51
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
52
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G Protein-Coupled Receptor 17 Inhibits Glucagon-like Peptide-1 Secretion via a Gi/o-Dependent Mechanism in Enteroendocrine Cells. Biomolecules 2024; 15:9. [PMID: 39858405 PMCID: PMC11762167 DOI: 10.3390/biom15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion appeared to be Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
53
|
Li Z, Lin C, Cai X, Lv F, Yang W, Ji L. Anti-diabetic agents and the risks of dementia in patients with type 2 diabetes: a systematic review and network meta-analysis of observational studies and randomized controlled trials. Alzheimers Res Ther 2024; 16:272. [PMID: 39716328 DOI: 10.1186/s13195-024-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE To evaluate the association between anti-diabetic agents and the risks of dementia in patients with type 2 diabetes (T2D). METHODS Literature retrieval was conducted in PubMed, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov between January 1995 and October 2024. Observational studies and randomized controlled trials (RCTs) in patients with T2D, which intercompared anti-diabetic agents or compared them with placebo, and reported the incidence of dementia were included. Conventional and network meta-analyses of these studies were implemented. Results were exhibited as the odds ratio (OR) or risk ratio (RR) with 95% confidence interval (CI). RESULTS A total of 41 observational studies (3,307,483 participants) and 23 RCTs (155,443 participants) were included. In the network meta-analysis of observational studies, compared with non-users, sodium glucose cotransporter-2 inhibitor (SGLT-2i) (OR = 0.56, 95%CI, 0.45 to 0.69), glucagon-like peptide-1 receptor agonist (GLP-1RA) (OR = 0.58, 95%CI, 0.46 to 0.73), thiazolidinedione (TZD) (OR = 0.68, 95%CI, 0.57 to 0.81) and metformin (OR = 0.89, 95%CI, 0.80 to 0.99) treatments were all associated with reduced risk of dementia in patients with T2D. The surface under the cumulative ranking curve (SUCRA) evaluation conferred a rank order as SGLT-2i > GLP-1RA > TZD > dipeptidyl peptidase-4 inhibitor (DPP-4i) > metformin > α-glucosidase inhibitor (AGI) > glucokinase activator (GKA) > sulfonylureas > glinides > insulin in terms of the cognitive benefits. Meanwhile, compared with non-users, SGLT-2i (OR = 0.43, 95%CI, 0.30 to 0.62), GLP-1RA (OR = 0.54, 95%CI, 0.30 to 0.96) and DPP-4i (OR = 0.73, 95%CI, 0.57 to 0.93) were associated with a reduced risk of Alzheimer's disease while a lower risk of vascular dementia was observed in patients receiving SGLT-2i (OR = 0.42, 95%CI, 0.22 to 0.80) and TZD (OR = 0.52, 95%CI, 0.36 to 0.75) treatment. In the network meta-analysis of RCTs, the risks of dementia were comparable among anti-diabetic agents and placebo. CONCLUSION Compared with non-users, SGLT-2i, GLP-1RA, TZD and metformin were associated with the reduced risk of dementia in patients with T2D. SGLT-2i, and GLP-1RA may serve as the optimal choice to improve the cognitive prognosis in patients with T2D.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| |
Collapse
|
54
|
Skrobucha A, Pindlowski P, Krajewska N, Grabowski M, Jonik S. Anti-inflammatory effects of glucagon-like peptide-1 (GLP-1) in coronary artery disease: a comprehensive review. Front Cardiovasc Med 2024; 11:1446468. [PMID: 39741663 PMCID: PMC11685754 DOI: 10.3389/fcvm.2024.1446468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Coronary artery disease (CAD)-cardiovascular condition occuring due to atherosclerotic plaque accumulation in the epicardial arteries-is responsible for disabilities of millions of people worldwide and remains the most common single cause of death. Inflammation is the primary pathological mechanism underlying CAD, since is involved in atherosclerotic plaque formation. Glucagon-like peptide-1 (GLP-1) is a peptide hormone which role extends beyond well-known carbohydrates metabolism. In in vitro studies GLP-1 receptor agonism is associated with regulation of several inflammatory pathways, including cytokine production, lypotoxicity and macrophages differentiation. In this review, we aimed to provide a comprehensive summary of the potential relationship between anti-inflammatory effects of GLP-1 and CAD. We have described a well-established association of anti-inflammatory properties of GLP-1 and atherosclerosis in animals. Pre-clinical studies showed that anti-atherogenic effect of GLP-1 is independent of modulation of plasma lipid levels and depends on anti-inflammatory response. Human studies in this area are limited by small sample size and often nonrandomized character. However, beneficial impact of GLP-1 on endothelial function and microcirculatory integrity in patients with CAD have been described. Understanding atherosclerosis as a chronic inflammatory disease offers new opportunities for the prevention and treatment of CAD. Therefore, we emphasize the need for larger randomized controlled trials focusing on cardiovascular morbidity and mortality to verify the cardioprotective properties of GLP-1R agonists in patients with CAD.
Collapse
Affiliation(s)
- Alicja Skrobucha
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
55
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
56
|
Tang M, Zhao L, Huang F, Wang T, Wu X, Chen S, Fu J, Jiang C, Wei S, Zeng X, Zhang X, Zhou X, Wei M, Li Z, Xiao G. Liuweizhiji Gegen-Sangshen beverage protects against alcoholic liver disease in mice through the gut microbiota mediated SCFAs/GPR43/GLP-1 pathway. Front Nutr 2024; 11:1495695. [PMID: 39734674 PMCID: PMC11673767 DOI: 10.3389/fnut.2024.1495695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Alcoholic liver disease (ALD) is a pathological state of the liver caused by longterm alcohol consumption. Recent studies have shown that the modulation of the gut microbiota and its metabolic products, specifically the short-chain fatty acids (SCFAs), exert a critical role in the evolution and progression of ALD. The Liuweizhiji Gegen-Sangshen beverage (LGS), as a functional beverage in China, is derived from a traditional Chinese herbal formula and has been clinically applied for ALD treatment, demonstrating significant efficacy. However, the underlying mechanisms of LGS for alleviating ALD involving gut microbiota regulation remain unknown. Methods In this study, an ALD murine model based on the National Institute on Alcohol Abuse and Alcoholism (NIAAA) method was established. Results The results showed that oral LGS treatment dose-dependently alleviated alcoholinduced liver injury and inflammation in mice through decreasing levels of ALT, AST and proinflammatory cytokines (TNF-α, IL-6, IL-1β). LGS significantly improved liver steatosis, enhanced activities of alcohol metabolizing enzymes (ALDH and ADH), and reduced the CYP2E1 activity. Notably, regarding most detected indices, the effect of LGS (particularly at medium and high dose) was comparable to the positive drug MTDX. Moreover, LGS had a favorable effect on maintaining intestinal barrier function through reducing epithelial injury and increasing expression of occludin. 16S rRNA sequencing results showed that LGS remarkably modulated gut microbiota structure in ALD mice via recovering alcohol-induced microbial changes and specifically mediating enrichment of several bacterial genera (Alloprevotella, Monoglobus, Erysipelatoclostridium Parasutterella, Harryflintia and unclassified_c_Clostridia). Further study revealed that LGS increased production of SCFAs of hexanoic acid in cecum, promoted alcohol-mediated reduction of GRP43 expression in ileum, and increased serum GLP-1 level. Discussion Overall, LGS exerts a remarkable protective effect on ALD mice through the gut microbiota mediated specific hexanoic acid production and GPR43/GLP-1 pathway.
