346 DOI: 10.1038/s41467-023-42210-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.
Collapse
Affiliation(s)
- Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Min Xie
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | | | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chang Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Life Science Academy, 102209, Beijing, China
| | - Youqi Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, 100853, Beijing, China
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Mingyue Song
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yixue Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Dong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Xiaolin Tian
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haiteng Deng
- MOE Key laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lina Xu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaohui Liu
- Metabolomics and Lipidomics Center at Tsinghua-National Protein Science Facility, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zi Yang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology for Protein Research, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenwen Zeng
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
90
|
Miquel CH, Abbas F, Cenac C, Foret-Lucas C, Guo C, Ducatez M, Joly E, Hou B, Guéry JC. B cell-intrinsic TLR7 signaling is required for neutralizing antibody responses to SARS-CoV-2 and pathogen-like COVID-19 vaccines. Eur J Immunol 2023; 53:e2350437. [PMID: 37438976 DOI: 10.1002/eji.202350437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- Arthritis R&D, Neuilly-Sur-Seine, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Charlotte Foret-Lucas
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Chang Guo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mariette Ducatez
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Baidong Hou
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
91
|
Constantin T, Pék T, Horváth Z, Garan D, Szabó AJ. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacology 2023; 31:2221-2236. [PMID: 37460909 PMCID: PMC10518292 DOI: 10.1007/s10787-023-01272-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic caused by the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) has significantly affected people around the world, leading to substantial morbidity and mortality. Although the pandemic has affected people of all ages, there is increasing evidence that children are less susceptible to SARS-CoV-2 infection and are more likely to experience milder symptoms than adults. However, children with COVID-19 can still develop serious complications, such as multisystem inflammatory syndrome in children (MIS-C). This narrative review of the literature provides an overview of the epidemiology and immune pathology of SARS-CoV-2 infection and MIS-C in children. The review also examines the genetics of COVID-19 and MIS-C in children, including the genetic factors that can influence the susceptibility and severity of the diseases and their implications for personalized medicine and vaccination strategies. By examining current evidence and insights from the literature, this review aims to contribute to the development of effective prevention and treatment strategies for COVID-19, MIS-C, and long COVID syndromes in children.
Collapse
Affiliation(s)
- Tamás Constantin
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary.
| | - Tamás Pék
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Zsuzsanna Horváth
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Diána Garan
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| | - Attila J Szabó
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9., Budapest, 1094, Hungary
| |
Collapse
|
92
|
Martínez-Gómez LE, Martinez-Armenta C, Medina-Luna D, Ordoñez-Sánchez ML, Tusie-Luna T, Ortega-Peña S, Herrera-López B, Suarez-Ahedo C, Jimenez-Gutierrez GE, Hidalgo-Bravo A, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Martinez Matsumoto PM, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, Martínez-Ruiz FDJ, Zayago-Angeles DM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Andrade-Alvarado J, Granados J, Ramos-Tavera L, Camacho-Rea MDC, Segura-Kato Y, Rodríguez-Pérez JM, Coronado-Zarco R, Franco-Cendejas R, López-Jácome LE, Magaña JJ, Vela-Amieva M, Pineda C, Martínez-Nava GA, López-Reyes A. Implication of myddosome complex genetic variants in outcome severity of COVID-19 patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:939-950. [PMID: 37365052 PMCID: PMC10273757 DOI: 10.1016/j.jmii.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND/PURPOSE(S) During a viral infection, the immune response is mediated by the toll-like receptors and myeloid differentiation Factor 88 (MyD88) that play an important role sensing infections such as SARS-CoV-2 which has claimed the lives of more than 6.8 million people around the world. METHODS We carried out a cross-sectional with a population of 618 SARS-CoV-2-positive unvaccinated subjects and further classified based on severity: 22% were mild, 34% were severe, 26% were critical, and 18% were deceased. Toll Like Receptor 7 (TLR7) single-nucleotide polymorphisms (rs3853839, rs179008, rs179009, and rs2302267) and MyD88 (rs7744) were genotyped using TaqMan OpenArray. The association of polymorphisms with disease outcomes was performed by logistic regression analysis adjusted by covariates. RESULTS A significant association of rs3853839 and rs7744 of the TLR7 and MyD88 genes, respectively, was found with COVID-19 severity. The G/G genotype of the rs3853839 TLR7 was associated with the critical outcome showing an Odd Ratio = 1.98 (95% IC = 1.04-3.77). The results highlighted an association of the G allele of MyD88 gene with severe, critical and deceased outcomes. Furthermore, in the dominant model (AG + GG vs. AA), we observed an Odd Ratio = 1.70 (95% CI = 1.02-2.86) with severe, Odd Ratio = 1.82 (95% CI = 1.04-3.21) with critical, and Odd Ratio = 2.44 (95% CI = 1.21-4.9) with deceased outcomes. CONCLUSION To our knowledge this work represents an innovative report that highlights the significant association of TLR7 and MyD88 gene polymorphisms with COVID-19 outcomes and the possible implication of the MyD88 variant with D-dimer and IFN-α concentrations.
