51
|
Zhang J, Sun R, Jiang T, Yang G, Chen L. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules 2021; 11:biom11060868. [PMID: 34207942 PMCID: PMC8230716 DOI: 10.3390/biom11060868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Ruoyu Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
- Correspondence: ; Tel.: +86-411-86118984
| |
Collapse
|
52
|
Chen YX, Ding J, Zhou WE, Zhang X, Sun XT, Wang XY, Zhang C, Li N, Shao GF, Hu SJ, Yang J. Identification and Functional Prediction of Long Non-Coding RNAs in Dilated Cardiomyopathy by Bioinformatics Analysis. Front Genet 2021; 12:648111. [PMID: 33936172 PMCID: PMC8085533 DOI: 10.3389/fgene.2021.648111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a relatively common cause of heart failure and the leading cause of heart transplantation. Aberrant changes in long non-coding RNAs (lncRNAs) are involved in DCM disorder; however, the detailed mechanisms underlying DCM initiation and progression require further investigation, and new molecular targets are needed. Here, we obtained lncRNA-expression profiles associated with DCM and non-failing hearts through microarray probe-sequence re-annotation. Weighted gene co-expression network analysis revealed a module highly associated with DCM status. Then eight hub lncRNAs in this module (FGD5-AS1, AC009113.1, WDFY3-AS2, NIFK-AS1, ZNF571-AS1, MIR100HG, AC079089.1, and EIF3J-AS1) were identified. All hub lncRNAs except ZNF571-AS1 were predicted as localizing to the cytoplasm. As a possible mechanism of DCM pathogenesis, we predicted that these hub lncRNAs might exert functions by acting as competing endogenous RNAs (ceRNAs). Furthermore, we found that the above results can be essentially reproduced in an independent external dataset. We observed the localization of hub lncRNAs by RNA-FISH in human aortic smooth muscle cells and confirmed the upregulation of the hub lncRNAs in DCM patients through quantitative RT-PCR. In conclusion, these findings identified eight candidate lncRNAs associated with DCM disease and revealed their potential involvement in DCM partly through ceRNA crosstalk. Our results facilitate the discovery of therapeutic targets and enhance the understanding of DCM pathogenesis.
Collapse
Affiliation(s)
- Yu-Xiao Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Ding
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Er Zhou
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Tong Sun
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi-Ying Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ni Li
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Guo-Feng Shao
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shen-Jiang Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
53
|
Yegorova S, Yegorov O, Ferreira LF. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene 2020; 770:145356. [PMID: 33333219 DOI: 10.1016/j.gene.2020.145356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
The diaphragm is the main inspiratory muscle, and the chronic phase post-myocardial infarction (MI) is characterized by diaphragm morphological, contractile, and metabolic abnormalities. However, the mechanisms of diaphragm weakness are not fully understood. In the current study, we aimed to identify the transcriptome changes associated with diaphragm abnormalities in the chronic stage MI. We ligated the left coronary artery to cause MI in rats and performed RNA-sequencing (RNA-Seq) in diaphragm samples 16 weeks post-surgery. The sham group underwent thoracotomy and pericardiotomy but no artery ligation. We identified 112 differentially expressed genes (DEGs) out of a total of 9664 genes. Myocardial infarction upregulated and downregulated 42 and 70 genes, respectively. Analysis of DEGs in the framework of skeletal muscle-specific biological networks suggest remodeling in the neuromuscular junction, extracellular matrix, sarcomere, cytoskeleton, and changes in metabolism and iron homeostasis. Overall, the data are consistent with pathological remodeling of the diaphragm and reveal potential biological targets to prevent diaphragm weakness in the chronic stage MI.
Collapse
Affiliation(s)
- Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | - Oleg Yegorov
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA.
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
54
|
Delisle BP, Stumpf JL, Wayland JL, Johnson SR, Ono M, Hall D, Burgess DE, Schroder EA. Circadian clocks regulate cardiac arrhythmia susceptibility, repolarization, and ion channels. Curr Opin Pharmacol 2020; 57:13-20. [PMID: 33181392 DOI: 10.1016/j.coph.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - John L Stumpf
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Jennifer L Wayland
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Sidney R Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Dalton Hall
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Science and Health, Asbury University, One Macklem Drive, Wilmore, KY 40390, United States
| | - Elizabeth A Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284, United States.
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW This review aims to explore how circadian rhythms influence disease susceptibility and potentially modify the effect of environmental exposures. We aimed to identify biomarkers commonly used in environmental health research that have also been the subject of chronobiology studies, in order to review circadian rhythms of relevance to environmental health and determine if time-of-day is an important factor to consider in environmental health studies. Moreover, we discuss opportunities for studying how environmental exposures may interact with circadian rhythms to structure disease pathology and etiology. RECENT FINDINGS In recent years, the study of circadian rhythms in mammals has flourished. Animal models revealed that all body tissues have circadian rhythms. In humans, circadian rhythms were also shown to exist at multiple levels of organization: molecular, cellular, and physiological processes, including responding to oxidative stress, cell trafficking, and sex hormone production, respectively. Together, these rhythms are an essential component of human physiology and can shape an individual's susceptibility and response to disease. Circadian rhythms are relatively unexplored in environmental health research. However, circadian clocks control many physiological and behavioral processes that impact exposure pathways and disease systems. We believe this review will motivate new studies of (i) the impact of exposures on circadian rhythms, (ii) how circadian rhythms modify the effect of environmental exposures, and (iii) how time-of-day impacts our ability to observe the body's response to exposure.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Environmental Health Sciences, Columbia University, 630 West 168th Street, Room 16-421C, New York, NY, USA
| | - Micaela E Martinez
- Department of Environmental Health Sciences, Columbia University, 630 West 168th Street, Room 16-421C, New York, NY, USA.
| |
Collapse
|
56
|
Li E, Li X, Huang J, Xu C, Liang Q, Ren K, Bai A, Lu C, Qian R, Sun N. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell 2020; 11:661-679. [PMID: 32277346 PMCID: PMC7452999 DOI: 10.1007/s13238-020-00713-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.
Collapse
Affiliation(s)
- Ermin Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuya Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Aobing Bai
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
57
|
Allison DB, Ren G, Peliciari-Garcia RA, Mia S, McGinnis GR, Davis J, Gamble KL, Kim JA, Young ME. Diurnal, metabolic and thermogenic alterations in a murine model of accelerated aging. Chronobiol Int 2020; 37:1119-1139. [PMID: 32819176 DOI: 10.1080/07420528.2020.1796699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Senescence-Accelerated Mouse-Prone 8 (SAMP8) mice exhibit characteristics of premature aging, including hair loss, cognitive dysfunction, reduced physical activity, impaired metabolic homeostasis, cardiac dysfunction and reduced lifespan. Interestingly, circadian disruption can induce or augment many of these same pathologies. Moreover, previous studies have reported that SAMP8 mice exhibit abnormalities in circadian wheel-running behavior, indicating possible alterations in circadian clock function. These observations led to the hypothesis that 24 h rhythms in behavior and/or circadian clock function are altered in SAMP8 mice and that these alterations may contribute to perturbations in whole-body metabolism. Here, we report that 6-month-old SAMP8 mice exhibit a more prominent biphasic pattern in daily behaviors (food intake and physical activity) and whole-body metabolism (energy expenditure, respiratory exchange ratio), relative to SAMR1 control mice. Consistent with a delayed onset of food intake at the end of the light phase, SAMP8 mice exhibit a phase delay (1.3-1.9 h) in 24 h gene expression rhythms of major circadian clock components (bmal1, rev-erbα, per2, dbp) in peripheral tissues (liver, skeletal muscle, white adipose tissue [WAT], brown adipose tissue [BAT]). Forcing mice to consume food only during the dark period improved alignment of both whole-body metabolism and oscillations in expression of clock genes in peripheral tissues between SAMP8 and SAMR1 mice. Next, interrogation of metabolic genes revealed altered expression of thermogenesis mediators (ucp1, pgc1α, dio2) in WAT and/or BAT in SAMP8 mice. Interestingly, SAMP8 mice exhibit a decreased tolerance to an acute (5 h) cold challenge. Moreover, SAMP8 and SAMR1 mice exhibited differential responses to a chronic (1 week) decrease in ambient temperature; the greatest response in whole-body substrate selection was observed in SAMR1 mice. Collectively, these observations reveal differential behaviors (e.g. 24 h food intake patterns) in SAMP8 mice that are associated with perturbations in peripheral circadian clocks, metabolism and thermogenesis.
