51
|
Sun W, von Meyenn F, Peleg‐Raibstein D, Wolfrum C. Environmental and Nutritional Effects Regulating Adipose Tissue Function and Metabolism Across Generations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900275. [PMID: 31179229 PMCID: PMC6548959 DOI: 10.1002/advs.201900275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Indexed: 05/12/2023]
Abstract
The unabated rise in obesity prevalence during the last 40 years has spurred substantial interest in understanding the reasons for this epidemic. Studies in mice and humans have demonstrated that obesity is a highly heritable disease; however genetic variations within specific populations have so far not been able to explain this phenomenon to its full extent. Recent work has demonstrated that environmental cues can be sensed by an organism to elicit lasting changes, which in turn can affect systemic energy metabolism by different epigenetic mechanisms such as changes in small noncoding RNA expression, DNA methylation patterns, as well as histone modifications. These changes can directly modulate cellular function in response to environmental cues, however research during the last decade has demonstrated that some of these modifications might be transmitted to subsequent generations, thus modulating energy metabolism of the progeny in an inter- as well as transgenerational manner. In this context, adipose tissue has become a focus of research due to its plasticity, which allows the formation of energy storing (white) as well as energy wasting (brown/brite/beige) cells within the same depot. In this Review, the effects of environmental induced obesity with a particular focus on adipose tissue are discussed.
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Ferdinand von Meyenn
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Daria Peleg‐Raibstein
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Christian Wolfrum
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| |
Collapse
|
52
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
53
|
Small molecules for fat combustion: targeting obesity. Acta Pharm Sin B 2019; 9:220-236. [PMID: 30976490 PMCID: PMC6438825 DOI: 10.1016/j.apsb.2018.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.
Collapse
Key Words
- AKT, protein kinase B
- ALDH9, aldehyde dehydrogenase 9
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- BA, bile acids
- BAT, brown adipose tissue
- BMP8b, bone morphogenetic protein 8b
- Beige cells
- Brown adipose tissue
- C/EBPα, CCAAT/enhancer binding protein α
- CLA, cis-12 conjugated linoleic acid
- CRABP-II, cellular RA binding protein type II
- CRE, cAMP response element
- Cidea, cell death-inducing DNA fragmentation factor α-like effector A
- Dio2, iodothyronine deiodinase type 2
- ERE, estrogen response element
- ERs, estrogen receptors
- FAS, fatty acid synthase
- FGF21, fibroblast growth factor 21
- GPCRs, G protein-coupled receptors
- HFD, high fat diet
- LXR, liver X receptors
- MAPK, mitogen-activated protein kinase
- OXPHOS, oxidative phosphorylation
- Obesity
- PDEs, phosphodiesterases
- PET-CT, positron emission tomography combined with computed tomography
- PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1-α
- PKA, protein kinase A
- PPARs, peroxisome proliferator-activated receptors
- PPREs, peroxisome proliferator response elements
- PRDM16, PR domain containing 16
- PTP1B, protein-tyrosine phosphatase 1B
- PXR, pregnane X receptor
- RA, retinoic acid
- RAR, RA receptor
- RARE, RA response element
- RMR, resting metabolic rate
- RXR, retinoid X receptor
- SIRT1, silent mating type information regulation 2 homolog 1
- SNS, sympathetic nervous system
- TFAM, mitochondrial transcription factor A
- TMEM26, transmembrane protein 26
- TRPs, transient receptor potential cation channels
- Thermogenesis
- UCP1, uncoupling protein 1
- Uncoupling protein 1
- VDR, vitamin D receptor
- VDRE, VDR response elements
- WAT, white adipose tissue
- cAMP, cyclic adenosine monophosphate
- cGMP, cyclic guanosine monophosphate
- β3-AR, β3-adrenergic receptor
Collapse
|
54
|
Pollard AE, Martins L, Muckett PJ, Khadayate S, Bornot A, Clausen M, Admyre T, Bjursell M, Fiadeiro R, Wilson L, Whilding C, Kotiadis VN, Duchen MR, Sutton D, Penfold L, Sardini A, Bohlooly-Y M, Smith DM, Read JA, Snowden MA, Woods A, Carling D. AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat Metab 2019; 1:340-349. [PMID: 30887000 PMCID: PMC6420092 DOI: 10.1038/s42255-019-0036-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alice E Pollard
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Luís Martins
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Phillip J Muckett
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Aurélie Bornot
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Maryam Clausen
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Therese Admyre
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mikael Bjursell
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Rebeca Fiadeiro
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Laura Wilson
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Chad Whilding
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | - Daniel Sutton
- Drug Safety and Metabolism IMED Biotech Unit, AstraZeneca, Babraham, UK
| | - Lucy Penfold
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | - David M Smith
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Jon A Read
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Angela Woods
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
55
|
Clookey SL, Welly RJ, Shay D, Woodford ML, Fritsche KL, Rector RS, Padilla J, Lubahn DB, Vieira-Potter VJ. Beta 3 Adrenergic Receptor Activation Rescues Metabolic Dysfunction in Female Estrogen Receptor Alpha-Null Mice. Front Physiol 2019; 10:9. [PMID: 30804793 PMCID: PMC6371032 DOI: 10.3389/fphys.2019.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Metabolic disease risk escalates following menopause. The mechanism is not fully known, but likely involves reduced signaling through estrogen receptor alpha (ERα), which is highly expressed in brown and white adipose tissue (BAT and WAT). Objective: Test the hypothesis that uncoupling protein (UCP1) activation mitigates metabolic dysfunction caused by loss of signaling through ERα. Methods: At 8 weeks of age, female ERα knock out (KO) and wild-type mice were housed at 28°C and fed a Western-style high-fat, high sucrose diet (HFD) or a normal low-fat chow diet (NC) for 10 weeks. During the final 2 weeks, they received daily injections of CL 316,256 (CL), a selective β3 adrenergic agonist, or vehicle control (CTRL), creating eight groups: WT-CTRL, WT-CL, KO-CTRL, and KO-CL on HFD or NC; n = 4–10/group. Results: ERαKO demonstrated exacerbated HFD-induced adiposity gain (P < 0.001) and insulin resistance (P = 0.006). CL treatment improved insulin sensitivity (P < 0.05) and normalized ERαKO-induced adiposity increase (P < 0.05). In both genotypes, CL increased resting energy expenditure (P < 0.05) and induced WAT beiging indicated by increased UCP1 protein in both perigonadal (PGAT) and subcutaneous (SQAT) depots. These effects were attenuated under HFD conditions (P < 0.05). In KO, CL reduced HFD energy consumption compared to CTRL (P < 0.05). Remarkably, CL increased WAT ERβ protein levels of both WT and KO (P < 0.001), revealing CL-mediated changes in estrogen signaling may have protective metabolic effects. Conclusion: CL completely restored metabolic dysfunction in ERαKO mice. Thus, UCP1 may be a therapeutic target for treating metabolic dysfunction following loss of estrogen receptor signaling.
Collapse
Affiliation(s)
- Stephanie L Clookey
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca J Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dusti Shay
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.,Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Child Health, University of Missouri, Columbia, MO, United States
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
56
|
Chang SH, Song NJ, Choi JH, Yun UJ, Park KW. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes Rev 2019; 20:241-251. [PMID: 30450758 DOI: 10.1111/obr.12796] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The growing focus on brown adipocytes has spurred an interest in their potential benefits for metabolic diseases. Brown and beige (or brite) adipocytes express high levels of uncoupling protein 1 (Ucp1) to dissipate heat instead of generating ATP. Ucp1 induction by stimuli including cold, exercise, and diet increases nonshivering thermogenesis, leading to increased energy expenditure and prevention of obesity. Recently, studies in adipocytes have indicated the existence of functional Ucp1-independent thermogenic regulators. Furthermore, substrate cycling involving creatine metabolites, cold-induced N-acyl amino acids, and oxidized lipids in white adipocytes can increase energy expenditure in the absence of Ucp1. These studies emphasize the need for a better understanding of the mechanisms governing energy expenditure in adipocytes and their potential applications in the prevention of human obesity and metabolic diseases.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jin Hee Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
57
|
Abstract
Brown and beige adipocytes can catabolize stored energy to generate heat, and this distinct capacity for thermogenesis could be leveraged as a therapy for metabolic diseases like obesity and type 2 diabetes. Thermogenic adipocytes drive heat production through close coordination of substrate supply with the mitochondrial oxidative machinery and effectors that control the rate of substrate oxidation. Together, this apparatus affords these adipocytes with tremendous capacity to drive thermogenesis. The best characterized thermogenic effector is uncoupling protein 1 (UCP1). Importantly, additional mechanisms for activating thermogenesis beyond UCP1 have been identified and characterized to varying extents. Acute regulation of these thermogenic pathways has been an active area of study, and numerous regulatory factors have been uncovered in recent years. Here we will review the evidence for regulators of heat production in thermogenic adipocytes in the context of the thermodynamic and kinetic principles that govern their therapeutic utility.
