51
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
52
|
Hamed HM, Bostany EE, Motawie AA, Abd Al-Aziz AM, Mourad AA, Salama HM, Kamel S, Hassan EM, Helmy NA, El-Saeed GS, Elghoroury EA. The association of TMPRSS6 gene polymorphism with iron status in Egyptian children (a pilot study). BMC Pediatr 2024; 24:105. [PMID: 38341535 PMCID: PMC10858485 DOI: 10.1186/s12887-024-04573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Several studies have shown association of single nucleotide polymorphisms (SNPs) of hepcidin regulatory pathways genes with impaired iron status. The most common is in the TMPRSS6 gene. In Africa, very few studies have been reported. We aimed to investigate the correlation between the common SNPs in the transmembrane protease, serine 6 (TMPRSS6) gene and iron indicators in a sample of Egyptian children for identifying the suitable candidate for iron supplementation.Patients and methods One hundred and sixty children aged 5-13 years were included & classified into iron deficient, iron deficient anemia and normal healthy controls. All were subjected to assessment of serum iron, serum ferritin, total iron binding capacity, complete blood count, reticulocyte count, serum soluble transferrin receptor and serum hepcidin. Molecular study of TMPRSS6 genotyping polymorphisms (rs4820268, rs855791 and rs11704654) were also evaluated.Results There was an association of iron deficiency with AG of rs855791 SNP, (P = 0.01). The minor allele frequency for included children were 0.43, 0.45 & 0.17 for rs4820268, rs855791 & rs11704654 respectively. Genotype GG of rs4820268 expressed the highest hepcidin gene expression fold, the lowest serum ferroportin & iron store compared to AA and AG genotypes (p = 0.05, p = 0.05, p = 0.03 respectively). GG of rs855791 had lower serum ferritin than AA (p = 0.04), lowest iron store & highest serum hepcidin compared to AA and AG genotypes (p = 0.04, p = 0.01 respectively). Children having CC of rs11704654 had lower level of hemoglobin, serum ferritin and serum hepcidin compared with CT genotype (p = 0.01, p = 0.01, p = 0.02) respectively.Conclusion Possible contribution of SNPs (rs855791, rs4820268 and rs11704654) to low iron status.
Collapse
Grants
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- 11010150 National Research Centre, Egypt
- National Research Centre Egypt
Collapse
Affiliation(s)
- Hanan M Hamed
- Pediatrics Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Eman El Bostany
- Pediatrics Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ayat A Motawie
- Pediatrics Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | | | - Abbass A Mourad
- Pediatrics Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hassan M Salama
- Pediatrics Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Solaf Kamel
- Clinical and Chemical Pathology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Eman M Hassan
- Clinical and Chemical Pathology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Neveen A Helmy
- Clinical and Chemical Pathology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Gamila S El-Saeed
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Eman A Elghoroury
- Clinical and Chemical Pathology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
53
|
Zheng J, Qian ZM, Sun YX, Bao YX. Downregulation of hepcidin by norcantharidin in macrophage. Nat Prod Res 2024; 38:673-678. [PMID: 36855296 DOI: 10.1080/14786419.2023.2185236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Norcantharidin (NCTD) is a demethylated analogue of cantharidin. It was recently demonstrated that NCTD reduces iron contents in the liver and spleen of mice in vivo, indicating that NCTD can affect iron metabolism via hepcidin. Here, we investigated the effects of NCTD on expression of iron storage protein ferritin-light chain (Ft-L), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1), hepcidin, iron regulatory protein 1 (IRP1), IL-6, p-JAK2 and p-STAT3 in lipopolysaccharides (LPS)-treated RAW264.7 cells in vitro via Real-time PCR and Western blotting analysis. We demonstrate that NCTD down-regulates Ft-L, hepcidin, IL-6, pJAK2, pSTAT3 and up-regulates TfR1, DMT1, Fpn1 and IRP1 expression in LPS treated cells, showing that NCTD can inhibit hepcidin via the IL-6/JAK2/STAT3 signalling pathway and also increase TfR1, DMT1 and Fpn1 expression via down-regulating hepcidin and up-regulating IRP1. Our findings provide further evidence in vitro for the role of NCTD in iron metabolism.
Collapse
Affiliation(s)
- Jie Zheng
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Sun
- School of Physics and Technology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
54
|
Dan Z, Shi X, Shu C, Zhu R, Wang Y, Zhu H. 4-amino-2-trifluoromethyl-phenyl retinate alleviates lipopolysaccharide-induced acute myocardial injury through activation of the KLF4/p62 axis. Cell Signal 2024; 114:111001. [PMID: 38048858 DOI: 10.1016/j.cellsig.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Ferroptosis plays a pivotal role in the pathological process of sepsis-induced cardiomyopathy (SIC). All-trans retinoic acid (ATRA) enhances the host immune response to lipopolysaccharides (LPS). This study investigated the role of 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), a derivative of ATRA, in myocardial injury caused by sepsis. Male C57BL/6 mice were intraperitoneally injected with LPS to establish a sepsis model. H9c2 cells were stimulated by LPS to establish an injury model. We observed that ATPR improved myocardial injury in mice, which was presented in terms of an increased glutathione (GSH) level and reduced production of malondialdehyde (MDA), as well as an increased number of mitochondrial cristae and maintenance of the mitochondrial membrane integrity. ATPR improved cardiac function in the LPS-injured mice. It inhibited the inflammatory response as evidenced by the decreasing mRNA levels of TNF-α and IL-6. The elevated protein expression levels of Nrf2, SLC7A11, GPX4, and FTH1 in mice and H9c2 cells showed that ATPR inhibited ferroptosis. Immunoprecipitation of LPS-stimulated H9c2 cells demonstrated that ATPR increased the interaction between p62 and Keap1. ATPR upregulated the KLF4 and p62 protein expression. However, the inhibition of Nrf2 by ML385 reduced the protective effect of ATPR in LPS-treated H9c2 cells. Furthermore, we used siRNA to knock down KLF4 in H9c2 cells and found that the KLF4 knockdown eliminated the inhibition of ferroptosis by ATPR in H9c2 cells. Therefore, ATPR alleviates LPS-induced myocardial injury by inhibiting ferroptosis via the KLF4/p62 axis.
Collapse
Affiliation(s)
- Zhangyong Dan
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Xiaorui Shi
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Chuanlin Shu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Rumeng Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China; Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
55
|
Li J, Ding Y, Zhang J, Zhang Y, Cui Y, Zhang Y, Chang S, Chang Y, Gao G. Iron overload suppresses hippocampal neurogenesis in adult mice: Implication for iron dysregulation-linked neurological diseases. CNS Neurosci Ther 2024; 30:e14394. [PMID: 37545321 PMCID: PMC10848078 DOI: 10.1111/cns.14394] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
AIMS Adult hippocampal neurogenesis is an important player in brain homeostasis and its impairment participates in neurological diseases. Iron overload has emerged as an irreversible factor of brain aging, and is also closely related to degenerative disorders, including cognitive dysfunction. However, whether brain iron overload alters hippocampal neurogenesis has not been reported. We investigated the effect of elevated iron content on adult hippocampal neurogenesis and explored the underlying mechanism. METHODS Mouse models with hippocampal iron overload were generated. Neurogenesis in hippocampus and expression levels of related molecules were assessed. RESULTS Iron accumulation in hippocampus remarkably impaired the differentiation of neural stem cells, resulting in a significant decrease in newborn neurons. The damage was possibly attributed to iron-induced downregulation of proprotein convertase furin and subsequently decreased maturation of brain-derived neurotrophic factor (BDNF), thus contributing to memory decline and anxiety-like behavior of mice. Supportively, knockdown of furin indeed suppressed hippocampal neurogenesis, while furin overexpression restored the impairment. CONCLUSION These findings demonstrated that iron overload damaged hippocampal neurogenesis likely via iron-furin-BDNF pathway. This study provides new insights into potential mechanisms on iron-induced neurotoxicity and the causes of neurogenesis injury and renders modulating iron homeostasis and furin expression as novel therapeutic strategies for treatment of neurological diseases.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yiqian Ding
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Jianhua Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yiduo Cui
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yi Zhang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- College of Basic MedicineHebei Medical UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
56
|
Lösser L, Ledesma-Colunga MG, Andrés Sastre E, Scholtysek C, Hofbauer LC, Noack B, Baschant U, Rauner M. Transferrin receptor 2 mitigates periodontitis-driven alveolar bone loss. J Cell Physiol 2024; 239:e31172. [PMID: 38214117 DOI: 10.1002/jcp.31172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.
