51
|
Farder-Gomes CF, de Oliveira MA, Malaspina O, Nocelli RFC. Exposure of the stingless bee Melipona scutellaris to imidacloprid, pyraclostrobin, and glyphosate, alone and in combination, impair its walking activity and fat body morphology and physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123783. [PMID: 38490525 DOI: 10.1016/j.envpol.2024.123783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The stingless bee Melipona scutellaris performs buzz pollination, effectively pollinating several wild plants and crops with economic relevance. However, most research has focused on honeybees, leaving a significant gap in studies concerning native species, particularly regarding the impacts of pesticide combinations on these pollinators. Thus, this study aimed to evaluate the sublethal effects of imidacloprid (IMD), pyraclostrobin (PYR), and glyphosate (GLY) on the behavior and fat body cell morphology and physiology of M. scutellaris. Foragers were orally exposed to the different pesticides alone and in combination for 48 h. Bees fed with contaminated solution walked less, moved slower, presented morphological changes in the fat body, including vacuolization, altered cell shape and nuclei morphology, and exhibited a higher count of altered oenocytes and trophocytes. In all exposed groups, alone and in combination, the number of cells expressing caspase-3 increased, but the TLR4 number of cells expressing decreased compared to the control groups. The intensity of HSP70 immunolabeling increased compared to the control groups. However, the intensity of the immunolabeling of HSP90 decreased in the IMD, GLY, and I + G (IMD + GLY) groups but increased in I + P-exposed bees (IMD + PYR). Alternatively, exposure to PYR and P + G (PYR + GLY) did not affect the immunolabeling intensity. Our findings demonstrate the hazardous effects and environmental consequences of isolated and combined pesticides on a vital neotropical pollinator. Understanding how pesticides impact the fat body can provide crucial insights into the overall health and survival of native bee populations, which can help develop more environmentally friendly approaches to agricultural practices.
Collapse
Affiliation(s)
- Cliver Fernandes Farder-Gomes
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP, 13600-970, Brazil.
| | - Marco Antônio de Oliveira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa Campus Florestal, Florestal, MG, 35690-000, Brazil.
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Rio Claro, SP, 13506-900, Brazil.
| | - Roberta Ferreira Cornélio Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
52
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
53
|
Lima SC, de Oliveira AC, Tavares CPS, Costa MLL, Roque RA. Essential oil from Piper tuberculatum Jacq. (Piperaceae) and its majority compound β-caryophyllene: mechanism of larvicidal action against Aedes aegypti (Diptera: Culicidae) and selective toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33454-33463. [PMID: 38684608 DOI: 10.1007/s11356-024-33416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Synthetic insecticides have been the primary approach in controlling Aedes aegypti; however, their indiscriminate use has led to the development of resistance and toxicity to non-target animals. In contrast, essential oils (EOs) are alternatives for vector control. This study investigated the mechanism of larvicidal action of the EO and β-caryophyllene from Piper tuberculatum against A. aegypti larvae, as well as evaluated the toxicity of both on non-target animals. The EO extracted from P. tuberculatum leaves was majority constituted of β-caryophyllene (54.8%). Both demonstrated larvicidal activity (LC50 of 48.61 and 57.20 ppm, p < 0.05), acetylcholinesterase inhibition (IC50 of 57.78 and 71.97 ppm), and an increase in the production of reactive oxygen and nitrogen species in larvae after exposure to the EO and β-caryophyllene. Furthermore, EO and β-caryophyllene demonstrate no toxicity to non-target animals Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus (100% of survival rate), while the insecticide α-cypermethrin was highly toxic (100% of death). The results demonstrate that the EO from P. tuberculatum and β-caryophyllene are important larvicidal agents.
Collapse
Affiliation(s)
- Suelen C Lima
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil.
| | - André C de Oliveira
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, 69080-900, Brazil
| | - Claudia P S Tavares
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| | - Maria Luiza L Costa
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| | - Rosemary A Roque
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| |
Collapse
|
54
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
55
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
56
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
57
|
Rymuszka A, Sieroslawska A. Comparative evaluation of neonicotinoids and their metabolites-induced oxidative stress in carp primary leukocytes and CLC cells. Sci Rep 2024; 14:8291. [PMID: 38594566 PMCID: PMC11004018 DOI: 10.1038/s41598-024-59067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 μM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.
Collapse
Affiliation(s)
- Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland.
| | - Anna Sieroslawska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland
| |
Collapse
|
58
|
Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, Azqueta A, Gerić M, Stopper H, Cabêda J, Tonin FS, Collins A. The Comet Assay as a Tool in Human Biomonitoring Studies of Environmental and Occupational Exposure to Chemicals-A Systematic Scoping Review. TOXICS 2024; 12:270. [PMID: 38668493 PMCID: PMC11054096 DOI: 10.3390/toxics12040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1172 Copenhagen, Denmark;
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain;
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - José Cabêda
- Guarda Nacional Republicana, Destacamento Territorial de Vila Franca de Xira, Núcleo de Proteção Ambiental, 1500-124 Lisbon, Portugal;
| | - Fernanda S. Tonin
- Pharmaceutical Care Research Group, Universidad de Granada, 18012 Granada, Spain;
| | - Andrew Collins
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| |
Collapse
|
59
|
Korolev VA, Felker EV, Yachmeneva LA, Babkina LA, Azarova YA, Churilin MI, Milova AI. Dynamics of the content of reactive oxygen species and the state of the glutathione system in the oral cavity during subchronic intoxication wuth the fungicide thiram and its antioxidant correction. BIOMEDITSINSKAIA KHIMIIA 2024; 70:73-82. [PMID: 38711406 DOI: 10.18097/pbmc20247002073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.
Collapse
Affiliation(s)
- V A Korolev
- Kursk State Medical University, Kursk, Russia
| | - E V Felker
- Kursk State Medical University, Kursk, Russia
| | | | - L A Babkina
- Kursk State Medical University, Kursk, Russia
| | - Y A Azarova
- Kursk State Medical University, Kursk, Russia
| | | | - A I Milova
- Kursk State Medical University, Kursk, Russia
| |
Collapse
|
60
|
Villareal LB, Xue X. The emerging role of hypoxia and environmental factors in inflammatory bowel disease. Toxicol Sci 2024; 198:169-184. [PMID: 38200624 PMCID: PMC10964750 DOI: 10.1093/toxsci/kfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
61
|
Ma P, Gao H, Shen N, Zhang L, Zhang Y, Zheng K, Xu B, Qin J, He J, Xu T, Li Y, Wu J, Yuan Y, Xue B. Association of urinary chlorpyrifos, paraquat, and cyproconazole levels with the severity of fatty liver based on MRI. BMC Public Health 2024; 24:807. [PMID: 38486191 PMCID: PMC10941454 DOI: 10.1186/s12889-024-18129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The objective of this study was to detect the urinary levels of chlorpyrifos, paraquat, and cyproconazole in residents living in Fuyang City and to analyze the correlation between these urinary pesticides levels and the severity of fatty liver disease (FLD). METHODS All participants' fat fraction (FF) values were recorded by MRI (Magnetic resonance imaging). First-morning urine samples were collected from 53 participants from Fuyang Peoples'Hospital. The levels of three urinary pesticides were measured using β-glucuronidase hydrolysis followed by a. The results were analyzed by using Pearson correlation analysis and binary logistic regression analysis to reveal the correlation between three urinary pesticides and the severity of fatty liver. RESULTS 53 individuals were divided into 3 groups based on the results from MRI, with 20 cases in the normal control group, 16 cases in the mild fatty liver group, and 17 cases in the moderate and severe fatty liver group. Urinary chlorpyrifos level was increased along with the increase of the severity of fatty liver. Urinary paraquat level was significantly higher both in the low-grade fatty liver group and moderate & serve grade fatty liver group compared with the control group. No significant differences in urinary cyproconazole levels were observed among the three groups. Furthermore, urinary chlorpyrifos and paraquat levels were positively correlated with FF value. And chlorpyrifos was the risk factor that may be involved in the development of FLD and Receiver Operating Characteristic curve (ROC curve) analysis showed that chlorpyrifos and paraquat may serve as potential predictors of FLD. CONCLUSION The present findings indicate urinary chlorpyrifos and paraquat were positively correlated with the severity of fatty liver. Moreover, urinary chlorpyrifos and paraquat have the potential to be considered as the predictors for development of FLD. Thus, this study may provide a new perspective from the environmental factors for the diagnosis, prevention, and treatment of FLD.