Collapse
Affiliation(s)
- David B Allison
- School of Public Health, Indiana University , Bloomington, Indiana, USA
| | - Guang Ren
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo , Diadema, São Paulo, Brazil
| | - Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Jennifer Davis
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Jeong-A Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| |
Collapse
|
58
|
Díaz-García E, Jaureguizar A, Casitas R, García-Tovar S, Sánchez-Sánchez B, Zamarrón E, López-Collazo E, García-Río F, Cubillos-Zapata C. SMAD4 Overexpression in Patients with Sleep Apnoea May Be Associated with Cardiometabolic Comorbidities. J Clin Med 2020; 9:jcm9082378. [PMID: 32722512 PMCID: PMC7464800 DOI: 10.3390/jcm9082378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with several diseases related to metabolic and cardiovascular risk. Although the mechanisms involved in the development of these disorders may vary, OSA patients frequently present an increase in transforming growth factor beta (TGFβ), the activity of which is higher still in patients with hypertension, diabetes or cardiovascular morbidity. Smad4 is a member of the small mother against decapentaplegic homologue (Smad) family of signal transducers and acts as a central mediator of TGFβ signalling pathways. In this study, we evaluate Smad4 protein and mRNA expression from 52 newly diagnosed OSA patients, with an apnoea-hypopnoea index (AHI) ≥30 and 26 healthy volunteers. These analyses reveal that OSA patients exhibit high levels of SMAD4 which correlates with variation in HIF1α, mTOR and circadian genes. Moreover, we associated high concentrations of Smad4 plasma protein with the presence of diabetes, dyslipidaemia and hypertension in these patients. Results suggest that increased levels of SMAD4, mediated by intermittent hypoxaemia and circadian rhythm deregulation, may be associated with cardiometabolic comorbidities in patients with sleep apnoea.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ana Jaureguizar
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Raquel Casitas
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Begoña Sánchez-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ester Zamarrón
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- The Innate Immune Response Group, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Correspondence:
| |
Collapse
|
59
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
60
|
Mia S, Kane MS, Latimer MN, Reitz CJ, Sonkar R, Benavides GA, Smith SR, Frank SJ, Martino TA, Zhang J, Darley-Usmar VM, Young ME. Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption. Am J Physiol Heart Circ Physiol 2020; 318:H1487-H1508. [PMID: 32357113 PMCID: PMC7311693 DOI: 10.1152/ajpheart.00709.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell-autonomous circadian clocks have emerged as temporal orchestrators of numerous biological processes. For example, the cardiomyocyte circadian clock modulates transcription, translation, posttranslational modifications, ion homeostasis, signaling cascades, metabolism, and contractility of the heart over the course of the day. Circadian clocks are composed of more than 10 interconnected transcriptional modulators, all of which have the potential to influence the cardiac transcriptome (and ultimately cardiac processes). These transcriptional modulators include BMAL1 and REV-ERBα/β; BMAL1 induces REV-ERBα/β, which in turn feeds back to inhibit BMAL1. Previous studies indicate that cardiomyocyte-specific BMAL1-knockout (CBK) mice exhibit a dysfunctional circadian clock (including decreased REV-ERBα/β expression) in the heart associated with abnormalities in cardiac mitochondrial function, metabolism, signaling, and contractile function. Here, we hypothesized that decreased REV-ERBα/β activity is responsible for distinct phenotypical alterations observed in CBK hearts. To test this hypothesis, CBK (and littermate control) mice were administered with the selective REV-ERBα/β agonist SR-9009 (100 mg·kg-1·day-1 for 8 days). SR-9009 administration was sufficient to normalize cardiac glycogen synthesis rates, cardiomyocyte size, interstitial fibrosis, and contractility in CBK hearts (without influencing mitochondrial complex activities, nor normalizing substrate oxidation and Akt/mTOR/GSK3β signaling). Collectively, these observations highlight a role for REV-ERBα/β as a mediator of a subset of circadian clock-controlled processes in the heart.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mariame S Kane
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cristine J Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gloria A Benavides
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel R Smith
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Endocrinology Section, Birmingham Veterans Affairs Medical Center Medical Service, Birmingham, Alabama
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor M Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
61
|
Soares AC, Fonseca DA. Cardiovascular diseases: a therapeutic perspective around the clock. Drug Discov Today 2020; 25:1086-1098. [PMID: 32320853 DOI: 10.1016/j.drudis.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023]
Abstract
Biological rhythms are a ubiquitous feature of life. Most bodily functions, including physiological, biochemical, and behavioral processes, are coupled by the circadian rhythm. In the cardiovascular system, circadian fluctuations regulate several functions, namely heart rate, blood pressure, cardiac contractility, and metabolism. In fact, current lifestyles impose external timing constraints that clash with our internal circadian physiology, often increasing the risk of cardiovascular disease (CVD). Still, the mechanisms of dysregulation are not fully understood because this is a growing area of research. In this review, we explore the modulatory role of the circadian rhythms on cardiovascular function and disease as well as the role of chronotherapy in the context of CVD and how such an approach could improve existing therapies and assist in the development of new ones.
Collapse
Affiliation(s)
| | - Diogo A Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
62
|
Škrlec I, Milić J, Steiner R. The Impact of the Circadian Genes CLOCK and ARNTL on Myocardial Infarction. J Clin Med 2020; 9:E484. [PMID: 32050674 PMCID: PMC7074039 DOI: 10.3390/jcm9020484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm regulates various physiological mechanisms, and its disruption can promote many disorders. Disturbance of endogenous circadian rhythms enhances the chance of myocardial infarction (MI), showing that circadian clock genes could have a crucial function in the onset of the disease. This case-control study was performed on 1057 participants. It was hypothesized that the polymorphisms of one nucleotide (SNP) in three circadian clock genes (CLOCK, ARNTL, and PER2) could be associated with MI. Statistically significant differences, estimated by the Chi-square test, were found in the distribution of alleles and genotypes between MI and no-MI groups of the CLOCK (rs6811520 and rs13124436) and ARNTL (rs3789327 and rs12363415) genes. According to the results of the present study, the polymorphisms in the CLOCK and ARNTL genes could be related to MI.
Collapse
Affiliation(s)
- Ivana Škrlec
- Histology, Genetics, Cellular, and Molecular Biology Laboratory, Department of Biology and Chemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-31000 Osijek, Croatia
| | - Jakov Milić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Robert Steiner
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
- Clinical Department of Cardiovascular Diseases and Intensive Care, Clinic for Internal Medicine, University Hospital Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| |
Collapse
|
63
|
Abstract
The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism - circadian rhythmicity - to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.
Collapse
|
64
|
Abstract
Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.
Collapse
Affiliation(s)
- Samir Rana
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Sumanth D Prabhu
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Martin E Young
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
65
|
Hu J, Xue Y, Tang K, Fan J, Du J, Li W, Chen S, Liu C, Ji W, Liang J, Zhuang J, Chen K. The protective effects of hydrogen sulfide on the myocardial ischemia via regulating Bmal1. Biomed Pharmacother 2019; 120:109540. [PMID: 31639648 DOI: 10.1016/j.biopha.2019.109540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To investigate the effect of hydrogen peroxide (H2S) on myocardial clock gene Bmal1 in ischemic cardiomyocytes. MATERIALS & METHODS Quantitative PCR (qPCR) was used to detect the expression of Bmal1 at the mRNA level in H9C2 rat cardiomyocytes. The protein expressions of Bax and Bcl-2, PI3K/Akt, caspase-3 were measured by western blotting. The levels of reactive oxygen species (ROS) were determined by ELISA. RESULTS The expression level of clock gene Bmal1 demonstrated a clock rhythm of periodic oscillation within 24 h. Compared with the control group, H2S treatment maintained the rhythm of the clock gene in ischemic cardiomyocytes and increased the transcription and expression levels of Bmal1. H2S increased cell survival by activating PI3K/Akt signaling pathway, inhibiting mitochondrial apoptosis signaling, and reducing intracellular oxidative stress. PI3K/Akt and Bmal1 were demonstrated to be involved in H2S protection of cardiomyocyte ischemia. Knockout of Bmal1 gene affects the degree of phosphorylation of Akt and Erk proteins, and the level of ROS production, resulting in a decrease in the protective effects of H2S. CONCLUSION The expression level of Bmal1 has effects on the function of cardiomyocytes such as ROS production. The potential mechanism by which H2S regulates clock genes may be related to the effect of clock genes on protein phosphorylation levels in ischemic cardiomyocytes.