Collapse
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Bettini S, Favaretto F, Compagnin C, Belligoli A, Sanna M, Fabris R, Serra R, Dal Prà C, Prevedello L, Foletto M, Vettor R, Milan G, Busetto L. Resting Energy Expenditure, Insulin Resistance and UCP1 Expression in Human Subcutaneous and Visceral Adipose Tissue of Patients With Obesity. Front Endocrinol (Lausanne) 2019; 10:548. [PMID: 31440209 PMCID: PMC6692889 DOI: 10.3389/fendo.2019.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
Determinants of resting energy expenditure (REE) in humans are still under investigation, especially the association with insulin resistance. Brown adipose tissue (AT) regulates energy expenditure through the activity of the uncoupling protein 1 (UCP1). White AT browning is the process by which some adipocytes within AT depots acquire properties of brown adipocytes ("brite" adipocytes) and it correlates with metabolic improvement. We analyzed determinants of REE in patients with obesity and assessed UCP1 expression as a "brite" marker in abdominal subcutaneous AT (SAT) and visceral omental AT (VAT). Clinical data, REE, free fat mass (FFM), and fat mass (FM) were determined in 209 patients with obesity. UCP1, PPARG coactivator 1 alpha (PPARGC1A), transcription factor A, mitochondrial (TFAM), T-box transcription factor 1 (TBX1), and solute carrier family 27 member 1 (SLC27A1) expression was assayed in SAT and VAT samples, obtained during sleeve gastrectomy from 62 patients with obesity. REE and body composition data were also available for a subgroup of 35 of whom. In 209 patients with obesity a multiple regression model was computed with REE as the dependent variable and sex, waist, FFM, FM, homeostasis model assessment-insulin resistance (HOMA), interleukin-6 and High Density Lipoprotein-cholesterol as the independent variables. Only FFM, FM and HOMA were independently correlated with REE (r = 0.787, AdjRsqr = 0.602). In each patient VAT displayed a higher UCP1, PPARGC1A, TFAM, TBX1, and SLC27A1 expression than SAT and UCP1 expression in VAT (UCP1-VAT) correlated with Body Mass Index (BMI) (r = 0.287, p < 0.05). Introducing UCP1-VAT in the multivariate model, we showed that FFM, HOMA, interleukin-6, High Density Lipoprotein-cholesterol, and UCP1-VAT were independent factors correlated with REE (r = 0.736, AdjRsqr = 0.612). We confirmed that REE correlates with FFM, FM and HOMA in a large cohort of patients. Our results clearly showed that UCP1-VAT expression was significantly increased in severe human obesity (BMI > 50 kg/m2) and that it behaved as an independent predictor of REE. Lastly, we suggest that an increased REE and browning in metabolically complicated severe obesity could represent an effort to counteract further weight gain.
Collapse
Affiliation(s)
- Silvia Bettini
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
- *Correspondence: Silvia Bettini
| | - Francesca Favaretto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Compagnin
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Anna Belligoli
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Marta Sanna
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Fabris
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Serra
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Dal Prà
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Prevedello
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Mirto Foletto
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Gabriella Milan
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Busetto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| |
Collapse
|
59
|
Schweizer S, Oeckl J, Klingenspor M, Fromme T. Substrate fluxes in brown adipocytes upon adrenergic stimulation and uncoupling protein 1 ablation. Life Sci Alliance 2018; 1:e201800136. [PMID: 30456392 PMCID: PMC6238590 DOI: 10.26508/lsa.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Brown adipocytes are highly specialized cells with the unique metabolic ability to dissipate chemical energy in the form of heat. We determined and inferred the flux of a number of key catabolic metabolites, their changes in response to adrenergic stimulation, and the dependency on the presence of the thermogenic uncoupling protein 1 and/or oxidative phosphorylation. This study provides reference values to approximate flux rates from a limited set of measured parameters in the future and thereby allows to evaluate the plausibility of claims about the capacity of metabolic adaptations or manipulations. From the resulting model, we delineate that in brown adipocytes (1) free fatty acids are a significant contributor to extracellular acidification, (2) glycogen is the dominant glycolytic substrate source in the acute response to an adrenergic stimulus, and (3) the futile cycling of free fatty acids between lipolysis and re-esterification into triglyceride provides a mechanism for uncoupling protein 1-independent, non-shivering thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Sabine Schweizer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
60
|
Silvester AJ, Aseer KR, Yun JW. Ablation of DJ-1 impairs brown fat function in diet-induced obese mice. Biochimie 2018; 154:107-118. [PMID: 30142366 DOI: 10.1016/j.biochi.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
This study was conducted to investigate the effects of DJ-1 deficiency on brown adipose tissue (BAT) function in mice. DJ-1 knockout (KO) mouse models and wild-type littermates placed on a normal diet or high-fat diet were utilized to demonstrate the direct consequences of DJ-1 deletion on BAT characteristics, thermogenic ability, lipid metabolism, and microenvironment regulation. Global DJ-1 KO mice had defective brown adipose tissue activity culminating in a profound whitening of BAT. Despite aberrations in inactive BAT associated with greater lipid accretion, decreased sympathetic activity, mitochondrial dysfunction, reduced vascularity, and autophagy activation, we found that the body weight and energy balance were unaffected in male mice depleted of DJ-1. Taken together, the results of this study suggest that male DJ-1 KO mice exhibit defects in BAT activity but do not gain more weight, revealing that BAT activity is not necessarily required for predisposing DJ-1 KO mice to obesity. Therefore, therapeutic targeting of DJ-1 in BAT could provide novel insights into the treatment of obesity.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
61
|
Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep 2018; 19:embr.201846404. [PMID: 30135070 DOI: 10.15252/embr.201846404] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022] Open
Abstract
The energy expending and glucose sink properties of brown adipose tissue (BAT) make it an attractive target for new obesity and diabetes treatments. Despite decades of research, only recently have mechanistic studies started to provide a more complete and consistent picture of how activated brown adipocytes handle glucose. Here, we discuss the importance of intracellular glycolysis, lactate production, lipogenesis, lipolysis, and beta-oxidation for BAT thermogenesis in response to natural (temperature) and artificial (pharmacological and optogenetic) forms of sympathetic nervous system stimulation. It is now clear that together, these metabolic processes in series and in parallel flexibly power ATP-dependent and independent futile cycles in brown adipocytes to impact on whole-body thermal, energy, and glucose balance.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany .,German Research Foundation Collaborative Research Center in Obesity Mechanisms 1052, University of Leipzig, Leipzig, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany .,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
62
|
Deconstructing Adipogenesis Induced by β3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab 2018; 28:300-309.e4. [PMID: 29937373 PMCID: PMC6082711 DOI: 10.1016/j.cmet.2018.05.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Recruitment of brown/beige adipocytes (BAs) in white adipose tissue (WAT) involves proliferation and differentiation of adipocyte stem cells (ASCs) in concert with close interactions with resident immune cells. To deconvolve stromal cell heterogeneity in a comprehensive and unbiased fashion, we performed single-cell RNA sequencing (scRNA-seq) of >33,000 stromal/vascular cells from epididymal WAT (eWAT) and inguinal WAT (iWAT) under control conditions and during β3-adrenergic receptor (ADRB3) activation. scRNA-seq identified distinct ASC subpopulations in eWAT and iWAT that appeared to be differentially poised to enter the adipogenic pathway. ADRB3 activation triggered the dramatic appearance of proliferating ASCs in eWAT, whose differentiation into BAs could be inferred from a single time point. scRNA-seq identified various immune cell types in eWAT, including a proliferating macrophage subpopulation that occupies adipogenic niches. These results demonstrate the power of scRNA-seq to deconstruct adipogenic niches and suggest novel functional interactions among resident stromal cell subpopulations.
Collapse
|
63
|
Lu X, Altshuler-Keylin S, Wang Q, Chen Y, Henrique Sponton C, Ikeda K, Maretich P, Yoneshiro T, Kajimura S. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci Signal 2018; 11:11/527/eaap8526. [PMID: 29692364 DOI: 10.1126/scisignal.aap8526] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy.