Collapse
Affiliation(s)
- Lennart Lösser
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Enrique Andrés Sastre
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3, University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Barbara Noack
- Policlinic of Operative Dentistry, Periodontology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
57
|
Díaz-Torres S, Díaz-López A, Arija V. Effect of Prenatal Iron Supplementation Adapted to Hemoglobin Levels in Early Pregnancy on Fetal and Neonatal Growth-ECLIPSES Study. Nutrients 2024; 16:437. [PMID: 38337721 PMCID: PMC10857398 DOI: 10.3390/nu16030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
In this randomized clinical trial, we evaluated the effects of prenatal iron supplementation adapted to pregnant women's initial hemoglobin (Hb) levels on fetal growth parameters until birth in women from the Mediterranean coast of northern Spain. All (n = 791) women were iron-supplemented during pregnancy according to Hb levels at the 12th gestational week: stratum 1 (Hb: 110-130 g/L) received 40 or 80 mg iron daily; stratum 2 (Hb > 130 g/L) received 40 or 20 mg iron daily. Fetal biometric and anthropometric measurements were evaluated in the three trimesters and at birth, respectively. In stratum 1, using 80 mg/d instead of 40 mg/d increased the risk of fetal head circumference > 90th percentile (OR = 2.49, p = 0.015) at the second trimester and fetal weight (OR = 2.36, p = 0.011) and femur length (OR = 2.50, p = 0.018) < 10th percentile at the third trimester. For stratum 2, using 40 mg/d instead of 20 mg/d increased the risk of fetal head circumference > 90th percentile (OR = 3.19, p = 0.039) at the third trimester. A higher risk of delivering an LGA baby (OR = 2.35, p = 0.015) for birthweight was also observed in stratum 1 women receiving 80 mg/d. It is crucial to adjust the prenatal iron supplementation to each pregnant woman's needs, i.e., adapted to their initial Hb levels, to achieve optimal fetal development, since excessive iron doses appear to adversely influence fetal growth.
Collapse
Affiliation(s)
- Sandra Díaz-Torres
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (S.D.-T.); (A.D.-L.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Andrés Díaz-López
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (S.D.-T.); (A.D.-L.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili (URV), 43204 Reus, Spain; (S.D.-T.); (A.D.-L.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Collaborative Group on Lifestyles, Nutrition, and Tobacco (CENIT), Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43202 Reus, Spain
| |
Collapse
|
58
|
Miao M, Han Y, Wang Y, Wang J, Zhu R, Yang Y, Fu N, Li N, Sun M, Zhang J. Dysregulation of iron homeostasis and ferroptosis in sevoflurane and isoflurane associated perioperative neurocognitive disorders. CNS Neurosci Ther 2024; 30:e14553. [PMID: 38334231 PMCID: PMC10853900 DOI: 10.1111/cns.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
In recent years, sevoflurane and isoflurane are the most popular anesthetics in general anesthesia for their safe, rapid onset, and well tolerant. Nevertheless, many studies reported their neurotoxicity among pediatric and aged populations. This effect is usually manifested as cognitive impairment such as perioperative neurocognitive disorders. The wide application of sevoflurane and isoflurane during general anesthesia makes their safety a major health concern. Evidence indicates that iron dyshomeostasis and ferroptosis may establish a role in neurotoxicity of sevoflurane and isoflurane. However, the mechanisms of sevoflurane- and isoflurane-induced neuronal injury were not fully understood, which poses a barrier to the treatment of its neurotoxicity. We, therefore, reviewed the current knowledge on mechanisms of iron dyshomeostasis and ferroptosis and aimed to promote a better understanding of their roles in sevoflurane- and isoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mengrong Miao
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yaqian Han
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Jie Wang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Yitian Yang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ningning Fu
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Ningning Li
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative medicinePeople's Hospital of Zhengzhou University, Henan Provincial People's Hospital, People's Hospital of Henan UniversityZhengzhouHenan ProvinceChina
| |
Collapse
|
59
|
Abbas R, Chakkour M, Zein El Dine H, Obaseki EF, Obeid ST, Jezzini A, Ghssein G, Ezzeddine Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. BIOLOGY 2024; 13:78. [PMID: 38392297 PMCID: PMC10886558 DOI: 10.3390/biology13020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.
Collapse
Affiliation(s)
- Rim Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | | | - Soumaya T Obeid
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Aya Jezzini
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
60
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
61
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
62
|
Xu X, Deng X, Li Y, Xia S, Baryshnikov G, Bondarchuk SV, Ågren H, Wang X, Liu P, Tan Y, Huang T, Zhang H, Wei Y. Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307029. [PMID: 37712137 DOI: 10.1002/smll.202307029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.
Collapse
Affiliation(s)
- Xiaoran Xu
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Shiying Xia
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Glib Baryshnikov
- Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Sergey V Bondarchuk
- Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky Cherkasy National University, Shevchenko 81, Cherkasy, 18031, Ukraine
| | - Hans Ågren
- Department of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University, Lägerhyddsvägen 1, Uppsala, SE-75121, Sweden
| | - Xinyu Wang
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Yujia Tan
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| |
Collapse
|
63
|
Wang S, Chen X, Liu Z, Yu S, Fu J, Zeng X. Rhodamine-based Fluorescent Probe With Quick Response and High Selectivity for Imaging Labile Ferrous Iron in Living Cells and Zebrafish. J Fluoresc 2023:10.1007/s10895-023-03551-2. [PMID: 38157085 DOI: 10.1007/s10895-023-03551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The transition between its various oxidation states of Iron plays a crucial part in various chemical transformation of cells. Misregulation of iron can give rise to the iron-catalyzed reactive oxygen species disorder which have been linked to a variety of diseases, so it is crucial to monitor the labile iron pool in vivo for clinical diagnosis. According to iron autoxidation and hydrogen abstraction reaction, we reported a novel "off-on" fluorescent probe to response to ferrous (Fe2+) both in solutions and biological systems. The probe responds to Fe2+ with good selectivity toward competing metal ions. What's more, the probe presents significant fluorescent enhancement to Fe2+ in less than 1 min, making real-time sensing in biological system possible. The applications of the probe in bioimaging revealed the changes in labile iron pool by iron autoxidation or diverse stimuli.