Collapse
Affiliation(s)
- Mingyun Tang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuchun Huang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shanshan Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Fu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chaoli Jiang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shulin Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuseng Zeng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoling Zhang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
57
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
58
|
Kundnani NR, Lolescu B, Dinu AR, Berceanu-Vaduva DM, Dumitrescu P, Tamaș TP, Sharma A, Popa MD. Biotechnology Revolution Shaping the Future of Diabetes Management. Biomolecules 2024; 14:1563. [PMID: 39766270 PMCID: PMC11674738 DOI: 10.3390/biom14121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982. This marked the start of peptide-based therapies in DM. Recombinant peptides for DM treatment: Numerous recombinant peptides have been developed since, starting with modified insulin molecules, with the aim of bettering DM management through fine-tuning the glycemic response to insulin. Peptide-based therapies in DM have expanded substantially beyond insulin to include agonists of Glucagon-like peptide-1 receptor and Glucose-dependent insulinotropic polypeptide receptor, glucagon receptor antagonists, and even peptides exerting multiple receptor agonist effects, for better metabolic control. Insulin pumps, continuous glucose monitoring, and automated insulin delivery systems: The development of modern delivery systems combined with real-time glucose monitoring has significantly advanced diabetes care. Insulin pumps evolved from early large devices to modern sensor-augmented pumps with automated shutoff features and hybrid closed-loop systems, requiring minimal user input. The second-generation systems have demonstrated superior outcomes, proving highly effective in diabetes management. Islet cell transplantation, organoids, and biological pancreas augmentation represent innovative approaches to diabetes management. Islet cell transplantation aims to restore insulin production by transplanting donor beta cells, though challenges persist regarding graft survival and the need for immunosuppression. Organoids are a promising platform for generating insulin-producing cells, although far from clinical use. Biological pancreas augmentation relies on therapies that promote beta-cell (re)generation, reduce stress, and induce immune tolerance. Further biotechnology-driven perspectives in DM will include metabolic control via biotechnology-enabled tools such as custom-designed insulin hybrid molecules, machine-learning algorithms to control peptide release, and engineering cells for optimal peptide production and secretion.
Collapse
Affiliation(s)
- Nilima Rajpal Kundnani
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeșs” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Anca-Raluca Dinu
- Department XVI, Medical Recovery, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Assessment of Human Motion and Functionality and Disability, “Victor Babeșs” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- “Pius Brinzeu” Emergency Clinical County Hospital, Bld Liviu Rebreanu, No. 156, 300723 Timisoara, Romania
| | - Delia Mira Berceanu-Vaduva
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| | - Patrick Dumitrescu
- Faculty of Medicine, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Tudor-Paul Tamaș
- Discipline of Physiology, Department III—Functional Sciences, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Abhinav Sharma
- Department of Cardiology—Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (N.R.K.)
| | - Mihaela-Diana Popa
- Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (D.M.B.-V.)
| |
Collapse
|
59
|
Zarei M, Sahebi Vaighan N, Farjoo MH, Talebi S, Zarei M. Incretin-based therapy: a new horizon in diabetes management. J Diabetes Metab Disord 2024; 23:1665-1686. [PMID: 39610543 PMCID: PMC11599551 DOI: 10.1007/s40200-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/22/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus, a metabolic syndrome characterized by hyperglycemia and insulin dysfunction, often leads to serious complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Incretins, gut peptide hormones released post-nutrient intake, have shown promising therapeutic effects on these complications due to their wide-ranging biological impacts on various body systems. This review focuses on the role of incretin-based therapies, particularly Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, in managing diabetes and its complications. We also discuss the potential of novel agents like semaglutide, a recently approved oral compound, and dual/triple agonists targeting GLP-1/GIP, GLP-1/glucagon, and GLP-1/GIP/glucagon receptors, which are currently under investigation. The review aims to provide a comprehensive understanding of the beneficial impacts of natural incretins and the therapeutic potential of incretin-based therapies in diabetes management.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soosan Talebi
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- John B. Little Center for Radiation Sciences, Harvard T.H Chan School of Public Health, Boston, MA USA
| |
Collapse
|
60
|
Smits MM, von Voss L, Drzazga AK, Beaman EE, Brethvad AO, Holst JJ, Rosenkilde MM. Alpha-cyclodextrin increases glucagon-like peptide-1 secretion in multiple models and improves metabolic status in mice. Food Chem 2024; 460:140759. [PMID: 39142205 DOI: 10.1016/j.foodchem.2024.140759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Alpha-cyclodextrin (α-CD) is a non-absorbable and soluble fiber that causes weight loss. We studied whether this is due to an effect on GLP-1 secretion. In GLUTag cells, α-CD increased GLP-1 secretion up to 170% via adenylyl cyclase, phospholipase C, and L-type calcium channels dependent processes. In rat isolated colon perfusions, luminal α-CD increased GLP-1 secretion with 20%. In lean mice, once daily α-CD versus saline caused weight loss and lowered the peak in glucose after an oral glucose tolerance test (OGTT). In obese mice, α-CD added to high-fat diet caused weight loss similar to the control group (receiving cellulose). However, compared to cellulose, the α-CD group ate less. During an OGTT, no differences were observed in glucose, insulin and GLP-1. Thus, α-CD increases GLP-1 secretion in a dose-dependent manner and could be a safe and easy addition to food products to help reduce body weight.
Collapse
Affiliation(s)
- Mark M Smits
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Liv von Voss
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland.
| | - Emily Eufaula Beaman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
61
|
Grandl G, Novikoff A, Liu X, Müller TD. Recent achievements and future directions of anti-obesity medications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101100. [PMID: 39582489 PMCID: PMC11585837 DOI: 10.1016/j.lanepe.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Pharmacological management of obesity long suffered from a reputation of a 'Mission Impossible,' with inefficient weight loss and/or unacceptable tolerability. However, the tide has turned with recent progress in biochemical engineering and the development of long-acting agonists at the receptor for glucagon-like peptide-1 (GLP-1), and with unimolecular peptides that simultaneously possess activity at the receptors for GLP-1, the glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Some of these novel therapeutics not only improve body weight and glycemic control in individuals with obesity and type 2 diabetes with hitherto unmet efficacy and tolerable safety, but also exhibit potential therapeutic value in diverse areas such as neurodegenerative diseases, fatty liver disease, dyslipidemia, atherosclerosis, and cardiovascular diseases. In this review, we highlight recent advances in incretin-based therapies and discuss their pharmacological potential within and beyond the treatment of obesity and diabetes, as well as their limitations in use, side effects, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
62
|
Masuda T, Nagata D. Glomerular pressure and tubular oxygen supply: a critical dual target for renal protection. Hypertens Res 2024; 47:3330-3337. [PMID: 39397109 DOI: 10.1038/s41440-024-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The primary treatment goal of chronic kidney disease (CKD) is preserving renal function and preventing its progression to end-stage renal disease. Glomerular hypertension and tubular hypoxia are critical risk factors in CKD progression. However, the renal hemodynamics make it difficult to avoid both factors due to the existence of peritubular capillaries that supply oxygen to the renal tubules downstream from the glomerulus through the efferent arteriole. In the treatment strategies for balancing glomerular pressure and tubular oxygen supply, afferent and efferent arterioles of the glomerulus determine glomerular filtration rate and blood flow to the peritubular capillaries. Therefore, sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors as well as classical renin-angiotensin system inhibitors, which can change the diameter of afferent and/or efferent arterioles, are promising options for balancing this dual target and achieving renal protection. This review focuses on the clinical importance of glomerular pressure and tubular oxygen supply and proposes an effective treatment modality for this dual target.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
63
|
Dimitri P, Roth CL. Treatment of Hypothalamic Obesity With GLP-1 Analogs. J Endocr Soc 2024; 9:bvae200. [PMID: 39703362 PMCID: PMC11655849 DOI: 10.1210/jendso/bvae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Congenital and acquired damage to hypothalamic nuclei or neuronal circuits controlling satiety and energy expenditure results in hypothalamic obesity (HO). To date, successful weight loss and satiety has only been achieved in a limited number of affected patients across multiple drug trials. Glucagon-like peptide-1 (GLP-1) acts via central pathways that are independent from the hypothalamus to induce satiety. GLP-1 receptor agonists (GLP-1RAs) may provide an alternative approach to treating HO. Methods We performed a comprehensive search in Medline, Google Scholar, and clinical trials registries (ClinicalTrials.gov; clinicaltrialsregister.eur). This nonsystematic literature review was conducted to identify scientific papers published from January 2005 to February 2024 using the Pubmed and Embase databases. Key words used were GLP-1, GLP-1RA, hypothalamic obesity, suprasellar tumor, and craniopharyngioma. Results Our search identified 7 case studies, 5 case series, and 2 published clinical trials relating to the use of GLP-1RAs in HO. All case studies demonstrated weight loss and improved metabolic function. In contrast, results from case series were variable, with some showing no weight loss and others demonstrating moderate to significant weight loss and improved metabolic parameters. In the ECHO clinical trial, nearly half the subjects randomized to weekly exenatide showed reduced body mass index (BMI). Paradoxically, BMI reduction was greater in patients with more extensive hypothalamic injuries. Conclusion GLP-1RAs potentially offer a new approach to treating HO. There is a need to stratify patients who are more likely to respond. Further randomized controlled trials are required to determine their efficacy either in isolation or combined with other therapies.
