51
|
Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:83-92. [DOI: 10.1016/j.bbadis.2008.10.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/03/2023]
|
52
|
Stull AJ, Thyfault JP, Haub MD, Ostlund RE, Campbell WW. Relationships between urinary inositol excretions and whole-body glucose tolerance and skeletal muscle insulin receptor phosphorylation. Metabolism 2008; 57:1545-51. [PMID: 18940392 PMCID: PMC3469253 DOI: 10.1016/j.metabol.2008.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 06/09/2008] [Indexed: 11/26/2022]
Abstract
This study assessed the relationships of urinary D-chiro-inositol and myo-inositol excretions to indices of whole-body glucose tolerance and total content and tyrosine phosphorylation of the insulin receptor (activation) in skeletal muscle of older nondiabetic subjects. Fifteen adults (age, 65 +/- 8 years; body mass index, 27.9 +/- 3.3 kg/m(2) [mean +/- SD]) completed duplicate assessments of oral (75-g oral glucose tolerance test [OGTT]) and intravenous (300 mg/kg body weight intravenous glucose tolerance test) glucose tolerance challenges and 24-hour urinary D-chiro-inositol and myo-inositol excretions. Skeletal muscle (vastus lateralis) biopsies were obtained at minute 60 of the OGTTs. Subjects with higher urinary D-chiro-inositol excretion had higher insulin (rho = 0.51, P < or = .05) and C-peptide (rho = 0.56, P < or = .05) area under the curves, and lower insulin sensitivity index (rho = -0.60, P < or = .05) during the intravenous glucose tolerance test. The urinary myo- to D-chiro-inositol ratio was also inversely related to insulin area under the curve (rho = -0.59, P < or = .05). Urinary D-chiro-inositol (rho = -0.60, P < or = .05) and myo-inositol (rho = -0.60, P < or = .05) were inversely related to tyrosine phosphorylation of the insulin receptor (phosphotyrosine 1162/1163), but not total content of the insulin receptor during the OGTT. The apparent relationships were modestly weakened when adjustments were made for sex. These findings support previous research linking higher urinary D-chiro-inositol excretion with a progressive decline in whole-body glucose tolerance. This is the first report to link higher urinary D-chiro-inositol excretion to a blunted activation of skeletal muscle insulin receptor signaling in older nondiabetic subjects.
Collapse
Affiliation(s)
- April J Stull
- Department of Foods and Nutrition and Center on Aging and the Life Course, Purdue University, West, Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
53
|
Thompson LH, Kim HT, Ma Y, Kokorina NA, Messina JL. Acute, muscle-type specific insulin resistance following injury. Mol Med 2008; 14:715-23. [PMID: 19009015 DOI: 10.2119/2008-00081.thompson] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/19/2008] [Indexed: 01/04/2023] Open
Abstract
Acute insulin resistance can develop following critical illness and severe injury, and the mortality of critically ill patients can be reduced by intensive insulin therapy. Thus, compensating for the insulin resistance in the clinical care setting is important. However, the molecular mechanisms that lead to the development of acute injury/infection-associated insulin resistance are unknown, and the development of acute insulin resistance is much less studied than chronic disease-associated insulin resistance. An animal model of injury and blood loss was utilized to determine whether acute skeletal muscle insulin resistance develops following injury, and surgical trauma in the absence of hemorrhage had little effect on insulin-mediated signaling. However, following hemorrhage, there was an almost complete loss of insulin-induced Akt phosphorylation in triceps, and severely decreased tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1. The severity of insulin resistance was similar in triceps and extensor digitorum longus muscles, but was more modest in diaphragm, and there was little change in insulin signaling in cardiac muscle following hemorrhage. Since skeletal muscle is an important insulin target tissue and accounts for much of insulin-induced glucose disposal, it is important to determine its role in injury/infection-induced hyperglycemia. This is the first report of an acute development of skeletal muscle insulin signaling defects. The presented data indicates that the defects in insulin signaling occurred rapidly, were reversible and more severe in some skeletal muscles, and did not occur in cardiac muscle.
Collapse
Affiliation(s)
- LaWanda H Thompson
- Department of Pathology, Division of Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | |
Collapse
|
54
|
Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slørdahl SA, Kemi OJ, Najjar SM, Wisløff U. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118:346-54. [PMID: 18606913 DOI: 10.1161/circulationaha.108.772822] [Citation(s) in RCA: 777] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Individuals with the metabolic syndrome are 3 times more likely to die of heart disease than healthy counterparts. Exercise training reduces several of the symptoms of the syndrome, but the exercise intensity that yields the maximal beneficial adaptations is in dispute. We compared moderate and high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with the metabolic syndrome. METHODS AND RESULTS Thirty-two metabolic syndrome patients (age, 52.3+/-3.7 years; maximal oxygen uptake [o(2)max], 34 mL x kg(-1) x min(-1)) were randomized to equal volumes of either moderate continuous moderate exercise (CME; 70% of highest measured heart rate [Hfmax]) or aerobic interval training (AIT; 90% of Hfmax) 3 times a week for 16 weeks or to a control group. o(2)max increased more after AIT than CME (35% versus 16%; P<0.01) and was associated with removal of more risk factors that constitute the metabolic syndrome (number of factors: AIT, 5.9 before versus 4.0 after; P<0.01; CME, 5.7 before versus 5.0 after; group difference, P<0.05). AIT was superior to CME in enhancing endothelial function (9% versus 5%; P<0.001), insulin signaling in fat and skeletal muscle, skeletal muscle biogenesis, and excitation-contraction coupling and in reducing blood glucose and lipogenesis in adipose tissue. The 2 exercise programs were equally effective at lowering mean arterial blood pressure and reducing body weight (-2.3 and -3.6 kg in AIT and CME, respectively) and fat. CONCLUSIONS Exercise intensity was an important factor for improving aerobic capacity and reversing the risk factors of the metabolic syndrome. These findings may have important implications for exercise training in rehabilitation programs and future studies.