Collapse
Affiliation(s)
- Xiaodan Lu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Medical Diagnostic Research Center, Jilin Province People's Hospital, Changchun, Jilin 130021, China.,Department of Immunology, Jilin University, Changchun, Jilin 130021, China
| | - Svetlana Altshuler-Keylin
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Qiang Wang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Chen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Sao Paulo 13084-970, Brazil
| | - Kenji Ikeda
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pema Maretich
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
64
|
Shin H, Shi H, Xue B, Yu L. What activates thermogenesis when lipid droplet lipolysis is absent in brown adipocytes? Adipocyte 2018; 7:1-5. [PMID: 29620433 PMCID: PMC6152517 DOI: 10.1080/21623945.2018.1453769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
Abstract
Cold exposure activates the sympathetic nervous system. It is generally thought that this sympathetic activation induces heat production by stimulating lipolysis of cytosolic lipid droplets (LDs) in brown adipocytes. However, this concept was not examined in vivo due to lack of appropriate animal models. Recently, we and others have demonstrated that LD lipolysis in brown adipocytes is not required for cold-induced nonshivering thermogenesis. Our studies uncovered an essential role of white adipose tissue (WAT) lipolysis in fueling thermogenesis during fasting. In addition, we showed that lipolysis deficiency in brown adipose tissue (BAT) induces WAT browning. This commentary further discusses the significance of our findings and how whole body may be heated up without BAT lipolysis.
Collapse
Affiliation(s)
- Hyunsu Shin
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Liqing Yu
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
65
|
Jastroch M, Oelkrug R, Keipert S. Insights into brown adipose tissue evolution and function from non-model organisms. ACTA ACUST UNITED AC 2018. [PMID: 29514888 DOI: 10.1242/jeb.169425] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany
| | - Rebecca Oelkrug
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23562 Lübeck, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
66
|
Reber J, Willershäuser M, Karlas A, Paul-Yuan K, Diot G, Franz D, Fromme T, Ovsepian SV, Bézière N, Dubikovskaya E, Karampinos DC, Holzapfel C, Hauner H, Klingenspor M, Ntziachristos V. Non-invasive Measurement of Brown Fat Metabolism Based on Optoacoustic Imaging of Hemoglobin Gradients. Cell Metab 2018. [PMID: 29514074 DOI: 10.1016/j.cmet.2018.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolism is a fundamental process of life. However, non-invasive measurement of local tissue metabolism is limited today by a deficiency in adequate tools for in vivo observations. We designed a multi-modular platform that explored the relation between local tissue oxygen consumption, determined by label-free optoacoustic measurements of hemoglobin, and concurrent indirect calorimetry obtained during metabolic activation of brown adipose tissue (BAT). By studying mice and humans, we show how video-rate handheld multi-spectral optoacoustic tomography (MSOT) in the 700-970 nm spectral range enables non-invasive imaging of BAT activation, consistent with positron emission tomography findings. Moreover, we observe BAT composition differences between healthy and diabetic tissues. The study consolidates hemoglobin as a principal label-free biomarker for longitudinal non-invasive imaging of BAT morphology and bioenergetics in situ. We also resolve water and fat components in volunteers, and contrast MSOT readouts with magnetic resonance imaging data.
Collapse
Affiliation(s)
- Josefine Reber
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Monja Willershäuser
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Angelos Karlas
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Korbinian Paul-Yuan
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Gael Diot
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Saak V Ovsepian
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Nicolas Bézière
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany
| | - Elena Dubikovskaya
- Department of Chemistry, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Munich, Germany.
| |
Collapse
|
67
|
Ikeda K, Maretich P, Kajimura S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol Metab 2018; 29:191-200. [PMID: 29366777 PMCID: PMC5826798 DOI: 10.1016/j.tem.2018.01.001] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
Abstract
Two types of thermogenic fat cells, brown adipocytes and beige adipocytes, play a key role in the regulation of systemic energy homeostasis in mammals. Both brown fat and beige fat possess thermogenic properties in addition to common morphological and biochemical characteristics, including multilocular lipid droplets and cristae-dense mitochondria. Recent studies also identify features that are distinct between the two types of thermogenic fat cells, such as their developmental regulation and function. Of particular interest is the role of beige fat in the regulation of glucose homeostasis via uncoupling protein 1 (UCP1)-independent mechanisms. A better understanding of the underlying causes of these characteristics of brown and beige fat will allow us to specifically manipulate these cells to improve systemic energy metabolism and glucose homeostasis.
Collapse
Affiliation(s)
- Kenji Ikeda
- University of California San Francisco (UCSF) Diabetes Center, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA 94131, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | - Pema Maretich
- University of California San Francisco (UCSF) Diabetes Center, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA 94131, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | - Shingo Kajimura
- University of California San Francisco (UCSF) Diabetes Center, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA 94131, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
68
|
Jia Y, Hong J, Li H, Hu Y, Jia L, Cai D, Zhao R. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β 3 -adrenergic receptor activation in high-fat diet-induced obese mice. Exp Physiol 2018; 102:273-281. [PMID: 28028849 DOI: 10.1113/ep086114] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Butyrate can prevent diet-induced obesity through increasing energy expenditure. However, it is unclear whether β3 -adrenergic receptors (ARβ3) mediate butyrate-induced adipose lipolysis. What is the main finding and its importance? Short-term oral administration of sodium butyrate is effective in alleviating diet-induced obesity through activation of ARβ3-mediated lipolysis in white adipose tissue. Butyrate can prevent diet-induced obesity through increasing energy expenditure. However, it is unclear whether ARβ3 mediates butyrate-induced adipose lipolysis. In this study, weaned mice were were fed control (Con) or high-fat (HF) diet for 8 weeks to establish obesity. High-fat diet-induced obese mice maintained on the HF diet were divided into two subgroups; the HFB group was gavaged with 80 mg sodium butyrate (SB) per mouse every other day for 10 days, whereas the HF group received vehicle. Chromatin immunoprecipitation assay was performed to determine the status of histone H3 lysine 9 acetylation (H3K9Ac) on the promoter of the β3 -adrenergic receptor (ARβ3) gene in epididymal white adipose tissue. It was shown that five gavage doses of SB significantly alleviated HF diet-induced obesity and restored plasma leptin concentration to the control level. Protein contents of ARβ3 and PKA, as well as ATGL and p-HSL (Ser563), were significantly upregulated in the HFB group compared with the HF group. Mitochondrial oxidative phosphorylation was enhanced by SB treatment. Sodium butyrate significantly increased the expression of four out of 13 mitochondrial DNA-encoded genes and significantly upregulated the protein contents of peroxisome proliferator-activated receptor-γ coactivator 1α and COX4. Moreover, SB administration enhanced the expression of ARβ3 and its downstream signalling. The G protein-coupled receptor 43 and p-CREB (Ser133) were significantly stimulated by SB. In addition, an active transcription marker, H3K9Ac, was significantly enriched on the promoter of the ARβ3 gene. Our results indicate that short-term oral administration of SB is effective in alleviating diet-induced obesity through activation of the ARβ3-mediated lipolysis in the epididymal white adipose tissue.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China
| | - Jian Hong
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China.,College of Life Science and Technology, Yancheng Teachers University, Jiangsu, Yancheng 224051, PR, China
| | - Huifang Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China
| | - Yun Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China
| | - Longfei Jia
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China
| | - Demin Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, 210095, PR, China
| |
Collapse
|
69
|
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, Tajima K, Ajuwon KM, Soga T, Kajimura S. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 2017; 23:1454-1465. [PMID: 29131158 PMCID: PMC5727902 DOI: 10.1038/nm.4429] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Uncoupling protein 1 (UCP1) plays a central role in nonshivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca2+ cycling by sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca2+ cycling by activation of α1- and/or β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis in beige adipocytes. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism and pyruvate dehydrogenase activity for ATP-dependent thermogenesis through the SERCA2b pathway; beige fat thereby functions as a 'glucose sink' and improves glucose tolerance independently of body weight loss. Our study uncovers a noncanonical thermogenic mechanism through which beige fat controls whole-body energy homeostasis via Ca2+ cycling.