Collapse
Affiliation(s)
- Paul Dimitri
- The Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, Sheffield, S10 2TH, UK
- University of Sheffield, Sheffield, S10 2TN, UK
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
64
|
Aguggia J, Fernandez G, Cassano D, Mustafá ER, Rodríguez SS, Cantel S, Fehrentz JA, Raingo J, Schiöth HB, Habib AM, De Francesco PN, Perello M. Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction. Endocrinology 2024; 166:bqae160. [PMID: 39737802 DOI: 10.1210/endocr/bqae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/01/2025]
Abstract
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.
Collapse
Affiliation(s)
- Julieta Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| |
Collapse
|
65
|
Yang Z, Kirschke CP, Cai Y, Huang L. A double knockout for zinc transporter 8 and somatostatin in mice reveals their distinct roles in regulation of insulin secretion and obesity. GENES & NUTRITION 2024; 19:24. [PMID: 39567934 PMCID: PMC11580226 DOI: 10.1186/s12263-024-00759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Both zinc transporter 8 (ZnT8) and somatostatin (Sst) play crucial roles in the regulation of insulin and glucagon secretion. However, the interaction between them in controlling glucose metabolism was not well understood. The aim of this study was to explore the interactive effects of a double knockout of Znt8 and Sst on insulin and glucose metabolism in mice. METHODS Co-expression of ZnT8 with hormones secreted from gastrointestinal endocrine cells of mice was determined using immunofluorescence. Male Znt8 knockout (Znt8KO), Sst knockout (SstKO), double knockout for Sst and Znt8 (DKO), and the wild-type (WT) mice were fed a regular chow diet (CD) or a high-fat diet (HFD) at 3 weeks old for 15 weeks. Weights and fasting or fed glucose levels were determined. Glucose and insulin tolerance tests were performed; metabolic-relevant hormone levels including insulin, glucagon, glucagon-like peptide 1, Pyy, and leptin were determined. RESULTS ZnT8 is co-expressed with Sst in a subpopulation of endocrine D cells in the gastrointestinal tract. The absence of ZnT8 expression resulted in an increased density of the dense cores in the secretory granules of the D cell. DKO mice had reduced weight compared to WT when maintained on the CD. Compared to Znt8KO and SstKO, DKO mice did not show significant differences in fed or fasting blood glucose level regardless of dietary conditions. However, the CD-fed DKO mice had impaired insulin secretion without alterations in islet morphology or numbers. Moreover, DKO mice displayed diet-induced insulin resistance and disrupted secretion of metabolic-related hormones. CONCLUSIONS Somatostatin as well as a normal insulin sensitivity are required for normalizing glucose metabolism in Znt8KO mice. ZnT8 may play a role in regulating fat mass and leptin secretion. These findings shed light on the multifaceted nature of Znt8 and Sst interactions, opening new avenues to understand their roles in controlling glucose metabolism and fat mass.
Collapse
Affiliation(s)
- Zhongyue Yang
- Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Catherine P Kirschke
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Yimeng Cai
- Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Liping Huang
- Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA.
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.
- Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
66
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
67
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G protein-coupled receptor 17 inhibits glucagon-like peptide-1 secretion via a Gi/o-dependent mechanism in enteroendocrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623413. [PMID: 39605686 PMCID: PMC11601441 DOI: 10.1101/2024.11.13.623413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion was Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Roudebush VA Medical Center, Indianapolis, IN 46202
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
68
|
Fink-Jensen A, Correll CU. How to treat antipsychotic-related weight gain and metabolic disturbances: Is there a role for GLP-1 receptor agonists? Acta Psychiatr Scand 2024. [PMID: 39513427 DOI: 10.1111/acps.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Anders Fink-Jensen
- Psychiatric Centre Copenhagen, Mental Health Services -, Copenhagen, Capital Region of Denmark, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoph U Correll
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofsta/Northwell, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
69
|
Jarrah M, Tasabehji D, Fraer A, Mokadem M. Spinal afferent neurons: emerging regulators of energy balance and metabolism. Front Mol Neurosci 2024; 17:1479876. [PMID: 39582948 PMCID: PMC11583444 DOI: 10.3389/fnmol.2024.1479876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in neurophysiology have challenged the long-held paradigm that vagal afferents serve as the primary conduits for physiological signals governing food intake and energy expenditure. An expanding body of evidence now illuminates the critical role of spinal afferent neurons in these processes, necessitating a reevaluation of our understanding of energy homeostasis regulation. This comprehensive review synthesizes cutting-edge research elucidating the multifaceted functions of spinal afferent neurons in maintaining metabolic equilibrium. Once predominantly associated with nociception and pathological states, these neurons are now recognized as integral components in the intricate network regulating feeding behavior, nutrient sensing, and energy balance. We explore the role of spinal afferents in food intake and how these neurons contribute to satiation signaling and meal termination through complex gut-brain axis pathways. The review also delves into the developing evidence that spinal afferents play a crucial role in energy expenditure regulation. We explore the ability of these neuronal fibers to carry signals that can modulate feeding behavior as well as adaptive thermogenesis in adipose tissue influencing basal metabolic rate, and thereby contributing to overall energy balance. This comprehensive analysis not only challenges existing paradigms but also opens new avenues for therapeutic interventions suggesting potential targets for treating metabolic disorders. In conclusion, this review highlights the need for a shift in our understanding of energy homeostasis, positioning spinal afferent neurons as key players in the intricate web of metabolic regulation.
Collapse
Affiliation(s)
- Mohammad Jarrah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana Tasabehji
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aviva Fraer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohamad Mokadem
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Orders of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
70
|
Janket SJ, Chatanaka MK, Sohaei D, Tamimi F, Meurman JH, Diamandis EP. Does Incretin Agonism Have Sustainable Efficacy? Cells 2024; 13:1842. [PMID: 39594592 PMCID: PMC11592889 DOI: 10.3390/cells13221842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones secreted by gut endothelial cells triggered by nutrient ingestion. The phenomenon that oral ingestion of glucose elicits a much higher insulin secretion than intra-venous injection of equimolar glucose is known as the incretin effect. This also alludes to the thesis that food intake is the root cause of insulin resistance. Synthetic GLP-1 and GIP agonists have demonstrated unprecedented glucoregulation and body weight reduction. Also, randomized trials have shown their ability to prevent complications of obesity, including development of diabetes from prediabetes, reducing cardiovascular disease risks and renal complications in diabetic patients. Moreover, the benefits of these agonists persist among the patients who are already on metformin or insulin. The ultimate question is "Are these benefits of incretin agonism sustainable?" Chronic agonism of pancreatic β-cells may decrease the number of receptors and cause β-cell exhaustion, leading to β-cell failure. Unfortunately, the long-term effects of these drugs are unknown at the present because the longest duration in randomized trials is 3 years. Additionally, manipulation of the neurohormonal axis to control satiety and food intake may hinder the long-term sustainability of these treatments. In this review, we will discuss the incretins' mechanism of action, challenges, and future directions. We will briefly review other molecules involved in glucose homeostasis such as amylin and glucagon. Amylin is co-expressed with insulin from the pancreas β-cells but does not have insulinotropic function. Amylin suppresses glucagon secretion, slowing gastric emptying and suppressing the reward center in the central nervous system, leading to weight loss. However, amylin can self-aggregate and cause serious cytotoxicity and may cause β-cell apoptosis. Glucagon is secreted by pancreatic α-cells and participates in glucose homeostasis in a glucose-dependent manner. In hypoglycemia, glucagon increases the blood glucose level by glycogenolysis and gluconeogenesis and inhibits glycogenesis in the liver. Several triple agonists, in combination with dual incretins and glucagon, are being developed.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Retired Research Associate Professor, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA;
| | - Miyo K. Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dorsa Sohaei
- M.D., C.M. Candidate 2026, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A QT2, Canada;
| | - Faleh Tamimi
- Department of Restorative Dentistry, College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, FI-00290 Helsinki, Finland;
| | | |
Collapse
|
71
|
Sibthorpe PEM, Fitzgerald DM, Sillence MN, de Laat MA. Studies in vitro of equine intestinal glucagon-like peptide-2 secretion. J Equine Vet Sci 2024; 142:105179. [PMID: 39197558 DOI: 10.1016/j.jevs.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/29/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Equine insulin dysregulation (ID) is a significant metabolic problem because the hyperinsulinaemia that develops increases the animal's risk of developing laminitis, a debilitating foot condition. The role of gastrointestinal factors, such as incretin hormones, in the pathogenesis of ID and hyperinsulinaemia in horses is poorly understood, particularly in comparison to other species. Glucagon-like peptide-2 (GLP-2) is an intestinotrophic peptide released from L cells in the gastrointestinal tract and is implicated in metabolic dysfunction in other species. The aim of this study in vitro was to establish basic physiological understanding about intestinal secretion of GLP-2 in horses. Basal and glucose-stimulated GLP-2 secretion was measured in post-mortem tissue samples from the duodenum, jejunum, and ileum. We observed that GLP-2 secretion was minimal in samples from the duodenum compared to the jejunum and ileum (5-9-fold higher; P < 0.05). Furthermore, GLP-2 secretion was not responsive to glucose stimulation in the ileum or duodenum but was responsive to glucose in the jejunum. This effect in the jejunum was inhibited by 30 % (P = 0.02) using phlorizin, a selective sodium-glucose cotransporter-1 (SGLT-1) inhibitor, and by 38 % (P = 0.04) using phloretin, a non-selective SGLT-1/GLUT-2 inhibitor. The localisation of glucose-responsive GLP-2 secretion in the jejunum might be relevant to the development of post-prandial hyperinsulinaemia. This study has provided data on GLP-2 secretion from the equine small intestine that will enable more complex and dynamic studies on the pathogenesis of ID.