Collapse
Affiliation(s)
- Shanshan Wang
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Xin Chen
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Zhigang Liu
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Jing Fu
- Jinan Stomatol Hosp, Periodont & Oral Med Dept, Jinan, Shandong, People's Republic of China.
| | - Xiaodan Zeng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China.
| |
Collapse
|
64
|
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers (Basel) 2023; 16:154. [PMID: 38201581 PMCID: PMC10778144 DOI: 10.3390/cancers16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels, and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September 2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib (ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors and novel agents in development are poised to improve the outcomes of anemic MF patients.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| | - Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030, USA;
| | - Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| |
Collapse
|
65
|
Srivastava NK, Mukherjee S, Mishra VN. One advantageous reflection of iron metabolism in context of normal physiology and pathological phases. Clin Nutr ESPEN 2023; 58:277-294. [PMID: 38057018 DOI: 10.1016/j.clnesp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE (BACKGROUND) The presented review is an updating of Iron metabolism in context of normal physiology and pathological phases. Iron is one of the vital elements in humans and associated into proteins as a component of heme (e.g. hemoglobin, myoglobin, cytochromes proteins, myeloperoxidase, nitric oxide synthetases), iron sulfur clusters (e.g. respiratory complexes I-III, coenzyme Q10, mitochondrial aconitase, DNA primase), or other functional groups (e.g. hypoxia inducible factor prolyl hydroxylases). All these entire iron-containing proteins ar e needed for vital cellular and organismal functions together with oxygen transport, mitochondrial respiration, intermediary and xenobiotic metabolism, nucleic acid replication and repair, host defense, and cell signaling. METHODS (METABOLIC STRATEGIES) Cells have developed metabolic strategies to import and employ iron safely. Regulatory process of iron uptake, storage, intracellular trafficking and utilization is vital for the maintenance of cellular iron homeostasis. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. The predominant organs, which are associated in the metabolism of iron, are intestine, liver, bone marrow and spleen. Iron is conserved, recycled and stored. The reduced bioavailability of iron in humans has developed extremely efficient mechanisms for iron conservation. Prominently, the losses of iron cannot considerably enhance through physiologic mechanisms, even if iron intake and stores become excessive. Loss of iron is balanced or maintained from dietary sources. RESULTS (OUTCOMES) Numerous physiological abnormalities are associated with impaired iron metabolism. These abnormalities are appeared in the form of several diseases. There are duodenal ulcer, inflammatory bowel disease, sideroblastic anaemia, congenital dyserythropoietic anemias and low-grade myelodysplastic syndromes. Hereditary hemochromatosis and anaemia are two chronic diseases, which are responsible for disturbing the iron metabolism in various tissues, including the spleen and the intestine. Impairment in hepatic hepcidin synthesis is responsible for chronic liver disease, which is grounding from alcoholism or viral hepatitis. This condition directs to iron overload that can cause further hepatic damage. Iron has important role in several infectious diseases are tuberculosis, malaria trypanosomatid diseases and acquired immunodeficiency syndrome (AIDS). Iron is also associated with Systemic lupus erythematosus [SLE], cancer, Alzheimer's disease (AD) and post-traumatic epilepsy. CONCLUSION Recently, numerous research studies are gradually more dedicated in the field of iron metabolism, but a number of burning questions are still waiting for answer. Cellular iron utilization and intracellular iron trafficking pathways are not well established and very little knowledge about this. Increased information of the physiology of iron homeostasis will support considerate of the pathology of iron disorders and also make available the support to advance treatment.
Collapse
Affiliation(s)
- Niraj Kumar Srivastava
- School of Sciences (SOS), Indira Gandhi National Open University (IGNOU), New Delhi, 110068, India.
| | | | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, 221005, UP, India
| |
Collapse
|
66
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
67
|
Brittenham GM, Moir-Meyer G, Abuga KM, Datta-Mitra A, Cerami C, Green R, Pasricha SR, Atkinson SH. Biology of Anemia: A Public Health Perspective. J Nutr 2023; 153 Suppl 1:S7-S28. [PMID: 37778889 DOI: 10.1016/j.tjnut.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
Our goal is to present recent progress in understanding the biological mechanisms underlying anemia from a public health perspective. We describe important advances in understanding common causes of anemia and their interactions, including iron deficiency (ID), lack of other micronutrients, infection, inflammation, and genetic conditions. ID develops if the iron circulating in the blood cannot provide the amounts required for red blood cell production and tissue needs. ID anemia develops as iron-limited red blood cell production fails to maintain the hemoglobin concentration above the threshold used to define anemia. Globally, absolute ID (absent or reduced body iron stores that do not meet the need for iron of an individual but may respond to iron supplementation) contributes to only a limited proportion of anemia. Functional ID (adequate or increased iron stores that cannot meet the need for iron because of the effects of infection or inflammation and does not respond to iron supplementation) is frequently responsible for anemia in low- and middle-income countries. Absolute and functional ID may coexist. We highlight continued improvement in understanding the roles of infections and inflammation in causing a large proportion of anemia. Deficiencies of nutrients other than iron are less common but important in some settings. The importance of genetic conditions as causes of anemia depends upon the specific inherited red blood cell abnormalities and their prevalence in the settings examined. From a public health perspective, each setting has a distinctive composition of components underlying the common causes of anemia. We emphasize the coincidence between regions with a high prevalence of anemia attributed to ID (both absolute and functional), those with endemic infections, and those with widespread genetic conditions affecting red blood cells, especially in sub-Saharan Africa and regions in Asia and Oceania.
Collapse
Affiliation(s)
- Gary M Brittenham
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| | - Gemma Moir-Meyer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kelvin Mokaya Abuga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ananya Datta-Mitra
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States
| | - Carla Cerami
- The Medical Research Council Unit, The Gambia, London School of Hygiene and Tropical Medicine, London, UK
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, United States
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia; Diagnostic Haematology, The Royal Melbourne Hospital; and Clinical Haematology at the Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, VIC Australia
| | - Sarah H Atkinson
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
68
|
Pan K, Xu H, Yan C, Chen J, Jiang X, Song Y, Qi X, Long J, Liu H. Hepcidin from Onychostoma macrolepis: Response to Aeromonas hydrophila infection by down-regulating expression of inflammatory factor genes and regulating iron homeostasis potentially. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109187. [PMID: 37923182 DOI: 10.1016/j.fsi.2023.109187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Hepcidin, as an antimicrobial peptide, is associated with innate immunity and is considered a potential antibiotic substitute. In the present study, the hepcidin gene from the cavefish - Onychostoma macrolepis was identified and analyzed. The recombinant hepcidin protein (rOmhepc) was obtained by prokaryotic expression, evaluating the inhibitory effect of 5 pathogenic bacteria in vitro. Sixty O. macrolepis injected with 100 μL A. hydrophila (1.5 × 108 CFU/mL) were randomly divided into the therapeutic group and infection group, and therapeutic group was injected with 100 μL rOmhepc (100 μg/mL) at 6 and 18 h. The survival rates of O. macrolepis and bacterial load in liver were measured at 24 h. The liver tissues were collected at 0, 6, 12, and 24 h after A. hydrophila injection for investigating expression levels of immune-related, inflammatory factor genes and FPN1 gene. The results demonstrated that the hepcidin CDS contained 279 bp and encoded 93 aa. Hepcidin protein has a hydrophobic surface formed by multiple hydrophobic residues (CCGCCYC), and the theoretical pI was 7.53. Omhepc gene was expressed at varying levels in tested tissues, with the liver showing the highest expression, followed by the spleen. The expression of hepcidin gene following A. hydrophila infection was up-regulated and then down-regulated in liver, and the highest expression level was found at 12 h with a 10.93-fold. The rOmhepc remarkably inhibited the growth of A. hydrophila, Staphylococcus aureus, and Streptococcus agalactiae, with inhibition rates reaching 69.67 %, 42.97 %, and 65.74 % at 100 μg/mL. The mortality rates of O. macrolepis and bacterial load in liver were significantly decreased in the therapeutic group than that of infection group (p < 0.05). After the rOmhepc therapeutic, interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly down-regulated with 14.4-fold and 106.07-fold at 24 h. Furthermore, the expression of immune-related genes (C3, TNF-α, IFN-γ) and Ferroportin gene (FPN1) significantly decreased (p < 0.05). The integrated analyses indicated that the rOmhepc could significantly inhibit the growth of A. hydrophila both in vitro and in vivo, attenuating the over-expression of inflammatory factor, FPN1 and immune-related genes.