Collapse
Affiliation(s)
- Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China; Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Kai Tang
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Wenfu Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China
| | - Siyu Chen
- China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu, 211198, China
| | - Chang Liu
- China Pharmaceutical University, 639 Longmian Ave., Nanjing, Jiangsu, 211198, China
| | - Wenjin Ji
- Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Jiexian Liang
- Department of Anesthesia, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou, 510080, China.
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
66
|
Park S, Colwell CS. Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington's Disease? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:291-303. [PMID: 31249490 PMCID: PMC6585531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Huntington's disease (HD) patients suffer from a progressive neurodegenerative disorder that inflicts both motor and non-motor symptoms. HD is caused by a CAG repeat expansion within the first exon of the huntingtin (HTT) gene that produces a polyglutamine repeat that leads to protein misfolding, soluble aggregates, and inclusion bodies detected throughout the body. Both clinical and preclinical research indicate that cardiovascular dysfunction should be considered a core symptom in at least a subset of HD patients. There is strong evidence for dysautonomia (dysfunctional autonomic nervous system, ANS) in HD patients that can be detected early in the disease progression. The temporal patterning of ANS function is controlled by the circadian timing system based in the anterior hypothalamus. Patients with neurodegenerative diseases including HD exhibit disrupted sleep/wake cycle and, in preclinical models, there is compelling evidence that the circadian timing system is compromised early in the disease process. Here we review data from preclinical models of HD that explore the intersection between disruption of circadian rhythms and dysautonomia. This work will lead to new therapeutic strategies and standards of care for HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Saemi Park
- Molecular, Cellular and Integrative Physiology graduate program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Christopher S. Colwell
- Molecular, Cellular and Integrative Physiology graduate program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,To whom all correspondence should be addressed: Christopher S. Colwell, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; . http://orcid.org/0000-0002-1059-184X
| |
Collapse
|
67
|
Daniels SR, Pratt CA, Hollister EB, Labarthe D, Cohen DA, Walker JR, Beech BM, Balagopal PB, Beebe DW, Gillman MW, Goodrich JM, Jaquish C, Kit B, Miller AL, Olds D, Oken E, Rajakumar K, Sherwood NE, Spruijt-Metz D, Steinberger J, Suglia SF, Teitelbaum SL, Urbina EM, Van Horn L, Ward D, Young ME. Promoting Cardiovascular Health in Early Childhood and Transitions in Childhood through Adolescence: A Workshop Report. J Pediatr 2019; 209:240-251.e1. [PMID: 30904171 DOI: 10.1016/j.jpeds.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen R Daniels
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Charlotte A Pratt
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD.
| | - Emily B Hollister
- Department of Information Technology & Analytics, Diversigen, Inc, Houston, TX
| | - Darwin Labarthe
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Chicago, IL
| | | | - Jenelle R Walker
- Center for Translation Research and Implementation Science, NHLBI, Bethesda, MD
| | - Bettina M Beech
- Department of Pediatrics and Family Medicine, University of Mississippi Medical Centre, Jackson, MS
| | - P Babu Balagopal
- Nemours Children's Clinic, Mayo Clinic College of Medicine, Rochester, MN
| | - Dean W Beebe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew W Gillman
- Office of the Director, National Institutes of Health (NIH), Bethesda, MD
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Cashell Jaquish
- Division of Cardiovascular Sciences, NHLBI, NIH, Bethesda, MD
| | - Brian Kit
- Division of Cardiovascular Sciences, NHLBI, NIH, Bethesda, MD
| | - Alison L Miller
- Department of Health Behavior & Health Education, University of Michigan School of Public Health, Ann Arbor, MI
| | - David Olds
- Prevention Research Center for Family and Child Health, University of Colorado, Denver, CO
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Inc, Wellesley, MA
| | - Kumaravel Rajakumar
- Division of General Academic Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nancy E Sherwood
- School of Public Health, University of Minnesota, Minneapolis, MN
| | - Donna Spruijt-Metz
- Dornsife Center for Economic and Social Research, University of Southern California, Los Angeles, CA
| | | | - Shakira F Suglia
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elaine M Urbina
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, University, Chicago, IL
| | - Dianne Ward
- Department of Nutrition, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
68
|
Chaves I, van der Eerden B, Boers R, Boers J, Streng AA, Ridwan Y, Schreuders-Koedam M, Vermeulen M, van der Pluijm I, Essers J, Gribnau J, Reiss IKM, van der Horst GTJ. Gestational jet lag predisposes to later-life skeletal and cardiac disease. Chronobiol Int 2019; 36:657-671. [PMID: 30793958 DOI: 10.1080/07420528.2019.1579734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.
Collapse
Affiliation(s)
- Inês Chaves
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Bram van der Eerden
- b Department of Internal Medicine , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Ruben Boers
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Joachim Boers
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Astrid A Streng
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Yanto Ridwan
- d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands.,e Department of Radiology & Nuclear Medicine, Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Marijke Schreuders-Koedam
- b Department of Internal Medicine , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Marijn Vermeulen
- f Department of Pediatrics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Ingrid van der Pluijm
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands.,d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Jeroen Essers
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands.,d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands.,g Department of Radiation Oncology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Joost Gribnau
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Irwin K M Reiss
- e Department of Radiology & Nuclear Medicine, Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | | |
Collapse
|
69
|
Rabinovich-Nikitin I, Lieberman B, Martino TA, Kirshenbaum LA. Circadian-Regulated Cell Death in Cardiovascular Diseases. Circulation 2019; 139:965-980. [DOI: 10.1161/circulationaha.118.036550] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Inna Rabinovich-Nikitin
- The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Canada (I.R.-N., B.L., L.A.K.)
| | - Brooke Lieberman
- The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Canada (I.R.-N., B.L., L.A.K.)
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Biomedical Sciences/Ontario Veterinary College, University of Guelph, Canada (T.A.M.)
| | - Lorrie A. Kirshenbaum
- The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Canada (I.R.-N., B.L., L.A.K.)
| |
Collapse
|
70
|
Yan X, Huang Y, Wu J. Identify Cross Talk Between Circadian Rhythm and Coronary Heart Disease by Multiple Correlation Analysis. J Comput Biol 2018; 25:1312-1327. [PMID: 30234379 DOI: 10.1089/cmb.2017.0254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disorder in circadian rhythm has been revealed as a risk factor for coronary heart disease. Several studies in molecular biology established a gene interaction network using coronary heart susceptibility genes and the circadian rhythm pathway. However, cross talk between genes was mostly discovered in single gene pairs. There might be combination sets of genes intergraded as a unit to regulate the network. To resolve multiple variables in coronary heart susceptibility genes controlling circadian rhythm pathways, a multiple correlation analysis was applied to the transcriptome. Nine genes, including CUGBP, Elav-like family member (CELF); sodium leak channel, nonselective (NALCN); protein phosphatase 2 regulatory subunit B gamma (PPP2R2C); tubulin alpha 1c (TUBA1C); microtubule-associated protein 4 (MAP4); cofilin 1 (CFL1); myosin heavy chain 7 (MYH7); QKI, KH domain containing RNA binding (QKI); and maternal embryonic leucine zipper kinase (MELK), from coronary heart susceptibility were identified to predict the outcome of a linear combination of circadian rhythm pathway genes with R factor more than 0.7. G protein subunit alpha o1 (GNAO1), protein kinase C gamma (PRKCG), RBX, and G protein subunit beta 1 (GNB1) in the circadian rhythm pathway are characterized as combination variables to coexpress with coronary heart susceptibility genes.