Collapse
Affiliation(s)
- Peiqi Ma
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Hongliang Gao
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
- School of Clinical Medicine, Wannan Medical College, 241000, Wuhu, China
| | - Ning Shen
- China Exposomics Institute (CEI) Precision Medicine Co. Ltd, 200120, Shanghai, China
| | - Lei Zhang
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Yang Zhang
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 211100, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210029, Nanjing, China
| | - Tao Xu
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Li
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Jing Wu
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Yushan Yuan
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China.
| | - Bin Xue
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, 213003, Changzhou, China.
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
62
|
Zhao F, Lin L, Zhao Y, Wu J, Zhu J, Zhang T, Tan H. Developmental toxicity and metabolomics analyses of zebrafish (Danio rerio) embryos exposed to Fenoxaprop-p-ethyl. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20399-20408. [PMID: 38374504 DOI: 10.1007/s11356-024-32507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Fenoxaprop-p-ethyl (FEN) is an aryloxy phenoxy propionate herbicide that has been widely used in paddy fields. Previous studies have indicated that FEN is highly toxic to aquatic organisms, but little is known about the developmental effects of FEN. This study investigated acute and developmental toxicity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and metabolomic analyses in zebrafish embryos after 96 h of exposure. FEN exhibited high acute toxicity to zebrafish embryos and larvae. Exposure to FEN could reduce heartbeat and hatching rates and increase malformation rates in embryos. Oxidative damage was also caused in embryos. The results of metabolomics analysis showed that 102 differentially abundant metabolites were found in zebrafish embryos in the 0.05 mg/L FEN treatment group, and 60 differentially abundant metabolites were found in the 0.20 mg/L FEN treatment group. These differentially abundant metabolites mainly belonged to 9 metabolic pathways, of which folate pathways and ABC transport protein pathways had the greatest impact. These results suggested that FEN induced high acute and developmental toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Lu Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Yihao Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Jingjing Wu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Tengfei Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
63
|
Küçükler S, Çelik O, Özdemir S, Aydın Ş, Çomaklı S, Dalkılınç E. Effects of rutin against deltamethrin-induced testicular toxicity in rats: Biochemical, molecular, and pathological studies. Food Chem Toxicol 2024; 186:114562. [PMID: 38432437 DOI: 10.1016/j.fct.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Orhan Çelik
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Elif Dalkılınç
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
64
|
Ngin P, Haglund P, Proum S, Fick J. Pesticide screening of surface water and soil along the Mekong River in Cambodia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169312. [PMID: 38104830 DOI: 10.1016/j.scitotenv.2023.169312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Widespread use of pesticides globally has led to serious concerns about environmental contamination, particularly with regard to aquatic and soil ecosystems. This work involved investigating concentrations of 64 pesticides in surface-water and soil samples collected in four provinces along the Mekong River in Cambodia during the dry and rainy seasons (276 samples in total), and conducting semi-structured interviews with local farmers about pesticide use. Furthermore, an ecological risk assessment of the detected pesticides was performed. In total, 56 pesticides were detected in surface water and 43 in soil, with individual pesticides reaching maximum concentrations of 1300 ng/L in the surface-water samples (tebufenozide) and 1100 ng/g dry weight in the soil samples (bromophos-ethyl). The semi-structured interviews made it quite evident that the instructions that farmers are provided regarding the use of pesticides are rudimentary, and that overuse is common. The perceived effect of pesticides was seen as an end-point, and there was a limited process of optimally matching pesticides to pests and crops. Several pesticides were used regularly on the same crop, and the period between application and harvest varied. Risk analysis showed that bromophos-ethyl, dichlorvos, and iprobenfos presented a very high risk to aquatic organisms in both the dry and rainy seasons, with risk quotient values of 850 for both seasons, and of 67 in the dry season and 78 in the rainy season for bromophos-ethyl, and 49 in the dry season and 16 in the rainy season for dichlorvos. Overall, this work highlights the occurrence of pesticide residues in surface water and soil along the Mekong River in Cambodia, and emphasizes the urgent need for monitoring and improving pesticide practices and regulations in the region.
Collapse
Affiliation(s)
- Putheary Ngin
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia.
| | - Peter Haglund
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sorya Proum
- Department of Chemistry, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
65
|
Liu J, Tian Z, Li R, Ni S, Sun H, Yin F, Li Z, Zhang Y, Li Y. Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene ( PxGSTs1) in the Resistance Evolution to Multiple Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2560-2572. [PMID: 38261632 DOI: 10.1021/acs.jafc.3c09458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The overexpression of insect detoxification enzymes is a typical adaptive evolutionary strategy for insects to cope with insecticide pressure. In this study, we identified a glutathione S-transferase (GST) gene, PxGSTs1, that exhibited pronounced expression in the field-resistant population of Plutella xylostella. By using RNAi (RNA interference), the transgenic fly models, and quantitative real-time polymerase chain reaction (RT-qPCR) methods, we confirmed that the augmented expression of PxGSTs1 mediates the resistance of P. xylostella to various types of insecticides, including chlorantraniliprole, novaluron, λ-cyhalothrin, and abamectin. PxGSTs1 was found to bolster insecticide resistance in two ways: direct detoxification and enhancing antioxidative defenses. In addition, our findings demonstrated that pxy-miR-8528a exerts a pivotal influence on forming insecticide resistance in P. xylostella by downregulating PxGSTs1 expression. In summary, we elucidated the multifaceted molecular and biochemical underpinnings of PxGSTs1-driven insecticide resistance in P. xylostella. Our results provide a new perspective for understanding the insecticide resistance mechanism of P. xylostella.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujun Ni
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Yin
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Zhenyu Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
66
|
Chernyshova EV, Potanina DV, Sadovnikova IS, Krutskikh EP, Volodina DE, Samoylova NA, Gureev AP. The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice. BIOMEDITSINSKAIA KHIMIIA 2024; 70:41-51. [PMID: 38450680 DOI: 10.18097/pbmc20247001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A P Gureev
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
67
|
Mekuria AN, Nedi T, Gong YY, Abula T, Engidawork E. Liver Cirrhosis of Unknown Etiology and Its Predictors in Eastern Ethiopia. Risk Manag Healthc Policy 2024; 17:225-232. [PMID: 38282786 PMCID: PMC10812135 DOI: 10.2147/rmhp.s425954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Background The global burden of liver cirrhosis is increasing, with 2.1 million incident cases and nearly 1.5 million deaths in 2019. Despite the enormous progress in our understanding of the etiology of liver cirrhosis, significant cases of the disease have been reported in Eastern Ethiopia due to unidentified causes. Hence, this study aimed to identify predictors of liver cirrhosis of unknown etiology in Eastern Ethiopia. Methods A score of 7 out of 11 possible points on the ultrasound-based cirrhosis scale was used as a diagnostic criterion to include 127 liver cirrhosis patients. The study participants' demographic, dietary, lifestyle, and clinical data were gathered using a structured questionnaire and standardized reporting forms. The associations between the outcome (known and unknown etiology) and independent variables were modeled using binary logistic regression analysis. Results The etiology of liver cirrhosis was known in only 23% of patients and attributed to hepatitis B virus (21%), hepatitis C virus (0.8%), and alcohol abuse (0.8%). Sorghum consumption as a staple food (adjusted odds ratio (AOR) =3.8; 95% CI: 1.2, 12.5), splenomegaly (AOR = 4.0; 95% CI: 1.1, 14.4), and a family history of liver disease (AOR = 0.24; 95% CI: 0.06, 0.91) were significantly associated with liver cirrhosis of unknown etiology. Conclusion Sorghum consumption was found to be the determinant factor of liver cirrhosis of unknown etiology, suggesting it as a possible source of exposure to aflatoxin B1.