Collapse
Affiliation(s)
- Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Chen
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
69
|
Izumi Y, Kataoka H, Koshiba A, Ito F, Tanaka Y, Takaoka O, Maeda E, Okimura H, Sugahara T, Tarumi Y, Shimura K, Khan KN, Kusuki I, Mori T. Hepcidin as a key regulator of iron homeostasis triggers inflammatory features in the normal endometrium. Free Radic Biol Med 2023; 209:191-201. [PMID: 37884101 DOI: 10.1016/j.freeradbiomed.2023.10.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Menstrual blood, containing high iron levels, can undergo retrograde transport into the abdominal cavity. Excess iron causes oxidative stress and inflammation. Iron metabolism is regulated by hepcidin, and serum hepcidin levels are increased in patients with endometriosis; however, the functions of hepcidin in normal endometrium remain unclear. We therefore aimed to examine hepcidin concentrations in patients with endometriosis and to determine if iron accumulation and hepcidin increased the production of reactive oxygen species (ROS) and inflammation in normal endometrial cells. We determined hepcidin levels in peritoneal fluid and menstrual blood from patients with and without endometriosis (25/16 and 15/15 patients, respectively). We also examined the effects of hepcidin on ferroportin expression, iron accumulation, and ROS generation in normal endometrial stromal cells (NESCs) from 20 women who underwent surgery for uterine leiomyoma, using immunohistochemistry and immunofluorescence analyses and analyzed its effect on the expression of inflammatory cytokines by real-time polymerase chain reaction. There was no significant difference in iron concentrations in menstrual blood or peritoneal fluid between women with and without endometriosis; however, women with endometriosis had significantly higher hepcidin levels in menstrual blood. Hepcidin reduced the expression of ferroportin in NESCs and promoted the accumulation of ferrous iron. Hepcidin plus ferrous iron increased the production of ROS and inflammatory cytokines compared with ferrous iron alone. These results indicate that women with endometriosis have high hepcidin levels in menstrual blood, leading to increased iron production, oxidative stress, and inflammation, which may, in turn, promote the development of endometriosis.
Collapse
Affiliation(s)
- Yuko Izumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan.
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Osamu Takaoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Takuya Sugahara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Koki Shimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Izumi Kusuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
70
|
Li HY, Wei TT, Zhuang M, Tan CY, Xie TH, Cai J, Yao Y, Zhu L. Iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Cell Death Discov 2023; 9:419. [PMID: 37980349 PMCID: PMC10657394 DOI: 10.1038/s41420-023-01712-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Cellular senescence is a hallmark of aging and has been linked to age-related diseases. Age-related macular degeneration (AMD), the most common aging-related retinal disease, is prospectively associated with retinal pigment epithelial (RPE) senescence. However, the mechanism of RPE cell senescence remains unknown. In this study, tert-butyl hydroperoxide (TBH)-induced ARPE-19 cells and D-galactose-treated C57 mice were used to examine the cause of elevated iron in RPE cell senescence. Ferric ammonium citrate (FAC)-treated ARPE-19 cells and C57 mice were used to elucidated the mechanism of iron overload-induced RPE cell senescence. Molecular biology techniques for the assessment of iron metabolism, cellular senescence, autophagy, and mitochondrial function in vivo and in vitro. We found that iron level was increased during the senescence process. Ferritin, a major iron storage protein, is negatively correlated with intracellular iron levels and cell senescence. NCOA4, a cargo receptor for ferritinophagy, mediates degradation of ferritin and contributes to iron accumulation. Besides, we found that iron overload leads to mitochondrial dysfunction. As a result, mitochondrial DNA (mtDNA) is released from damaged mitochondria to cytoplasm. Cytoplasm mtDNA activates the cGAS-STING pathway and promotes inflammatory senescence-associated secretory phenotype (SASP) and cell senescence. Meanwhile, iron chelator Deferoxamine (DFO) significantly rescues RPE senescence and retinopathy induced by FAC or D-gal in mice. Taken together, these findings imply that iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Inhibiting iron accumulation may represent a promising therapeutic approach for age-related diseases such as AMD.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng-Ye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
71
|
Wang X, Li M, Diao K, Wang Y, Chen H, Zhao Z, Li Y, Jia X, Wang H, Zheng F, Xia Z, Han L, Zhang M. Deferoxamine attenuates visual impairment in retinal ischemia‒reperfusion via inhibiting ferroptosis. Sci Rep 2023; 13:20145. [PMID: 37978208 PMCID: PMC10656451 DOI: 10.1038/s41598-023-46104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Retinal ischemia‒reperfusion (I/R) injury can cause significant damage to human retinal neurons, greatly compromising their functions. Existing interventions have been proven to have little effect. Ferroptosis is a newly discovered type of programmed cell death that has been found to be involved in the process of ischemia‒reperfusion in multiple organs throughout the body. Studies have shown that it is also present in retinal ischemia‒reperfusion injury. A rat model of retinal ischemia‒reperfusion injury was constructed and treated with deferoxamine. In this study, we found the accumulation of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and the consumption of glutathione (GSH) via ELISA testing; increased expression of transferrin; and decreased expression of ferritin, SLC7A11, and GPX4 via Western blotting (WB) and real-time PCR testing. Structural signs of ferroptosis (mitochondrial shrinkage) were observed across multiple cell types, including retinal ganglion cells (RGCs), photoreceptor cells, and pigment epithelial cells. Changes in visual function were detected by F-VEP and ERG. The results showed that iron and oxidative stress were increased in the retinal ischemia‒reperfusion injury model, resulting in ferroptosis and tissue damage. Deferoxamine protects the structural and functional soundness of the retina by inhibiting ferroptosis through the simultaneous inhibition of hemochromatosis, the initiation of transferrin, and the degradation of ferritin and activating the antioxidant capacity of the System Xc-GSH-GPX4 pathway.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Ophthalmology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Mingran Li
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Ke Diao
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Yan Wang
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Hong Chen
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Ziqi Zhao
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Yuan Li
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Xin Jia
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Hao Wang
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Fangyuan Zheng
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Zihan Xia
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Longhui Han
- Department of Ophthalmology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Eye Hospital, Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Xingtai, 054000, Hebei, China.
| |
Collapse
|
72
|
Gonciarz RL, Jiang H, Tram L, Hugelshofer CL, Ekpenyong O, Knemeyer I, Aron AT, Chang CJ, Flygare JA, Collisson EA, Renslo AR. In vivo bioluminescence imaging of labile iron in xenograft models and liver using FeAL-1, an iron-activatable form of D-luciferin. Cell Chem Biol 2023; 30:1468-1477.e6. [PMID: 37820725 PMCID: PMC10841594 DOI: 10.1016/j.chembiol.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Dysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology. Utilizing FeAL-1 and a dual-luciferase reporter system, we quantify LIP in mouse liver and three different orthotopic pancreatic ductal adenocarcinoma tumors. We observed up to a 10-fold increase in FeAL-1 bioluminescent signal in xenograft tumors as compared to healthy liver, the major organ of iron storage in mammals. Treating mice with hepcidin further elevated hepatic LIP, as predicted. These studies reveal a therapeutic index between tumoral and hepatic LIP and suggest an approach to sensitize tumors toward LIP-activated therapeutics.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Honglin Jiang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linh Tram
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Oscar Ekpenyong
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Ian Knemeyer
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
73
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 2023; 21:327. [PMID: 37974196 PMCID: PMC10652626 DOI: 10.1186/s12964-023-01267-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023] Open
Abstract
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yujie Zhou
- Basic Science Institute, Sungkyunkwan University, Suwon, South Korea
| | - Qianhui Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhijie Luo
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yufan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xudan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China.