Collapse
Affiliation(s)
- Xiaoping Yan
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Yu Huang
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Jiabin Wu
- 2 Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|
71
|
Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128:2157-2167. [PMID: 29856365 DOI: 10.1172/jci80590] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
All species organize behaviors to optimally match daily changes in the environment, leading to pronounced activity/rest cycles that track the light/dark cycle. Endogenous, approximately 24-hour circadian rhythms in the brain, autonomic nervous system, heart, and vasculature prepare the cardiovascular system for optimal function during these anticipated behavioral cycles. Cardiovascular circadian rhythms, however, may be a double-edged sword. The normal amplified responses in the morning may aid the transition from sleep to activity, but such exaggerated responses are potentially perilous in individuals susceptible to adverse cardiovascular events. Indeed, the occurrence of stroke, myocardial infarction, and sudden cardiac death all have daily patterns, striking most frequently in the morning. Furthermore, chronic disruptions of the circadian clock, as with night-shift work, contribute to increased cardiovascular risk. Here we highlight the importance of the circadian system to normal cardiovascular function and to cardiovascular disease, and identify opportunities for optimizing timing of medications in cardiovascular disease.
Collapse
|
72
|
Knott MH, Haskell SE, Strawser PE, Rice OM, Bonthius NT, Movva VC, Reinking BE, Roghair RD. Neonatal Growth Restriction Slows Cardiomyocyte Development and Reduces Adult Heart Size. Anat Rec (Hoboken) 2018; 301:1398-1404. [PMID: 29729218 DOI: 10.1002/ar.23851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Prematurity is associated with reduced cardiac dimensions and an increased risk of cardiovascular disease. While prematurity is typically associated with ex utero neonatal growth restriction (GR), the independent effect of neonatal GR on cardiac development has not been established. We tested the hypothesis that isolated neonatal GR decreases cardiomyocyte growth and proliferation, leading to long-term alterations in cardiac morphology. C57BL/6 mice were fostered in litters ranging in size from 6 to 12 pups to accentuate normal variation in neonatal growth. Regardless of litter size, GR was defined by a weight below the 10th percentile. On postnatal day 8, Ki67 immunoreactivity, cardiomyocyte nucleation status and cardiomyocyte profile area were assessed. For adult mice, cardiomyocyte area was determined, along with cardiac dimensions by echocardiography and cardiac fibrosis by Masson's trichrome stain. On day 8, cardiomyocytes from GR versus control mice were significantly smaller and less likely to be binucleated with evidence of persistent cell cycle activity. As adults, GR mice continued to have smaller cardiomyocytes, as well as decreased left ventricular volumes without signs of fibrosis. Neonatal GR reduces cardiomyocyte size, delays the completion of binucleation, and leads to long-term alterations in cardiac morphology. Clinical studies are needed to ascertain whether these results translate to preterm infants that must continue to grow and mature in the midst of the increased circulatory demands that accompany their premature transition to an ex utero existence. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Sarah E Haskell
- Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Olivia M Rice
- Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Vani C Movva
- Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
73
|
Peliciari-Garcia RA, Darley-Usmar V, Young ME. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. Free Radic Biol Med 2018; 119:75-84. [PMID: 29432800 PMCID: PMC6314011 DOI: 10.1016/j.freeradbiomed.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
Abstract
At various biological levels, mammals must integrate with 24-hr rhythms in their environment. Daily fluctuations in stimuli/stressors of cardiac metabolism and oxidation-reduction (redox) status have been reported over the course of the day. It is therefore not surprising that the heart exhibits dramatic oscillations in various cellular processes over the course of the day, including transcription, translation, ion homeostasis, metabolism, and redox signaling. This temporal partitioning of cardiac processes is governed by a complex interplay between intracellular (e.g., circadian clocks) and extracellular (e.g., neurohumoral factors) influences, thus ensuring appropriate responses to daily stimuli/stresses. The purpose of the current article is to review knowledge regarding control of metabolism and redox biology in the heart over the course of the day, and to highlight whether disruption of these daily rhythms contribute towards cardiac dysfunction observed in various disease states.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
74
|
Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 2018; 119:108-114. [PMID: 29198725 PMCID: PMC5910276 DOI: 10.1016/j.freeradbiomed.2017.11.024] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
75
|
Nakao T, Kohsaka A, Otsuka T, Thein ZL, Le HT, Waki H, Gouraud SS, Ihara H, Nakanishi M, Sato F, Muragaki Y, Maeda M. Impact of heart-specific disruption of the circadian clock on systemic glucose metabolism in mice. Chronobiol Int 2018; 35:499-510. [PMID: 29271671 DOI: 10.1080/07420528.2017.1415922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.
Collapse
Affiliation(s)
- Tomomi Nakao
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Akira Kohsaka
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Tsuyoshi Otsuka
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Zaw Lin Thein
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Hue Thi Le
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Hidefumi Waki
- d Graduate School of Health and Sports Science , Juntendo University , Chiba , Japan
| | - Sabine S Gouraud
- e Department of Biology, Faculty of Science , Ochanomizu University , Tokyo , Japan
| | - Hayato Ihara
- c Radioisotope Laboratory Center , Wakayama Medical University , Wakayama , Japan
| | - Masako Nakanishi
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Fuyuki Sato
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Yasuteru Muragaki
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Masanobu Maeda
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
76
|
Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018; 2018:7292540. [PMID: 29593785 PMCID: PMC5822921 DOI: 10.1155/2018/7292540] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian modulation of learning and memory efficiency is an evolutionarily conserved phenomenon, occurring in organisms ranging from invertebrates to higher mammalian species, including humans. While the suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master mammalian pacemaker, recent evidence suggests that forebrain regions, including the hippocampus, exhibit oscillatory capacity. This finding, as well as work on the cellular signaling events that underlie learning and memory, has opened promising new avenues of investigation into the precise cellular, molecular, and circuit-based mechanisms by which clock timing impacts plasticity and cognition. In this review, we examine the complex molecular relationship between clock timing and memory, with a focus on hippocampal-dependent tasks. We evaluate how the dysregulation of circadian timing, both at the level of the SCN and at the level of ancillary forebrain clocks, affects learning and memory. Further, we discuss experimentally validated intracellular signaling pathways (e.g., ERK/MAPK and GSK3β) and potential cellular signaling mechanisms by which the clock affects learning and memory formation. Finally, we examine how long-term potentiation (LTP), a synaptic process critical to the establishment of several forms of memory, is regulated by clock-gated processes.
Collapse
|
77
|
Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases. Int J Mol Sci 2018; 19:ijms19020400. [PMID: 29385702 PMCID: PMC5855622 DOI: 10.3390/ijms19020400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022] Open
Abstract
The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others' recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders.
Collapse
|
78
|
Sato F, Kohsaka A, Takahashi K, Otao S, Kitada Y, Iwasaki Y, Muragaki Y. Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts via TNF-α. Histochem Cell Biol 2017; 148:617-624. [PMID: 28721450 DOI: 10.1007/s00418-017-1597-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
Bmal1, a clock gene, is associated with depression, hypertrophy, metabolic syndrome and diabetes. Smad3, which is involved in the TGF-β signaling pathway, plays an important role in the regulation of tumor progression, fibrosis, obesity and diabetes. Our previous report showed that Smad3 has circadian expression in mouse livers. In the current study, we focused on the heart, especially on the myocardial stromal fibroblasts because the roles of Bmal1 and Smad3 in this tissue are poorly understood. Bmal1 and Smad3 have circadian expression in mouse hearts, and their circadian expression patterns were similar. Bmal1 expression decreased in the hearts of whole-body Smad3 knockout mice, whereas Smad3 expression had little effect on heart-specific Bmal1 knockout mice. Both Smad3 knockout and heart-specific Bmal1 knockout mice showed increases in p21, S100A4, CD206 and TNF-α expression in the myocardial stromal fibroblasts and macrophage compared to control mice. We also examined Smad3, Bmal1 and Dec1 expression in human tissue from old myocardial infarctions. Expression of Smad3, Bmal1 and Dec1 decreased in the stromal fibroblasts of tissue from old myocardial infarctions compared to control cases. On the other hand, p21, S100A4 and TNF-α increased in the stromal fibroblasts of tissue from old myocardial infarctions. Furthermore, expression of Smad3, Bmal1 and Dec1 decreased in TNF-α treated-NIH3T3 cells but expression of p21 and S100A4 increased. This new evidence suggests that Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts through TNF-α.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Akira Kohsaka
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kana Takahashi
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Saki Otao
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yusuke Kitada
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yoshiyuki Iwasaki
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
79
|
Young ME. Circadian Control of Cardiac Metabolism: Physiologic Roles and Pathologic Implications. Methodist Debakey Cardiovasc J 2017; 13:15-19. [PMID: 28413577 DOI: 10.14797/mdcj-13-1-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the course of the day, the heart is challenged with dramatic fluctuations in energetic demand and nutrient availability. It is therefore not surprising that rhythms in cardiac metabolism have been reported at multiple levels, including the utilization of glucose, fatty acids, and amino acids. Evidence has emerged suggesting that the cardiomyocyte circadian clock is in large part responsible for governing cardiac metabolic rhythms. In doing so, the cardiomyocyte clock temporally partitions ATP generation for increased contractile function during the active period, promotes nutrient storage at the end of the active period, and facilitates protein turnover (synthesis and degradation) during the beginning of the sleep phase. This review highlights the roles of cardiac metabolism rhythms as well as the potential pathological consequences of their impairment.