Collapse
Affiliation(s)
- Kenji Ikeda
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Qianqian Kang
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Takeshi Yoneshiro
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Joao Paulo Camporez
- Yale University School of Medicine, Department of Medicine and Cellular & Molecular Physiology, New Haven, CT
| | - Hiroko Maki
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Mayu Homma
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kosaku Shinoda
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Yong Chen
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Xiaodan Lu
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Pema Maretich
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Kazuki Tajima
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| | - Kolapo M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA
| |
Collapse
|
70
|
Systems biology reveals uncoupling beyond UCP1 in human white fat-derived beige adipocytes. NPJ Syst Biol Appl 2017; 3:29. [PMID: 28983409 PMCID: PMC5626775 DOI: 10.1038/s41540-017-0027-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pharmaceutical induction of metabolically active beige adipocytes in the normally energy storing white adipose tissue has potential to reduce obesity. Mitochondrial uncoupling in beige adipocytes, as in brown adipocytes, has been reported to occur via the uncoupling protein 1 (UCP1). However, several previous in vitro characterizations of human beige adipocytes have only measured UCP1 mRNA fold increase, and assumed a direct correlation with metabolic activity. Here, we provide an example of pharmaceutical induction of beige adipocytes, where increased mRNA levels of UCP1 are not translated into increased protein levels, and perform a thorough analysis of this example. We incorporate mRNA and protein levels of UCP1, time-resolved mitochondrial characterizations, and numerous perturbations, and analyze all data with a new fit-for-purpose mathematical model. The systematic analysis challenges the seemingly obvious experimental conclusion, i.e., that UCP1 is not active in the induced cells, and shows that hypothesis testing with iterative modeling and experimental work is needed to sort out the role of UCP1. The analyses demonstrate, for the first time, that the uncoupling capability of human beige adipocytes can be obtained without UCP1 activity. This finding thus opens the door to a new direction in drug discovery that targets obesity and its associated comorbidities. Furthermore, the analysis advances our understanding of how to evaluate UCP1-independent thermogenesis in human beige adipocytes.
Collapse
|
71
|
Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab 2017; 26:660-671.e3. [PMID: 28844881 PMCID: PMC5629120 DOI: 10.1016/j.cmet.2017.08.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity.
Collapse
Affiliation(s)
- Lawrence Kazak
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| | - Edward T Chouchani
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Gina Z Lu
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Curtis J Bare
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amir I Mina
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| |
Collapse
|
72
|
Ying F, Cai Y, Cai Y, Wang Y, Ching Tang EH. Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. FASEB J 2017; 31:4023-4036. [DOI: 10.1096/fj.201700191r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Ying
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yin Cai
- Department of AnesthesiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yu Cai
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yu Wang
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Eva Hoi Ching Tang
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
73
|
Zhang Y, Li X, Lin Y, Zhang L, Guo Z, Zhao D, Yang D. The combined effects of silicon dioxide nanoparticles and cold air exposure on the metabolism and inflammatory responses in white adipocytes. Toxicol Res (Camb) 2017; 6:705-710. [PMID: 30090537 PMCID: PMC6061031 DOI: 10.1039/c7tx00145b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
The potential hazard of nanoparticles (NPs) from air pollution has attracted widespread attention. Though the toxicology of NPs has been intensively studied, few works have been reported on the combined effect of silicon dioxide (SiO2) NPs and cold air exposure at the cellular level. Herein, we evaluated the combined effect of SiO2 NPs and cold exposure on metabolism and the inflammatory responses in white adipocytes by qRT-PCR in vitro. After SiO2 NP or cold exposure, there were significant changes in the expressions of adipogenic genes and proinflammatory cytokine genes in white adipocytes. The mRNA levels of IL-6, IL-8, TNF-α and IL-1β were upregulated by SiO2 NP or cold exposure, and more so in the combined group. The expressions of the proinflammatory cytokine genes IL-6, IL-8, TNF-α and IL-1β increased highly significantly (P < 0.01) in the SiO2 NP alone group and the combined group, compared with the control. The expressions of the cold group tended to be upregulated significantly compared with the control in IL-6 (P < 0.01) and IL-8 (P < 0.05). The results demonstrated that there was antagonistic effect between SiO2 NPs and cold air on the plasticity and metabolism in white adipocytes, where the main effect of cold air on the plasticity and metabolism was significant (P < 0.05). However, there was a synergistic effect between SiO2 NPs and cold air on the toxic effects in white adipocytes, in which the main effect of SiO2 NPs on the toxic effects was significant (P < 0.05). In conclusion, SiO2 NPs combined with cold exposure induced a stronger inflammatory response and influenced the plasticity and metabolism in white adipocytes, accompanied by more serious health hazards.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Xi Li
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Yangsheng Lin
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Li Zhang
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Zhan Guo
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Dandan Zhao
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| | - Danfeng Yang
- Tianjin Institute of Health and Environmental Medicine , Tianjin 300050 , China . ; ; Tel: +86-22-84655058
| |
Collapse
|
74
|
Keipert S, Kutschke M, Ost M, Schwarzmayr T, van Schothorst EM, Lamp D, Brachthäuser L, Hamp I, Mazibuko SE, Hartwig S, Lehr S, Graf E, Plettenburg O, Neff F, Tschöp MH, Jastroch M. Long-Term Cold Adaptation Does Not Require FGF21 or UCP1. Cell Metab 2017; 26:437-446.e5. [PMID: 28768181 DOI: 10.1016/j.cmet.2017.07.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/31/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022]
Abstract
Brown adipose tissue (BAT)-dependent thermogenesis and its suggested augmenting hormone, FGF21, are potential therapeutic targets in current obesity and diabetes research. Here, we studied the role of UCP1 and FGF21 for metabolic homeostasis in the cold and dissected underlying molecular mechanisms using UCP1-FGF21 double-knockout mice. We report that neither UCP1 nor FGF21, nor even compensatory increases of FGF21 serum levels in UCP1 knockout mice, are required for defense of body temperature or for maintenance of energy metabolism and body weight. Remarkably, cold-induced browning of inguinal white adipose tissue (iWAT) is FGF21 independent. Global RNA sequencing reveals major changes in response to UCP1- but not FGF21-ablation in BAT, iWAT, and muscle. Markers of mitochondrial failure and inflammation are observed in BAT, but in particular the enhanced metabolic reprogramming in iWAT supports the thermogenic role of UCP1 and excludes an important thermogenic role of endogenous FGF21 in normal cold acclimation.
Collapse
Affiliation(s)
- Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maria Kutschke
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Mario Ost
- German Institute of Human Nutrition, Nuthetal, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Laura Brachthäuser
- Institute of Pathology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabel Hamp
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Sithandiwe E Mazibuko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
75
|
Phillips JD, Zhang H, Wei T, Richter GT. Expression of β-Adrenergic Receptor Subtypes in Proliferative, Involuted, and Propranolol-Responsive Infantile Hemangiomas. JAMA FACIAL PLAST SU 2017; 19:102-107. [PMID: 27737446 DOI: 10.1001/jamafacial.2016.1188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Importance Propranolol hydrochloride has become the primary medical treatment for problematic infantile hemangioma; however, the expression of propranolol's target receptors during growth, involution, and treatment of hemangioma remains unclear. Objective To measure and compare the expression of β1-, β2-, and β3-adrenergic receptors (ADBR1, ADBR2, and ADBR3, respectively) in proliferative (n = 10), involuted (n = 11), and propranolol-responsive (n = 12) hemangioma tissue. Design, Setting, and Participants Infantile hemangioma specimens were harvested for molecular investigation. Messenger RNA (mRNA) expression of the ADBR1, ADBR2, and ADBR3 genes was detected by real-time polymerase chain reaction. Protein level expression was measured by Western blot and standardized with densitometry. A total of 33 specimens were collected from patients in a tertiary pediatric hospital who underwent excision of problematic hemangiomas. This study was conducted from January 18, 2011, to September 24, 2013, and data analysis was performed from February 25, 2015, to June 25, 2016. Results Of the 33 patients included, 21 were female (64%). The mean (SD) patient age at the time of excision was 7 (2.5) months for the proliferative group lesions, 23.5 (10) months for the involuted group, and 16 (10) months for the propranolol group. The mean level of ADBR1 mRNA expression was significantly higher in proliferative hemangioma than in propranolol-responsive hemangioma (1.05 [0.56] vs 0.52 [0.36]; P = .01; 95% CI, 0.12-0.94). There was no difference in ADBR2 expression among the groups. Protein expression of ADBR3 was significantly higher in involuted (0.64 [0.12] vs 0.26 [0.04]; P < .01; 95% CI, 0.26-0.49) and propranolol-responsive hemangioma (0.66 [0.31] vs 0.26 [0.04]; P = .01; 95% CI, 0.16-0.68) compared with proliferative hemangioma. Conclusions and Relevance These data demonstrate the variable expression of ADBR subtypes among infantile hemangiomas during growth, involution, and response to treatment. These findings may have clinical implications regarding the use of selective vs nonselective β-blockade. Level of Evidence 2.