Collapse
Affiliation(s)
- Abraham Nigussie Mekuria
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Nedi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Teferra Abula
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
68
|
Liang W, Feng X, Su W, Zhong L, Li P, Wang H, Li T, Ruan T, Jiang G. Suspect screening and effect evaluation for small-molecule agonists of the antioxidant response element pathway in fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168266. [PMID: 37952677 DOI: 10.1016/j.scitotenv.2023.168266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Oxidative stress is an important mechanism by which fine particulate matter (PM2.5) generates toxicity. However, few inducers have been identified, and the combined effects of the contributing chemicals have rarely been examined. In this study, the occurrence of small-molecule agonists of the antioxidant response element (ARE) pathway was explored in 59 PM2.5 samples from urban Beijing over a one-year period via target and suspect screening analysis. In total, 31 chemicals with diverse structures and use categories were identified and quantified, among which polycyclic aromatic hydrocarbons (PAHs), pesticides, and phytochemicals were the most abundant chemical groups in terms of cumulative concentrations. PAHs and organonitrogen pesticides were also prioritized as the predominant contributors to the cumulative effect of ARE pathway activation, accounting for 55 % and 37 %, respectively. A combination of the prioritized chemicals (i.e., benzo[b]fluoranthene, benzo[k]fluoranthene, pyridaben, and acetochlor) was mixed at a fixed dosing ratio according to the measured average concentrations in samples, and synergism was revealed as the mode of mixture interaction. These findings highlight the importance of high-throughput chemical screening for identifying hazardous components in complex environmental samples, and also expand the knowledge regarding the components contributing to PM2.5-induced oxidative stress.
Collapse
Affiliation(s)
- Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
69
|
Farder-Gomes CF, Grella TC, Malaspina O, Nocelli RFC. Exposure to sublethal concentrations of imidacloprid, pyraclostrobin, and glyphosate harm the behavior and fat body cells of the stingless bee Scaptotrigona postica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168072. [PMID: 37879468 DOI: 10.1016/j.scitotenv.2023.168072] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Pesticide use in agriculture threatens non-target insects such as bees. Considering the ecological and economic relevance of native bees, such as Scaptotrigona postica, and the insufficient studies on the effects of pesticides on their behavior and physiology, improving the current knowledge on this issue is essential. Therefore, this study investigated the sublethal effects of imidacloprid, pyraclostrobin, and glyphosate on the behavior and fat body cells of S. postica. Pesticide ingestion decreased the walking distance and mean velocity of bees compared to the control and solvent control groups. The oenocytes of the control groups were spherical, with central nuclei containing decondensed chromatin, and the trophocytes presented irregular morphology, with cells varying in shape and the cytoplasm filled with vacuoles and granules. However, bees exposed to pesticides showed extensive cytoarchitectural disruption in the fat body, such as vacuolization and shape changes in oenocytes and altered nuclei morphology in trophocytes. Moreover, pesticide exposure increased the number of atypical oenocytes and altered trophocytes, except for the PYR group, which showed a lower number of atypical oenocytes. Caspase-positive labeling significantly increased in all exposed bee groups. Alternatively, TLR4 labeling was significantly decreased in the exposed groups compared to the control groups. There was a significant increase in HSP90 immunolabeling in all exposed groups compared to the control. These findings reinforce the importance of research on the sublethal effects of low pesticide concentrations on key neotropical pollinators and prove that these toxic substances can impair their detoxification and immune defense.
Collapse
Affiliation(s)
- Cliver Fernandes Farder-Gomes
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| | - Tatiane Caroline Grella
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP) - "Júlio de Mesquita Filho", Instituto de Biociências (IB), Departamento de Biologia Geral e Aplicada, Rio Claro, SP 13506-900, Brazil.
| | - Roberta Ferreira Cornélio Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos Campus Araras, Araras, SP 13.600-970, Brazil.
| |
Collapse
|
70
|
Kou Y, Chen Y, Feng T, Chen L, Wang H, Sun N, Zhao S, Yang T, Jiao W, Feng G, Fan H, Zhao Y. Glufosinate-ammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:148-155. [PMID: 37676913 DOI: 10.1002/tox.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.
Collapse
Affiliation(s)
- Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tongtong Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Luomeng Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
71
|
Javed H, Meeran MFN, Jha NK, Ashraf GM, Ojha S. Sesamol: A Phenolic Compound of Health Benefits and Therapeutic Promise in Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:797-809. [PMID: 38141184 DOI: 10.2174/0115680266273944231213070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/25/2023]
Abstract
Sesamol, one of the key bioactive ingredients of sesame seeds (Sesamum indicum L.), is responsible for many of its possible nutritional benefits. Both the Chinese and Indian medical systems have recognized the therapeutic potential of sesame seeds. It has been shown to have significant therapeutic potential against oxidative stress, inflammatory diseases, metabolic syndrome, neurodegeneration, and mental disorders. Sesamol is a benign molecule that inhibits the expression of inflammatory indicators like numerous enzymes responsible for inducing inflammation, protein kinases, cytokines, and redox status. This review summarises the potential beneficial effects of sesamol against neurological diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Recently, sesamol has been shown to reduce amyloid peptide accumulation and attenuate cognitive deficits in AD models. Sesamol has also been demonstrated to reduce the severity of PD and HD in animal models by decreasing oxidative stress and inflammatory pathways. The mechanism of sesamol's pharmacological activities against neurodegenerative diseases will also be discussed in this review.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
72
|
Parker W, Anderson LG, Jones JP, Anderson R, Williamson L, Bono-Lunn D, Konsoula Z. The Dangers of Acetaminophen for Neurodevelopment Outweigh Scant Evidence for Long-Term Benefits. CHILDREN (BASEL, SWITZERLAND) 2023; 11:44. [PMID: 38255358 PMCID: PMC10814214 DOI: 10.3390/children11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Based on available data that include approximately 20 lines of evidence from studies in laboratory animal models, observations in humans, correlations in time, and pharmacological/toxicological considerations, it has been concluded without reasonable doubt and with no evidence to the contrary that exposure of susceptible babies and children to acetaminophen (paracetamol) induces many, if not most, cases of autism spectrum disorder (ASD). However, the relative number of cases of ASD that might be induced by acetaminophen has not yet been estimated. Here, we examine a variety of evidence, including the acetaminophen-induced reduction of social awareness in adults, the prevalence of ASD through time, and crude estimates of the relative number of ASD cases induced by acetaminophen during various periods of neurodevelopment. We conclude that the very early postpartum period poses the greatest risk for acetaminophen-induced ASD, and that nearly ubiquitous use of acetaminophen during early development could conceivably be responsible for the induction in the vast majority, perhaps 90% or more, of all cases of ASD. Despite over a decade of accumulating evidence that acetaminophen is harmful for neurodevelopment, numerous studies demonstrate that acetaminophen is frequently administered to children in excess of currently approved amounts and under conditions in which it provides no benefit. Further, studies have failed to demonstrate long-term benefits of acetaminophen for the pediatric population, leaving no valid rationale for continued use of the drug in that population given its risks to neurodevelopment.