Collapse
Affiliation(s)
- Arnt Erik Tjønna
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Misra P. AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin Ther Targets 2008; 12:91-100. [PMID: 18076373 DOI: 10.1517/14728222.12.1.91] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metabolic syndrome is characterized by a cluster of metabolic disorders, such as reduced glucose tolerance, hyperinsulinemia, hypertension, visceral obesity and lipid disorders. The benefit of exercise in maintaining total metabolic control is well known and recent research indicates that AMP-activated protein kinase (AMPK) may play an important role in exercise-related effects. AMPK is considered as a master switch in regulating glucose and lipid metabolism. AMPK is an enzyme that works as a fuel gauge, being activated in conditions of high phosphate depletion. In the liver, activation of AMPK results in decreased production of plasma glucose, cholesterol, triglyceride and enhanced fatty acid oxidation. AMPK is also robustly activated by skeletal muscle contraction and myocardial ischemia, and is involved in the stimulation of glucose transport and fatty acid oxidation by these stimuli. In adipose tissue, activated AMPK inhibits deposition of fat, but enhances breakdown and burning of stored fat, resulting in reduction of body weight. The two leading diabetic drugs, namely metformin and rosiglitazone, and adipokines, such as adiponectin and leptin, show their metabolic effects partially through AMPK. These data suggest that AMPK may be a key player in the development of new treatments for obesity, Type 2 diabetes and the metabolic syndrome. In this review, the author provide insight into the role of AMPK as a probable target for treatment of metabolic syndrome.
Collapse
|
56
|
Whitcomb RW, Saltiel AR. Section Review: Oncologic, Endocrine & Metabolic: Thiazolidinediones. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.12.1299] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
57
|
Goldfine ID, Maddux BA, Youngren JF, Reaven G, Accili D, Trischitta V, Vigneri R, Frittitta L. The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocr Rev 2008; 29:62-75. [PMID: 18199690 PMCID: PMC2244935 DOI: 10.1210/er.2007-0004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance is a major feature of most patients with type 2 diabetes mellitus (T2D). A number of laboratories have observed that PC-1 (membrane [corrected] glycoprotein plasma cell antigen 1; also termed [corrected] ectonucleotide pyrophosphatase phosphodiesterase 1 or ENPP1) [corrected] is either overexpressed or overactive in muscle, adipose tissue, fibroblasts, and other tissues of insulin-resistant individuals, both nondiabetic and diabetic. Moreover, PC-1 (ENPP1) overexpression [corrected] in cultured cells in vitro and in transgenic mice in vivo, [corrected] impairs insulin stimulation of insulin receptor (IR) activation and downstream signaling. PC-1 binds to the connecting domain of the IR alpha-subunit that is located in residues 485-599. The connecting domain transmits insulin binding in the alpha-subunit to activation of tyrosine kinase activation in the beta-subunit. When PC-1 is overexpressed, it inhibits insulin [corrected]induced IR beta-subunit tyrosine kinase activity. In addition, a polymorphism of PC-1 (K121Q) in various ethnic populations is closely associated with insulin resistance, T2D, and cardio [corrected] and nephrovascular diseases. The product of this polymorphism has a 2- to 3-fold increased binding affinity for the IR and is more potent than the wild-type PC-1 protein (K121K) in inhibiting the IR. These data suggest therefore that PC-1 is a candidate protein that may play a role in human insulin resistance and T2D by its overexpression, its overactivity, or both.
Collapse
Affiliation(s)
- Ira D Goldfine
- Department of Medicine and Diabetes Center, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Karlsson HKR, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007; 48:103-13. [PMID: 17709880 DOI: 10.1007/s12013-007-0030-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/29/2022]
Abstract
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
59
|
Hulver MW, Dohm GL. The molecular mechanism linking muscle fat accumulation to insulin resistance. Proc Nutr Soc 2007; 63:375-80. [PMID: 15294058 DOI: 10.1079/pns2004351] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal muscle insulin resistance is a co-morbidity of obesity and a risk factor for the development of type 2 diabetes mellitus. Insulin resistance is associated with the accumulation of intramyocellular lipids. Intramyocellular triacylglycerols do not appear to be the cause of insulin resistance but are more likely to be a marker of other lipid intermediates such as fatty acyl-CoA, ceramides or diacylglycerols. Fatty acyl-CoA, ceramides and diacylglycerols are known to directly alter various aspects of the insulin signalling cascade. Insulin signalling is inhibited by the phosphorylation of serine and threonine residues at the levels of the insulin receptor and insulin receptor substrate 1. Protein kinase C is responsible for the phosphorylation of the serine and threonine residues. Fatty acyl-CoA and diacylglycerols are known to activate protein kinase C. The cause of the intramyocellular accumulation of fatty acyl-CoA and diacylglycerols is unclear at this time. Reduced fatty acid oxidation does not appear to be responsible, as fatty acyl-CoA accumulates in skeletal muscle with a normal fatty acid oxidative capacity. Other potential mechanisms include oversupply of lipids to muscle and/or up regulated fatty acid transport.
Collapse
Affiliation(s)
- Matthew W Hulver
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
60
|
García-Vicente S, Yraola F, Marti L, González-Muñoz E, García-Barrado MJ, Cantó C, Abella A, Bour S, Artuch R, Sierra C, Brandi N, Carpéné C, Moratinos J, Camps M, Palacín M, Testar X, Gumà A, Albericio F, Royo M, Mian A, Zorzano A. Oral insulin-mimetic compounds that act independently of insulin. Diabetes 2007; 56:486-93. [PMID: 17259395 DOI: 10.2337/db06-0269] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies. We have characterized a novel class of arylalkylamine vanadium salts that exert potent insulin-mimetic effects downstream of the insulin receptor in adipocytes. These compounds trigger insulin signaling, which is characterized by rapid activation of insulin receptor substrate-1, Akt, and glycogen synthase kinase-3 independent of insulin receptor phosphorylation. Administration of these compounds to animal models of diabetes lowered glycemia and normalized the plasma lipid profile. Arylalkylamine vanadium compounds also showed antidiabetic effects in severely diabetic rats with undetectable circulating insulin. These results demonstrate the feasibility of insulin-like regulation in the complete absence of insulin and downstream of the insulin receptor. This represents a novel therapeutic approach for diabetic patients with severe insulin resistance.