Collapse
Affiliation(s)
- James D Phillips
- Division of Pediatric Otolaryngology and Center for the Investigation of Congenital Aberrancies of Vascular Development, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for the Medical Sciences, Little Rock2Department of Otolaryngology Head and Neck Surgery, Arkansas Children's Hospital, Little Rock
| | - Haihong Zhang
- Division of Pediatric Otolaryngology and Center for the Investigation of Congenital Aberrancies of Vascular Development, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for the Medical Sciences, Little Rock2Department of Otolaryngology Head and Neck Surgery, Arkansas Children's Hospital, Little Rock
| | - Ting Wei
- Division of Pediatric Otolaryngology and Center for the Investigation of Congenital Aberrancies of Vascular Development, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for the Medical Sciences, Little Rock2Department of Otolaryngology Head and Neck Surgery, Arkansas Children's Hospital, Little Rock
| | - Gresham T Richter
- Division of Pediatric Otolaryngology and Center for the Investigation of Congenital Aberrancies of Vascular Development, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for the Medical Sciences, Little Rock2Department of Otolaryngology Head and Neck Surgery, Arkansas Children's Hospital, Little Rock
| |
Collapse
|
76
|
The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses. Sci Rep 2017; 7:958. [PMID: 28424466 PMCID: PMC5430421 DOI: 10.1038/s41598-017-01047-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) is regulated by the sympathetic nervous system via β3-adrenergic receptors (β3-AR). Here we tested the hypothesis that pharmacological stimulation of β3-ARs leads to increased sleep in mice and if this change is BAT dependent. In wild-type (WT) animals, administration of CL-316,243, a selective β3-AR agonist, induced significant increases in non-rapid-eye movement sleep (NREMS) lasting for 4–10 h. Simultaneously, electroencephalographic slow-wave activity (SWA) was significantly decreased and body temperature was increased with a delay of 5–6 h. In uncoupling protein 1 (UCP-1) knockout mice, the middle and highest doses of the β3-AR agonist increased sleep and suppressed SWA, however, these effects were significantly attenuated and shorter-lasting as compared to WT animals. To determine if somnogenic signals arising from BAT in response to β3-AR stimulation are mediated by the sensory afferents of BAT, we tested the effects of CL-316,243 in mice with the chemical deafferentation of the intra-scapular BAT pads. Sleep responses to CL-316,243 were attenuated by ~50% in intra-BAT capsaicin-treated mice. Present findings indicate that the activation of BAT via β3-AR leads to increased sleep in mice and that this effect is dependent on the presence of UCP-1 protein and sleep responses require the intact sensory innervation of BAT.
Collapse
|
77
|
Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metab 2017; 25:811-822.e4. [PMID: 28380374 PMCID: PMC5448977 DOI: 10.1016/j.cmet.2017.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/27/2016] [Accepted: 03/04/2017] [Indexed: 11/27/2022]
Abstract
Cold and other environmental factors induce "browning" of white fat depots-development of beige adipocytes with morphological and functional resemblance to brown fat. Similar to brown fat, beige adipocytes are assumed to express mitochondrial uncoupling protein 1 (UCP1) and are thermogenic due to the UCP1-mediated H+ leak across the inner mitochondrial membrane. However, this assumption has never been tested directly. Herein we patch clamped the inner mitochondrial membrane of beige and brown fat to provide a direct comparison of their thermogenic H+ leak (IH). All inguinal beige adipocytes had robust UCP1-dependent IH comparable to brown fat, but it was about three times less sensitive to purine nucleotide inhibition. Strikingly, only ∼15% of epididymal beige adipocytes had IH, while in the rest UCP1-dependent IH was undetectable. Despite the absence of UCP1 in the majority of epididymal beige adipocytes, these cells employ prominent creatine cycling as a UCP1-independent thermogenic mechanism.
Collapse
|
78
|
Park S, Komatsu T, Kim SE, Tanaka K, Hayashi H, Mori R, Shimokawa I. Neuropeptide Y resists excess loss of fat by lipolysis in calorie-restricted mice: a trait potential for the life-extending effect of calorie restriction. Aging Cell 2017; 16:339-348. [PMID: 28101970 PMCID: PMC5334538 DOI: 10.1111/acel.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 12/01/2022] Open
Abstract
Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)‐mediated lifespan extension. However, the mechanisms underlying the NPY‐mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with lipodystrophy. NPY−/− mice displayed a rapid decrease in body weight and fat mass, as well as increased lipolysis during CR. These alterations in fat regulation were inhibited by the lipolysis inhibitor, acipimox, a treatment associated with reduced mortality. The lipolytic/thermogenic signaling, β3‐adrenergic receptor/hormone sensitive lipase, was markedly activated in white adipose tissue of NPY−/− mice compared with that of NPY+/+ mice, and thermogenesis was controlled by NPY under negative energy balance. These results demonstrate the critical role of NPY in the regulation of lipid metabolic homeostasis and survival via control of lipolysis and thermogenesis in a state of negative energy balance.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Toshimitsu Komatsu
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Sang Eun Kim
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Katsuya Tanaka
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
- Department of Plastic and Reconstructive Surgery; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Hiroko Hayashi
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Ryoichi Mori
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Isao Shimokawa
- Department of Pathology; Nagasaki University School of Medicine; Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| |
Collapse
|
79
|
Olsen JM, Csikasz RI, Dehvari N, Lu L, Sandström A, Öberg AI, Nedergaard J, Stone-Elander S, Bengtsson T. β 3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: Mediation through the mTOR pathway. Mol Metab 2017; 6:611-619. [PMID: 28580291 PMCID: PMC5444022 DOI: 10.1016/j.molmet.2017.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023] Open
Abstract
Objective Today, the presence and activity of brown adipose tissue (BAT) in adult humans is generally equated with the induced accumulation of [2-18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) in adipose tissues, as investigated by positron emission tomography (PET) scanning. In reality, PET-FDG is currently the only method available for in vivo quantification of BAT activity in adult humans. The underlying assumption is that the glucose uptake reflects the thermogenic activity of the tissue. Methods To examine this basic assumption, we here followed [18F]FDG uptake by PET and by tissue [3H]-2-deoxy-d-glucose uptake in wildtype and UCP1(−/−) mice, i.e. in mice that do or do not possess the unique thermogenic and calorie-consuming ability of BAT. Results Unexpectedly, we found that β3-adrenergically induced (by CL-316,243) glucose uptake was UCP1-independent. Thus, whereas PET-FDG scans adequately reflect glucose uptake, this acute glucose uptake is not secondary to thermogenesis but is governed by an independent cellular signalling, here demonstrated to be mediated via the previously described KU-0063794-sensitive mTOR pathway. Conclusions Thus, PET-FDG scans do not exclusively reveal active BAT deposits but rather any tissue possessing an adrenergically-mediated glucose uptake pathway. In contrast, we found that the marked glucose uptake-ameliorating effect of prolonged β3-adrenergic treatment was UCP1 dependent. Thus, therapeutically, UCP1 activity is required for any anti-diabetic effect of BAT activation. β3-adrenergically glucose uptake in BAT is UCP1-independent. Glucose uptake is not secondary to thermogenesis but is through the mTOR pathway. Both glucose uptake and thermogenesis are needed to fully effect glucose homeostasis.
Collapse
Affiliation(s)
- Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Robert I Csikasz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden.,Department of Clinical Neurosciences, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Anna Sandström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anette I Öberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Clinical Neurosciences, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital Solna, SE-171 76, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
80
|
Torchon E, Ray R, Hulver MW, McMillan RP, Voy BH. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens. Adipocyte 2017; 6:33-39. [PMID: 28452587 DOI: 10.1080/21623945.2016.1263777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14CO2 production and 14C-labeled acid-soluble metabolites from the oxidation of [1-14C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.