Collapse
Affiliation(s)
- Laura E Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Martinez-Armenta
- Graduate Program in Experimental Biology, Dirección de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico.
| | - Daniel Medina-Luna
- Microbiology & Immunology Department, Dalhousie University, Halifax, B3H4R2, Nova Scotia, Canada.
| | - María Luisa Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - Tere Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Silvestre Ortega-Peña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Guadalupe Elizabeth Jimenez-Gutierrez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto Hidalgo-Bravo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Rosa P Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Juan P Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - José-Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | | | | | - Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Gustavo Jesús Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Javier Andrade-Alvarado
- Servicio de Cirugía General, Hospital Central Norte Petróleos Mexicanos (PEMEX), Estado de México, Mexico.
| | - Julio Granados
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - Luis Ramos-Tavera
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Roberto Coronado-Zarco
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Rafael Franco-Cendejas
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Luis Esau López-Jácome
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Jonathan J Magaña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México, Mexico.
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| |
Collapse
|
93
|
Youness A, Cenac C, Faz-López B, Grunenwald S, Barrat FJ, Chaumeil J, Mejía JE, Guéry JC. TLR8 escapes X chromosome inactivation in human monocytes and CD4 + T cells. Biol Sex Differ 2023; 14:60. [PMID: 37723501 PMCID: PMC10506212 DOI: 10.1186/s13293-023-00544-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Human endosomal Toll-like receptors TLR7 and TLR8 recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. TLR7 and TLR8 are, respectively, encoded by adjacent X-linked genes. We previously established that TLR7 evades X chromosome inactivation (XCI) in female immune cells. Whether TLR8 also evades XCI, however, has not yet been explored. METHOD In the current study, we used RNA fluorescence in situ hybridization (RNA FISH) to directly visualize, on a single-cell basis, primary transcripts of TLR7 and TLR8 relative to X chromosome territories in CD14+ monocytes and CD4+ T lymphocytes from women, Klinefelter syndrome (KS) men, and euploid men. To assign X chromosome territories in cells lacking robust expression of a XIST compartment, we designed probes specific for X-linked genes that do not escape XCI and therefore robustly label the active X chromosome. We also assessed whether XCI escape of TLR8 was associated with sexual dimorphism in TLR8 protein expression by western blot and flow cytometry. RESULTS Using RNA FISH, we show that TLR8, like TLR7, evades XCI in immune cells, and that cells harboring simultaneously TLR7 and TLR8 transcript foci are more frequent in women and KS men than in euploid men, resulting in a sevenfold difference in frequency. This transcriptional bias was again observable when comparing the single X of XY males with the active X of cells from females or KS males. Interestingly, TLR8 protein expression was significantly higher in female mononuclear blood cells, including all monocyte subsets, than in male cells. CONCLUSIONS TLR8, mirroring TLR7, escapes XCI in human monocytes and CD4+ T cells. Co-dependent transcription from the active X chromosome and escape from XCI could both contribute to higher TLR8 protein abundance in female cells, which may have implications for the response to viruses and bacteria, and the risk of developing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ali Youness
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Berenice Faz-López
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Solange Grunenwald
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Larrey, Centre Hospitalier Universitaire (CHU) de Toulouse, 31059, Toulouse, France
| | - Franck J Barrat
- Hospital for Special Surgery, HSS Research Institute and David Z. Rosensweig Genomics Research Center, New York, NY, 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, 10021, USA
| | - Julie Chaumeil
- INSERM, CNRS, Université Paris Cité, Institut Cochin, 75014, Paris, France
| | - José Enrique Mejía
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| |
Collapse
|
94
|