Collapse
|
61
|
Gupta D, Varma S, Khandelwal RL. Long-term effects of tumor necrosis factor-α treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB. J Cell Biochem 2007; 100:593-607. [PMID: 16960890 DOI: 10.1002/jcb.21080] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) mediated attenuation of insulin signaling pathway is an important cause in several disorders like obesity, obesity linked diabetes mellitus. TNF-alpha actions vary depending upon concentration and time of exposure in various cells. In the present study, the effects of long-term TNF-alpha (1 ng/ml) exposure on the components of insulin signaling pathway in HepG2 and HepG2 cells overexpressing constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB) have been investigated. In parental HepG2 cells, TNF-alpha treatment for 24 h reduced the phosphorylation of Akt1/PKB-alpha and GSK-3beta and under these conditions cells also showed reduced insulin responsiveness in terms of Akt1/PKB-alpha and GSK-3beta phosphorylation. TNF-alpha pre-incubated HepG2-CA-Akt/PKB cells showed lower reduction in Akt1/PKB-alpha and GSK-3beta phosphorylation and insulin responsiveness after 24 h as compared to parental HepG2 cells. We report that the long-term TNF-alpha pre-incubation in both parental HepG2 and HepG2-CA-Akt/PKB-alpha cells leads to the reduction in the levels of IRS-1 without altering the levels of IRS-2. In order to understand the reason for the differential insulin resistance in both the cell types, the effect of long-term TNF-alpha treatment on the proteins upstream to Akt/PKB was investigated. TNF-alpha pre-incubation also showed reduced insulin-stimulated Tyr phosphorylation of insulin receptor (IR-beta) in both the cell types, moreover hyperphosphorylation of IRS-1 at Ser 312 residue was observed in TNF-alpha pre-incubated cells. As hyperphosphorylation of IRS-1 at Ser 312 can induce its degradation, it is possible that reduced insulin responsiveness after long-term TNF-alpha pre-incubation observed in this study is due to the decrease in IRS-1 levels.
Collapse
Affiliation(s)
- Dhananjay Gupta
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
62
|
Abstract
Insulin resistance is a feature of a number of clinical disorders, including type 2 diabetes/glucose intolerance, obesity, dyslipidaemia and hypertension clustering in the so-called metabolic syndrome. Insulin resistance in skeletal muscle manifests itself primarily as a reduction in insulin-stimulated glycogen synthesis due to reduced glucose transport. Ectopic lipid accumulation plays an important role in inducing insulin resistance. Multiple defects in insulin signalling are responsible for impaired glucose metabolism in target tissues of subjects with features of insulin resistance. Inflammatory molecules and lipid metabolites inhibit insulin signalling by stimulating a number of different serine kinases which are responsible for serine phosphorylation of Insulin Receptor Substrate-1 (IRS-1).
Collapse
Affiliation(s)
- Giorgio Sesti
- Università Magna Graecia di Catanzaro, Campus Universitario Germaneto di Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
63
|
Abstract
AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.
Collapse
Affiliation(s)
- Greg Schimmack
- Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78207, USA
| | | | | |
Collapse
|
64
|
Greene SF, Johnson PR, Eiffert KC, Greenwoodt MR, Stern JS. The male obese Wistar diabetic fatty rat is a new model of extreme insulin resistance. ACTA ACUST UNITED AC 2006; 2:432-43. [PMID: 16358398 DOI: 10.1002/j.1550-8528.1994.tb00090.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmol/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats ( 2.778 +/- 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 +/- 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 +/- 82 fmol/min/mg protein) compared to obese Zucker rats (1907 +/- 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.
Collapse
Affiliation(s)
- S F Greene
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
65
|
Reiter CEN, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RSJ, Fort PE, Antonetti DA, Gardner TW. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 2006; 55:1148-56. [PMID: 16567541 DOI: 10.2337/diabetes.55.04.06.db05-0744] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-beta autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.
Collapse
Affiliation(s)
- Chad E N Reiter
- Dept. of Cellular and Molecular Physiology, Juvenile Diabetes Research Foundation Diabetic Retinopathy Center, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta 2006; 368:1-19. [PMID: 16480697 DOI: 10.1016/j.cca.2005.12.026] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 12/30/2022]
Abstract
Insulin resistant states are commonly associated with an atherogenic dyslipidemia that contributes to significantly higher risk of atherosclerosis and cardiovascular disease. Indeed, disorders of carbohydrate and lipid metabolism co-exist in the majority of subjects with the "metabolic syndrome" and form the basis for the definition and diagnosis of this complex syndrome. The most fundamental defect in these patients is resistance to cellular actions of insulin, particularly resistance to insulin-stimulated glucose uptake. Insulin insensitivity appears to cause hyperinsulinemia, enhanced hepatic gluconeogenesis and glucose output, reduced suppression of lipolysis in adipose tissue leading to a high free fatty acid flux, and increased hepatic very low density lipoprotein (VLDL) secretion causing hypertriglyceridemia and reduced plasma levels of high density lipoprotein (HDL) cholesterol. Although the link between insulin resistance and dysregulation of lipoprotein metabolism is well established, a significant gap of knowledge exists regarding the underlying cellular and molecular mechanisms. Emerging evidence suggests that insulin resistance and its associated metabolic dyslipidemia result from perturbations in key molecules of the insulin signaling pathway, including overexpression of key phosphatases, downregulation and/or activation of key protein kinase cascades, leading to a state of mixed hepatic insulin resistance and sensitivity. These signaling changes in turn cause an increased expression of sterol regulatory element binding protein (SREBP) 1c, induction of de novo lipogensis and higher activity of microsomal triglyceride transfer protein (MTP), which together with high exogenous free fatty acid (FFA) flux collectively stimulate the hepatic production of apolipoprotein B (apoB)-containing VLDL particles. VLDL overproduction underlies the high triglyceride/low HDL-cholesterol lipid profile commonly observed in insulin resistant subjects.