Collapse
Affiliation(s)
- Martin E Young
- University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
80
|
Schallner N, Lieberum JL, Gallo D, LeBlanc RH, Fuller PM, Hanafy KA, Otterbein LE. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice. Stroke 2017; 48:2565-2573. [PMID: 28747460 PMCID: PMC5575974 DOI: 10.1161/strokeaha.116.016165] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. METHODS Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. RESULTS Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1fl/fl ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1fl/fl mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. CONCLUSIONS Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH.
Collapse
Affiliation(s)
- Nils Schallner
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Judith-Lisa Lieberum
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - David Gallo
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Robert H LeBlanc
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Patrick M Fuller
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Khalid A Hanafy
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Leo E Otterbein
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.).
| |
Collapse
|
81
|
Schallner N, Lieberum JL, Gallo D, LeBlanc RH, Fuller PM, Hanafy KA, Otterbein LE. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice. Stroke 2017; 48:2565-2573. [PMID: 28747460 DOI: 10.1161/strokeaha.116.016165.carbon] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/Hmox1) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. METHODS Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. RESULTS Significant elevations in the clock genes Per-1, Per-2, and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion (Lyz-Cre-Hmox1fl/fl ), Per-1, Per-2, and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1fl/fl mice, restored Per-1, Per-2, and NPAS-2 expression, and reduced neuronal apoptosis. CONCLUSIONS Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH.
Collapse
Affiliation(s)
- Nils Schallner
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Judith-Lisa Lieberum
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - David Gallo
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Robert H LeBlanc
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Patrick M Fuller
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Khalid A Hanafy
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.)
| | - Leo E Otterbein
- From the Department of Surgery (N.S., J.-L.L., D.G., L.E.O.) and Department of Neurology (R.H.L., P.M.F., K.A.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Anesthesiology and Critical Care, Medical Center-University Freiburg, Faculty of Medicine, Germany (N.S., J.-L.L.); and Aston University, Birmingham, United Kingdom (L.E.O.).
| |
Collapse
|
82
|
McGinnis GR, Tang Y, Brewer RA, Brahma MK, Stanley HL, Shanmugam G, Rajasekaran NS, Rowe GC, Frank SJ, Wende AR, Abel ED, Taegtmeyer H, Litovsky S, Darley-Usmar V, Zhang J, Chatham JC, Young ME. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. J Mol Cell Cardiol 2017; 110:80-95. [PMID: 28736261 PMCID: PMC5586500 DOI: 10.1016/j.yjmcc.2017.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular physiology exhibits time-of-day-dependent oscillations, which are mediated by both extrinsic (e.g., environment/behavior) and intrinsic (e.g., circadian clock) factors. Disruption of circadian rhythms negatively affects multiple cardiometabolic parameters. Recent studies suggest that the cardiomyocyte circadian clock directly modulates responsiveness of the heart to metabolic stimuli (e.g., fatty acids) and stresses (e.g., ischemia/reperfusion). The aim of this study was to determine whether genetic disruption of the cardiomyocyte circadian clock impacts insulin-regulated pathways in the heart. Genetic disruption of the circadian clock in cardiomyocyte-specific Bmal1 knockout (CBK) and cardiomyocyte-specific Clock mutant (CCM) mice altered expression (gene and protein) of multiple insulin signaling components in the heart, including p85α and Akt. Both baseline and insulin-mediated Akt activation was augmented in CBK and CCM hearts (relative to littermate controls). However, insulin-mediated glucose utilization (both oxidative and non-oxidative) and AS160 phosphorylation were attenuated in CBK hearts, potentially secondary to decreased Inhibitor-1. Consistent with increased Akt activation in CBK hearts, mTOR signaling was persistently increased, which was associated with attenuation of autophagy, augmented rates of protein synthesis, and hypertrophy. Importantly, pharmacological inhibition of mTOR (rapamycin; 10days) normalized cardiac size in CBK mice. These data suggest that disruption of cardiomyocyte circadian clock differentially influences insulin-regulated processes, and provide new insights into potential pathologic mediators following circadian disruption.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yawen Tang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel A Brewer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoja K Brahma
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haley L Stanley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugam
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal Soorappan Rajasekaran
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Medicine and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School UT Health Science Center, Houston, TX, USA
| | - Silvio Litovsky
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
83
|
Fletcher EK, Morgan J, Kennaway DR, Bienvenu LA, Rickard AJ, Delbridge LMD, Fuller PJ, Clyne CD, Young MJ. Deoxycorticosterone/Salt-Mediated Cardiac Inflammation and Fibrosis Are Dependent on Functional CLOCK Signaling in Male Mice. Endocrinology 2017; 158:2906-2917. [PMID: 28911177 DOI: 10.1210/en.2016-1911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Activation of the mineralocorticoid receptor (MR) promotes inflammation, fibrosis, and hypertension. Clinical and experimental studies show that MR antagonists have significant therapeutic benefit for all-cause heart failure; however, blockade of renal MRs limits their widespread use. Identification of key downstream signaling mechanisms for the MR in the cardiovascular system may enable development of targeted MR antagonists with selectivity for pathological MR signaling and lower impact on physiological renal electrolyte handling. One candidate pathway is the circadian clock, the dysregulation of which is associated with cardiovascular diseases. We have previously shown that the circadian gene Per2 is dysregulated in hearts with selective deletion of cardiomyocyte MR. We therefore investigated MR-mediated cardiac inflammation and fibrosis in mice that lack normal regulation and oscillation of the circadian clock in peripheral tissues, that is, CLOCKΔ19 mutant mice. The characteristic cardiac inflammatory/fibrotic response to a deoxycorticosterone (DOC)/salt for 8 weeks was significantly blunted in CLOCKΔ19 mice when compared with wild-type mice, despite a modest increase at "baseline" for fibrosis and macrophage number in CLOCKΔ19 mice. In contrast, cardiac hypertrophy in response to DOC/salt was significantly greater in CLOCKΔ19 vs wild-type mice. Markers for renal inflammation and fibrosis were similarly attenuated in the CLOCKΔ19 mice given DOC/salt. Moreover, increased CLOCK expression in H9c2 cardiac cells enhanced MR-mediated transactivation of Per1, suggesting cooperative signaling between these transcription factors. This study demonstrates that the full development of MR-mediated cardiac inflammation and fibrosis is dependent on intact signaling by the circadian protein CLOCK.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - David R Kennaway
- School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Laura A Bienvenu
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda J Rickard
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
84
|
Meder B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Frese K, Lai A, Nietsch R, Scheiner C, Mester S, Bordalo DM, Amr A, Dietrich C, Pils D, Siede D, Hund H, Bauer A, Holzer DB, Ruhparwar A, Mueller-Hennessen M, Weichenhan D, Plass C, Weis T, Backs J, Wuerstle M, Keller A, Katus HA, Posch AE. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation 2017; 136:1528-1544. [PMID: 28838933 DOI: 10.1161/circulationaha.117.027355] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biochemical DNA modification resembles a crucial regulatory layer among genetic information, environmental factors, and the transcriptome. To identify epigenetic susceptibility regions and novel biomarkers linked to myocardial dysfunction and heart failure, we performed the first multi-omics study in myocardial tissue and blood of patients with dilated cardiomyopathy and controls. METHODS Infinium human methylation 450 was used for high-density epigenome-wide mapping of DNA methylation in left-ventricular biopsies and whole peripheral blood of living probands. RNA deep sequencing was performed on the same samples in parallel. Whole-genome sequencing of all patients allowed exclusion of promiscuous genotype-induced methylation calls. RESULTS In the screening stage, we detected 59 epigenetic loci that are significantly associated with dilated cardiomyopathy (false discovery corrected P≤0.05), with 3 of them reaching epigenome-wide significance at P≤5×10-8. Twenty-seven (46%) of these loci could be replicated in independent cohorts, underlining the role of epigenetic regulation of key cardiac transcription regulators. Using a staged multi-omics study design, we link a subset of 517 epigenetic loci with dilated cardiomyopathy and cardiac gene expression. Furthermore, we identified distinct epigenetic methylation patterns that are conserved across tissues, rendering these CpGs novel epigenetic biomarkers for heart failure. CONCLUSIONS The present study provides to our knowledge the first epigenome-wide association study in living patients with heart failure using a multi-omics approach.