Collapse
Affiliation(s)
- Emmanuelle Torchon
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Rodney Ray
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, USA
- The Metabolic Phenotyping Core at Virginia Tech, Virginia Tech, Blacksburg, VA, USA
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, USA
- The Metabolic Phenotyping Core at Virginia Tech, Virginia Tech, Blacksburg, VA, USA
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
81
|
Flachs P, Adamcova K, Zouhar P, Marques C, Janovska P, Viegas I, Jones JG, Bardova K, Svobodova M, Hansikova J, Kuda O, Rossmeisl M, Liisberg U, Borkowska AG, Kristiansen K, Madsen L, Kopecky J. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes (Lond) 2016; 41:372-380. [PMID: 28008171 DOI: 10.1038/ijo.2016.228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVE Futile substrate cycling based on lipolytic release of fatty acids (FA) from intracellular triacylglycerols (TAG) and their re-esterification (TAG/FA cycling), as well as de novo FA synthesis (de novo lipogenesis (DNL)), represent the core energy-consuming biochemical activities of white adipose tissue (WAT). We aimed to characterize their roles in cold-induced thermogenesis and energy homeostasis. METHODS Male obesity-resistant A/J and obesity-prone C57BL/6J mice maintained at 30 °C were exposed to 6 °C for 2 or 7 days. In epididymal WAT (eWAT), TAG synthesis and DNL were determined using in vivo 2H incorporation from 2H2O into tissue TAG and nuclear magnetic resonance spectroscopy. Quantitative real-time-PCR and/or immunohistochemistry and western blotting were used to determine the expression of selected genes and proteins in WAT and liver. RESULTS The mass of WAT depots declined during cold exposure (CE). Plasma levels of TAG and non-esterified FA were decreased by day 2 but tended to normalize by day 7 of CE. TAG synthesis (reflecting TAG/FA cycle activity) gradually increased during CE. DNL decreased by day 2 of CE but increased several fold over the control values by day 7. Expression of genes involved in lipolysis, glyceroneogenesis, FA re-esterification, FA oxidation and mitochondrial biogenesis in eWAT was induced during CE. All these changes were more pronounced in obesity-resistant A/J than in B6 mice and occurred in the absence of uncoupling protein 1 in eWAT. Expression of markers of glyceroneogenesis in eWAT correlated negatively with hepatic FA synthesis by day 7 in both strains. Leptin and fibroblast growth factor 21 plasma levels were differentially affected by CE in the two mouse strains. CONCLUSIONS Our results indicate integrated involvement of (i) TAG/FA cycling and DNL in WAT, and (ii) hepatic very-low-density lipoprotein-TAG synthesis in the control of blood lipid levels and provision of FA fuels for thermogenesis in cold. They suggest that lipogenesis in WAT contributes to a lean phenotype.
Collapse
Affiliation(s)
- P Flachs
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - K Adamcova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - P Zouhar
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - C Marques
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - P Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - I Viegas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - J G Jones
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - K Bardova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Svobodova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J Hansikova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - O Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - U Liisberg
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - A G Borkowska
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - K Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - L Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - J Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
82
|
Pino MF, Parsons SA, Smith SR, Sparks LM. Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obesity (Silver Spring) 2016; 24:2467-2470. [PMID: 27804230 DOI: 10.1002/oby.21669] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Exercise training (training) effects on white adipose tissue (WAT) thermogenic and oxidative capacities in humans are inconclusive. This study aimed to investigate whether an active lifestyle is characterized by thermogenic and/or oxidative transcriptional markers in human WAT. METHODS In vivo maximal muscle ATP synthetic rates (ATPmax) were measured by 31 P-MRS, body composition by DXA, and peak oxygen uptake (VO2 peak) by cycle ergometry in active (n = 7) and sedentary (SED) individuals before and after 3 weeks of training (n = 9, SED only). mRNA expressions of brown adipose and β-oxidation markers, as well as mitochondrial DNA content (mtDNA), were measured by qRT-PCR and qPCR, respectively, in WAT. RESULTS ATPmax and VO2 peak were higher in active versus SED individuals. Following training in SED individuals, ATPmax and VO2 peak increased. Proliferator-activated receptor gamma coactivator-1α and carnitine palmitoyltransferase-1β gene expressions and mtDNA content were significantly higher in WAT of active versus SED individuals before training. mRNA contents of brown and beige-specific markers were not different between cohorts. Training effectively increased ATPmax and VO2 peak but had no effect on mtDNA content or expressions of genes that regulate thermogenic and oxidative capacities in WAT. CONCLUSIONS Results indicate that an active lifestyle is characterized by elevated mitochondrial content and oxidative, not thermogenic, markers of WAT.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Center for Clinical and Molecular Origins of Disease, Orlando, Florida, USA
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Center for Clinical and Molecular Origins of Disease, Orlando, Florida, USA
| |
Collapse
|
83
|
Zhu Q, Ghoshal S, Tyagi R, Chakraborty A. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Mol Metab 2016; 6:73-85. [PMID: 28123939 PMCID: PMC5220553 DOI: 10.1016/j.molmet.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE IP6 kinases (IP6Ks) regulate cell metabolism and survival. Mice with global (IP6K1-KO) or adipocyte-specific (AdKO) deletion of IP6K1 are protected from diet induced obesity (DIO) at ambient (23 °C) temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE). Thus, at thermoneutral (30 °C) temperature, high fat diet (HFD)-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. METHODS Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR), fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. RESULTS Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C) exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. CONCLUSIONS Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
84
|
Lin Y, Li X, Zhang L, Zhang Y, Zhu H, Zhang Y, Xi Z, Yang D. Inhaled SiO 2 nanoparticles blunt cold-exposure-induced WAT-browning and metabolism activation in white and brown adipose tissue. Toxicol Res (Camb) 2016; 5:1106-1114. [PMID: 30090416 DOI: 10.1039/c6tx00015k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/24/2016] [Indexed: 11/21/2022] Open
Abstract
Concern has been growing over the potential hazard of nanoparticles to human health because of increasing ambient particulate air pollution. Much research has been performed on the toxicology of nanoparticles to organs. Meanwhile, particles floating in air, particularly in winter, are more serious. Thus, the purpose of this study was to evaluate the effect of nanoparticles and cold on human health. There is little research on the effects of nanoparticles on energy metabolism. The composition of particulate matter is complicated; however, silicon in particles accounts for a significant proportion. Adipose tissue is the main organ that produces heat and maintains the body temperature in a cold environment. White adipose tissue (WAT) stores energy in the form of triacylglycerol, whereas brown adipose tissue (BAT) dissipates energy in the form of heat to maintain the body temperature. This article presents the effect of air ultra-particles and cold on the WAT and BAT. In vivo, Sprague-Dawley rats were divided into four groups: exposed to the same deposited doses of silicon dioxide (SiO2) nanoparticles (NPs) by intratracheal instillation or/and cold exposure at 4 °C, 4 h per day for four weeks. Cold exposure induced weight loss and WAT browning, as indicated by pathology, transmission electron microscopy (TEM), upregulated mRNA levels of BAT and WAT specific genes and molecular switches. Intratracheal instillation of nano-SiO2 induced a slowdown in metabolism, weight gain and inhibited WAT browning, as indicated by the downregulated mRNA levels of BAT and WAT marker genes and molecular switches. This study provided direct evidence that SiO2 NPs might inhibit the effect of cold-induced white/brown adipose tissue changes in plasticity and metabolism.
Collapse
Affiliation(s)
- Yangsheng Lin
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Xi Li
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Li Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Yongqiang Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Huili Zhu
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Ying Zhang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Zhuge Xi
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| | - Danfeng Yang
- Tianjin Institute of Health and Environmental Medicine , 300050 , China . ; ; Tel: +86-22-84655058
| |
Collapse
|
85
|
Ramseyer VD, Granneman JG. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte 2016; 5:119-29. [PMID: 27386156 DOI: 10.1080/21623945.2016.1145846] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.
Collapse
Affiliation(s)
- Vanesa D. Ramseyer
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
- John Dingell Vet Administration Medical Center, Detroit, MI, USA
| |
Collapse
|
86
|
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC, Kajimura S, Gygi SP, Spiegelman BM. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 2015; 163:643-55. [PMID: 26496606 DOI: 10.1016/j.cell.2015.09.035] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/10/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023]
Abstract
Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a β3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP.
Collapse
Affiliation(s)
- Lawrence Kazak
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Brian K Erickson
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Kosaku Shinoda
- Diabetes Center, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Paul Cohen
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gina Z Lu
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Sebastian C Hasenfuss
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| |
Collapse
|
87
|
Abstract
Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention as a therapeutic intervention for obesity and metabolic diseases including type 2 diabetes. As we better understand the physiological roles of classical brown and beige adipocytes, it is becoming clear that BAT is not simply a heat-generating organ. Increased beige fat mass in response to a variety of external/internal cues is associated with significant improvements in glucose and lipid homeostasis that may not be entirely mediated by UCP1. We aim to discuss recent insights regarding the developmental lineages, molecular regulation, and new functions for brown and beige adipocytes.