Collapse
Affiliation(s)
- P E M Sibthorpe
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - D M Fitzgerald
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
72
|
Phan F, Bertrand R, Amouyal C, Andreelli F. [From the discovery of incretin hormones to GIP / GLP-1 / glucagon double and triple agonists]. Med Sci (Paris) 2024; 40:837-847. [PMID: 39656981 DOI: 10.1051/medsci/2024153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
The concept of treating diabetes with gut hormones was proposed in the early days of endocrinology (1902), but was not put into practice until the early 2000s. The discovery of the incretin effect (potentiation of insulin secretion when glucose is taken orally compared to intravenously) led to the discovery of the two main gut hormones responsible for this effect: GIP and GLP-1. The reduction of the incretin effect is directly involved in the pathogenesis of type 2 diabetes, which has led to the development of a series of innovative therapies such as GLP-1 analogues, GLP-1 receptor agonists, GIP/GLP-1 co-agonists and GIP/GLP-1/glucagon tri-agonists. These therapies, with their potent hypoglycaemic and weight-lowering effects, promote optimal control of excess weight and hyperglycaemia, avoiding the escalation of treatment that was once considered inevitable.
Collapse
Affiliation(s)
- Franck Phan
- Service de diabétologie, CHU Pitié-Salpêtrière, Paris, France
| | - Romane Bertrand
- Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative / CNRS UMR 8251, Paris, France
| | - Chloé Amouyal
- Service de diabétologie, CHU Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
73
|
Dejgaard TF, Frandsen CS, Kielgast U, Størling J, Overgaard AJ, Svane MS, Olsen MH, Thorsteinsson B, Andersen HU, Krarup T, Holst JJ, Madsbad S. Liraglutide enhances insulin secretion and prolongs the remission period in adults with newly diagnosed type 1 diabetes (the NewLira study): A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:4905-4915. [PMID: 39192527 DOI: 10.1111/dom.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
AIM To test the effect of the glucagon-like peptide-1 receptor agonist, liraglutide, on residual beta-cell function in adults with newly diagnosed type 1 diabetes. MATERIALS AND METHODS In a multicentre, double-blind, parallel-group trial, adults with newly diagnosed type 1 diabetes and stimulated C-peptide of more than 0.2 nmol/L were randomized (1:1) to 1.8-mg liraglutide (Victoza) or placebo once daily for 52 weeks with 6 weeks of follow-up with only insulin treatment. The primary endpoint was the between-group difference in C-peptide area under the curve (AUC) following a liquid mixed-meal test after 52 weeks of treatment. RESULTS Sixty-eight individuals were randomized. After 52 weeks, the 4-hour AUC C-peptide response was maintained with liraglutide, but decreased with placebo (P = .002). Six weeks after end-of-treatment, C-peptide AUCs were similar for liraglutide and placebo. The average required total daily insulin dose decreased from 0.30 to 0.23 units/kg/day with liraglutide, but increased from 0.29 to 0.43 units/kg/day in the placebo group at week 52 (P < .001). Time without the need for insulin treatment was observed in 13 versus two patients and lasted for 22 weeks (from 3 to 52 weeks) versus 6 weeks (from 4 to 8 weeks) on average for liraglutide and placebo, respectively. Patients treated with liraglutide had fewer episodes of hypoglycaemia compared with placebo-treated patients. The adverse events with liraglutide were predominantly gastrointestinal and transient. CONCLUSIONS Treatment with liraglutide improves residual beta-cell function and reduces the dose of insulin during the first year after diagnosis. Beta-cell function was similar at 6 weeks postliraglutide treatment.
Collapse
Affiliation(s)
- Thomas F Dejgaard
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Endocrinology and Nephrology, Copenhagen University Hospital Nordsjaelland, Hilleroed, Denmark
| | - Christian S Frandsen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Urd Kielgast
- Department of Endocrinology, Copenhagen University Hospital Zealand, Koege, Denmark
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Markus Harboe Olsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Birger Thorsteinsson
- Department of Endocrinology and Nephrology, Copenhagen University Hospital Nordsjaelland, Hilleroed, Denmark
| | | | - Thure Krarup
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
74
|
Raza FA, Altaf R, Bashir T, Asghar F, Altaf R, Tousif S, Goyal A, Mohammed A, Mohammad MF, Anan M, Ali S. Effect of GLP-1 receptor agonists on weight and cardiovascular outcomes: A review. Medicine (Baltimore) 2024; 103:e40364. [PMID: 39496023 PMCID: PMC11537668 DOI: 10.1097/md.0000000000040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Diet and lifestyle modifications remain the foundation of obesity treatment, but they have historically proven insufficient for significant, long-term weight loss. As a result, there is a high demand for new pharmacologic treatments to promote weight loss and prevent life-threatening diseases associated with obesity. Researchers are particularly interested in 1 type of drug, glucagon-like peptide 1 receptor agonists (GLP-1 RAs), because of its promising potential in addressing the limitations of non-pharmacologic treatments. In addition to their role in weight loss, these drugs have shown promising early evidence of cardiovascular benefits in obese patients, further enhancing their clinical relevance. Semaglutide and liraglutide, which were initially approved for the treatment of type 2 diabetes, have since been approved by the Food and Drug Administration as weight loss medications due to their effectiveness in promoting significant and sustained weight loss. In this narrative review, we will explore the mechanism of GLP-1 RAs, their effects on weight loss, cardiovascular risk factors and outcomes, common adverse effects, and strategies for managing these effects.