| |
Collapse
|
74
|
Faradina A, Tung YT, Chen SH, Liao YC, Chou MJ, Teng IC, Lin WL, Wang CC, Sheu MT, Chou PY, Shih CK, Skalny AV, Tinkov AA, Chang JS. Djulis Hull Enhances the Efficacy of Ferric Citrate Supplementation via Restoring Normal Iron Efflux through the IL-6-Hepcidin-Ferroportin Pathway in High-Fat-Diet-Induced Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16691-16701. [PMID: 37877289 DOI: 10.1021/acs.jafc.3c02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Obesity-related functional iron disorder remains a major nutritional challenge. We evaluated the effects of djulis hull (DH) on iron metabolism in 50% high-fat-diet-induced obese rats supplemented with ferric citrate (2 g iron/kg diet) for 12 weeks. DH supplementation (5, 10, 15% dry weight/kg diet) significantly increased serum and hepatic iron but decreased appetite hormones, body weight, hepcidin, and liver inflammation (all p < 0.05). The Spearman correlation showed that appetite hormones were negatively associated with iron but positively correlated with liver hepcidin (all p < 0.05). A Western blot analysis showed that DH significantly downregulated hepatic hepcidin through the IL-6-JAK-STAT3 and enhanced ferroportin (Fpn) via the Keap1-Nrf2 and PHD2-HIF-2α. An in vitro study revealed that major bioactive compounds of DH, hexacosanol, and squalene suppressed LPS-induced IL-6 and hepcidin but enhanced Fpn expression in activated THP-1 cells. In conclusion, DH may exert nutraceutical properties for the treatment of functional iron disorder and restoration of iron efflux may have beneficial effects on weight control.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chi Liao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Jung Chou
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - I-Chun Teng
- Department of Nutritional Services, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
75
|
Du L, Yang H, Ren Y, Ding Y, Xu Y, Zi X, Liu H, He P. Inhibition of LSD1 induces ferroptosis through the ATF4-xCT pathway and shows enhanced anti-tumor effects with ferroptosis inducers in NSCLC. Cell Death Dis 2023; 14:716. [PMID: 37923740 PMCID: PMC10624898 DOI: 10.1038/s41419-023-06238-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been identified as an important epigenetic target, and recent advances in lung cancer therapy have highlighted the importance of targeting ferroptosis. However, the precise mechanisms by which LSD1 regulates ferroptosis remain elusive. In this study, we report that the inhibition of LSD1 induces ferroptosis by enhancing lipid peroxidation and reactive oxygen species (ROS) accumulation. Mechanistically, LSD1 inhibition downregulates the expression of activating transcription factor 4 (ATF4) through epigenetic modification of histone H3 lysine 9 dimethyl (H3K9me2), which sequentially inhibits the expression of the cystine-glutamate antiporter (xCT) and decreases glutathione (GSH) production. Furthermore, LSD1 inhibition transcriptionally upregulates the expression of transferrin receptor (TFRC) and acyl-CoA synthetase long chain family member 4 (ACSL4) by enhancing the binding of histone H3 lysine 4 dimethyl (H3K4me2) to their promoter sequences. Importantly, the combination of an LSD1 inhibitor and a ferroptosis inducer demonstrates an enhanced anti-tumor effect in a xenograft model of non-small cell lung cancer (NSCLC), surpassing the efficacy of either agent alone. These findings reveal new insights into the mechanisms by which LSD1 inhibition induces ferroptosis, offering potential guidance for the development of new strategies in the treatment of NSCLC.
Collapse
Affiliation(s)
- Linna Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yufei Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanli Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yichao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
76
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
77
|
Nashwan AJ, Alkhawaldeh IM, Shaheen N, Albalkhi I, Serag I, Sarhan K, Abujaber AA, Abd-Alrazaq A, Yassin MA. Using artificial intelligence to improve body iron quantification: A scoping review. Blood Rev 2023; 62:101133. [PMID: 37748945 DOI: 10.1016/j.blre.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies. Notably, most studies used a single data type. The studies varied in terms of sample sizes, participant ages, and geographical locations. AI's role in quantifying iron concentration is still in its early stages, yet its potential is significant. The question is whether AI-based diagnostic biomarkers can offer innovative approaches for screening, diagnosing, and monitoring of iron overload and anemia.
Collapse
Affiliation(s)
- Abdulqadir J Nashwan
- Department of Nursing, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar; Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| | | | - Nour Shaheen
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond St, London WC1N 3JH, United Kingdom.
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khalid Sarhan
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad A Abujaber
- Department of Nursing, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar.
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Mohamed A Yassin
- Hematology and Oncology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
78
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
79
|
Chelyadina NS, Kapranov SV, Popov MA, Smirnova LL, Bobko NI. The mussel Mytilus galloprovincialis (Crimea, Black Sea) as a source of essential trace elements in human nutrition. Biol Trace Elem Res 2023; 201:5415-5430. [PMID: 36881258 DOI: 10.1007/s12011-023-03607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Micronutrients, or essential trace elements, are important components in various metabolic processes inherent to the normal functioning of organism. To date, a substantial part of the world population suffers from a lack of micronutrients in the diet. Mussels are an important and cheap source of nutrients, which can be utilized to mitigate the micronutrient deficiency in the world. In the present work, using inductively coupled plasma mass spectrometry, the contents of the micronutrients Cr, Fe, Cu, Zn, Se, I, and Mo were studied for the first time in soft tissues, shell liquor, and byssus of females and males of the mussel Mytilus galloprovincialis as the promising sources of essential elements in the human diet. Fe, Zn, and I were the most abundant micronutrients in the three body parts. Significant sex-related differences in the body parts were detected only for Fe, which was more abundant in byssus of males, and Zn, which exhibited higher levels in shell liquor of females. Significant tissue-related differences were registered in the contents of all the elements under study. M. galloprovincialis meat was characterized as the optimal source of I and Se for covering the daily human needs. Regardless of sex, byssus turned out to be richer in Fe, I, Cu, Cr, and Mo in comparison with soft tissues, which fact allows recommending this body part for the preparation of dietary supplements to compensate for the deficiency of these micronutrients in the human body.
Collapse
Affiliation(s)
- Natalya S Chelyadina
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation.
| | - Sergey V Kapranov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| | - Mark A Popov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| | - Lyudmila L Smirnova
- Institute of Natural and Technical Systems of RAS, Lenin str. 28, Sevastopol, Russian Federation, 299011
| | - Nikolay I Bobko
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| |
Collapse
|
80
|
Gu JJ, Du TJ, Zhang LN, Zhou J, Gu X, Zhu Y. Identification of Ferroptosis-Related Genes in Heart Failure Induced by Transverse Aortic Constriction. J Inflamm Res 2023; 16:4899-4912. [PMID: 37927963 PMCID: PMC10625389 DOI: 10.2147/jir.s433387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Background Heart failure (HF) is a common clinical syndrome due to ventricular dysfunction and is a major cause of mortality worldwide. Ferroptosis, marked by excessive iron-dependent lipid peroxidation, is closely related to HF. Therefore, the purpose of this study is to explore and validate ferroptosis-related markers in HF by bioinformatics analysis and animal experiments validation. Materials and Methods The gene expression profiles (GSE36074) of murine transverse aortic constriction (TAC) were obtained from the Gene Expression Omnibus (GEO); From the FerrDb database, ferroptosis-related genes (FRGs) were identified. Using GEO2R, differential expressed genes (DEGs) were screened. An overlapping analysis was conducted among DEGs and FRGs to identify ferroptosis-related DEGs (FRDEGs). We then performed clustering, functional enrichment analysis, and protein-protein interaction (PPI) analyses. In addition, the key FRDEGs were extracted by cytoHubba plugin and the networks of transcription factors (TFs)-key FRDEGs and microRNA-key FRDEGs were constructed. Lastly, the key FRDEGs were carried by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC). Results Fifty-nine FRGs showing significantly different expression were identified from a total of 1918 DEGs in mice heart by transverse aortic constriction. GO and KEGG functional enrichment analysis revealed that these 59 ferroptosis-related DEGs mostly associated with positive regulation of apoptotic process, FoxO signaling pathway, VEGF signaling pathway, Apoptosis, Ferroptosis. Five key FRDEGs (Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2) were identified using PPI networks; Based on TFs-key FRDEGs networks, we found that Mapk14, Hif1a, Tlr4 and Ptgs2 were regulated by 3, 4, 5, and 29 TFs, respectively; however, Ddit3 was not regulated by any TF; By analyzing the miRNA-key FRDEGs networks, we found that 39, 74, 11, 28, and 18 miRNAs targets regulate the expression of Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2, respectively. Lastly, five key FRDEGs were validated at the mRNA and protein levels by RT-qPCR and IHC, which were in line with our bioinformatics analysis. Conclusion Our findings reveal that Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2 may be involved in the development of HF through regulating ferroptosis and as potential targets for HF.