Isazadeh A, Heris JA, Shahabi P, Mohammadinasab R, Shomali N, Nasiri H, Valedkarimi Z, Khosroshahi AJ, Hajazimian S, Akbari M, Sadeghvand S. Pattern-recognition receptors (PRRs) in SARS-CoV-2. Life Sci 2023; 329:121940. [PMID: 37451397 DOI: 10.1016/j.lfs.2023.121940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Pattern recognition receptors (PRRs) are specific sensors that directly recognize various molecules derived from viral or bacterial pathogens, senescent cells, damaged cells, and apoptotic cells. These sensors act as a bridge between nonspecific and specific immunity in humans. PRRs in human innate immunity were classified into six types: toll-like receptors (TLR), C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP (cGAMP) synthase (cGAS). Numerous types of PRRs are responsible for recognizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is immensely effective in prompting interferon responses. Detection of SARS-CoV-2 infection by PRRs causes the initiation of an intracellular signaling cascade and subsequently the activation of various transcription factors that stimulate the production of cytokines, chemokines, and other immune-related factors. Therefore, it seems that PRRs are a promising potential therapeutic approach for combating SARS-CoV-2 infection and other microbial infections. In this review, we have introduced the current knowledge of various PRRs and related signaling pathways in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahram Sadeghvand
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
95
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
96
|
Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, Sonoda M, Nishitani-Isa M, Uchida T, Hbibi M, Mizoguchi Y, Ishimura M, Izawa K, Asano T, Kakuta F, Abukawa D, Rinchai D, Zhang P, Kambe N, Bousfiha A, Yasumi T, Boisson B, Puel A, Casanova JL, Nishikomori R, Ohga S, Okada S, Sasahara Y, Kure S. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J Exp Med 2023; 220:e20212276. [PMID: 37273177 PMCID: PMC10242411 DOI: 10.1084/jem.20212276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohamed Hbibi
- Pediatric Service University Hospital Center Hassan II Fès, Faculty of Medicine and Pharmacy Sidi Mohamed Ben Abdellah University, Fès, Morocco
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Fumihiko Kakuta
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Daiki Abukawa
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aziz Bousfiha
- Faculty of Medicine and Pharmacy. Hassan II University, Casablanca, Morocco
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
97
|
Shisha T, Posch MG, Lehmann J, Feifel R, Junt T, Hawtin S, Schuemann J, Avrameas A, Danekula R, Misiolek P, Siegel R, Gergely P. First-in-Human Study of the Safety, Pharmacokinetics, and Pharmacodynamics of MHV370, a Dual Inhibitor of Toll-Like Receptors 7 and 8, in Healthy Adults. Eur J Drug Metab Pharmacokinet 2023; 48:553-566. [PMID: 37532923 PMCID: PMC10480294 DOI: 10.1007/s13318-023-00847-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVE MHV370, a dual antagonist of human Toll-like receptors (TLR) 7 and 8, suppresses cytokines and interferon-stimulated genes in vitro and in vivo, and has demonstrated efficacy in murine models of lupus. This first-in-human study aimed to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of MHV370 in healthy adults, as well as the effects of food consumption on a single dose of MHV370. METHODS This was a phase 1, randomised, placebo-controlled study conducted in three parts. In part A, participants received (3:1) a single ascending dose (SAD) of 1, 3, 10, 20, 40, 80, 160, 320, 640 and 1000 mg MHV370 or placebo. In part B, participants received (3:1) multiple ascending doses (MAD) of 25, 50, 100, 200 and 400 mg MHV370 twice daily (b.i.d) or placebo for 14 days. In part C, participants received an open-label single dose of 200 mg MHV370 under fasted or fed conditions. Safety, pharmacokinetic and pharmacodynamic parameters were evaluated. RESULTS MHV370 was well tolerated, and no safety signal was observed in the study. No dose-limiting adverse events occurred across the dose range evaluated. Plasma concentrations of MHV370 increased with dose (mean [SD] maximum plasma concentrations ranged from 0.97 [0.48] to 1670 [861.0] ng/mL for SAD of 3-1000 mg, 29.5 [7.98] to 759 [325.0] ng/mL for MAD of 25-400 mg b.i.d. on day 1). The intake of food did not have a relevant impact on the pharmacokinetics of MHV370. Pharmacodynamic data indicated time- and dose-dependent inhibition of TLR7-mediated CD69 expression on B cells (100% inhibition at 24 h post-dose starting from SAD 160 mg and MAD 50 mg b.i.d.) and TLR8-mediated TNF release after ex vivo stimulation (>90% inhibition at 24 h post-dose starting from SAD 320 mg and MAD 100 mg b.i.d.). CONCLUSION The safety, pharmacokinetic and pharmacodynamic data support the further development of MHV370 in systemic autoimmune diseases driven by the overactivation of TLR7 and TLR8.