Collapse
Affiliation(s)
- Benjamin Meder
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Jan Haas
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Farbod Sedaghat-Hamedani
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Elham Kayvanpour
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Karen Frese
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Alan Lai
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Rouven Nietsch
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Christina Scheiner
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Stefan Mester
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Diana Martins Bordalo
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Ali Amr
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Carsten Dietrich
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Dietmar Pils
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Dominik Siede
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Hauke Hund
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Andrea Bauer
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Daniel Benjamin Holzer
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Arjang Ruhparwar
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Matthias Mueller-Hennessen
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Dieter Weichenhan
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Christoph Plass
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Tanja Weis
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Johannes Backs
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Maximilian Wuerstle
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Andreas Keller
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| | - Hugo A Katus
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.).
| | - Andreas E Posch
- From Department of Internal Medicine III, Institute for Cardiomyopathies, University of Heidelberg, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., R.N., C.S., S.M., D.M.-B., A.A., H.H., D.B.H., M.M.-H., T.W., H.A.K.); Siemens Healthcare GmbH, Strategy and Innovation, Erlangen, Germany (C.D., M.W., A.E.P.); Department of Bioinformatics, University of Saarland, Saarbrücken, Germany (A.K.); German Centre for Cardiovascular Research, Berlin, Germany (B.M., J.H., F.S.-H., E.K., K.F., A.L., D.S., M.M.-H., T.W., J.B., H.A.K.); Institute for Molecular Cardiology and Epigenetics, University of Heidelberg, Germany (D.S., J.B.); Funktionelle Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, Germany (A.B.); Department of Cardiac Surgery, University of Heidelberg, Germany (A.R.); Siemens AG, Corporate Technology, Vienna, Austria (D.P.); Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (D.P.); and Division of Epigenomics and Cancer Risk Factors, Deutsches Krebsforschungszentrum, Heidelberg, Germany (D.W., C.P.)
| |
Collapse
|
85
|
Potucek P, Radik M, Doka G, Kralova E, Krenek P, Klimas J. mRNA levels of circadian clock components Bmal1 and Per2 alter independently from dosing time-dependent efficacy of combination treatment with valsartan and amlodipine in spontaneously hypertensive rats. Clin Exp Hypertens 2017; 39:754-763. [PMID: 28665713 DOI: 10.1080/10641963.2017.1324480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronopharmacological effects of antihypertensives play a role in the outcome of hypertension therapy. However, studies produce contradictory findings when combination of valsartan plus amlodipine (VA) is applied. Here, we hypothesized different efficacy of morning versus evening dosing of VA in spontaneously hypertensive rats (SHR) and the involvement of circadian clock genes Bmal1 and Per2. We tested the therapy outcome in short-term and also long-term settings. SHRs aged between 8 and 10 weeks were treated with 10 mg/kg of valsartan and 4 mg/kg of amlodipine, either in the morning or in the evening with treatment duration 1 or 6 weeks and compared with parallel placebo groups. After short-term treatment, only morning dosing resulted in significant blood pressure (BP) control (measured by tail-cuff method) when compared to placebo, while after long-term treatment, both dosing groups gained similar superior results in BP control against placebo. However, mRNA levels of Bmal1 and Per2 (measured by RT-PCR) exhibited an independent pattern, with similar alterations in left and right ventricle, kidney as well as in aorta predominantly in groups with evening dosing in both, short-term and also long-term settings. This was accompanied by increased cardiac mRNA expression of plasminogen activator inhibitor-1. In summary, morning dosing proved to be advantageous due to earlier onset of antihypertensive action; however, long-term treatment was demonstrated to be effective regardless of administration time. Our findings also suggest that combination of VA may serve as an independent modulator of circadian clock and might influence disease progression beyond the primary BP lowering effect.
Collapse
Affiliation(s)
- Peter Potucek
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Michal Radik
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Gabriel Doka
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Eva Kralova
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Peter Krenek
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Jan Klimas
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| |
Collapse
|
86
|
Riley LA, Esser KA. The Role of the Molecular Clock in Skeletal Muscle and What It Is Teaching Us About Muscle-Bone Crosstalk. Curr Osteoporos Rep 2017; 15:222-230. [PMID: 28421465 PMCID: PMC5442191 DOI: 10.1007/s11914-017-0363-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW This review summarizes what has been learned about the interaction between skeletal muscle and bone from mouse models in which BMAL1, a core molecular clock protein has been deleted. Additionally, we highlight several genes which change following loss of BMAL1. The protein products from these genes are secreted from muscle and have a known effect on bone homeostasis. RECENT FINDINGS Circadian rhythms have been implicated in regulating systems homeostasis through a series of transcriptional-translational feedback loops termed the molecular clock. Recently, skeletal muscle-specific disruption of the molecular clock has been shown to disrupt skeletal muscle metabolism. Additionally, loss of circadian rhythms only in adult muscle has an effect on other tissue systems including bone. Our finding that the expression of a subset of skeletal muscle-secreted proteins changes following BMAL1 knockout combined with the current knowledge of muscle-bone crosstalk suggests that skeletal muscle circadian rhythms are important for maintenance of musculoskeletal homeostasis. Future research on this topic may be important for understanding the role of the skeletal muscle molecular clock in a number of diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Lance A Riley
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
| |
Collapse
|
87
|
Mullegama SV, Alaimo JT, Fountain MD, Burns B, Balog AH, Chen L, Elsea SH. RAI1 Overexpression Promotes Altered Circadian Gene Expression and Dyssomnia in Potocki-Lupski Syndrome. J Pediatr Genet 2017; 6:155-164. [PMID: 28794907 DOI: 10.1055/s-0037-1599147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Retinoic acid induced 1 ( RAI1 ) encodes a dosage-sensitive gene that when haploinsufficient results in Smith-Magenis syndrome (SMS) and when overexpressed results in Potocki-Lupski syndrome (PTLS). Phenotypic and molecular evidence illustrates that haploinsufficiency of RAI1 disrupts circadian rhythm through the dysregulation of the master circadian regulator, circadian locomotor output cycles kaput ( CLOCK) , and other core circadian components, contributing to prominent sleep disturbances in SMS. However, the phenotypic and molecular characterization of sleep features in PTLS has not been elucidated. Using the Pittsburgh Sleep Quality Index (PSQI), caregivers of 15 school-aged children with PTLS reported difficulties in initiating sleep. Indeed, more than 70% of individuals manifested moderate to severe sleep latency, as defined by the PSQI. Moreover, these individuals manifested difficulties in sleep maintenance, with middle of the night and early morning awakenings. When assessing daytime sleepiness through the Epworth Sleepiness Scale, approximately 21% of the individuals manifested excessive daytime somnolence. This indicates that mild dyssomnia characterizes the majority of the sleep phenotype, with occasionally problematic daytime somnolence, a phenotype different than that expressed by individuals with SMS, where daytime sleepiness is a chronic problem. Gene expression analysis of the core circadian machinery in the hypothalamus of the PTLS mouse model ( Rai1 -Tg) found significant dysregulation of the transcriptional activators, Clock and Arntl , and the transcriptional repressors, Per1-3 and Cry1/2 , during both light and dark phases. These findings suggest a partial loss of circadian entrainment typically evoked by environmental photic cues. Examination of circadian clock gene expression in the Rai1- Tg mouse heart, liver, and kidney found unchanged expression of Clock and most of its downstream targets during both light and dark phases, suggesting an asynchronized circadian rhythm. Furthermore, examination of circadian gene expression in synchronized PTLS lymphoblasts revealed reduced transcripts of the Period ( PER1-3 ) family and normal expression of CRY1/2 . The finding that central circadian gene expression was altered while many peripheral circadian components were intact suggests a tissue-specific circadian uncoupling of the circadian machinery due to Rai1 overexpression. Overall, our results demonstrate that overexpression of RAI1 results in sleep deficiencies in individuals with PTLS due to a lack of properly regulated circadian machinery gene expression and highlight the importance of evaluating sleep concerns in individuals with PTLS.