Collapse
Affiliation(s)
- Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA.
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
88
|
Xiao C, Goldgof M, Gavrilova O, Reitman ML. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22°C. Obesity (Silver Spring) 2015; 23:1450-9. [PMID: 26053335 PMCID: PMC4482793 DOI: 10.1002/oby.21124] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/29/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mice are typically housed at environmental temperatures below thermoneutrality, whereas humans live near thermoneutrality. This difference affects energy physiology and, potentially, anti-obesity drug efficacy. Here β3-adrenergic agonist treatment at thermoneutrality (30°C) versus room temperature (22°C) is compared. METHODS Male C57BL/6J mice were singly housed at 30°C or 22°C and treated with vehicle or CL316243, a β3-agonist, for 4 weeks. Food intake, energy expenditure, body and adipose weight, brown adipose activity, white adipose browning, and glucose tolerance were evaluated. CL316243 treatment was studied in both chow- and high-fat diet-fed mice. RESULTS Mice at 30°C, compared to 22°C, had reduced food intake, metabolic rate, and brown adipose activity, as well as increased adiposity. At both temperatures, CL316243 treatment increased brown adipose activation and energy expenditure and improved glucose tolerance. At 30°C, CL316243 increased energy expenditure disproportionately to changes in food intake, thus reducing adiposity, while at 22°C these changes were matched, yielding unchanged adiposity. CONCLUSIONS CL316243 treatment can have beneficial metabolic effects in the absence of adiposity changes. In addition, the interaction between environmental temperature and CL316243 treatment is different from the interaction between environmental temperature and 2,4-dinitrophenol treatment reported previously, suggesting that each drug mechanism must be examined to understand the effect of environmental temperature on drug efficacy.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Margalit Goldgof
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
89
|
Straub L, Wolfrum C. FGF21, energy expenditure and weight loss - How much brown fat do you need? Mol Metab 2015; 4:605-9. [PMID: 26413466 PMCID: PMC4563019 DOI: 10.1016/j.molmet.2015.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) belongs to the large family of fibroblast growth factors (FGFs). Even though FGF signaling has been mainly implicated in developmental processes, recent studies have demonstrated that FGF21 is an important regulator of whole body energy expenditure and metabolism, in obesity. Scope of review Given the fact that obesity has developed epidemic proportions, not just in industrialized countries, FGF21 has emerged as a novel therapeutic avenue to treat obesity as well as associated metabolic disorders. While the metabolic effects of FGF21 are undisputed, the mechanisms by which FGF21 regulate weight loss have not yet been fully resolved. Until recently it was believed that FGF21 induces brown fat activity, thereby enhancing energy expenditure, which concomitantly leads to weight loss. Novel studies have challenged this concept as they could demonstrate that a part of the FGF21 mediated effects are retained in a mouse model of impaired brown adipose tissue function. Major conclusions The review illustrates the recent advances in FGF21 research and discusses the role of FGF21 in the regulation of energy expenditure linked to brown fat activity.
Collapse
Affiliation(s)
- Leon Straub
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, 8603 Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
90
|
Keipert S, Kutschke M, Lamp D, Brachthäuser L, Neff F, Meyer CW, Oelkrug R, Kharitonenkov A, Jastroch M. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol Metab 2015; 4:537-42. [PMID: 26137441 PMCID: PMC4481421 DOI: 10.1016/j.molmet.2015.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Circulating fibroblast growth factor 21 (FGF21) is an important auto- and endocrine player with beneficial metabolic effects on obesity and diabetes. In humans, thermogenic brown adipose tissue (BAT) was recently suggested as a source of FGF21 secretion during cold exposure. Here, we aim to clarify the role of UCP1 and ambient temperature in the regulation of FGF21 in mice. METHODS Wildtype (WT) and UCP1-knockout (UCP1 KO) mice, the latter being devoid of BAT-derived non-shivering thermogenesis, were exposed to different housing temperatures. Plasma metabolites and FGF21 levels were determined, gene expression was analyzed by qPCR, and tissue histology was performed with adipose tissue. RESULTS At thermoneutrality, FGF21 gene expression and serum levels were not different between WT and UCP1 KO mice. Cold exposure led to highly increased FGF21 serum levels in UCP1 KO mice, which were reflected in increased FGF21 gene expression in adipose tissues but not in liver and skeletal muscle. Ex vivo secretion assays revealed FGF21 release only from BAT, progressively increasing with decreasing ambient temperatures. In association with increased FGF21 serum levels in the UCP1 KO mouse, typical FGF21-related serum metabolites and inguinal white adipose tissue morphology and thermogenic gene expression were altered. CONCLUSIONS Here we show that the genetic ablation of UCP1 increases FGF21 gene expression in adipose tissue. The removal of adaptive nonshivering thermogenesis renders BAT a significant source of endogenous FGF21 under thermal stress. Thus, the thermogenic competence of BAT is not a requirement for FGF21 secretion. Notably, high endogenous FGF21 levels in UCP1-deficient models and subjects may confound pharmacological FGF21 treatments.
Collapse
Affiliation(s)
- Susanne Keipert
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maria Kutschke
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura Brachthäuser
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Carola W. Meyer
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
| | - Rebecca Oelkrug
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
| | | | - Martin Jastroch
- Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Animal Physiology, Philipps-Universität, 35043 Marburg, Germany
- Corresponding author. Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany. Tel.: +49 89 3187 2105.
| |
Collapse
|
91
|
Abreu-Vieira G, Hagberg CE, Spalding KL, Cannon B, Nedergaard J. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis. Am J Physiol Endocrinol Metab 2015; 308:E822-9. [PMID: 25738783 DOI: 10.1152/ajpendo.00494.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/26/2015] [Indexed: 01/24/2023]
Abstract
Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.
Collapse
Affiliation(s)
- Gustavo Abreu-Vieira
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| | - Carolina E Hagberg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| |
Collapse
|
92
|
Nagano G, Ohno H, Oki K, Kobuke K, Shiwa T, Yoneda M, Kohno N. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16-EHMT1 complex expression. PLoS One 2015; 10:e0122584. [PMID: 25812118 PMCID: PMC4374757 DOI: 10.1371/journal.pone.0122584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
Brown fat generates heat to protect against cold and obesity. Adrenergic stimulation activates the thermogenic program of brown adipocytes. Although the bioactivity of brown adipose tissue in adult humans had been assumed to very low, several studies using positron emission tomography-computed tomography (PET-CT) have detected bioactive brown adipose tissue in adult humans under cold exposure. In this study, we collected adipose tissues obtained from the perirenal regions of adult patients with pheochromocytoma (PHEO) or non-functioning adrenal tumors (NF). We demonstrated that perirenal brown adipocytes were activated in adult patients with PHEO. These cells had the molecular characteristics of classical brown fat rather than those of beige/brite fat. Expression of brown adipose tissue markers such as uncoupling protein 1 (UCP1) and cell death-inducing DFFA-like effector A (CIDEA) was highly correlated with the amounts of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16) - euchromatic histone-lysine N-methyltransferase 1 (EHMT1) complex, the key transcriptional switch for brown fat development. These results provide novel insights into the reconstruction of human brown adipocytes and their therapeutic application against obesity and its complications such as type 2 diabetes.
Collapse
Affiliation(s)
- Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Kobuke
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuguka Shiwa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayasu Yoneda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
93
|
Wanders D, Burk DH, Cortez CC, Van NT, Stone KP, Baker M, Mendoza T, Mynatt RL, Gettys TW. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. FASEB J 2015; 29:2603-15. [PMID: 25742717 DOI: 10.1096/fj.14-270348] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
Abstract
Dietary methionine restriction (MR) by 80% increases energy expenditure (EE), reduces adiposity, and improves insulin sensitivity. We propose that the MR-induced increase in EE limits fat deposition by increasing sympathetic nervous system-dependent remodeling of white adipose tissue and increasing uncoupling protein 1 (UCP1) expression in both white and brown adipose tissue. In independent assessments of the role of UCP1 as a mediator of MR's effects on EE and insulin sensitivity, EE did not differ between wild-type (WT) and Ucp1(-/-) mice on the control diet, but MR increased EE by 31% and reduced adiposity by 25% in WT mice. In contrast, MR failed to increase EE or reduce adiposity in Ucp1(-/-) mice. However, MR was able to increase overall insulin sensitivity by 2.2-fold in both genotypes. Housing temperatures used to minimize (28°C) or increase (23°C) sympathetic nervous system activity revealed temperature-independent effects of the diet on EE. Metabolomics analysis showed that genotypic and dietary effects on white adipose tissue remodeling resulted in profound increases in fatty acid metabolism within this tissue. These findings establish that UCP1 is required for the MR-induced increase in EE but not insulin sensitivity and suggest that diet-induced improvements in insulin sensitivity are not strictly derived from dietary effects on energy balance.