Collapse
Affiliation(s)
- Rita Kohen Avramoglu
- Clinical Biochemistry Division, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
67
|
Musi N, Goodyear LJ. Insulin resistance and improvements in signal transduction. Endocrine 2006; 29:73-80. [PMID: 16622294 DOI: 10.1385/endo:29:1:73] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/30/1999] [Accepted: 10/20/2005] [Indexed: 11/11/2022]
Abstract
Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Nicolas Musi
- Texas Diabetes Institute and University of Texas Health Science Center at San Antonio, USA
| | | |
Collapse
|
68
|
Abstract
Sedentary death syndrome (SeDS) is a major public health burden due to its causing multiple chronic diseases and millions of premature deaths each year. Despite the impact of physical inactivity, very little is known about the actual causes of physical inactivity-induced chronic diseases. It is important to study the mechanisms underlying molecular changes related to physical inactivity in order to better understand the scientific basis of individualized exercise prescription and therapies for chronic diseases, and to support improved public health efforts by providing molecular proof that physical inactivity is an actual cause of chronic diseases. Physical activity has a genetic basis. A subpopulation of genes, which have functioned to support physical activity for survival through most of humankind's existence, require daily exercise to maintain long-term health and vitality. Type 2 diabetes (T2D) is an example of a SeDS condition, as it is almost entirely preventable with physical activity. To determine the true role of physical inactivity in the development and progression of T2D, information is presented which indicates that comparisons should be made to physically active controls, rather than sedentary controls, as this population is the healthiest. Use of sedentary subjects as the control group has led to potentially misleading interpretations. If physically active individuals were designated as the control group, a different interpretation would have been drawn. It is thought that there is no difference in GLUT4 concentration between T2D and sedentary groups. However, GLUT4 expression is higher in active controls than in sedentary and T2D groups. Therefore, to obtain causal mechanisms for SeDS in order to allow for scientifically based prevention and therapy strategies, physically active subjects must serve as the control group.
Collapse
Affiliation(s)
- Simon J Lees
- Dept. of Biomedical Sciences, Univ. of Missouri-Columbia, Columbia, MO, USA
| | | |
Collapse
|
69
|
Strowski MZ, Li Z, Szalkowski D, Shen X, Guan XM, Jüttner S, Moller DE, Zhang BB. Small-molecule insulin mimetic reduces hyperglycemia and obesity in a nongenetic mouse model of type 2 diabetes. Endocrinology 2004; 145:5259-68. [PMID: 15297448 DOI: 10.1210/en.2004-0610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adiposity positively correlates with insulin resistance and is a major risk factor of type 2 diabetes. Administration of exogenous insulin, which acts as an anabolic factor, facilitates adipogenesis. Recently nonpeptidal insulin receptor (IR) activators have been discovered. Here we evaluate the effects of the orally bioavailable small-molecule IR activator (Compound-2) on metabolic abnormalities associated with type 2 diabetes using a nongenetic mouse model in comparison with the effects of a novel non-thiazolidinedione (nTZD) peroxisome proliferator-activated receptor-gamma agonist. Both Compound-2 and nTZD alleviated fasting and postprandial hyperglycemia; accelerated glucose clearance rate; and normalized plasma levels of nonesterified fatty acids, triglycerides, and leptin. Unlike nTZD, which increased body weight gain, and total fat mass, which is a common feature for PPARgamma agonists, Compound-2 prevented body weight gain and hypertrophy of brown, and white adipose tissue depots and the development of hepatic steatosis in the mouse model of type 2 diabetes. The effect of the two compounds on proximal steps in insulin signal transduction pathway was analyzed in tissues. Compound-2 enhanced insulin-stimulated phosphorylation of IR tyrosine and/or Akt in the liver, skeletal muscle, and white adipose tissue, whereas nTZD potentiated the phosphorylation of IR and Akt in the adipose tissue only. In conclusion, small-molecule IR activators have unique features as insulin sensitizers and hold potential utility in the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Mathias Z Strowski
- Medizinische Klinik mit Schwerpunkt Hepatologie, Gastroenterologie, Endokrinologie, und Stoffwechsel Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Ma Y, Toth B, Keeton AB, Holland LT, Chaudry IH, Messina JL. Mechanisms of hemorrhage-induced hepatic insulin resistance: role of tumor necrosis factor-alpha. Endocrinology 2004; 145:5168-76. [PMID: 15297437 DOI: 10.1210/en.2004-0524] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hemorrhage, sepsis, burn injury, surgical trauma and critical illness all induce insulin resistance. Recently we found that trauma and hemorrhage acutely induced hepatic insulin resistance in the rat. However, the mechanisms of this hemorrhage-induced acute hepatic insulin resistance are unknown. Here we report on the mechanisms of this hepatic insulin resistance. Protein levels and phosphorylation of the insulin receptor and insulin receptor substrate-1/2 (IRS-1/2) were measured, as was the association between IRS-1/2 and phosphatidylinositol 3-kinase (PI3K). Also examined were the hepatic expression of TNFalpha and TNFalpha-induced serine phosphorylation of IRS-1. Insulin receptor and IRS-1/2 protein levels and insulin-induced tyrosine phosphorylation of the insulin receptor were unaltered. In contrast, insulin-induced tyrosine phosphorylation of IRS-1/2 and association between IRS-1/2 and PI3K were dramatically reduced after hemorrhage. Hepatic levels of TNFalpha mRNA and protein were increased as was phosphorylation of IRS-1 serine 307 after hemorrhage. Our data provide the first evidence that compromised IRS-1/2 tyrosine phosphorylation and their association with PI3K contribute to hemorrhage-induced acute hepatic insulin resistance. Increased local TNFalpha may play a role in inducing this hepatic insulin resistance after trauma and hemorrhage.