Collapse
Affiliation(s)
- Fatima Ali Raza
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Rafiya Altaf
- Department of Surgery, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Talha Bashir
- Department of Medicine, Karachi Institute of Medical Sciences, Combined Military Hospital Malir, Karachi City, Pakistan
| | - Fatima Asghar
- Department of Medicine, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rabiya Altaf
- Department of Medicine, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot, United Kingdom
| | - Sohaib Tousif
- Department of Medicine, Ziauddin University, Karachi City, Pakistan
| | - Aman Goyal
- Department of Medicine, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Aisha Mohammed
- Department of Medicine, Comanche County Memorial Hospital, Lawton, OK
| | | | - Mahfuza Anan
- Department of Medicine, Bangladesh Medical College, Dhaka, Bangladesh
| | - Sajjad Ali
- Department of Medicine, Ziauddin University, Karachi City, Pakistan
| |
Collapse
|
75
|
Kupnicka P, Król M, Żychowska J, Łagowski R, Prajwos E, Surówka A, Chlubek D. GLP-1 Receptor Agonists: A Promising Therapy for Modern Lifestyle Diseases with Unforeseen Challenges. Pharmaceuticals (Basel) 2024; 17:1470. [PMID: 39598383 PMCID: PMC11597758 DOI: 10.3390/ph17111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Modern lifestyle diseases remain a persistent challenge in healthcare. Currently, about 422 million people worldwide are affected by diabetes, while 1 in 8 people are living with obesity. The development of glucagon-like peptide 1 receptor agonists (GLP-1RAs) has marked a significant milestone in treating these conditions. Interest in GLP-1RAs has grown due to evidence that, beyond their established role in diabetes management, these drugs influence other metabolic disorders. This is attributed to the fact that GLP-1 receptors are found in various healthy human tissues. However, a potential cause for concern is the expression of GLP-1 receptors in certain cancers. This review focuses on the most recent findings concerning the actions of GLP-1RAs, detailing their documented impact on the thyroid gland and pancreas. It addresses concerns about the long-term use of GLP-1RAs in relation to the development of pancreatitis, pancreatic cancer, and thyroid neoplasms by exploring the mechanisms and long-term effects in different patient subgroups and including data not discussed previously. This review was conducted through an examination of the literature available in the MedLine (PubMed) database, covering publications from 1978 to 10 May 2024. The collected articles were selected based on their relevance to studies of GLP-1 agonists and their effects on the pancreas and thyroid and assessed to meet the established inclusion criteria. The revised papers suggest that prolonged use of GLP-1RA could contribute to the formation of thyroid tumors and may increase the risk of acute inflammatory conditions such as pancreatitis, particularly in high-risk patients. Therefore, physicians should advise patients on the need for more frequent and detailed follow-ups.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryszard Łagowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Eryk Prajwos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
76
|
Grasset E, Briand F, Virgilio N, Schön C, Wilhelm M, Cudennec B, Ravallec R, Aboubacar H, Vleminckx S, Prawitt J, Sulpice T, Gevaert E. A Specific Collagen Hydrolysate Improves Postprandial Glucose Tolerance in Normoglycemic and Prediabetic Mice and in a First Proof of Concept Study in Healthy, Normoglycemic and Prediabetic Humans. Food Sci Nutr 2024; 12:9607-9620. [PMID: 39619994 PMCID: PMC11606891 DOI: 10.1002/fsn3.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 01/03/2025] Open
Abstract
In response to nutrients, intestinal L- and K-cells naturally secrete glucagon-like peptide 1 (GLP-1). GLP-1 regulates postprandial blood glucose by increasing insulin secretion, slowing down gastric emptying and inducing satiety. A selection of specifically developed collagen hydrolysates was screened for their ability to enhance natural GLP-1 production in vitro. The best performing hydrolysate, H80 (Nextida GC), was orally administered at different doses to lean, normoglycemic mice and overweight, prediabetic mice. Lean mice were acutely challenged 45 min before an oral glucose load. While daily supplemented for 6 weeks, prediabetic mice were acutely challenged at day 21 and 34. Oral glucose tolerance, plasma insulin and GLP-1 levels were assessed, and a gastric emptying assay performed in prediabetic mice. H80 significantly lowered the blood glucose response in lean and prediabetic mice, at a 4 g/kg dose (-25% and -36%, respectively), compared to vehicle. In chronically supplemented, prediabetic mice, acute H80 administration slowed down gastric emptying (-60%) after 21 days and increased plasma insulin (+166%) after 35 days of supplementation. H80 increased plasma active GLP-1 in lean (+217%) and prediabetic (+860%) mice. Overall, the data indicate that the specific collagen hydrolysate, H80, has significant GLP-1-mediated effects on oral glucose tolerance in lean and prediabetic mice. Furthermore, effects on postprandial glucose tolerance were evaluated in a small, human, proof of concept study. H80 reduced the postprandial glucose response at a 5 g dose in healthy, normoglycemic and prediabetic participants. Oral supplementation with H80 might thus be a promising strategy to maintain normal glucose tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic SciencesUlm University of Applied SciencesUlmGermany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Vogrinc D, Redenšek Trampuž S, Blagus T, Trošt M, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic variability of incretin receptors affects the occurrence of neurodegenerative diseases and their characteristics. Heliyon 2024; 10:e39157. [PMID: 39506938 PMCID: PMC11538737 DOI: 10.1016/j.heliyon.2024.e39157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Background Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases. Their treatment options are rather limited, and no neuroprotective or disease-modifying treatments are available. Anti-diabetic drugs, such as glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) agonists, have been suggested as a potential therapeutic option. Aims Assess GLP1R and GIPR genetic variability in relation to AD- and PD-related phenotypes. Methods AD, PD patients and healthy control subjects were included in the study. Cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease were measured in AD patients, while cognitive impairment was evaluated in PD. All participants were genotyped for three SNPs: GLP1R rs10305420, GLP1R rs6923761 and GIPR rs1800437. Results GLP1R rs10305420 genotypes were associated with increased odds for AD and PD development. GLP1R rs10305420 and GLP1R rs6923761 genotypes were significantly associated with Aβ42/40 ratio (p = 0.041 and p = 0.050), while GLP1R rs6923761 was also associated with p-tau levels (p = 0.022). Finally, GIPR rs1800437 heterozygotes as well as carriers of at least one GIPR rs1800437 C allele presented with increased odds for the development of dementia in PD (OR = 1.92; 95 % CI = 1.05-3.51; p = 0.034 and OR = 1.95; 95 % CI = 1.08-3.52; p = 0.027, respectively). Conclusion GLP1R and GIPR genetic variability may affect the occurrence of AD and PD and is also associated with AD CSF biomarkers for Alzheimer's disease and dementia in PD. The data on GLP1R and GIPR genetic variability may support the function of incretin receptors in neurodegeneration.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Alfred Nobels allé 23, 141 52, Huddinge, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
78
|
Wei L, Wang B, Bai J, Zhang Y, Liu C, Suo H, Wang C. Postbiotics are a candidate for new functional foods. Food Chem X 2024; 23:101650. [PMID: 39113733 PMCID: PMC11304867 DOI: 10.1016/j.fochx.2024.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Accumulating studies have highlighted the great potential of postbiotics in alleviating diseases and protecting host health. Compared with traditional functional foods (such as probiotics and prebiotics), postbiotics have the advantages of a single composition, high physiological activity, long shelf life, easy absorption, and high targeting, etc. The development of postbiotics has led to a wide range of potential applications in functional food and drug development. However, the lack of clinical trial data, mechanism analyses, safety evaluations, and effective regulatory frameworks has limited the application of postbiotic products. This review describes the definition, classification, sources, and preparation methods of postbiotics, the progress and mechanism of preclinical and clinical research in improving host diseases, and their application in food. Strengthen understanding of the recognition and development of related products to lay a theoretical foundation.
Collapse
Affiliation(s)
- Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
79
|
Jeppesen PB, Dorner A, Yue Y, Poulsen N, Andersen SK, Aalykke FB, Lambert MNT. Beneficial Effects of a Freeze-Dried Kale Bar on Type 2 Diabetes Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:3641. [PMID: 39519473 PMCID: PMC11547987 DOI: 10.3390/nu16213641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is one of the most common global diseases, with an ever-growing need for prevention and treatment solutions. Kale (Brassica oleracea L. var. acephala) offers a good source of fiber, minerals, bioavailable calcium, unsaturated fatty acids, prebiotic carbohydrates, vitamins, health-promoting secondary plant metabolites, as well as higher amounts of proteins and essential amino acids compared to other vegetables. The objective of this study was to investigate whether daily intake of freeze-dried kale powder can provide health benefits for T2D patients vs. placebo. METHODS This study was designed as a 12-week, blinded, randomized, controlled trial. Thirty T2D patients were randomly assigned to either a placebo bar (control) or a kale bar (intervention). Participants in the intervention group were instructed to consume three bars/day, each containing 26.25 g of freeze-dried kale (corresponding to approx. 341 g fresh kale/day). At baseline and 12 weeks, all participants underwent an oral glucose tolerance test (OGTT), 24 h blood pressure measurements, DEXA scans, and fasted blood samples were taken. RESULTS A significant reduction in HbA1c, insulin resistance, body weight, and calorie intake was observed in the intervention group compared to control. Positive trends were detected in fasted blood glucose and LDL-cholesterol for those in the kale intervention group. No significant differences were found in total body fat mass and area under the curve glucose 240 min OGTT. CONCLUSIONS Given the positive effects of high daily kale intake observed in this study, further research with a larger sample size is needed to better understand the health benefits of kale bars. This could potentially lead to new dietary recommendations for patients with T2D.