Collapse
Affiliation(s)
- William Parker
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
- WPLab, Inc., Durham, NC 27707, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | - Lauren Williamson
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA;
| | - Dillan Bono-Lunn
- Department of Public Policy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | | |
Collapse
|
73
|
Batista NR, Farder-Gomes CF, Nocelli RCF, Antonialli-Junior WF. Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166823. [PMID: 37683853 DOI: 10.1016/j.scitotenv.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Several studies have investigated the consequences of exposure to neonicotinoids in honeybees. Given the lack of studies concerning the consequences of exposure of social wasps to neonicotinoids, as well as the ecological importance of these insects, the objective of this study was to test the hypothesis that chronic exposure to sublethal concentrations of thiamethoxam decreases survival and mobility by causing damage to the brain and midgut of the social wasp Polybia paulista. The wasps were exposed to different concentrations of thiamethoxam, in order to obtain the mean lethal concentration (LC50), which was used as a reference for calculation of two sublethal concentrations (LC50/100 and LC50/10) employed in subsequent experiments. To calculate survival, groups of exposed (EW) and unexposed (UW) wasps were monitored until death, allowing calculation of the average lethal time. The EW and UW groups were evaluated after 12, 24, 48, and 72 h of exposure, considering their mobility and histopathological parameters of the midgut and brain. A lesion index based on semiquantitative analyses was used for comparison of histopathological damage. The results demonstrated that exposure to the LC50/10 led to a significantly shorter survival time of the P. paulista workers, compared to unexposed wasps. In addition, both sublethal concentrations decreased mobility and caused damage to the intestine (loss of brush border, presence of spherocrystals, loss of cytoplasmic material, and pyknosis) and the brain (loss of cell contact and pyknosis), regardless of the exposure time. The findings showed that, like bees, social wasps are nontarget insects susceptible to the detrimental consequences of neonicotinoid use, with exposure leading to impaired survival, locomotion, and physiology.
Collapse
Affiliation(s)
- Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Cliver Fernandes Farder-Gomes
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
74
|
Tousson E, Shalaby SY, El-Gharbawy DM, Akela MA, Rabea M, Kandil EH. Impact of Coriandrum sativum seeds extract on albino rats' testicular toxicity caused by carbendazim. Toxicol Res (Camb) 2023; 12:1152-1158. [PMID: 38145095 PMCID: PMC10734600 DOI: 10.1093/toxres/tfad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background A broad spectrum carbamate fungicide called carbendazim (Carb) is used to combat a number of different fungal diseases. One of the extensively utilized medicinal plants in oriental countries is Coriandrum sativum. Aim In the current study, the impact of C. sativum seeds extract (CSE) on albino rats' testicular toxicity caused by carbendazim was investigated. Materials and methods A total of 50 male albino rats were classified into 5 groups [Gp1, Control Gp; Gp2, Coriandrum Gp (CSE); Gp 3, carbendazim Gp (Carb); Gp 4, Co treated CSE with Carb (CSE + Carb); Gp 5, Post treated Carb with CSE (Carb + CSE)]. Results Carb induced elevation in serum LH. FSH, testicular malondialdehyde (MDA), testicular nitric oxide (NO) markers and testicular injury and it reduced serum testosterone, testicular glutathione (GSH), testicular catalase and PCNA. Treatments of Carb with CSE (CSE + Carb and/or Carb + CSE) improved these parameters and reduced testicular toxicity with best results for Carb + CSE than CSE + Carb. Conclusions The above findings revealed that; Carb induced testicular toxicity and it supported the hypothesis that the antioxidant characteristics of one or more of CSE constituents can reduce the testicular toxicity of Carb.
Collapse
Affiliation(s)
- Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Somaya Y Shalaby
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Doaa M El-Gharbawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mohamed A Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Rabea
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Eman H Kandil
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| |
Collapse
|
75
|
Nejati R, Nematollahi A, Doraghi HK, Sayadi M, Alipanah H. Probiotic bacteria alleviate chlorpyrifos-induced rat testicular and renal toxicity: A possible mechanism based on antioxidant and anti-inflammatory activity. Basic Clin Pharmacol Toxicol 2023; 133:743-756. [PMID: 37732939 DOI: 10.1111/bcpt.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Chlorpyrifos (CPF) has caused many potential toxicities in nontarget organisms. Fewer studies have been conducted on the effects of lactic acid bacteria (LAB) in mitigating tissue damage induced by CPF in vivo. Therefore, we investigated CPF renal and testicular toxicity and the alleviating effect of probiotic lactobacilli, based on antioxidant and anti-inflammatory activity, on induced toxicity in an animal model. Biochemical assays showed that CPF induced oxidative stress along with a change in superoxide dismutase (SOD) and catalase (CAT) activity in a tissue-dependent manner. After treatment with CPF, testicular and renal levels of TNF-α were significantly reduced and enhanced, respectively, compared to the control group. The probiotic treatment restored renal and testicular TNF-α levels and modulated and blocked the increasing effect of CPF on renal IL-1β levels. Testicular IL-1β levels in the probiotic-treated and CPF groups demonstrated similar values. Exposure to CPF significantly induced renal histopathological damage that, of course, was completely inhibited by treatment with Lactobacillus casei and the LAB mixture. In summary, CPF showed significant toxicological effects on oxidative stress and the inflammation rate in CPF-exposed rats. Therefore, supplementation with probiotic bacteria may alleviate CPF renal toxicity and mitigate its oxidative stress and inflammation effects.
Collapse
Affiliation(s)
- Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
76
|
Kaur K, Kaur R. Polymorphisms in ERCC1, ERCC4 and ERCC5 genes as biomarkers of susceptibility for pesticide-induced DNA damage in North-West Indian agricultural workers. Biomarkers 2023; 28:672-679. [PMID: 37962435 DOI: 10.1080/1354750x.2023.2284109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Occupational pesticides exposure has raised health concerns due to genotoxicity and accumulation of DNA damage. Polymorphisms in genes encoding enzymes involved in nucleotide excision repair (NER) may affect the individual's susceptibility to pesticide toxicity. METHODS This study evaluates the association of excision repair cross complementation group 1 (ERCC1) (8092 C > A, 3'UTR, rs3212986) and ERCC1 (19007 C > T, Asn118Asn, rs11615), ERCC4 (1244 G > A, Arg415Gln, rs1800067) and ERCC5 (3507 G > C, Asp1104His, rs17655) polymorphisms with pesticide-induced DNA damage in North-West Indian agricultural workers. The study population comprised 225 agricultural workers exposed to pesticides and 225 non-exposed controls. RESULTS Our study demonstrate that exposed workers carrying variant ERCC1 8092AA genotype showed higher total comet DNA migration (p = 0.015) as well as increased frequency of cells showing DNA migration (p = 0.027). Exposed agricultural workers with variant ERCC4 1244AA (415Gln/Gln) and ERCC5 3507CC (1104His/His) genotypes exhibited elevation in total comet DNA migration (p < 0.01). However, genotypes of ERCC1 19007 C > T (Asn118Asn) showed no association with total comet DNA migration (p = 0.963), frequency of cells showing DNA migration (p = 0.423) as well as mean tail length (p = 0.432). CONCLUSION ERCC1, ERCC4 and ERCC5 polymorphisms influence DNA damage and can be used as biomarkers of susceptibility for pesticide-induced DNA damage in North-West Indian agricultural workers.