Collapse
Affiliation(s)
- Yuchen Ma
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
This article provides an overview of the pathogenesis of type 2 diabetes mellitus. Discussion begins by describing normal glucose homeostasis and ingestion of a typical meal and then discusses glucose homeostasis in diabetes. Topics covered include insulin secretion in type 2 diabetes mellitus and insulin resistance, the site of insulin resistance, the interaction between insulin sensitivity and secretion, the role of adipocytes in the pathogenesis of type 2 diabetes, cellular mechanisms of insulin resistance including glucose transport and phosphorylation, glycogen and synthesis,glucose and oxidation, glycolysis, and insulin signaling.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
72
|
Affiliation(s)
- Ying Leng
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
73
|
Abstract
Insulin is a key hormone regulating the control of metabolism and the maintenance of normoglycaemia and normolipidaemia. Insulin acts by binding to its cell surface receptor, thus activating the receptor's intrinsic tyrosine kinase activity, resulting in receptor autophosphorylation and phosphorylation of several substrates. Tyrosine phosphorylated residues on the receptor itself and on subsequently bound receptor substrates provide docking sites for downstream signalling molecules, including adapters, protein serine/threonine kinases, phosphoinositide kinases and exchange factors. Collectively, those molecules orchestrate the numerous insulin-mediated physiological responses. A clear picture is emerging of the way in which insulin elicits several intracellular signalling pathways to mediate its physiologic functions. A further challenge, being pursued by several laboratories, is to understand the molecular mechanisms that underlie insulin action at the peripheral level, deregulation of which ultimately leads to hyperglycaemia and Type 2 diabetes. We review how circulating factors such as insulin itself, TNF-alpha, interleukins, fatty acids and glycation products influence insulin action through insulin signalling molecules themselves or through other pathways ultimately impinging on the insulin-signalling pathway. Understanding how the mechanism by which molecular insulin action is modulated by these factors will potentially provide new targets for pharmacological agents, to enable the control of altered glucose and lipid metabolism and diabetes.
Collapse
Affiliation(s)
- L Pirola
- INSERM Unit 145, Faculty of Medicine, Nice, France
| | | | | |
Collapse
|
74
|
Pender C, Goldfine ID, Tanner CJ, Pories WJ, MacDonald KG, Havel PJ, Houmard JA, Youngren JF. Muscle insulin receptor concentrations in obese patients post bariatric surgery: relationship to hyperinsulinemia. Int J Obes (Lond) 2004; 28:363-9. [PMID: 14724657 DOI: 10.1038/sj.ijo.0802565] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Obesity results in insulin resistance. Bariatric surgery for obese individuals induces weight loss, improves insulin sensitivity, and lowers insulin levels. We investigated the mechanisms of this improvement. DESIGN Insulin receptor (IR) content, IR signaling, and adiponectin levels were measured in nine morbidly obese subjects before and after bariatric surgery. SUBJECTS Seven female and two male, average age 44+/-2y, BMI >40 kg/m(2) and/or at least 100 lbs over ideal body weight, undergoing elective bariatric surgery. MEASUREMENTS Before surgery BMI, fasting plasma glucose, adiponectin, and insulin levels were measured. A fasting muscle biopsy was obtained from the vastus lateralis for IR concentration and autophosphorylation activity measurements. These procedures were repeated 1 y after surgery. RESULTS At 1 y after surgery, the subjects had lost an average of 48.3+/-5.6 kg (P<0.001), insulin sensitivity had significantly increased as determined by the minimal model (SI 0.72+/-0.18 vs 3.86+/-1.43, P<0.05), and IR content had increased two-fold in muscle (2.1+/-0.4 vs 4.3+/-0.7 ng/mg protein, P<0.01). The increase in IR content was related to fasting insulin levels. In the subjects with the lowest IR function, there was also an increase in IR function. Plasma adiponectin increased by 40% following weight loss (7.4+/-1.6 pre vs 10.3+/-1.3 mg/ml post, P<0.05). There was no significant change in muscle content of the IR inhibitor, PC-1. CONCLUSION Increased IR content, most likely regulated by insulin levels, may be one contributor to the increased insulin sensitivity that occurs when morbidly obese patients undergo bariatric surgery.
Collapse
Affiliation(s)
- C Pender
- Department of Medicine, Division of Diabetes and Endocrine Research, Mount Zion Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Otani K, Kulkarni RN, Baldwin AC, Krutzfeldt J, Ueki K, Stoffel M, Kahn CR, Polonsky KS. Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am J Physiol Endocrinol Metab 2004; 286:E41-9. [PMID: 14519599 DOI: 10.1152/ajpendo.00533.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.
Collapse
Affiliation(s)
- Kenichi Otani
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8066, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Interleukin (IL)-6 is one of several proinflammatory cytokines associated with the insulin resistance of obesity and type 2 diabetes. There is, however, little direct evidence in vivo for a causative role of IL-6 in insulin resistance. Here, a 5-day constant subcutaneous infusion of hIL-6 before portal vein insulin challenge resulted in impairment of early insulin receptor signaling in the liver of mice. Importantly, the sixfold elevation of IL-6 attained with constant infusion was similar to levels reached in obesity. Consistent with an hepatic response to IL-6, STAT3 phosphorylation was increased in livers of IL-6-treated mice at 5 days. Chronic infusion of IL-6 also reduced hepatic insulin receptor autophosphorylation by 60% and tyrosine phosphorylation of insulin receptor substrates-1 and -2 by 60 and 40%, respectively. IL-6 had no effect on the mass of these proteins. IL-6 also decreased refeeding-dependent glucokinase mRNA induction by approximately 40%. Insulin tolerance tests revealed reduced insulin sensitivity. In contrast to hepatic insulin receptor signal transduction, 5-day IL-6 exposure failed to suppress skeletal muscle insulin receptor signal transduction. These data suggest that chronic IL-6 treatment selectively impairs hepatic insulin signaling in vivo, further supporting a role for IL-6 in hepatic insulin resistance of obesity.