Collapse
Affiliation(s)
- Jian Jun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Tian Jian Du
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Li Na Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
81
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
82
|
Zhang X, Sun J, Wang J, Meng T, Yang J, Zhou Y. The role of ferroptosis in diabetic cardiovascular diseases and the intervention of active ingredients of traditional Chinese medicine. Front Pharmacol 2023; 14:1286718. [PMID: 37954843 PMCID: PMC10637571 DOI: 10.3389/fphar.2023.1286718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Cardiovascular diseases (CVDs), encompassing ischaemic heart disease, cardiomyopathy, and heart failure, among others, are the most prevalent complications of diabetes and the leading cause of mortality in patients with diabetes. Cell death modalities, including apoptosis, necroptosis, and pyroptosis, have been demonstrated to be involved in the pathogenesis of CVDs. As research progresses, accumulating evidence also suggests the involvement of ferroptosis, a novel form of cell death, in the pathogenesis of CVDs. Ferroptosis, characterised by iron-dependent lipid peroxidation, which culminates in membrane rupture, may present new therapeutic targets for diabetes-related cardiovascular complications. Current treatments for CVDs, such as antihypertensive, anticoagulant, lipid-lowering, and plaque-stabilising drugs, may cause severe side effects with long-term use. Traditional Chinese medicine, with its broad range of activities and minimal side effects, is widely used in China. Numerous studies have shown that active components of Chinese medicine, such as alkaloids, polyphenols, and saponins, can prevent CVDs by regulating ferroptosis. This review summarises the recent findings on the regulatory mechanisms of active components of Chinese medicine against ferroptosis in CVDs, aiming to provide new directions and a scientific basis for targeting ferroptosis for the prevention and treatment of diabetic CVDs.
Collapse
Affiliation(s)
- Xiaobing Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jianying Wang
- Department of Endocrinology, Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jianfei Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
83
|
Luo Q, Zheng J, Fan B, Liu J, Liao W, Zhang X. Enriched environment attenuates ferroptosis after cerebral ischemia/reperfusion injury by regulating iron metabolism. Brain Res Bull 2023; 203:110778. [PMID: 37812906 DOI: 10.1016/j.brainresbull.2023.110778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Preventing neuronal death after ischemic stroke (IS) is crucial for neuroprotective treatment, yet current management options are limited. Enriched environment (EE) is an effective intervention strategy that promotes the recovery of neurological function after cerebral ischemia/reperfusion (I/R) injury. Ferroptosis has been identified as one of the mechanisms of neuronal death during IS, and inhibiting ferroptosis can reduce cerebral I/R injury. Our previous research has demonstrated that EE reduced ferroptosis by inhibiting lipid peroxidation, but the underlying mechanism still needs to be investigated. This study aims to explore the potential molecular mechanisms by which EE modulates iron metabolism to reduce ferroptosis. The experimental animals were randomly divided into four groups based on the housing environment and the procedure the animals received: the sham-operated + standard environment (SSE) group, the sham-operated + enriched environment (SEE) group, the ischemia/reperfusion + standard environment (ISE) group, and the ischemia/reperfusion + enriched environment (IEE) group. The results showed that EE reduced IL-6 expression during cerebral I/R injury, hence reducing JAK2-STAT3 pathway activation and hepcidin expression. Reduced hepcidin expression led to decreased DMT1 expression and increased FPN1 expression in neurons, resulting in lower neuronal iron levels and alleviated ferroptosis. In addition, EE also reduced the expression of TfR1 in neurons. Our research suggested that EE played a neuroprotective role by modulating iron metabolism and reducing neuronal ferroptosis after cerebral I/R injury, which might be achieved by inhibiting inflammatory response and down-regulating hepcidin expression.
Collapse
Affiliation(s)
- Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
84
|
Zhang Y, Chen L, Du X, Yu X, Zhang H, Meng Z, Zheng Z, Chen J, Meng Q. Selective Fluorescent Sensing for Iron in Aqueous Solution by A Novel Functionalized Pillar[5]arene. ChemistryOpen 2023; 12:e202300109. [PMID: 37803382 PMCID: PMC10558425 DOI: 10.1002/open.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Indexed: 10/08/2023] Open
Abstract
Iron ion is one of the most physiologically important elements in metabolic processes, indispensable for all living systems. Since its excess can lead to severe diseases, new approaches for its monitoring in water samples are urgently needed to meet requirements. Here, we firstly report a novel and universal route for the synthesis of a series of pillar[n]arene derivates containing one benzoquinone unit by photocatalysis. With this in hand, an anthracene - appended water - soluble pillar[5]arene (H) with excellent fluorescence sensing potency was prepared. H enabled the ultrasensitive detection of iron ions in aqueous solution with limits of detection of 10-8 M. Over a wide range of metal ions, H exhibited specific selectivity toward Fe3+ . More importantly, H could still properly operate in a simulated sewage sample, coexisting with multiple interference ions.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiang Yu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure andPerformance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
85
|
Shah A, Acheson A, Sinclair R. Perioperative iron deficiency anaemia. BJA Educ 2023; 23:372-381. [PMID: 37720558 PMCID: PMC10501883 DOI: 10.1016/j.bjae.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- A. Shah
- University of Oxford, Oxford, UK
| | - A. Acheson
- University of Nottingham, Nottingham, UK
| | - R.C.F. Sinclair
- Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle, UK
| |
Collapse
|
86
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
87
|
Xia Y, Ge G, Xiao H, Wu M, Wang T, Gu C, Yang H, Geng D. REPIN1 regulates iron metabolism and osteoblast apoptosis in osteoporosis. Cell Death Dis 2023; 14:631. [PMID: 37749079 PMCID: PMC10519990 DOI: 10.1038/s41419-023-06160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Osteoporosis is not well treated due to the difficulty of finding commonalities between the various types of it. Iron homeostasis is a vital component in supporting biochemical functions, and iron overload is recognized as a common risk factor for osteoporosis. In this research, we found that there is indeed evidence of iron accumulation in the bone tissue of patients with osteoporosis and REPIN1, as an origin specific DNA binding protein, may play a key role in this process. We revealed that sh-Repin1 therapy can rescue bone loss in an iron-overload-induced osteoporosis mouse model. Knockdown of Repin1 can inhibit apoptosis and enhance the resistance of osteoblasts to iron overload toxicity. REPIN1 promoted apoptosis by regulating iron metabolism in osteoblasts. Mechanistically, knockdown of Repin1 decreased the expression of Lcn2, which ameliorated the toxic effects of intracellular iron overload. The anti-iron effect of lentivirus sh-Repin1 was partially reversed or replicated by changing LCN2 expression level via si-RNA or plasmid, which indirectly verified the key regulatory role of LCN2 as a downstream target. Furthermore, the levels of BCL2 and BAX, which play a key role in the mitochondrial apoptosis pathway, were affected. In summary, based on the results of clinical specimens, animal models and in vitro experiments, for the first time, we proved the key role of REPIN1 in iron metabolism-related osteoporosis.