Collapse
Affiliation(s)
- Tamas Shisha
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland.
| | | | | | - Roland Feifel
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Tobias Junt
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Stuart Hawtin
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Jens Schuemann
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Alexandre Avrameas
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Rambabu Danekula
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Patrycja Misiolek
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Richard Siegel
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Peter Gergely
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| |
Collapse
|
98
|
Vanker M, Särekannu K, Fekkar A, Jørgensen SE, Haljasmägi L, Kallaste A, Kisand K, Lember M, Peterson P, Menon M, Hussell T, Knight S, Moore-Stanley J, Bastard P, Zhang SY, Mogensen TH, Philippot Q, Zhang Q, Puel A, Casanova JL, Kisand K. Autoantibodies Neutralizing Type III Interferons Are Uncommon in Patients with Severe Coronavirus Disease 2019 Pneumonia. J Interferon Cytokine Res 2023; 43:379-393. [PMID: 37253131 PMCID: PMC10517334 DOI: 10.1089/jir.2023.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023] Open
Abstract
Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored. We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNλ and IFNα. Luciferase-based immunoprecipitation method was applied using pooled IFNα (subtypes 1, 2, 8, and 21) or pooled IFNλ1-IFNλ3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-naive cohort, IFNλ AABs were more common (8.5%) than those targeting IFNα2 (2.9%) and were related with older age. In the COVID-19 cohort the presence of autoreactivity to IFNλ did not associate with severe disease [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40-1.73], unlike to IFNα (OR 4.88; 95% CI 2.40-11.06; P < 0.001). Most IFNλ AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNλ subtypes. Pan-IFNλ neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia, and 4 of them neutralized IFNα2 in addition to IFNλ. Overall, AABs to type III IFNs are rarely neutralizing, and do not seem to predispose to severe COVID-19 pneumonia on their own.
Collapse
Affiliation(s)
- Martti Vanker
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, AP-HP, Paris, France
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Anne Kallaste
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Kalle Kisand
- Department of Internal Medicine, Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Margus Lember
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sean Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Respiratory Department, Salford Care Organisation, Northern Care Alliance Foundation Trust, Manchester, United Kingdom
| | - James Moore-Stanley
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| |
Collapse
|
99
|
Naushad SM, Mandadapu G, Ramaiah MJ, Almajhdi FN, Hussain T. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants. Sci Rep 2023; 13:13078. [PMID: 37567916 PMCID: PMC10421879 DOI: 10.1038/s41598-023-40114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
We investigate the mechanism associated with the severity of COVID-19 in men with TLR7 mutation. Men with loss-of-function (LOF) mutations in TLR7 had severe COVID-19. LOF mutations in TLR7 increased the risk of critical COVID by 16.00-fold (95% confidence interval 2.40-106.73). The deleterious mutations affect the binding of SARS-CoV2 RNA (- 328.66 ± 26.03 vs. - 354.08 ± 27.70, p = 0.03) and MYD88 (β: 40.279, p = 0.003) to TLR7 resulting in the disruption of TLR7-MyD88-TIRAP complex. In certain hypofunctional variants and all neutral/benign variants, there is no disruption of TLR7-MyD88-TIRAP complex and four TLR7 agonists showed binding affinity comparable to that of wild protein. N-acetylcysteine (NAC) also showed a higher binding affinity for the LOF variants (p = 0.03). To conclude, TLR7 LOF mutations increase the risk of critical COVID-19 due to loss of viral RNA sensing ability and disrupted MyD88 signaling. Majority of hypofunctional and neutral variants of TLR7 are capable of carrying MyD88 signaling by binding to different TLR7 agonists and NAC.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Yoda LifeLine Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add on, Ameerpet, Hyderabad, 500016, India.
| | | | | | - Fahad N Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
100
|
Cobat A, Zhang Q, Abel L, Casanova JL, Fellay J. Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants. Annu Rev Biomed Data Sci 2023; 6:465-486. [PMID: 37196358 PMCID: PMC10879986 DOI: 10.1146/annurev-biodatasci-020222-021705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.
Collapse
Affiliation(s)
- Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|