Collapse
Affiliation(s)
- Sureni V Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States
| | - Joseph T Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Michael D Fountain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Brooke Burns
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Amanda Hebert Balog
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Li Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States.,Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| |
Collapse
|
88
|
Panchenko AV, Gubareva EA, Anisimov VN. The role of circadian rhythms and the “cellular clock” in age-associated diseases. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Shang X, Pati P, Anea CB, Fulton DJ, Rudic RD. Differential Regulation of BMAL1, CLOCK, and Endothelial Signaling in the Aortic Arch and Ligated Common Carotid Artery. J Vasc Res 2016; 53:269-278. [PMID: 27923220 PMCID: PMC5765856 DOI: 10.1159/000452410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
Abstract
The circadian clock is rhythmically expressed in blood vessels, but the interaction between the circadian clock and disturbed blood flow remains unclear. We examined the relationships between BMAL1 and CLOCK and 2 regulators of endothelial function, AKT1 and endothelial nitric oxide synthase (eNOS), in vascular regions of altered blood flow. We found that the aortic arch from WT mice exhibited reduced sensitivity to acetylcholine (Ach)-mediated relaxation relative to the thoracic aorta. In Clock-mutant (mut) mice the aorta exhibited a reduced sensitivity to Ach. In WT mice, the phosphorylated forms of eNOS and AKT were decreased in the aortic arch, while BMAL1 and CLOCK expression followed a similar pattern of reduction in the arch. In conditions of surgically induced flow reduction, phosphorylated-eNOS (serine 1177) increased, as did p-AKT in the ipsilateral left common carotid artery (LC) of WT mice. Similarly, BMAL1 and CLOCK exhibited increased expression after 5 days in the remodeled LC. eNOS expression was increased at 8 p.m. versus 8 a.m. in WT mice, and this pattern was abolished in mut and Bmal1-KO mice. These data suggest that the circadian clock may be a biomechanical and temporal sensor that acts to coordinate timing, flow dynamics, and endothelial function.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/physiopathology
- Carotid Artery, External/metabolism
- Carotid Artery, External/physiopathology
- Carotid Artery, External/surgery
- Circadian Rhythm
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genotype
- Ligation
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mutation
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Time Factors
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xia Shang
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Paramita Pati
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ciprian B. Anea
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David J.R. Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
90
|
Praktiknjo SD, Picard S, Deschepper CF. Comparisons of chromosome Y-substituted mouse strains reveal that the male-specific chromosome modulates the effects of androgens on cardiac functions. Biol Sex Differ 2016; 7:61. [PMID: 27980711 PMCID: PMC5143463 DOI: 10.1186/s13293-016-0116-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Background The C57BL/6J.YA/J mouse strain is a chromosome-substituted line where the original male-specific portion of chromosome Y (MSY) from C57BL/6J mice was substituted for that from A/J mice. In hearts from male C57BL/6J.YA/J and C57BL/6J mice, orchidectomy (ORX) affected in a strictly strain-specific fashion the expression a subset of genes showing enrichment for functional categories, including that of circadian rhythms and cardiac contractility. We further tested whether: (1) there were strain-specific differences in cardiac circadian rhythms; (2) strain-dependent differences in the effects of ORX on contractility genes translated into differences in cardiac functions; and (3) differential contractility responses occurred preferentially at times when circadian rhythms also showed strain-specific differences. Methods In hearts from the two above strains, we (1) profiled the expression levels of 15 circadian genes at 4-h intervals across a 24 h period; (2) tested the effects of either ORX or androgen replacement on expression of cardiac contractility genes, and that of ORX on myocardial functional reserve; and (3) verified whether the effects of MSY variants on cardiac contractility-related responses showed synchronicity with differences in circadian rhythms. Results Among the 15 tested circadian genes, a subset of them were affected by strain (and thus the genetic origin of MSY), which interacted with the amplitude of their peak of maximal expression at 2:00 PM. At that same time-point, ORX decreased (and androgen supplementation increased) the expression of three contractility-related genes, and decreased myocardial relaxation reserve in C57BL/6J.YA/J, but not in C57BL/6J mice. These effects were not detected at 10:00 AM, i.e., at another time-point when circadian genes showed no strain-specific differences. Conclusions The results indicate that in mice, androgens have activational effects on cardiac circadian rhythms, contractile gene expression, and myocardial functional reserve. All effects occurred preferentially at the same time of the day, but varied as a function of the genetic origin of MSY. Androgens may therefore be necessary but not sufficient to impart male-specific characteristics to some particular cardiac functions, with genetic material from MSY being one other necessary factor to fully define their range of actions. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0116-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha D Praktiknjo
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada ; Present address: Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Sylvie Picard
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada
| | - Christian F Deschepper
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada
| |
Collapse
|
91
|
Hemmeryckx B, Hohensinner P, Swinnen M, Heggermont W, Wojta J, Lijnen HR. Antioxidant Treatment Improves Cardiac Dysfunction in a Murine Model of Premature Aging. J Cardiovasc Pharmacol 2016; 68:374-382. [PMID: 27824722 DOI: 10.1097/fjc.0000000000000423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bmal1-(brain and muscle ARNT-like protein-1) deficient (Bmal1) mice prematurely age because of an increased reactive oxygen species (ROS) production. These mice also show a decline in cardiac function with age. We investigated whether an antioxidant treatment can ameliorate the declining cardiac function in prematurely aged Bmal1 mice. Male Bmal1 and wild-type (Bmal1) mice were exposed for 15 weeks to a high fat and high cholesterol diet with or without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL; 5 mmol/L; in drinking water during the last 10 weeks). Echocardiographic analysis revealed that TEMPOL treatment of Bmal1 mice normalized cardiac function, as evidenced by a decrease in left ventricular diastolic and systolic internal diameters, and by an increase in fractional shortening and ejection fraction. The antioxidant did not affect cardiac function in Bmal1 mice. Although TEMPOL did not influence cardiac ROS levels in Bmal1 mice, it significantly protected Bmal1 cardiac telomeres from oxidation, as evidenced by a reduction in the telomere damage score (0.11 ± 0.012% vs. 0.16 ± 0.015%; P = 0.028). Thus, antioxidant treatment normalized cardiac function of Bmal1 mice, probably in part by scavenging ROS.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- *Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; †Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; ‡Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; §Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
92
|
Beesley S, Noguchi T, Welsh DK. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue. PLoS One 2016; 11:e0159618. [PMID: 27459195 PMCID: PMC4961434 DOI: 10.1371/journal.pone.0159618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+.
Collapse
Affiliation(s)
- Stephen Beesley
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Takako Noguchi
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - David K. Welsh
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
93
|
Schroder EA, Delisle BP. A snapshot in time: Does exercise training impact the muscle circadian clock in patients? Eur J Prev Cardiol 2016; 23:1372-4. [DOI: 10.1177/2047487316651839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Elizabeth A Schroder
- Center for Muscle Biology, University of Kentucky, USA
- Department of Physiology, University of Kentucky, USA
| | - Brian P Delisle
- Center for Muscle Biology, University of Kentucky, USA
- Department of Physiology, University of Kentucky, USA
| |
Collapse
|
94
|
When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev 2016; 29:180-193. [PMID: 27364352 DOI: 10.1017/s095442241600010x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As obesity and metabolic diseases rise, there is need to investigate physiological and behavioural aspects associated with their development. Circadian rhythms have a profound influence on metabolic processes, as they prepare the body to optimise energy use and storage. Moreover, food-related signals confer temporal order to organs involved in metabolic regulation. Therefore food intake should be synchronised with the suprachiasmatic nucleus (SCN) to elaborate efficient responses to environmental challenges. Human studies suggest that a loss of synchrony between mealtime and the SCN promotes obesity and metabolic disturbances. Animal research using different paradigms has been performed to characterise the effects of timing of food intake on metabolic profiles. Therefore the purpose of the present review is to critically examine the evidence of animal studies, to provide a state of the art on metabolic findings and to assess whether the paradigms used in rodent models give the evidence to support a 'best time' for food intake. First we analyse and compare the current findings of studies where mealtime has been shifted out of phase from the light-dark cycle. Then, we analyse studies restricting meal times to different moments within the active period. So far animal studies correlate well with human studies, demonstrating that restricting food intake to the active phase limits metabolic disturbances produced by high-energy diets and that eating during the inactive/sleep phase leads to a worse metabolic outcome. Based on the latter we discuss the missing elements and possible mechanisms leading to the metabolic consequences, as these are still lacking.