Collapse
Affiliation(s)
- Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chengyong Gu
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District), Suzhou, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
88
|
Dehnad D, Ghorani B, Emadzadeh B, Emadzadeh M, Assadpour E, Rajabzadeh G, Jafari SM. Recent advances in iron encapsulation and its application in food fortification. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 37703437 DOI: 10.1080/10408398.2023.2256004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Iron (Fe) is an important element for our body since it takes part in a huge variety of metabolic processes. However, the direct incorporation of Fe into food fortification causes a number of problems along with undesirable organoleptic properties. Thus, encapsulation has been suggested to alleviate this problem. This study first sheds more light on the Fe encapsulation strategies and comprehensively explains the results of Fe encapsulation studies in the last decade. Then, the latest attempts to use Fe (in free or encapsulated forms) to fortify foods such as bakery products, dairy products, rice, lipid-containing foods, salt, fruit/vegetable-based products, and infant formula are presented. Double emulsions are highly effective at keeping their Fe content and display encapsulation efficiency (EE) > 88% although it decreases upon storage. The encapsulation by gel beads possesses several advantages including high EE, as well as reduced and great Fe release in gastric and duodenal conditions, respectively. Cereals, particularly bread and wheat, are common staple foods globally; they are very suitable for food fortification by Fe derivatives. Nevertheless, the majority of Fe in flour is available as salts of phytic acid (IP6) and phytates, reducing Fe bioavailability in the human body. The sourdough process degrades IP6 completely while Chorleywood Bread Making Process and conventional processes decrease it by 75% in comparison with whole meal flour.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
89
|
Liu W, Zhang S, Li Q, Wu Y, Jia X, Feng W, Li Z, Shi Y, Hou Q, Ma J, Liu Y, Gao P, Ganz T, Liu S. Lactate modulates iron metabolism by binding soluble adenylyl cyclase. Cell Metab 2023; 35:1597-1612.e6. [PMID: 37480842 DOI: 10.1016/j.cmet.2023.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
Overproduction of lactate (LA) can occur during exercise and in many diseases such as cancers. Individuals with hyperlactatemia often display anemia, decreased serum iron, and elevated hepcidin, a key regulator of iron metabolism. However, it is unknown whether and how LA regulates hepcidin expression. Here, we show LA binds to soluble adenylyl cyclase (sAC) in normal hepatocytes and affects systemic iron homeostasis in mice by increasing hepcidin expression. Comprehensive in vitro, in vivo, and in silico experiments show that the LA-sAC interaction raises cyclic adenosine monophosphate (cAMP) levels, which activates the PKA-Smad1/5/8 signaling pathway to increase hepcidin transcription. We verified this regulatory axis in wild-type mice and in mice with disordered iron homeostasis. LA also regulates hepcidin in humans at rest and subjected to extensive exercise that produce elevated LA. Our study links hyperlactatemia to iron deficiency, offering a mechanistic explanation for anemias seen in athletes and patients with lactic acidosis.
Collapse
Affiliation(s)
- Wei Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Quanjin Li
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaolong Li
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhi Hou
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China; Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| | - Pu Gao
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
90
|
Zhang Q, Ding H, Yu X, Wang Q, Li X, Zhang R, Feng J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2041-2055. [PMID: 37452897 DOI: 10.1007/s11427-022-2347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoxuan Ding
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Yu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
91
|
Sangkhae V, Fisher AL, Ganz T, Nemeth E. Iron Homeostasis During Pregnancy: Maternal, Placental, and Fetal Regulatory Mechanisms. Annu Rev Nutr 2023; 43:279-300. [PMID: 37253681 PMCID: PMC10723031 DOI: 10.1146/annurev-nutr-061021-030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, iron requirements increase substantially to support both maternal red blood cell expansion and the development of the placenta and fetus. As insufficient iron has long been linked to adverse pregnancy outcomes, universal iron supplementation is common practice before and during pregnancy. However, in high-resource countries with iron fortification of staple foods and increased red meat consumption, the effects of too much iron supplementation during pregnancy have become a concern because iron excess has also been linked to adverse pregnancy outcomes. In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many mechanistic regulatory systems have been deduced from animal models, we also discuss the principles learned from these models and how these may apply to human pregnancy.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Allison L Fisher
- Endocrine Unit and Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
92
|
Chang S, Wang P, Han Y, Ma Q, Liu Z, Zhong S, Lu Y, Chen R, Sun L, Wu Q, Gao G, Wang X, Chang YZ. Ferrodifferentiation regulates neurodevelopment via ROS generation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1841-1857. [PMID: 36929272 DOI: 10.1007/s11427-022-2297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.
Collapse
Affiliation(s)
- Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingying Han
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
93
|
Jones G, Zeng L, Kim J. Application of Allometric Scaling to Nanochelator Pharmacokinetics. ACS OMEGA 2023; 8:27256-27263. [PMID: 37546686 PMCID: PMC10399172 DOI: 10.1021/acsomega.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator; however, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen involving daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating iron overload and associated physiological complications in rodent models with a substantially improved safety profile. While the dose- and administration route-dependent pharmacokinetics (PK) of DFO-NPs have been recently characterized, the optimized PK model was not validated, and the prior studies did not directly address the clinical translatability of DFO-NPs into humans. In the present work, these gaps were addressed by applying allometric scaling of DFO-NP PK in rats to predict those in mice and humans. First, this approach predicted serum concentration-time profiles of DFO-NPs, which were similar to those experimentally measured in mice, validating the nonlinear disposition and absorption models for DFO-NPs across the species. Subsequently, we explored the utility of allometric scaling by predicting the PK profile of DFO-NPs in humans under clinically relevant dosing schemes. These in silico efforts demonstrated that the novel nanochelator is expected to improve the PK of DFO when compared to standard infusion regimens of native DFO. Moreover, reasonable formulation strategies were identified and discussed for both early clinical development and more sophisticated formulation development.
Collapse
Affiliation(s)
- Gregory Jones
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
94
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
95
|
He A, Zhou Z, Huang L, Yip KC, Chen J, Yan R, Li R. Association between serum iron and liver transaminases based on a large adult women population. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:69. [PMID: 37488660 PMCID: PMC10367365 DOI: 10.1186/s41043-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Studies are being focused on the potential roles of iron in various diseases, but remain unclear for the association between serum iron and liver injury, especially in adult women. METHODS Based on the National Health and Nutrition Examination Survey, we investigated the relationship between serum iron and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) among 19,185 adult women. RESULTS Using weighted multivariate regression analyses, subgroup analyses, and threshold effect analyses, we found that serum iron was independently and positively correlated with ALT and AST. These associations differed in various age or race. Additionally, we found turning points in the curves of the relationship between serum iron and ALT in all women and the non-pregnant women. Using sensitivity analyses, we further found that the associations between serum iron and the liver transaminases remained positive in the non-pregnant women after adjusting for various covariates, but not in pregnant women. Besides, the positive associations between them kept present after excluding the women with high blood pressure, diabetes, and chronic kidney disease. CONCLUSION The present study indicated a positive association between serum iron and liver transaminases, indicating that serum iron may be a potential biomarker of liver function.
Collapse
Affiliation(s)
- Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Zhuoping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Lili Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan, 523576, Guangdong, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruiling Yan
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
96
|
Qian ZM, Li W, Guo Q. Ferroportin1 in the brain. Ageing Res Rev 2023; 88:101961. [PMID: 37236369 DOI: 10.1016/j.arr.2023.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Despite years of research, it remains unclear why certain brain regions of patients with neurodegenerative diseases (NDs) have abnormally high levels of iron, although it has long been suggested that disrupted expression of iron-metabolizing proteins due to genetic or non-genetic factors is responsible for the enhancement in brain iron contents. In addition to the increased expression of cell-iron importers lactoferrin (lactotransferrin) receptor (LfR) in Parkinson's disease (PD) and melanotransferrin (p97) in Alzheimer's disease (AD), some investigations have suggested that cell-iron exporter ferroportin 1 (Fpn1) may be also associated with the elevated iron observed in the brain. The decreased expression of Fpn1 and the resulting decrease in the amount of iron excreted from brain cells has been thought to be able to enhance iron levels in the brain in AD, PD and other NDs. Cumulative results also suggest that the reduction of Fpn1 can be induced by hepcidin-dependent and -independent pathways. In this article, we discuss the current understanding of Fpn1 expression in the brain and cell lines of rats, mice and humans, with emphasis on the potential involvement of reduced Fpn1 in brain iron enhancement in patients with AD, PD and other NDs.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019.