Collapse
Affiliation(s)
- Karashdeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
- Viral Research and Diagnostic Laboratory (VRDL) of Government Medical College, Patiala, India
| | - Rupinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| |
Collapse
|
77
|
Özdemir S, Aydın Ş, Laçin BB, Arslan H. Identification and characterization of long non-coding RNA (lncRNA) in cypermethrin and chlorpyrifos exposed zebrafish (Danio rerio) brain. CHEMOSPHERE 2023; 344:140324. [PMID: 37778644 DOI: 10.1016/j.chemosphere.2023.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Pesticides, such as cypermethrin (CYP) and chlorpyrifos (CPF), are widely used around the world and are known to cause toxicological effects in the brains of fish and other non-target organisms. Long non-coding RNAs (LncRNAs) are a new class of non-coding RNAs that are highly expressed in the brain and play crucial roles in brain function by regulating gene expression. Many studies have investigated the toxic effects of CYP and CPF on the brain. However, no study has been conducted on the relationship between LncRNAs and the toxicity caused by these chemicals. Therefore, this study aimed to determine changes in the lncRNA expression profile in the brains of fish exposed to CYP and CPF. Out of a total of 482 lncRNAs that were differentially expressed between control and CPF groups, 53 were found to be up-regulated, and 429 were down-regulated. Similarly, among the 200 lncRNAs differentially expressed between the control and CYP groups, 71 were up-regulated, and 129 were down-regulated. Additionally, 268 differentially expressed lncRNAs were identified between CYP and CPF groups, with 240 being up-regulated and the rest being down-regulated. In addition, LncRNAs expressed from fish brains exposed to CYP and CPF were found to regulate multiple signaling pathways, including MAPK, FoxO, PPAR, TGF-β, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Batuhan Laçin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Harun Arslan
- Atatürk University, Faculty of Fisheries, Department of Basic Science, Erzurum, Turkey
| |
Collapse
|
78
|
Makame KR, Masese SN, Ádám B, Nagy K. Oxidative Stress and Cytotoxicity Induced by Co-Formulants of Glyphosate-Based Herbicides in Human Mononuclear White Blood Cells. TOXICS 2023; 11:976. [PMID: 38133378 PMCID: PMC10748038 DOI: 10.3390/toxics11120976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The use of genetically modified, glyphosate-resistant crops has led to the widespread application of glyphosate-based herbicides (GBHs), making them one of the most widely used herbicide formulations on the market. To enhance the efficacy of the active ingredient, GBHs used in practice often contain other ingredients marked as inert "adjuvants" or "co-formulants", the toxic properties of which are poorly understood. The objective of this study was to compare the cytotoxic effects of pure glyphosate, three GBHs (Roundup Mega, Fozat 480 and Glyfos) and two co-formulants commonly used in GBHs as assessed via CCK-8 assay, and the extent of their potential oxidative damage as assessed via superoxide dismutase (SOD) assay, in order to reveal the role of adjuvants in the toxicity of the formulations. Our results showed that glyphosate alone did not significantly affect cell viability. In contrast, GBHs and adjuvants induced a pronounced cytotoxic effect from a concentration of 100 μM. SOD activity of cells treated with GBHs or adjuvants was significantly lower compared to cells treated with glyphosate alone. This suggests that the adjuvants in GBHs are responsible for the cytotoxic effects of the formulations through the induction of oxidative stress.
Collapse
Affiliation(s)
- Khadija Ramadhan Makame
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Sylvia Nyambeki Masese
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Károly Nagy
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
| |
Collapse
|
79
|
Hu F, Li W, Wang H, Peng H, He J, Ding J, Zhang W. Environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) induce hepatotoxicity in zebrafish (Danio rerio): a whole life-cycle assessment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1421-1433. [PMID: 37950834 DOI: 10.1007/s10695-023-01265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a typical organophosphate flame retardant, is of increasingly great concern considering their ubiquitous presence in aquatic environments and potential ecotoxicity. The present work was aimed to investigate the potential growth inhibition and hepatic stress induced by whole life-cycle exposure to TCEP (0.8, 4, 20 and 100 μg/L) in zebrafish. The results revealed that the body length, body mass and hepatic-somatic index (HSI) of zebrafish were significantly declined after exposure to TCEP for 120 days. GPx activity and GSH content were increased in the liver of zebrafish treated with low concentrations (0.8 and 4 μg/L) of TCEP, while exposure to high concentrations (20 and 100 μg/L) of TCEP reduced antioxidative capacity and elevated lipid peroxidation (LPO) levels. Gene transcription analysis demonstrated that the mRNA levels of nrf2 were altered in a similar manner to the transcription of the downstream genes nqo1 and hmox1, suggesting that Nrf2-Keap1 pathway mediated TCEP-induced oxidative stress in zebrafish liver. In addition, TCEP exposure might alleviate inflammatory response through down-regulating transcription of inflammatory cytokines (il-1β, il-6 and inos), and induce apoptosis via activating the p53-Bax pathway. Moreover, whole life-cycle exposure to TCEP caused a series of histopathological anomalies in zebrafish liver. Overall, our results revealed that lifetime exposure to environmentally relevant concentrations of TCEP could result in growth retardation and induce significant hepatotoxicity in zebrafish.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
80
|
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105707. [PMID: 38072560 DOI: 10.1016/j.pestbp.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that H2O2, GSH, and MDA contents and antioxidant enzyme activities of H. armigera were enhanced after chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad exposure. Silencing CncC by RNA interference significantly down-regulated the expression levels of CYP9A14 and CYP6AE11, and increased the susceptibility of dsRNA-injected larvae to λ-cyhalothrin, chlorantraniliprole, and cyantraniliprole. On the contrary, applying CncC agonist curcumin on H. armigera induced the expression of CYP9A14 and CYP6AE11, and enhanced the tolerance of H. armigera to insecticides. Treatment of ROS scavenger N-acetylcysteine on H. armigera reduced the H2O2 content and antioxidant enzyme activities, suppressed the transcripts of CncC, CYP9A14, and CYP6AE11, and decreased the larval tolerance to insecticides. These results demonstrated that the induced-expression of CYP9A14 and CYP6AE11 related with insecticides tolerance in H. armigera was regulated by CncC, which may be activated by ROS generated by insecticides. This study will help to better understand the underlying regulation mechanisms of CncC pathway in H. armigera tolerance to insecticides.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
81
|
Xu X, Yu Y, Ling M, Ares I, Martínez M, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress and mitochondrial damage in lambda-cyhalothrin toxicity: A comprehensive review of antioxidant mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122694. [PMID: 37802283 DOI: 10.1016/j.envpol.2023.122694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Lambda-cyhalothrin, also known as cyhalothrin, is an efficient, broad-spectrum, quick-acting pyrethroid insecticide and acaricide and the most powerful pyrethroid insecticide in the world. However, there is increasing evidence that lambda-cyhalothrin is closely related to a variety of toxicity drawbacks (hepatotoxicity, nephrotoxicity, neurotoxicity and reproductive toxicity, among others) in non-target organisms, and oxidative stress seems to be the main mechanism of toxicity. This manuscript reviews the oxidative and mitochondrial damage induced by lambda-cyhalothrin and the signalling pathways involved in this process, indicating that oxidative stress occupies an important position in lambda-cyhalothrin toxicity. The mechanism of antioxidants to alleviate the toxicity of lambda-cyhalothrin is also discussed. In addition, the metabolites of lambda-cyhalothrin and the major metabolic enzymes involved in metabolic reactions are summarized. This review article reveals a key mechanism of lambda-cyhalothrin toxicity-oxidative damage and suggests that the use of antioxidants seems to be an effective method for preventing toxicity.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yixin Yu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Ling
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| |
Collapse
|
82