Collapse
Affiliation(s)
- Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Amanda Dorner
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Yuan Yue
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark;
| | - Nikolaj Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Sofie Korsgaard Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Fie Breenfeldt Aalykke
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, 8200 Aarhus N, Denmark; (A.D.); (S.K.A.); (F.B.A.); (M.N.T.L.)
| |
Collapse
|
80
|
Yang X, Lin R, Feng C, Kang Q, Yu P, Deng Y, Jin Y. Research Progress on Peptide Drugs for Type 2 Diabetes and the Possibility of Oral Administration. Pharmaceutics 2024; 16:1353. [PMID: 39598478 PMCID: PMC11597531 DOI: 10.3390/pharmaceutics16111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes is a global disease that can lead to a range of complications. Currently, the treatment of type 2 diabetes focuses on oral hypoglycemic drugs and insulin analogues. Studies have shown that drugs such as oral metformin are useful in the treatment of diabetes but can limit the liver's ability to release sugar. The development of glucose-lowering peptides has provided new options for the treatment of type 2 diabetes. Peptide drugs have low oral utilization due to their easy degradation, short half-life, and difficulty passing through the intestinal mucosa. Therefore, improving the oral utilization of peptide drugs remains an urgent problem. This paper reviews the research progress of peptide drugs in the treatment of diabetes mellitus and proposes that different types of nano-formulation carriers, such as liposomes, self-emulsifying drug delivery systems, and polymer particles, should be combined with peptide drugs for oral administration to improve their absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Xinxin Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ruiting Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Changzhuo Feng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Qiyuan Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Peng Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| |
Collapse
|
81
|
Chen J, Nouzová M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone. Proc Natl Acad Sci U S A 2024; 121:e2411987121. [PMID: 39413128 PMCID: PMC11513968 DOI: 10.1073/pnas.2411987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| | - Marcela Nouzová
- Institute of Parasitology, Laboratory of Molecular Biology and Physiology of Mosquitoes, Biology Centre Czech Academy of Sciences, České Budějovice37005, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL33199
- Department of Parasitology, University of South Bohemia, České Budějovice37005, Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| |
Collapse
|
82
|
Krajewski PK, Złotowska A, Szepietowski JC. The Therapeutic Potential of GLP-1 Receptor Agonists in the Management of Hidradenitis Suppurativa: A Systematic Review of Anti-Inflammatory and Metabolic Effects. J Clin Med 2024; 13:6292. [PMID: 39518431 PMCID: PMC11547001 DOI: 10.3390/jcm13216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Glucagon-like peptide-1 receptor agonists (GLP1-RAs) are synthetic peptides that mimic the natural activity of GLP-1, widely known for lowering blood glucose levels and promoting weight reduction. These characteristics make them a valuable tool in managing type 2 diabetes and obesity-related conditions. Recent findings indicate that GLP1-RAs may also offer therapeutic benefits in managing hidradenitis suppurativa (HS), a chronic inflammatory skin disorder closely associated with metabolic abnormalities, including obesity, diabetes, and dyslipidemia. This review explores the potential role of GLP1-RAs in managing HS. Methods: A systematic review was conducted by searching electronic databases, including MEDLINE and Google Scholar, without date limitations. Key search terms included "GLP-1" or "GLP-1 agonists" combined with "hidradenitis suppurativa" or "acne inversa". Inclusion criteria were set for studies reporting on the use of GLP1-RAs as a treatment for HS, with articles discussing theoretical applications excluded. Data synthesis included findings from 25 relevant studies. Results: The analysis revealed that GLP1-RAs, specifically liraglutide and semaglutide, led to significant reductions in weight and systemic inflammation in HS patients. Notably, improvements in lesion severity and quality of life were reported. The anti-inflammatory effects of GLP1-RAs were attributed to the suppression of key inflammatory pathways involving TNF-α, IL-17, and NF-κB. Conclusions: GLP1-RAs demonstrate significant potential as an adjunct therapy for HS, addressing both the metabolic and inflammatory aspects of the condition. While early results are promising, further research is necessary to determine their long-term efficacy in managing HS.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.K.); (A.Z.)
| | - Aleksandra Złotowska
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.K.K.); (A.Z.)
| | - Jacek C. Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, 51-377 Wroclaw, Poland
| |
Collapse
|
83
|
Quagliariello V, Canale ML, Bisceglia I, Iovine M, Giordano V, Giacobbe I, Scherillo M, Gabrielli D, Maurea C, Barbato M, Inno A, Berretta M, Tedeschi A, Oliva S, Greco A, Maurea N. Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients. Int J Mol Sci 2024; 25:11299. [PMID: 39457081 PMCID: PMC11508560 DOI: 10.3390/ijms252011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer patients, especially long cancer survivors, are exposed to several cardio-metabolic diseases, including diabetes, heart failure, and atherosclerosis, which increase their risk of cardiovascular mortality. Therapy with glucagon-like peptide 1 (GLP1) receptor agonists demonstrated several beneficial cardiovascular effects, including atherosclerosis and heart failure prevention. Cardiovascular outcome trials (CVOTs) suggest that GLP-1 RA could exert cardiorenal benefits and systemic anti-inflammatory effects in patients with type-2 diabetes through the activation of cAMP and PI3K/AkT pathways and the inhibition of NLRP-3 and MyD88. In this narrative review, we highlight the biochemical properties of GLP-1 RA through a deep analysis of the clinical and preclinical evidence of the primary prevention of cardiomyopathies. The overall picture of this review encourages the study of GLP-1 RA in cancer patients with type-2 diabetes, as a potential primary prevention strategy against heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00148 Rome, Italy;
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Vienna Giordano
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Ilaria Giacobbe
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Marino Scherillo
- Division of Cardiology, Hospital San Pio Benevento (BN), 82100 Benevento, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy;
| | - Carlo Maurea
- Department of Medicine, University of Salerno, 84084 Fisciano, Italy;
| | - Matteo Barbato
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Alessandra Greco
- Divisione di Cardiologia, Fondazione IRCCS San Matteo Hospital, Viale Golgi 19, 27100 Pavia, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (M.I.); (V.G.); (I.G.); (M.B.); (N.M.)
| |
Collapse
|
84
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
85
|
Li H, Fang Y, Wang D, Shi B, Thompson GJ. Impaired brain glucose metabolism in glucagon-like peptide-1 receptor knockout mice. Nutr Diabetes 2024; 14:86. [PMID: 39389952 PMCID: PMC11466955 DOI: 10.1038/s41387-024-00343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Quantitative mapping of the brain's metabolism is a critical tool in studying and diagnosing many conditions, from obesity to neurodegenerative diseases. In particular, noninvasive approaches are urgently required. Recently, there have been promising drug development approaches for the treatment of disorders related to glucose metabolism in the brain and, therefore, against obesity-associated diseases. One of the most important drug targets to emerge has been the Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R). GLP and GLP-1R play an important role in regulating blood sugar and maintaining energy homeostasis. However, the macroscopic effects on brain metabolism and function due to the presence of GLP-1R are unclear. METHODS To explore the physiological role of GLP-1R in mouse brain glucose metabolism, and its relationship to brain function, we used three methods. We used deuterium magnetic resonance spectroscopy (DMRS) to provide quantitative information about metabolic flux, fluorodeoxyglucose positron emission tomography (FDG-PET) to measure brain glucose metabolism, and resting state-functional MRI (rs-fMRI) to measure brain functional connectivity. We used these methods in both mice with complete GLP-1R knockout (GLP-1R KO) and wild-type C57BL/6N (WT) mice. RESULTS The metabolic rate of GLP-1R KO mice was significantly slower than that of WT mice (p = 0.0345, WT mice 0.02335 ± 0.057 mM/min, GLP-1R KO mice 0.01998 ± 0.07 mM/min). Quantification of the mean [18F]FDG signal in the whole brain also showed significantly reduced glucose uptake in GLP-1R KO mice versus control mice (p = 0.0314). Observing rs-fMRI, the functional brain connectivity in GLP-1R KO mice was significantly lower than that in the WT group (p = 0.0032 for gFCD, p = 0.0002 for whole-brain correlation, p < 0.0001 for ALFF). CONCLUSIONS GLP-1R KO mice exhibit impaired brain glucose metabolism to high doses of exogenous glucose, and they also have reduced functional connectivity. This suggests that the GLP-1R KO mouse model may serve as a model for correlated metabolic and functional connectivity loss.