Collapse
|
95
|
Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res 2016; 39:383-90. [PMID: 26888119 DOI: 10.1038/hr.2016.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The onset of cardiovascular diseases often shows time-of-day variation. Acute myocardial infarction or ventricular arrhythmia such as ventricular tachycardia occurs mainly in the early morning. Multiple biochemical and physiological parameters show circadian rhythm, which may account for the diurnal variation of cardiovascular events. These include the variations in blood pressure, activity of the autonomic nervous system and renin-angiotensin axis, coagulation cascade, vascular tone and the intracellular metabolism of cardiomyocytes. Importantly, the molecular clock system seems to underlie the circadian variation of these parameters. The center of the biological clock, also known as the central clock, exists in the suprachiasmatic nucleus. In contrast, the molecular clock system is also activated in each cell of the peripheral organs and constitute the peripheral clock. The biological clock system is currently considered to have a beneficial role in maintaining the homeostasis of each organ. Discoordination, however, between the peripheral clock and external environment could potentially underlie the development of cardiovascular events. Therefore, understanding the molecular and cellular pathways by which cardiovascular events occur in a diurnal oscillatory pattern will help the establishment of a novel therapeutic approach to the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
96
|
Abstract
Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
97
|
Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, Wen Y, Riley LA, Yu Q, Christie A, Smith JD, Seward T, Wolf Horrell EM, Mula J, Peterson CA, Butterfield TA, Esser KA. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol 2015; 593:5387-404. [PMID: 26486627 PMCID: PMC4704520 DOI: 10.1113/jp271436] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The endogenous molecular clock in skeletal muscle is necessary for maintenance of phenotype and function. Loss of Bmal1 solely from adult skeletal muscle (iMSBmal1(-/-) ) results in reductions in specific tension, increased oxidative fibre type and increased muscle fibrosis with no change in feeding or activity. Disruption of the molecular clock in adult skeletal muscle is sufficient to induce changes in skeletal muscle similar to those seen in the Bmal1 knockout mouse (Bmal1(-/-) ), a model of advanced ageing. iMSBmal1(-/-) mice develop increased bone calcification and decreased joint collagen, which in combination with the functional changes in skeletal muscle results in altered gait. This study uncovers a fundamental role for the skeletal muscle clock in musculoskeletal homeostasis with potential implications for ageing. ABSTRACT Disruption of circadian rhythms in humans and rodents has implicated a fundamental role for circadian rhythms in ageing and the development of many chronic diseases including diabetes, cardiovascular disease, depression and cancer. The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop with Bmal1 encoding a core molecular clock transcription factor. Germline Bmal1 knockout (Bmal1 KO) mice have a shortened lifespan, show features of advanced ageing and exhibit significant weakness with decreased maximum specific tension at the whole muscle and single fibre levels. We tested the role of the molecular clock in adult skeletal muscle by generating mice that allow for the inducible skeletal muscle-specific deletion of Bmal1 (iMSBmal1). Here we show that disruption of the molecular clock, specifically in adult skeletal muscle, is associated with a muscle phenotype including reductions in specific tension, increased oxidative fibre type, and increased muscle fibrosis similar to that seen in the Bmal1 KO mouse. Remarkably, the phenotype observed in the iMSBmal1(-/-) mice was not limited to changes in muscle. Similar to the germline Bmal1 KO mice, we observed significant bone and cartilage changes throughout the body suggesting a role for the skeletal muscle molecular clock in both the skeletal muscle niche and the systemic milieu. This emerging area of circadian rhythms and the molecular clock in skeletal muscle holds the potential to provide significant insight into intrinsic mechanisms of the maintenance of muscle quality and function as well as identifying a novel crosstalk between skeletal muscle, cartilage and bone.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brianna D Harfmann
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiping Zhang
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ratchakrit Srikuea
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Brian A Hodge
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Lance A Riley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Qi Yu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Alexander Christie
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Tanya Seward
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jyothi Mula
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Karyn A Esser
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
98
|
Zhang L, Prosdocimo DA, Bai X, Fu C, Zhang R, Campbell F, Liao X, Coller J, Jain MK. KLF15 Establishes the Landscape of Diurnal Expression in the Heart. Cell Rep 2015; 13:2368-2375. [PMID: 26686628 DOI: 10.1016/j.celrep.2015.11.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023] Open
Abstract
Circadian rhythms offer temporal control of anticipatory physiologic adaptations in animals. In the mammalian cardiovascular system, the importance of these rhythms is underscored by increased cardiovascular disease in shift workers, findings recapitulated in experimental animal models. However, a nodal regulator that allows integration of central and peripheral information and coordinates cardiac rhythmic output has been elusive. Here, we show that kruppel-like factor 15 (KLF15) governs a biphasic transcriptomic oscillation in the heart with a maximum ATP production phase and a remodeling and repair phase corresponding to the active and resting phase of a rodent. Depletion of KLF15 in cardiomyocytes leads to a disorganized oscillatory behavior without phasic partition despite an intact core clock. Thus, KLF15 is a nodal connection between the clock and meaningful rhythmicity in the heart.
Collapse
Affiliation(s)
- Lilei Zhang
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Xiaodong Bai
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chen Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rongli Zhang
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Frank Campbell
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
99
|
Ingle KA, Kain V, Goel M, Prabhu SD, Young ME, Halade GV. Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol 2015; 309:H1827-36. [PMID: 26432841 PMCID: PMC4698380 DOI: 10.1152/ajpheart.00608.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
The mammalian circadian clock consists of multiple transcriptional regulators that coordinate biological processes in a time-of-day-dependent manner. Cardiomyocyte-specific deletion of the circadian clock component, Bmal1 (aryl hydrocarbon receptor nuclear translocator-like protein 1), leads to age-dependent dilated cardiomyopathy and decreased lifespan in mice. We investigated whether cardiomyocyte-specific Bmal1 knockout (CBK) mice display early alterations in cardiac diastolic function, extracellular matrix (ECM) remodeling, and inflammation modulators by investigating CBK mice and littermate controls at 8 and 28 wk of age (i.e., prior to overt systolic dysfunction). Left ventricles of CBK mice exhibited (P < 0.05): 1) progressive abnormal diastolic septal annular wall motion and reduced pulmonary venous flow only at 28 wk of age; 2) progressive worsening of fibrosis in the interstitial and endocardial regions from 8 to 28 wk of age; 3) increased (>1.5 fold) expression of collagen I and III, as well as the matrix metalloproteinases MMP-9, MMP-13, and MMP-14 at 28 wk of age; 4) increased transcript levels of neutrophil chemotaxis and leukocyte migration genes (Ccl2, Ccl8, Cxcl2, Cxcl1, Cxcr2, Il1β) with no change in Il-10 and Il-13 genes expression; and 5) decreased levels of 5-LOX, HO-1 and COX-2, enzymes indicating impaired resolution of inflammation. In conclusion, genetic disruption of the cardiomyocyte circadian clock results in diastolic dysfunction, adverse ECM remodeling, and proinflammatory gene expression profiles in the mouse heart, indicating signs of early cardiac aging in CBK mice.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- Age Factors
- Animals
- Diastole
- Disease Progression
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Fibrosis
- Gene Expression Regulation
- Genotype
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- RNA, Messenger/metabolism
- Signal Transduction
- Smad2 Protein/metabolism
- Smad3 Protein/metabolism
- Time Factors
- Transcription, Genetic
- Transforming Growth Factor beta/metabolism
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Kevin A Ingle
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehak Goel
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
100
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|