Collapse
Affiliation(s)
- Desiree Wanders
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - David H Burk
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Cory C Cortez
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Nancy T Van
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Kirsten P Stone
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Mollye Baker
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Tamra Mendoza
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Randall L Mynatt
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas W Gettys
- *Laboratory of Nutrient Sensing and Adipocyte Signaling, Cell Biology and Bioimaging Core, and Gene Nutrient Interactions; Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
94
|
Buzelle SL, MacPherson REK, Peppler WT, Castellani L, Wright DC. The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue remodeling. Physiol Rep 2015; 3:3/2/e12312. [PMID: 25713332 PMCID: PMC4393216 DOI: 10.14814/phy2.12312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chronic activation of beta 3 adrenergic receptors results in marked alterations in adipose tissue morphology and metabolism, including increases in mitochondrial content and the expression of enzymes involved in lipogenesis and glyceroneogenesis. Acute treatment with CL 316,243, a beta 3 adrenergic agonist, induces the expression of interleukin 6. Interestingly, IL-6 has been shown to induce mitochondrial genes in cultured adipocytes. Therefore, the purpose of this paper was to examine the role of interleukin 6 in mediating the in vivo effects of CL 316,243 in white adipose tissue. Circulating IL-6, and markers of IL-6 signaling in white adipose tissue were increased 4 h following a single injection of CL 316,243 in C57BL6/J mice. Once daily injections of CL 316,243 for 5 days increased the protein content of a number of mitochondrial proteins including CORE1, Cytochrome C, PDH, MCAD, and Citrate Synthase to a similar extent in adipose tissue from WT and IL-6−/− mice. Conversely, CL 316,243-induced increases in COXIV and phosphorylated AMPK were attenuated in IL-6−/− mice. Likewise, the slight, but significant, CL 316,243-induced increases in ATGL, PEPCK, and PPARγ, were reduced or absent in adipose tissue IL-6−/− mice. The attenuated response to CL 316,243 in white adipose tissue in IL-6−/− mice was associated with reductions in whole-body oxygen consumption and energy expenditure in the light phase. Our findings suggest that IL-6 plays a limited role in CL 316,243-mediated adipose tissue remodeling.
Collapse
Affiliation(s)
- Samyra L Buzelle
- Department of Biochemistry, Ribeirao Preto Medical School, University of Sao Paulo, Riberao Preto, Brazil
| | - Rebecca E K MacPherson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
95
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
96
|
Park JW, Jung KH, Lee JH, Quach CHT, Moon SH, Cho YS, Lee KH. 18F-FDG PET/CT monitoring of β3 agonist-stimulated brown adipocyte recruitment in white adipose tissue. J Nucl Med 2014; 56:153-8. [PMID: 25525187 DOI: 10.2967/jnumed.114.147603] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED There is rising interest in recruitment of brown adipocytes into white adipose tissue (WAT) as a means to augment energy expenditure for weight reduction. We thus investigated the potential of (18)F-FDG uptake as an imaging biomarker that can monitor the process of WAT browning. METHODS C57BL/6 mice were treated daily with the β3 agonist CL316,243 (5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylic acid disodium salt), whereas controls received saline. (18)F-FDG small-animal PET/CT was serially performed at 1 h after CL316,243 injection. After sacrifice, interscapular brown adipose tissue (BAT) and WAT depots were extracted, weighed, and measured for (18)F-FDG uptake. Tissues underwent immunostaining, and UCP1 content was quantified by Western blotting. RESULTS PET/CT showed low (18)F-FDG uptake in both BAT and inguinal WAT at baseline. BAT uptake was substantially increased by a single stimulation with CL316,243. Uptake in inguinal WAT was only modestly elevated by the first stimulation uptake but gradually increased to BAT level by prolonged stimulation. Ex vivo measurements recapitulated the PET findings, and measured (18)F-FDG uptake in other WAT depots was similar to inguinal WAT. WAT browning by prolonged stimulation was confirmed by a substantial increase in uncoupling protein 1 (UCP1), cytochrome-c oxidase 4 (COX4), and PR domain containing 16 (PRDM16) staining as markers of brown adipocytes. UCP1 content, which served as a measure for extent of browning, was low in baseline inguinal WAT but linearly increased over 10 d of CL316,243 injection. Finally, image-based and ex vivo-measured (18)F-FDG uptake in inguinal WAT correlated well with UCP1 content. CONCLUSION (18)F-FDG PET/CT has the capacity to monitor brown adipocyte recruitment into WAT depots in vivo and may thus be useful for screening the efficacy of strategies to promote WAT browning.
Collapse
Affiliation(s)
- Jin Won Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cung Hoa Thien Quach
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung-Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
97
|
Cortés PA, Franco M, Moreno-Gómez FN, Barrientos K, Nespolo RF. Thermoregulatory capacities and torpor in the South American marsupial, Dromiciops gliroides. J Therm Biol 2014; 45:1-8. [DOI: 10.1016/j.jtherbio.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
98
|
Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J Lipid Res 2014; 55:2276-86. [PMID: 25193997 DOI: 10.1194/jlr.m050005] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.
Collapse
Affiliation(s)
- Emilio P Mottillo
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Priya Balasubramanian
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Yun-Hee Lee
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Changren Weng
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
99
|
Li Y, Lasar D, Fromme T, Klingenspor M. White, brite, and brown adipocytes: the evolution and function of a heater organ in mammals. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brown fat is a specialized heater organ in eutherian mammals. In contrast to the energy storage function of white adipocytes, brown adipocytes dissipate nutrient energy by uncoupling of mitochondrial oxidative phosphorylation, which depends on uncoupling protein 1 (UCP1). UCP1, as well as UCP2 and UCP3, belong to the family of mitochondrial carriers inserted into the inner mitochondrial membrane for metabolite trafficking between the matrix and the intermembrane space. UCP1 transports protons into the mitochondrial matrix when activated by a rise in free fatty acid levels in the cell. This UCP1-dependant proton leak drives high oxygen consumption rates in the absence of ATP synthesis and dissipates proton motive force as heat. The enormous heating capacity of brown fat is supported by dense vascularization, high rates of tissue perfusion, and high mitochondrial density in brown adipocytes. It has been known for more than 50 years that nonshivering thermogenesis in brown fat serves to maintain body temperature of neonates and small mammals in cold environments, and is used by hibernators for arousal from torpor. It has been speculated that the development of brown fat as a new source for nonshivering thermogenesis provided mammals with a unique advantage for survival in the cold. Indeed brown fat and UCP1 is found in ancient groups of mammals, like the afrotherians and marsupials. In the latter, however, the thermogenic function of UCP1 and brown fat has not been demonstrated as of yet. Notably, orthologs of all three mammalian UCP genes are also present in the genomes of bony fishes and in amphibians. Molecular phylogeny reveals a striking increase in the substitution rate of UCP1 between marsupial and eutherian lineages. At present, it seems that UCP1 only gained thermogenic function in brown adipocytes of eutherian mammals, whereas the function of UCP1 and that of the other UCPs in ectotherms remains to be identified. Evolution of thermogenic function required expression of UCP1 in a brown-adipocyte-like cell equipped with high mitochondrial density embedded in a well-vascularized tissue. Brown-adipocyte-like cells in white adipose tissue, called “brite” (brown-in-white) or “beige” adipocytes, emerge during adipogenesis and in response to cold exposure in anatomically distinct adipose tissue depots of juvenile and adult rodents. These brite adipocytes may resemble the archetypical brown adipocyte in vertebrate evolution. It is therefore of interest to elucidate the molecular mechanisms of brite adipocyte differentiation, study the bioenergetic properties of these cells, and search for the presence of related brown-adipocyte-like cells in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - David Lasar
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| |
Collapse
|
100
|
The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2. Biochem Biophys Res Commun 2014; 446:959-64. [PMID: 24642257 DOI: 10.1016/j.bbrc.2014.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.
Collapse
|