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for Protein Adductomics on a 3D Human Brain Tumor Neurospheroid Culture Model: The Identification of Adduct Formation in Calmodulin-Dependent Protein Kinase-2 and Annexin-A1 Induced by Pesticide Mixture. J Proteome Res 2023; 22:3811-3832. [PMID: 37906427 PMCID: PMC10696604 DOI: 10.1021/acs.jproteome.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as putative toxicity biomarkers with high accuracy, facilitated by recent advances in proteomic methodologies and a mass spectrometry high-throughput technique. The present study aims to predict the potential neurotoxicity effect of imidacloprid and λ-cyhalothrin insecticides on human neural cells. Our protocol consisted first of 3D in vitro developing neurospheroids derived from human brain tumors and then treatment by pesticide mixture. Furthermore, we adopted a bottom-up proteomic-based approach using nanoflow ultraperformance liquid chromatography coupled with a high-resolution mass spectrometer for protein-adduct analysis with prediction of altered sites. Two proteins were selected, namely, calcium-calmodulin-dependent protein kinase-II (CaMK2) and annexin-A1 (ANXA1), as key targets endowed with primordial roles. De novo sequencing revealed several adduct formations in the active site of 82-ANXA1 and 228-CaMK2 as a result of neurotoxicity, predicted by the added mass shifts for the structure of electrophilic precursors. To the best of our knowledge, our study is the first to adopt a proteomic-based approach to investigate in depth pesticide molecular interactions and their potential to adduct proteins which play a crucial role in the neurotoxicity mechanism.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
| | - Rania Zribi
- Higher
Institute of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, Tunis 1005, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| |
Collapse
|
83
|
de Araujo LG, Zordan DF, Celzard A, Fierro V. Glyphosate uses, adverse effects and alternatives: focus on the current scenario in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9559-9582. [PMID: 37776469 DOI: 10.1007/s10653-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Brazil, a global frontrunner in pesticide consumption and sales, particularly glyphosate, appears to be at odds with other countries that increasingly ban these products in their territories. This study gathers the values of Acceptable Daily Intake and Maximum Residue Limits (MRL) in the European Union for dozens of substances and subsequently contrasts them with the corresponding benchmarks upheld in Brazil concerning its predominant crops. Furthermore, this study delves into the toxicity levels and the potential health ramifications of glyphosate on humans through the ingestion of food containing its residues. The findings from this research underscore a notable surge in glyphosate and pesticide sales and usage within Brazil over the past decade. In stark contrast to its European counterparts, Brazil not only sanctioned the sale and application of 474 new pesticides in 2019, but extended the authorization for glyphosate sales while downgrading its toxicity classification. Finally, this review not only uncovers disparities among research outcomes but also addresses the complexities of replacing glyphosate and introduces environmentally friendlier alternatives that have been subject to evaluation in the existing literature.
Collapse
Affiliation(s)
| | | | - Alain Celzard
- Institut Jean Lamour, Université de Lorraine, Epinal, France
- Institut Universitaire de France (IUF), Paris, France
| | - Vanessa Fierro
- Institut Jean Lamour, Université de Lorraine, Epinal, France.
| |
Collapse
|
84
|
Mufti A, Feriani A, Contreras MDM, Nehdi S, Hfaeidh N, Tlili N, Harrath AH. Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life (Basel) 2023; 13:2254. [PMID: 38137855 PMCID: PMC10745092 DOI: 10.3390/life13122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 mg/kg b.w.) significantly attenuated the nephrotoxicity in adult offspring induced by acephate. In fact, it decreased the levels of creatinine and uric acid and increased the albumin content compared to the intoxicated group. The in utero studies showed that E. alata inhibited the renal oxidative stress generated by acephate exposure by reducing lipid peroxidation and enhancing antioxidant biomarker activities (GSH, CAT, and SOD). The inhibition of DNA fragmentation and the improvement of the ultrastructural changes highlighted the prophylactic effect of E. alata in renal tissue. Additionally, the immunofluorescence study showed the upregulation of LC3 gene expression, suggesting the capacity of E. alata extract to stimulate autophagic processes as a protective mechanism. Molecular docking analysis indicated that hexadecasphinganine, the major compound in E. alata, has a higher affinity toward the Na+/K+-ATPase, epithelial sodium channel (ENaC), and sodium hydrogen exchanger 3 (NHE3) genes than acephate. Hexadecasphinganine could be considered a potential inhibitor of the activity of these genes and therefore exerted its preventive capacity. The obtained findings confirmed that E. alata seed extract exerted nephropreventive capacities, which could be related to its bioactive compounds, which possess antioxidant activities.
Collapse
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering and Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
| | - Saber Nehdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Najla Hfaeidh
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l’Environnement Borj Cédria, Université de Carthage, Hammam chat 2050, Ben Arous, Tunis 1073, Tunisia;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
85
|
Hasani M, Alinia SP, Khazdouz M, Sobhani S, Mardi P, Ejtahed HS, Qorbani M. Oxidative balance score and risk of cancer: a systematic review and meta-analysis of observational studies. BMC Cancer 2023; 23:1143. [PMID: 38001409 PMCID: PMC10675899 DOI: 10.1186/s12885-023-11657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The oxidative balance score (OBS) has been utilized to assess the overall pro- and antioxidant exposure status in various chronic diseases. The current meta-analysis was carried out to pool the association between OBS and the risk of cancer. METHODS We systematically searched the Web of Science, PubMed, Scopus, Embase, and Google Scholar up to August 2023. All observational studies which evaluated the association of OBS with the risk of cancers were included. There was no time of publication or language restrictions. Heterogeneity between studies was assessed using the Chi-square-based Q-test and the I2. A random-effects model meta-analysis was conducted to estimate the pooled effect sizes. Possible sources of heterogeneity were explored by subgroup and meta-regression analysis. RESULTS Totally, 15 studies (9 case-control and 6 cohorts) were eligible for meta-analysis. Random effect model meta-analysis of case-control studies showed that higher OBS significantly decreases the odds of cancers (pooled OR: 0.64, 95% CI: 0.54, 0.74). In the cohort studies, the association of OBS with the risk of cancers was not significant (pooled HR: 0.97, 95% CI: 0.80,1.18). The subgroup analysis showed that cancer type and gender were the potential sources of heterogeneity. CONCLUSION Our results show an inverse and significant association between higher OBS and odds of colorectal cancers in case-control and cohort studies. In the case of prostate cancer in cohort studies, our results did not align with the hypothesis. Considering the importance of diet and antioxidant balance in the conditions of malignancy, it is suggested to conduct more comprehensive studies with standard measurement methods to obtain conclusive results.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Maryam Khazdouz
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Mardi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Differential Proteome Profiling Analysis under Pesticide Stress by the Use of a Nano-UHPLC-MS/MS Untargeted Proteomic-Based Approach on a 3D-Developed Neurospheroid Model: Identification of Protein Interactions, Prognostic Biomarkers, and Potential Therapeutic Targets in Human IDH Mutant High-Grade Gliomas. J Proteome Res 2023; 22:3534-3558. [PMID: 37651309 PMCID: PMC10629271 DOI: 10.1021/acs.jproteome.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/02/2023]
Abstract
High-grade gliomas represent the most common group of infiltrative primary brain tumors in adults associated with high invasiveness, agressivity, and resistance to therapy, which highlights the need to develop potent drugs with novel mechanisms of action. The aim of this study is to reveal changes in proteome profiles under stressful conditions to identify prognostic biomarkers and altered apoptogenic pathways involved in the anticancer action of human isocitrate dehydrogenase (IDH) mutant high-grade gliomas. Our protocol consists first of a 3D in vitro developing neurospheroid model and then treatment by a pesticide mixture at relevant concentrations. Furthermore, we adopted an untargeted proteomic-based approach with high-resolution mass spectrometry for a comparative analysis of the differentially expressed proteins between treated and nontreated spheroids. Our analysis revealed that the majority of altered proteins were key members in glioma pathogenesis, implicated in the cellular metabolism, biological regulation, binding, and catalytic and structural activity and linked to many cascading regulatory pathways. Our finding revealed that grade-IV astrocytomas promote the downstream of the mitogen-activated-protein-kinases/extracellular-signal-regulated kinase (MAPK1/ERK2) pathway involving massive calcium influx. The gonadotrophin-releasing-hormone signaling enhances MAKP activity and may serve as a negative feedback compensating regulator. Thus, our study can pave the way for effective new therapeutic and diagnostic strategies to improve the overall survival.