Collapse
Affiliation(s)
- Hui Li
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Yujiao Fang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bowen Shi
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | |
Collapse
|
86
|
Pililis S, Lampsas S, Kountouri A, Pliouta L, Korakas E, Livadas S, Thymis J, Peppa M, Kalantaridou S, Oikonomou E, Ikonomidis I, Lambadiari V. The Cardiometabolic Risk in Women with Polycystic Ovarian Syndrome (PCOS): From Pathophysiology to Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1656. [PMID: 39459443 PMCID: PMC11509436 DOI: 10.3390/medicina60101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Polycystic Ovarian Syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age, with significant variations in presentation characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Beyond reproductive health, it may also pose crucial long-term cardiometabolic risks, especially for women with specific types of PCOS, contributing to early subclinical cardiovascular atherosclerotic alterations such as endothelial dysfunction, increased arterial stiffness, and coronary artery calcium levels, respectively. Moreover, the precise relationship between clinical cardiovascular disease (CVD) and PCOS remains debated, with studies demonstrating an elevated risk while others report no significant association. This review investigates the pathophysiology of PCOS, focusing on insulin resistance and its link to subclinical and clinical cardiovascular disease. Diagnostic challenges and novel management strategies, including lifestyle interventions, medications like metformin and glucagon-like peptide-1 receptor agonists (GLP-1RAs), hormonal contraceptives, and bariatric surgery, are further discussed. Recognizing the cardiometabolic risks associated with PCOS, a comprehensive approach and early intervention should address both the reproductive and cardiometabolic dimensions of the syndrome.
Collapse
Affiliation(s)
- Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
- 2nd Department of Ophthalmology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Emmanouil Korakas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | | | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Melpomeni Peppa
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, “Sotiria” Chest Diseases Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| |
Collapse
|
87
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
88
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
89
|
Haller N, Lutz TA. Incretin therapy in feline diabetes mellitus - A review of the current state of research. Domest Anim Endocrinol 2024; 89:106869. [PMID: 38870560 DOI: 10.1016/j.domaniend.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Incretin hormones potentiate the glucose-induced insulin secretion following enteral nutrient intake. The best characterised incretin hormones are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) which are produced in and secreted from the gut in response to nutrient ingestion. The property of incretins to enhance endogenous insulin secretion only at elevated blood glucose levels makes them interesting therapeutics for type 2 diabetes mellitus with a better safety profile than exogenous insulin. While incretin therapeutics (especially GLP-1 agonists, and more recently also GLP-1 / GIP dual agonists and other drugs that influence the incretin metabolism (e.g., dipeptidyl peptidase-4 (DPP-4) inhibitors)) are already widely used treatment options for human type 2 diabetes, these drugs are not yet approved for the therapy of feline diabetes mellitus. This review provides an introduction to incretins and feline diabetes mellitus in general and summarises the current study situation on incretins as therapeutics for feline diabetes mellitus to assess their possible future potential in feline medicine. Studies to date on the use of GLP-1 receptor agonists (GLP-1RA) in healthy cats largely confirm their insulinotropic effect known from other species. In diabetic cats, GLP-1RAs appear to significantly reduce glycaemic variability (GV, an indicator for the quality of glycaemic control), which is important for the management of the disease and prevention of long-term complications. However, for widespread use in feline diabetes mellitus, further studies are required that include larger numbers of diabetic cats, and that consider and test a possible need for dose adjustments to overweight and diabetic cats. Also evaluation of the outcome of GLP-1RA monotherapy will be neceessary.
Collapse
Affiliation(s)
- Nina Haller
- Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH 8057 Zurich, Switzerland.
| |
Collapse
|
90
|
Sharma R, Raza GS, Sodum N, Walkowiak J, Herzig KH. Effect of hypoxia on GLP-1 secretion - an in vitro study using enteroendocrine STC-1 -cells as a model. Pflugers Arch 2024; 476:1613-1621. [PMID: 39075239 PMCID: PMC11381484 DOI: 10.1007/s00424-024-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland.
| |
Collapse
|
91
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
92
|
Palatnik A, Feghali MN. From Standard of Care to Emerging Innovations: Navigating the Evolution of Pharmacological Treatment of Gestational Diabetes. Am J Perinatol 2024:10.1055/a-2407-0905. [PMID: 39333039 PMCID: PMC11946926 DOI: 10.1055/a-2407-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The incidence of gestational diabetes mellitus (GDM) continues to increase in the United States and globally. While the first-line treatment of GDM remains diet and exercise, 30% of patients with GDM will require pharmacotherapy. However, many controversies remain over the specific glycemic threshold values at which pharmacotherapy should be started, how intensified the therapy should be, and whether oral agents are effective in GDM and remain safe for long-term offspring health. This review will summarize recently completed and ongoing trials focused on GDM pharmacotherapy, including those examining different glycemic thresholds to initiate therapy and treatment intensity. KEY POINTS: · The incidence of GDM continues to increase in the United States and globally.. · While the first-line treatment of GDM remains diet, 30% of patients require pharmacotherapy.. · Controversies remain over the specific glycemic threshold values at which pharmacotherapy is needed.. · Another controversy is how tightly to control GDM.. · Additional controversies are the safety of metformin and incretins in terms of offspring's long-term health..
Collapse
Affiliation(s)
- Anna Palatnik
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Maisa N Feghali
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
93
|
Ohbayashi K, Sugiyama Y, Nohmi T, Nishimura K, Nakazaki T, Sato YI, Masumura T, Iwasaki Y. Anekomochi glutinous rice provides low postprandial glycemic response by enhanced insulin action via GLP-1 release and vagal afferents activation. J Physiol Sci 2024; 74:47. [PMID: 39333851 PMCID: PMC11428336 DOI: 10.1186/s12576-024-00940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Glutinous rice (mochi rice), compared to non-glutinous rice (uruchi rice), exhibits a wide range of glycemic index (GI) values, from low to high. However, the underlying mechanisms behind the variation in GI values remain poorly understood. In this study, we aimed to identify rice cultivars with a low postprandial glycemic response and investigate the mechanisms, focusing on insulin and incretin hormones. We examined seven glutinous rice cultivars and three non-glutinous rice cultivars. We discovered that Anekomochi, a glutinous rice cultivar, has the lowest postprandial glycemic response. Anekomochi significantly enhanced glucagon-like peptide-1 (GLP-1) secretion while suppressing insulin secretion. These effects were completely blunted by inhibiting GLP-1 receptor signaling and denervating the common hepatic branch of vagal afferent nerves that are crucial for sensing intestinal GLP-1. Our findings demonstrate that Anekomochi markedly enhances insulin action via GLP-1 release and vagal afferent neural pathways, thereby leading to a lower postprandial glycemic response.
Collapse
Affiliation(s)
- Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Yudai Sugiyama
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Taichi Nohmi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Kazusa Nishimura
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Kita-Ku, Okayama, 700-0082, Japan
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, Kyoto, 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, Kyoto, 619-0218, Japan
- Office of Institutional Advancement and Communications, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yo-Ichiro Sato
- Research Center for Japanese Food Culture, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-Ku, Shizuoka, 422-8017, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-Ku, Kyoto, 606-8522, Japan.