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
97
|
Cui F, Sun J, Mi H, Li B, Tang L, Wang R, Du Y, Guo B, Li Y, Shi M. Chronic intermittent hypobaric hypoxia improves iron metabolism disorders via the IL-6/JAK2/STAT3 and Epo/STAT5/ERFE signaling pathways in metabolic syndrome rats. J Trace Elem Med Biol 2023; 79:127259. [PMID: 37413927 DOI: 10.1016/j.jtemb.2023.127259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) improved iron metabolism disorder in obese rats through the downregulation of hepcidin. This study aimed to observe the molecular mechanism of CIHH in improving iron metabolism disorders, especially by Janus kinase/signal transducer and activation of the transcription (JAK/STAT) signaling pathway in metabolic syndrome (MS) rats. METHODS Six-week-old male Sprague-Dawley rats were randomly divided into four groups: CON, CIHH (subjected to hypobaric hypoxia simulating 5000-m altitude for 28 days, 6 h daily), MS (induced by high fat diet and fructose water), and MS+CIHH. The serum levels of glucose, lipid metabolism, iron metabolism, interleukin-6 (IL-6), erythropoietin (Epo) and hepcidin were measured. The protein expressions of JAK2, STAT3, STAT5, bone morphogenetic protein 6 (BMP6), small mothers against decapentaplegic 1 (SMAD1) and hepcidin were examined. The mRNA expressions of erythroferrone (ERFE) and hepcidin were analyzed. RESULTS The MS rats displayed obesity, hyperglycemia, hyperlipidemia, iron metabolism disorder, increased IL-6 and hepcidin serum levels, upregulation of JAK2/STAT3 signaling pathway, decreased Epo serum levels, downregulation of STAT5/ERFE signaling pathway in spleen, upregulation of BMP/SMAD signaling pathway in liver, and increased hepcidin mRNA and protein expression compared to CON rats. All the aforementioned abnormalities in MS rats were ameliorated in MS + CIHH rats. CONCLUSIONS CIHH improved iron metabolism disorders, possibly by inhibiting IL-6/JAK2/STAT3 and activating Epo/STAT5/ERFE signaling pathway, thus downregulating hepcidin in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China; Department of Electron Microscope Laboratory Centre, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jie Sun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, PR China
| | - Haichao Mi
- Department of Laboratory Medicine, Linyi Peoples' Hospital, Linyi 276000, PR China
| | - Bo Li
- Department of Emergency, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050001, Hebei, PR China
| | - Longmei Tang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Ruotong Wang
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Yutao Du
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Yongjun Li
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Min Shi
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China.
| |
Collapse
|
98
|
do Monte Barretto ML, de Albuquerque PPF, de Souza Costa JB, Leal SG, Paim APS, da Fonseca Oliveira AA. Concentrations of iron and chromium in free-ranging common marmosets (Callithrix jacchus) from Pernambuco, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:895. [PMID: 37368123 DOI: 10.1007/s10661-023-11508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Common marmosets (Callithrix jacchus) are widely distributed in Northeast Brazil and often inhabit urban and peri-urban forest areas close to human settlements. Given its wide territorial distribution, its proximity to human populations, and its exposure to environmental degradations originating from urbanization, common marmosets have a high potential for environmental biomonitoring. The concentrations of iron (Fe) and chromium (Cr) were quantified in the liver, hair, and bone of 22 free-ranging common marmosets' bodies from nine cities from Pernambuco State, Brazil, using inductively coupled plasma optical emission spectrometry (ICP OES). The liver showed the highest concentrations of Fe and Cr (3773.2 ± 3715.8 mg/kg and 19.4 ± 41.6 mg/kg, respectively); the lowest concentration of Fe was detected in the bone (111.6 ± 97.6 mg/kg) and of Cr in the hair (3.3 ± 1.5 mg/kg). There was a moderate positive correlation between Fe and Cr in the liver (r = 0.64) and a high negative correlation for Cr between bone and hair (r = -0.65). This study demonstrated the bioaccumulation of Fe and Cr in hair, liver, and bone in common marmosets. The highest average concentration of Fe and Cr occurred in animals from Recife, Jaboatão dos Guararapes, and Paulista, respectively, the 1st, the 2nd, and the 5th most populated cities in the state of Pernambuco. The presence of high concentrations of metals in animals from Recife and nearby cities can indicate alarming levels of environmental pollution in these locations.
Collapse
Affiliation(s)
- Mariana Lumack do Monte Barretto
- Área de Patologia, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
- Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
| | - Pedro Paulo Feitosa de Albuquerque
- Área de Patologia, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, Pernambuco, 52171-900, Brazil
| | - Joicy Bianca de Souza Costa
- Laboratório de Espectroanalítica Aplicada, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/n Cidade Universitária, Recife, Pernambuco, CEP, 50740-560, Brazil
- Programa de Pós-Graduação em Química, Departamento de Química Fundamental - Centro de Ciências Exatas e da Natureza, Av. Jornalista Anibal Fernandes, s/n Cidade Universitária, Recife, PE, 50740-560, Brazil
| | - Silvana Gomes Leal
- Departamento de Zoonoses, Secretaria Executiva de Vigilância em Saúde do Estado de Pernambuco, Rua Dona Maria Augusta Nogueira, 519, Bongi, Recife, PE, 50751-530, Brazil
| | - Ana Paula Silveira Paim
- Laboratório de Espectroanalítica Aplicada, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/n Cidade Universitária, Recife, Pernambuco, CEP, 50740-560, Brazil
- Programa de Pós-Graduação em Química, Departamento de Química Fundamental - Centro de Ciências Exatas e da Natureza, Av. Jornalista Anibal Fernandes, s/n Cidade Universitária, Recife, PE, 50740-560, Brazil
| | - Andrea Alice da Fonseca Oliveira
- Área de Patologia, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, Pernambuco, 52171-900, Brazil.
- Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Recife, Pernambuco, 52171-900, Brazil.
| |
Collapse
|
99
|
Sekine Y, Houston R, Eckl EM, Fessler E, Narendra DP, Jae LT, Sekine S. A mitochondrial iron-responsive pathway regulated by DELE1. Mol Cell 2023; 83:2059-2076.e6. [PMID: 37327776 PMCID: PMC10329284 DOI: 10.1016/j.molcel.2023.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ryan Houston
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eva-Maria Eckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shiori Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
100
|
Liu B, Jiang W, Ye Y, Liu L, Wei X, Zhang Q, Xing B. 2D MoS 2 Nanosheets Induce Ferroptosis by Promoting NCOA4-Dependent Ferritinophagy and Inhibiting Ferroportin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208063. [PMID: 36908089 DOI: 10.1002/smll.202208063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Indexed: 06/15/2023]
Abstract
The exposure of MoS2 nanosheets can cause cytotoxicity, which causes health risks and affects its medical applications. However, knowledge of the underlying molecular mechanisms remains limited. This study reports that MoS2 nanosheets induces ferroptosis in vivo and in vitro, which is caused by the nanosheet themselves rather than by the dissolved ions. MoS2 nanosheets induce ferroptosis in epithelial (BEAS-2B) and macrophage (RAW264.7) cells due to nuclear receptor coactivator 4 (NCOA4)-dependent excusive ferritinophagy and the inhibition of ferroportin-1 (FPN). In this process, most of the MoS2 nanosheets enter the cells via macropinocytosis and are localized to the lysosome, contributing to an increase in the lysosomal membrane permeability. At the same time, NCOA4-dependent ferritinophagy is activated, and ferritin is degraded in the lysosome, which generates Fe2+ .Fe2+ leaks into the cytoplasm, leading to ferroptosis. Furthermore, the inhibition of FPN further aggravates the overload of Fe2+ in the cell. It has also been observed that ferroptosis is increased in lung tissue in mouse models exposed to MoS2 nanosheets. This work highlights a novel mechanism by which MoS2 nanosheets induce ferroptosis by promoting NCOA4-dependent ferritinophagy and inhibiting FPN, which could be of importance to elucidate the toxicity and identify the medical applications of 2D nanoparticles.
Collapse
Affiliation(s)
- Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Ling Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
- Marine College, Shandong University, Weihai, 264209, P. R. China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|