Collapse
Affiliation(s)
- Kaouthar Louati
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
87
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
88
|
Kim M, Hong T, An G, Lim W, Song G. Toxic effects of benfluralin on zebrafish embryogenesis via the accumulation of reactive oxygen species and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109722. [PMID: 37597713 DOI: 10.1016/j.cbpc.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The dinitroaniline herbicide benfluralin is used weed control in conventional systems and poses a high risk of accumulation in aquatic systems. Previous studies have shown the toxic effects of benfluralin on non-target organisms; however, its developmental toxicity in vertebrates has not yet been reported. This study demonstrated the developmental toxicity of benfluralin and its mechanism of action, using zebrafish as an aquatic vertebrate model. Benfluralin induces morphological and physiological alterations in body length, yolk sac, and heart edema. We also demonstrated a reactive oxygen species (ROS) increase of approximately 325.53 % compared with the control group after 20 μM benfluralin-treatment. In addition, the malformation of the heart and vascular structures was identified using transgenic flk1:eGFP zebrafish models at 20 μM concentration benfluralin exposure. Moreover, benfluralin induced small livers, approximately 59.81 % of normal liver size, via abnormal development of the liver as observed in the transgenic L-fabp:dsRed zebrafish. Benfluralin also inhibits normal growth via abnormal expression of cell cycle regulatory genes and increases oxidative stress, inflammation, and apoptosis. Collectively, we elucidated the mechanisms associated with benfluralin toxicity, which lead to various abnormalities and developmental toxicities in zebrafish. Therefore, this study provides information on the parameters used to assess developmental toxicity in other aquatic organisms, such as herbicides, pesticides, and environmental contaminants.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
89
|
De Marco G, Eliso MC, Oliveri Conti G, Galati M, Billè B, Maisano M, Ferrante M, Cappello T. Short-term exposure to polystyrene microplastics hampers the cellular function of gills in the Mediterranean mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106736. [PMID: 37913686 DOI: 10.1016/j.aquatox.2023.106736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 μm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
90
|
Gasque-Belz L, Colville C, Kurukulasuriya S, Siciliano SD, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Characterization of molecular and apical effects of legacy-contaminated groundwater on early life stages of fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106734. [PMID: 37913685 DOI: 10.1016/j.aquatox.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Mechanistic toxicology approaches represent a promising alternative to traditional live animal testing; however, the often-noted uncertainties concerning the linkages between effects observed at molecular and apical levels curtails the adoption of such approaches. The objective of this study was to apply a novel transcriptomics tool, EcoToxChips, to characterize the effects of complex mixtures of contaminants in fish and to compare molecular response patterns to higher-level biological responses including swimming behavior, deformities, and mortality. Fathead minnow (FHM) embryos were exposed for seven days to increasing concentrations of groundwater collected from moderate (MIAZ) and high (HIAZ) industrial activity zones of a legacy contaminated site. There was a concentration-dependent disruption of photo-dependent swimming responses associated with avoidance behavior patterns and spinal deformities (HIAZ and MIAZ), and an induction of pericardial edema and mortality (HIAZ-10%). Parallel EcoToxChip analyses showed a shift from a majority of upregulated genes at lower concentrations to a majority of downregulated genes at higher concentrations for both treatment conditions. Many of the significantly differentially regulated genes were involved in biological pathways including induction of oxidative stress, activating of several metabolic processes and growth, cell death, and inhibition of signal transduction signaling processes. Several contaminants present in the groundwater mixtures could have contributed to an exceedance of antioxidant system capacities that possibly led to the deformities, altered swimming behaviours, and mortality observed in FHMs. Therefore, molecular response patterns could be linked to apical outcomes observed in this study. Overall, the results observed in this study demonstrate that transcriptomics approaches such as the EcoToxChip system could be supportive of risk assessment of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
91
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
92
|
Kaikai NE, Ba-M'hamed S, Ghanima A, Bennis M. Exposure to metam sodium-based pesticide impaired cognitive performances in adult mice: Involvement of oxidative damage and glial activation. Toxicol Appl Pharmacol 2023; 477:116677. [PMID: 37678439 DOI: 10.1016/j.taap.2023.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cognitive integrity is a critical aspect of neurological function, and a decline in cognitive function is a hallmark of neurotoxicity. Oxidative stress is a significant pathological feature contributing to cognitive deficits that can arise from exposure to environmental pollutants such as pesticides. Among these, Metam sodium-based pesticides (MS-BP) are an emergent type of pesticide widely used in the agriculture and public health sectors for controlling pests and diseases. Our prior research has shown that animals exposed to MS-BP during the early stages of brain development caused cognitive impairments. In the present study, we tested whether exposure to this compound in a fully matured brain would affect cognitive performance and induce oxidative damage to the central nervous system. In this context, adult mice received chronic treatment with increasing doses of MS-BP and subjected to a set of behavioral paradigms. Following behavioral assessment, oxidative stress and glial activation were evaluated. Our main findings showed that MS-BP chronic exposure impaired recognition and short- and long-term memory. These alterations were accompanied by increased superoxide dismutase activity and malondialdehyde level and a marked decrease in catalase activity in specific brain areas. Moreover, exposure to MS-BP is associated with a significant rise in the density of astrocytic and microglial markers, indicating a possible glial cell response within the prefrontal cortex and hippocampus. The present work demonstrated that MS-BP altered cognitive performance likely through oxidative damage to the brain.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco; Department of Biology, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health, Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco.
| |
Collapse
|
93
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
94
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
95
|
Cao X, Wei J, Ge H, Guan D, Li H, Zhang H, Zheng Y, Qian K, Wang J. Involvement of Glutamate Cysteine Ligase Genes in Tolerance to Emamectin Benzoate in Spodoptera frugiperda and Their Putative Regulatory Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13717-13728. [PMID: 37691233 DOI: 10.1021/acs.jafc.3c04392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
As the rate-limiting enzyme in de novo Glutathione (GSH) biosynthesis, the mammalian glutamate cysteine ligase (Gcl) catalytic (Gclc) and modifier (Gclm) subunits are regulated at multiple levels, whereas the function and regulatory mechanism of insect Gcl remain to be explored. In this study, we identified and characterized SfGclc and SfGclm in Spodoptera frugiperda. SfGclc and SfGclm were highly expressed in the hindgut and relatively less expressed in other tissues. The exposure of the third instar larvae to LC30 of emamectin benzoate (EMB) significantly reduced the GSH content with a concomitant upregulation of SfGclc and SfGclm. Further in vivo pretreatment with L-BSO, the Gcl inhibitor, increased the susceptibility of S. frugiperda to EMB. Consistently, overexpression of SfGclc and SfGclm increased the Sf9 cell viability under EMB treatment. Finally, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that SfGclc is regulated by transcription factor CncC. These data provide insights into the function and regulatory mechanism of insect Gcl, and they imply that disruption of the redox homeostasis might be a practical strategy to enhance the insecticidal activity of EMB and other insecticides.