Collapse
Affiliation(s)
- Peter J Klover
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
77
|
Kohen-Avramoglu R, Theriault A, Adeli K. Emergence of the metabolic syndrome in childhood: an epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem 2003; 36:413-20. [PMID: 12951167 DOI: 10.1016/s0009-9120(03)00038-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin resistance and type 2 diabetes are rapidly emerging as major disorders of childhood and adolescence. This appears to be closely linked to a rapid rise in the prevalence of obesity in the pediatric population. The development of insulin resistance appears to lead to a "metabolic syndrome" which includes a number of major complications such as dyslipidemia and hypertension. Childhood metabolic syndrome promotes the development of premature atherosclerosis and significantly increases cardiovascular disease risk early in life. The mechanisms linking obesity, insulin resistance, and metabolic dyslipidemia are not fully understood. This review will attempt to discuss some of the key mechanistic issues surrounding insulin resistance and its association with metabolic dyslipidemia. Most of the recent progress in this field has come from the use of genetic and diet-induced animal models of insulin resistance. New data from these animal studies particularly the fructose-fed hamster, a model of metabolic syndrome and dyslipidemia, will be reviewed. Evidence from both animal and human studies suggest a key role for insulin sensitive tissues such as adipose tissue, liver, and intestine in the development of an insulin resistant state and its associated lipid and lipoprotein disorders. The critical interaction of metabolic signals among these tissues appears to govern the transition from an insulin sensitive to an insulin resistant state that underlies dyslipidemic conditions.
Collapse
Affiliation(s)
- Rita Kohen-Avramoglu
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
78
|
Musi N, Goodyear LJ. AMP-activated protein kinase and muscle glucose uptake. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:337-45. [PMID: 12864738 DOI: 10.1046/j.1365-201x.2003.01168.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an enzyme that is activated in situations where there are changes in the cellular energy status such as muscle contraction and hypoxia. AMPK can also be pharmacologically activated by the compound 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and the antidiabetic agent metformin. Several studies support the hypothesis that AMPK plays an important role in the stimulation of muscle glucose uptake by these physiological and pharmacological stimuli. In isolated rat muscles, activation of AMPK is associated with increases in glucose uptake through an insulin-independent mechanism. Studies done in rodents have shown that the activation of AMPK by AICAR is accompanied by decreases in blood glucose concentrations, in part due to enhanced muscle glucose uptake. Similar to exercise, AICAR not only directly stimulates glucose uptake into the skeletal muscle, but also enhances insulin sensitivity. The activation of AMPK and associated increases in muscle glucose uptake are affected by factors such as glycogen content, exercise training and fibre type. The effects of AMPK on muscle glucose uptake makes this protein a promising pharmacological target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- N Musi
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
79
|
Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 2003; 278:15641-51. [PMID: 12594228 DOI: 10.1074/jbc.m208984200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.
Collapse
Affiliation(s)
- Luciano Pirola
- INSERM U145, IFR50, Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
80
|
Affiliation(s)
- Mandeep Bajaj
- Diabetes Division, Department od Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284-7886, USA.
| | | |
Collapse
|
81
|
Abstract
Type 2 diabetes in youth is an increasing public health concern, especially in certain minority populations. The current paper consists of four sections. First, we establish the significance of the problem by presenting an overview of epidemiological and physiological evidence. Second, we discuss behavioral issues relevant to the prevention of type 2 diabetes in youth. Third, a qualitative review of existing prevention interventions specific to type 2 diabetes in youth is presented. Results suggest that modest improvements in social cognitive, dietary, and exercise outcomes are possible with diabetes intervention studies, although beneficial changes are difficult to sustain over the long term. Although theoretical frameworks are not always explicit, most studies have utilized elements of the social cognitive theory. Less attention has been paid to sociocultural and community organization variables. Finally, the paper discusses issues of risk definition and intervention sustainability, and presents a comprehensive, theoretically diverse model for the prevention of type 2 diabetes in youth. In summary, we suggest that theories of the natural history and pathophysiology of type 2 diabetes are important to identify modifiable risk factors, while theories of behavioral change are essential to modify the risk factors identified. The combination of sound physiological and behavioral theories should form the basis of prevention intervention design. In addition, an ecologic approach that takes into consideration the dynamic interactions of personal, social, and environmental factors would best promote the long-term adoption of healthful behaviors in a supportive, meaningful, and personally enjoyable context.