| |
Collapse
|
94
|
Dragonieri S, Portacci A, Quaranta VN, Carratu P, Lazar Z, Carpagnano GE, Bikov A. Therapeutic Potential of Glucagon-like Peptide-1 Receptor Agonists in Obstructive Sleep Apnea Syndrome Management: A Narrative Review. Diseases 2024; 12:224. [PMID: 39329893 PMCID: PMC11431450 DOI: 10.3390/diseases12090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Background: Obstructive Sleep Apnea (OSA) is a prevalent disorder characterized by repetitive upper airway obstructions during sleep, leading to intermittent hypoxia and sleep fragmentation. Current treatments, particularly Continuous Positive Airway Pressure (CPAP), face adherence challenges, necessitating novel therapeutic approaches. Methods: This review explores the potential of Glucagon-like Peptide-1 receptor agonists (GLP-1RA), commonly used for type 2 diabetes and obesity, in managing OSA. GLP-1RA promotes weight loss, enhances insulin sensitivity, and exhibits anti-inflammatory and neuroprotective properties, potentially addressing key pathophysiological aspects of OSA. Results: Emerging evidence suggests that these agents may reduce OSA severity by decreasing upper airway fat deposition and improving respiratory control. Clinical trials have demonstrated significant reductions in the Apnea-Hypopnea Index (AHI) and improvements in sleep quality with GLP-1 therapy. Conclusions: Future research should focus on elucidating the mechanisms underlying GLP-1 effects on OSAS, optimizing combination therapies, and identifying patient subgroups that may benefit the most. Integrating GLP-1RA into OSAS management could revolutionize treatment by addressing both the metabolic and respiratory components of the disorder, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Andrea Portacci
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Vitaliano Nicola Quaranta
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Pierluigi Carratu
- Internal Medicine “A. Murri”, Department DIMEPREJ, University of Bari, 70121 Bari, Italy;
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, 1085 Budapest, Hungary;
| | - Giovanna Elisiana Carpagnano
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK;
| |
Collapse
|
95
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. The Transcriptome Characterization of the Hypothalamus and the Identification of Key Genes during Sexual Maturation in Goats. Int J Mol Sci 2024; 25:10055. [PMID: 39337542 PMCID: PMC11432450 DOI: 10.3390/ijms251810055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
96
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
97
|
Chen Z, Deng X, Shi C, Jing H, Tian Y, Zhong J, Chen G, Xu Y, Luo Y, Zhu Y. GLP-1R-positive neurons in the lateral septum mediate the anorectic and weight-lowering effects of liraglutide in mice. J Clin Invest 2024; 134:e178239. [PMID: 39225090 PMCID: PMC11364389 DOI: 10.1172/jci178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is approved for obesity treatment, but the specific neuronal sites that contribute to its therapeutic effects remain elusive. Here, we show that GLP-1 receptor-positive (GLP-1R-positive) neurons in the lateral septum (LSGLP-1R) play a critical role in mediating the anorectic and weight-loss effects of liraglutide. LSGLP-1R neurons were robustly activated by liraglutide, and chemogenetic activation of these neurons dramatically suppressed feeding. Targeted knockdown of GLP-1 receptors within the LS, but not in the hypothalamus, substantially attenuated liraglutide's ability to inhibit feeding and lower body weight. The activity of LSGLP-1R neurons rapidly decreased during naturalistic feeding episodes, while synaptic inactivation of LSGLP-1R neurons diminished the anorexic effects triggered by liraglutide. Together, these findings offer critical insights into the functional role of LSGLP-1R neurons in the physiological regulation of energy homeostasis and delineate their instrumental role in mediating the pharmacological efficacy of liraglutide.
Collapse
Affiliation(s)
- Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
98
|
Moriconi D, Bruno RM, Rebelos E, Armenia S, Baldi S, Bonvicini L, Taddei S, Nannipieri M. Role of endogenous GLP-1 on arterial stiffness and renal haemodynamics following bariatric surgery. Eur J Clin Invest 2024; 54:e14256. [PMID: 38774979 DOI: 10.1111/eci.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Cardiovascular trials have revealed the positive impact of GLP-1 receptor agonists (GLP-1 RAs) on cardiovascular outcomes in type 2 diabetes (T2D). However, the specific effects of endogenous GLP-1 on arterial stiffness and renal function remain understudied. This study aimed to explore the influence of endogenous GLP-1 response post-bariatric surgery on arterial stiffness and renal haemodynamic. METHODS Thirty individuals with morbid obesity and without T2D, scheduled for Roux-en-Y Gastric Bypass (RYGB), were included. Clinical parameters, 3-hour oral glucose tolerance test (OGTT) with serial sampling for glycaemia, GLP-1 and insulin, carotid-femoral pulse wave velocity (cf-PWV), carotid distensibility coefficient (carotid-DC) and renal resistive index (RRI) measurements were conducted pre-surgery and 1-year post-surgery. Participants were categorized into high-response and low-response groups based on their post-surgery increase in GLP-1 (median increase of 104% and 1%, respectively, pre- vs. post-surgery). RESULTS Post-surgery, high-response group demonstrated a greater reduction in cf-PWV (p = .033) and a greater increase (p = .043) in carotid DC compared to low-response group. These enhancements were observed independently of weight loss or blood pressure changes. High-response group exhibited a reduction in RRI (p = .034), although this association was influenced by improvement in pulse pressure. Finally, a multivariate stepwise regression analysis indicated that the percentage increase of GLP1, Δ-GLP1(AUC)%, was the best predictor of percentage decrease in cf-PWV (p = .014). CONCLUSIONS Elevated endogenous GLP-1 response following RYGB was associated with improved arterial stiffness and renal resistances, suggesting potential cardio-renal benefits. The findings underscore the potential role of endogenous GLP-1 in influencing vascular and renal haemodynamics independent of traditional weight loss.
Collapse
Affiliation(s)
- D Moriconi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R M Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC, Universitè Paris-Cité, Paris, France
| | - E Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Bonvicini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
99
|
Himmerich H, Bentley J, McElroy SL. Pharmacological Treatment of Binge Eating Disorder and Frequent Comorbid Diseases. CNS Drugs 2024; 38:697-718. [PMID: 39096466 DOI: 10.1007/s40263-024-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Binge eating disorder (BED) is the most common specific eating disorder (ED). It is frequently associated with attention deficit hyperactivity disorder (ADHD), depression, bipolar disorder (BD), anxiety disorders, alcohol and nicotine use disorder, and obesity. The aim of this narrative review was to summarize the evidence for the pharmacological treatment of BED and its comorbid disorders. We recommend the ADHD medication lisdexamfetamine (LDX) and the antiepileptic and antimigraine drug topiramate for the pharmacological treatment of BED. However, only LDX is approved for the treatment of BED in some countries. Medications to treat diseases frequently comorbid with BED include atomoxetine and LDX for ADHD; citalopram, fluoxetine, sertraline, duloxetine, and venlafaxine for anxiety disorders and depression; aripiprazole for manic episodes of BD; lamotrigine, lirasidone and lumateperone for depressive episodes of BD; naltrexone for alcohol use disorder; bupropion for nicotine use disorder; and liraglutide, semaglutide, and the combination of bupropion and naltrexone for obesity. As obesity is a frequent health consequence of BED, weight gain-inducing medications, such as the atypical antipsychotics olanzapine or clozapine, the novel antidepressant mirtazapine and tricyclic antidepressants, and the mood stabilizer valproate should be avoided where possible. It is currently unclear whether the novel and promising glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide 1 (GLP-1) receptor agonists like tirzepatide and retatrutide help with BED and its comorbidities. However, these compounds have been reported to reduce binge eating in individuals with obesity or overweight.
Collapse
Affiliation(s)
- Hubertus Himmerich
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Jessica Bentley
- Centre for Research in Eating and Weight Disorders (CREW), Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
100
|
Bruns Vi N, Tressler EH, Vendruscolo LF, Leggio L, Farokhnia M. IUPHAR review - Glucagon-like peptide-1 (GLP-1) and substance use disorders: An emerging pharmacotherapeutic target. Pharmacol Res 2024; 207:107312. [PMID: 39032839 PMCID: PMC11467891 DOI: 10.1016/j.phrs.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Addiction is a chronic relapsing disease with high morbidity and mortality. Treatments for addiction include pharmacological and psychosocial interventions; however, currently available medications are limited in number and efficacy. The glucagon-like-peptide-1 (GLP-1) system is emerging as a potential novel pharmacotherapeutic target for alcohol and other substance use disorders (ASUDs). In this review, we summarize and discuss the wealth of available evidence from testing GLP-1 receptor (GLP-1R) agonist medications in preclinical models and humans with ASUDs, possible mechanisms underlying the impact of GLP-1R agonists on alcohol/substance use, gaps in knowledge, and future directions. Most of the research with GLP-1R agonists has been conducted in relation to alcohol use; psychostimulants, opioids, and nicotine have also been investigated. Preclinical evidence suggests that GLP-1R agonists reduce alcohol/substance use and other related outcomes. The main proposed mechanisms are related to reward processing, stress, and cognitive function, as well as broader mechanisms related to satiety, changes in gastric motility, and glucose homeostasis. More in-depth mechanistic studies are warranted. Clinical studies have been limited and their findings have been less conclusive; however, most support the safety and potential efficacy of GLP-1R agonists in ASUD treatment. Identifying preferred compounds, as well as possible subgroups who are most responsive to GLP-1R agonists are some of the key research questions to translate the promising preclinical data into clinical settings. Several clinical trials are underway to test GLP-1R agonists in people with ASUDs.
Collapse
Affiliation(s)
- Nicolaus Bruns Vi
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth H Tressler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|