Collapse
Affiliation(s)
- Xiaoli Cao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
96
|
Robea MA, Petrovici A, Ureche D, Nicoara M, Ciobica AS. Histopathological and Behavioral Impairments in Zebrafish ( Danio rerio) Chronically Exposed to a Cocktail of Fipronil and Pyriproxyfen. Life (Basel) 2023; 13:1874. [PMID: 37763278 PMCID: PMC10533071 DOI: 10.3390/life13091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Lately, the high incidence of pesticide usage has attracted everyone's interest due to the serious effects produced. Fipronil (FIP) is a phenylpyrazole compound that acts on the insect's GABA neurotransmitter by inhibiting its activity. Moreover, the literature reports highlight its implication in neurodevelopmental abnormalities and oxidative stress production in different organisms. Similarly, pyriproxyfen (PYR) is known to affect insect activity by mimicking the natural hormones involved in the maturation of the young insects. The aim of the present study was to investigate the impact of the mixture of these pesticides on the tissues and behavior of zebrafish. METHODS To assess the influence of this cocktail on zebrafish, three groups of animals were randomly selected and exposed to 0, 0.05, and 0.1 mg L-1 FIP and PYR mixture for five days. The fish were evaluated daily by the T-maze tests for locomotor activity and the light-dark test and recordings lasted four min. The data were quantified using the EthoVision software. RESULTS Our results indicated significant changes in locomotor activity parameters that showed increased levels following exposure to the mixture of FIP and PYR. On the other hand, the mixture also triggered anxiety in the zebrafish, which spent more time in the light area than in the dark area. In addition, mixture-induced histological changes were observed in the form of numerous hemosiderin deposits found in various zebrafish tissues. CONCLUSIONS The current findings indicate that the mixture of FIP and PYR can have considerable consequences on adult zebrafish and may promote or cause functional neurological changes in addition to histological ones.
Collapse
Affiliation(s)
- Madalina Andreea Robea
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania;
| | - Adriana Petrovici
- Department of Preclinics, University of Life Sciences, 700490 Iasi, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, 700490 Iasi, Romania
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine “Ion Ionescu de la Brad”, 700489 Iasi, Romania
| | - Dorel Ureche
- Faculty of Sciences, Department of Biology, Ecology and Environmental Protection, University “Vasile Alecsandri”, 600115 Bacau, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
97
|
Mo W, Li Q, He X, Lu Z, Xu H, Zheng X, Guo J, Lu Y, Wang S. Identification and characterization of Prx5 and Prx6 in Chilo suppressalis in response to environmental stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22030. [PMID: 37282754 DOI: 10.1002/arch.22030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.
Collapse
Affiliation(s)
- Wujia Mo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuping Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Technical Centre for Animal, Plant, and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| |
Collapse
|
98
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
99
|
Louati K, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Maalej A, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Research of Pesticide Metabolites in Human Brain Tumor Tissues by Chemometrics-Based Gas Chromatography-Mass Spectrometry Analysis for a Hypothetical Correlation between Pesticide Exposure and Risk Factor of Central Nervous System Tumors. ACS OMEGA 2023; 8:29812-29835. [PMID: 37599976 PMCID: PMC10433342 DOI: 10.1021/acsomega.3c04592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Pesticides are widely used, resulting in continuing human exposure with potential health impacts. Some exposures related to agricultural works have been associated with neurological disorders. Since the 2000s, the hypothesis of the role of pesticides in the occurrence of central nervous system (CNS) tumors has been better documented in the literature. However, the etiology of childhood brain cancers still remains largely unknown. The major objective of this work was to assess the potential role of pesticide exposure as a risk factor for CNS tumors based on questionnaires and statistical analysis of information collected from patients hospitalized in the Neurosurgery Department of the Habib Bourguiba Hospital Medium in Sfax, Tunisia, during the period from January 1, 2022, to May 31, 2023. It also aimed to develop a simple and rapid analytical method by the gas chromatography-mass spectrometry technique for the research traces of pesticide metabolites in some collected human brain tumor tissues in order to more emphasize our hypothesis for such a correlation between pesticide exposure and brain tumor development. Patients with a history of high-risk exposure were selected to conduct further analysis. Chemometric methods were adapted to discern intrinsic variation between pathological and control groups and ascertain effective separation with the identification of differentially expressed metabolites accountable for such variations. Three samples revealed traces of pesticide metabolites that were mostly detected at an early age. The histopathological diagnosis was medulloblastoma for a 10-year-old child and high-grade gliomas for 27- and 35-year-old adults. The bivariate analyses (odds ratio >1 and P value <5%) confirmed the great probability of developing cancer by an exposure case. The Cox proportional hazards model revealed the risk of carcinogenicity beyond the age of 50 as a long-term effect of pesticide toxicity. Our study supports the correlation between pesticide exposure and the risk of development of human brain tumors, suggesting that preconception pesticide exposure, and possibly exposure during pregnancy, is associated with an increased childhood brain tumor risk. This hypothesis was enhanced in identifying traces of metabolites from the carbamate insecticide class known for their neurotoxicity and others from pyridazinone, organochlorines (OCs), triazole fungicide, and N-nitroso compounds known for their carcinogenicity. The 2D-OXYBLOT analysis confirmed the neurotoxicity effect of insecticides to induce oxidative damage in CNS cells. Aldicarb was implicated in brain carcinogenicity confirmed by the identification of oxime metabolites in a stress degradation study. Revealing "aziridine" metabolites from the OC class may better emphasize the theory of detecting traces of pesticide metabolites at an early age. Overall, our findings lead to the recommendation of limiting the residential use of pesticides and the support of public health policies serving this objective that we need to be vigilant in the postmarketing surveillance of human health impacts.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics and Galenic Drug
Development, LR12ES09, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal
Medicine Department, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics and Galenic Drug
Development, LR12ES09, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
100
|
Wu Y, Chen T, Xia Y, Wang J, Wang A, Wang B, Wang J, Yao W. Developmental toxicity, immunotoxicity and cardiotoxicity induced by methidathion in early life stages of zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105526. [PMID: 37532338 DOI: 10.1016/j.pestbp.2023.105526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Methidathion is a highly effective organophosphorus pesticide and is extensively utilized for the control of insects in agricultural production. However, there is little information on the adverse effects and underlying mechanisms of methidathion on aquatic organisms. In this work, embryonic zebrafish were exposed to methidathion at concentrations of 4, 10, and 25 mg/L for 96 h, and morphological changes and activities of antioxidant indicators alterations were detected. In addition, the locomotor behavioral abilities of zebrafish exposed to methidathion were also measured. To further explore the mechanism of the toxic effects of methidathion, gene expression levels associated with cardiac development, cell apoptosis, and the immune system were tested through qPCR assays. The findings revealed that methidathion exposure could induce a decrease in survival rate, hatchability, length of body, and increase in abnormality of zebrafish, as well as cardiac developmental toxicity. The LC50 value of methidathion in zebrafish embryos was determined to be about 30.72 mg/L at 96 hpf. Additionally, methidathion exposure triggered oxidative stress in zebrafish by increasing SOD activity, ROS, and MDA content. Acridine orange (AO) staining indicated that methidathion exposure led to apoptosis, which was mainly distributed in the pericardial region. Furthermore, significant impairments of locomotor activity in zebrafish larvae were induced by methidathion exposure. Lastly, the expression of pro-inflammatory factors including IFN-γ, IL-6, IL-8, CXCL-clc, TLR4, and MYD88 significantly up-regulated in exposed zebrafish. Taken together, the results in this work illustrated that methidathion caused developmental toxicity, cardiotoxicity, and immunotoxicity in embryogenetic zebrafish.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| | - Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|