Collapse
Affiliation(s)
- Terry T Huang
- Energy Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, USA
| | | |
Collapse
|
82
|
Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW. Antidiabetic actions of arachidonic acid and zinc in genetically diabetic Goto-Kakizaki rats. Metabolism 2003; 52:7-12. [PMID: 12524655 DOI: 10.1053/meta.2003.50031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, we showed that feeding arachidonic acid (AA) supplemented with a fixed amount of zinc lowered blood glucose concentrations in the fed state and water intake in rats with streptozotocin-induced diabetes. The present study was designed to determine dose-dependent effects of AA supplemented with a fixed amount of zinc on fed blood glucose levels, water intake, and glucose tolerance in genetically type 2 diabetic Goto-Kakizaki (G-K) Wistar rats. In an acute study, 20 mg/kg AA plus 10 mg/kg zinc administered via gastric gavage significantly improved oral glucose tolerance in G-K rats when compared to rats given distilled water (DW) only. When rats were treated chronically (2 weeks) with increasing doses of AA in drinking water, fed blood glucose concentrations and water intake were maximally decreased with diets containing 20 or 30 mg/L AA plus 10 mg/L zinc. Three-hour average area-above-fasting glucose concentrations (TAFGC; index of oral glucose tolerance) in diabetic G-K rats treated with 10, 20, or 30 mg/L AA plus 10 mg/L zinc for 2 weeks were significantly decreased relative to DW-treated rats. The effect on TAFGC values was maintained for an additional 2 weeks after cessation of treatment. Plasma insulin levels significantly increased in rats treated with 20 mg/L AA only or 10 mg/L AA plus 10 mg/L zinc, but not in rats treated with 20 or 30 mg/L AA plus 10 mg/L zinc, which are the most effective doses for the improvement of clinical signs of diabetes in G-K rats. In in vitro assays, 0.2 mg/mL AA in the incubation media was optimal for glucose uptake in isolated soleus muscle slices. These results suggest that treatment of genetically diabetic G-K rats with AA plus zinc lowers blood glucose levels via improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Moon K Song
- Department of Pediatrics, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The rapid increase of diabetes prevalence in the US population and across all westernized world has been associated with environmental changes that promote obesity. Although dietary factors, such as total caloric intake, relative excess of dietary saturated fats content and lack of fibers, together with reduced level of physical activity clearly determine the main features of the "obesogenic" environment typical of "western" societies, the impact of lifestyle factors on obesity and diabetes appears to differ in various ethnic groups. Although ethnic-related differences in lifestyle factors may account for some of the predisposition to obesity and diabetes of various ethnic groups, genetic factors may play a more determinant role. These observations pose important public health questions in regard to strategies for treatment and prevention of diabetes both within the multiethnic US population and in the population of origin of various ethnicities. The elucidation of the pathophysiologic mechanisms responsible for the heterogeneous relationship between obesity and type 2 diabetes in various ethnicities may give important contributions to better understand the complex mechanisms involved in the development of this disease. This review examines epidemiological and pathophysiological aspects of the interaction between environment and ethnic predisposition to type 2 diabetes.
Collapse
Affiliation(s)
- Nicola Abate
- Center for Human Nutrition, UT Southwestern Medical Center at Dallas, USA.
| | | |
Collapse
|
84
|
Ho RC, Davy KP, Hickey MS, Summers SA, Melby CL. Behavioral, metabolic, and molecular correlates of lower insulin sensitivity in Mexican-Americans. Am J Physiol Endocrinol Metab 2002; 283:E799-808. [PMID: 12217898 DOI: 10.1152/ajpendo.00105.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined whether lower insulin sensitivity persists in young, nonobese, nondiabetic Mexican-American [MA; n = 13, 27.0 +/- 2.0 yr, body mass index (BMI) 23.0 +/- 0.7] compared with non-Hispanic white (NHW; n = 13, 24.8 +/- 1.5 yr, BMI 22.8 +/- 0.6) males and females after accounting for cardiorespiratory fitness (maximal O(2) uptake), abdominal fat distribution (computed tomography scans), dietary intake (4-day records), and skeletal muscle insulin-signaling protein abundance from muscle biopsies (Western blot analysis). MA were significantly less insulin sensitive compared with their NHW counterparts when estimated by homeostatic model assessment of insulin resistance (MA: 1.53 +/- 0.22 vs. NHW: 0.87 +/- 0.16, P < 0.05) and the revised quantitative insulin sensitivity check index (MA: 0.45 +/- 0.08 vs. NHW: 0.58 +/- 0.19, P = 0.05). However, skeletal muscle protein abundance of insulin receptor-beta (IRbeta), phosphatidylinositol 3-kinase p85 subunit, Akt1, Akt2, and GLUT4 were not significantly different. Differences in indexes of insulin sensitivity lost significance after percent dietary intake of palmitic acid, palmitoleic acid, and skeletal muscle protein abundance of IRbeta were accounted for. We conclude that differences in insulin sensitivity between nonobese, nondiabetic MA and NHW persist after effects of chronic and acute exercise and total and abdominal fat distribution are accounted for. These differences may be mediated, in part, by dietary fat intake.
Collapse
Affiliation(s)
- Richard C Ho
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
85
|
Ding VDH, Qureshi SA, Szalkowski D, Li Z, Biazzo-Ashnault DE, Xie D, Liu K, Jones AB, Moller DE, Zhang BB. Regulation of insulin signal transduction pathway by a small-molecule insulin receptor activator. Biochem J 2002; 367:301-6. [PMID: 12036431 PMCID: PMC1222849 DOI: 10.1042/bj20020708] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 05/30/2002] [Indexed: 11/17/2022]
Abstract
Insulin regulates cellular metabolism and growth through activation of insulin receptors (IRs). We recently identified a non-peptide small-molecule IR activator (compound 2), which induced human IR tyrosine kinase activity in Chinese-hamster ovary cells expressing human IR [Qureshi, Ding, Li, Szalkowski, Biazzo-Ashnault, Xie, Saperstein, Brady, Huskey, Shen et al. (2000) J. Biol. Chem. 275, 36590-36595]. Oral treatment with this compound resulted in correction of hyperglycaemia, hypertriacylglycerolaemia and hyperinsulinaemia in several rodent models of diabetes. In the present study, we have found that this compound increased tyrosine phosphorylation of the IR beta-subunit and IR substrate 1 in primary rat adipocytes as well as induced phosphorylation of Akt, the 70 kDa ribosomal protein S6 kinase and glycogen synthase-3 (deactivation) in Chinese-hamster ovary cells expressing human IR. Similar to insulin, compound 2 stimulated glucose uptake, glycogen synthesis and inhibited isoprenaline-stimulated lipolysis in adipocytes. A structurally related analogue (compound 3) was devoid of the above activities suggesting that the activity of compound 2 is specifically mediated by targeted IR activation. The effects of compound 2 on stimulation of glucose uptake, glycogen synthesis and inhibition of lipolysis were blocked by wortmannin, consistent with the involvement of a phosphoinositide 3-kinase-dependent pathway. In addition, compound 2, but not compound 3, exhibited additive or synergistic effects with sub-maximal concentrations of insulin in rat adipocytes. Thus the IR activator was capable of activating insulin-mediated signalling and metabolic pathways in primary adipocytes. These results demonstrate that IR activators have implications for the future development of new therapeutic approaches to Type I and Type II diabetes.
Collapse
Affiliation(s)
- Victor D H Ding
- Department of Molecular Endocrinology, Merck Research Laboratories, PO Box 2000, 126 East Lincoln Avenue, Rahway, NJ 07065, U.S.A.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Seiichi T, Shinji S, Toshiro H, Haruhiko Y, Hideaki H, Kosei O, Masaharu N, Hajime I. Effects of troglitazone on skeletal muscle and liver protein tyrosine phosphatase activity in insulin-resistant otsuka long-evans tokushima fatty rats. Curr Ther Res Clin Exp 2002. [DOI: 10.1016/s0011-393x(02)80062-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
87
|
Abstract
Obesity is increasing in epidemic proportions world-wide. Even mild degrees of obesity have adverse health effects and are associated with diminished longevity. For this reason aggressive dietary intervention is recommended. Patients with body mass indices exceeding 40 have medically significant obesity in which the risk of serious health consequences is substantial, with concomitant significant reductions in life expectancy. For these patients, sustained weight loss rarely occurs with dietary intervention. For the appropriately selected patients, surgery is beneficial. Various operations have been proposed for the treatment of obesity, many of which proved to have serious complications precluding their efficacy. A National Institutes of Health Consensus Panel reviewed the indications and types of operations, concluding that the banded gastroplasty and gastric bypass were acceptable operations for treating seriously obese patients. Surgical treatment is associated with sustained weight loss for seriously obese patients who uniformly fail nonsurgical treatment. Following weight loss there is a high cure rate for diabetes and sleep apnea, with significant improvement in other complications of obesity such as hypertension and osteoarthritis.
Collapse
Affiliation(s)
- Edward H Livingston
- VAMC Greater Los Angeles Health Care System, UCLA Bariatric Surgery Program, Box 95-6904, UCLA School of Medicine, 90095-6904, USA.
| |
Collapse
|
88
|
Hiroki A, Hatakeyama H, Kawakami M, Watanabe T, Takei I, Umezawa K. Antidiabetic effect of a nitrosamine-free dephostatin analogue, methoxime-3,4-dephostatin, in db/db mice. Biomed Pharmacother 2002; 56:179-85. [PMID: 12109810 DOI: 10.1016/s0753-3322(02)00176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Et-3,4-dephostatin, a protein-tyrosine phosphatase (PTPase) inhibitor, potentiates insulin-dependent signal transduction and shows an antidiabetic effect in mice. However, it contains a nitrosamine moiety that is often mutagenic and carcinogenic. Therefore, we previously designed and synthesized methoxime-3,4-dephostatin as a nitrosamine-free analogue of dephostatin. In the present paper, we studied in situ and in vivo antidiabetic effects of this PTPase inhibitor. Methoxime-3,4-dephostatin induced 2-deoxyglucose transport by mouse 3T3-L1 adipocytes and rat L6 myocytes without insulin. It also inhibited glucagon-induced glucose release from primary culture rat hepatocytes. When hepatocytes were prepared from starved rats, methoxime-3,4-dephostatin did not inhibit the release of glucose, indicating that the chemical may act on glycogenolysis. Oral administration of methoxime-3,4-dephostatin for 3-7 days inhibited the increase in the blood glucose level in type-2 diabetes model db/db mice. It also decreased food and water intakes of mice, but showed no liver or blood toxicity.
Collapse
Affiliation(s)
- A Hiroki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, Youngren JF, Havel PJ, Pratley RE, Bogardus C, Tataranni PA. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002; 51:1884-8. [PMID: 12031977 DOI: 10.2337/diabetes.51.6.1884] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity (insulin-stimulated glucose disposal, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) were measured in 55 Pima Indians (47 men and 8 women, aged 31 +/- 8 years, body fat 29 +/- 8% [mean +/- SD]; 50 with normal glucose tolerance, 3 with impaired glucose tolerance, and 2 with diabetes). Group 1 (19 subjects) underwent skeletal muscle biopsies for the measurement of basal and insulin-stimulated tyrosine phosphorylation of the IR (stimulated by 100 nmol/l insulin). The fold increase after insulin stimulation was calculated as the ratio between maximal and basal phosphorylation. Group 2 (38 subjects) had follow-up measurements of insulin-stimulated glucose disposal. Cross-sectionally, plasma adiponectin concentration was positively associated with insulin-stimulated glucose disposal (r = 0.58, P < 0.0001) and negatively associated with percent body fat (r = -0.62, P < 0.0001) in the whole group. In group 1 plasma adiponectin was negatively associated with the basal (r = -0.65, P = 0.003) and positively associated with the fold increase in IR tyrosine phosphorylation (r = 0.69, P = 0.001) before and after the adjustment for percent body fat (r = -0.58, P = 0.01 and r = 0.54, P = 0.02, respectively). Longitudinally, after adjustment for age, sex, and percent body fat, low plasma adiponectin concentration at baseline was associated with a decrease in insulin sensitivity (P = 0.04). In conclusion, our cross-sectional data suggest a role of physiological concentration of fasting plasma adiponectin in the regulation of skeletal muscle IR tyrosine phosphorylation. Prospectively, low plasma adiponectin concentration at baseline precedes a decrease in insulin sensitivity. Our data indicate that adiponectin plays an important role in regulation of insulin sensitivity in humans.
Collapse
Affiliation(s)
- Norbert Stefan
- Clinical Diabetes and Nutrition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zierath JR, Wallberg-Henriksson H. From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann N Y Acad Sci 2002; 967:120-34. [PMID: 12079842 DOI: 10.1111/j.1749-6632.2002.tb04270.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Insulin resistance is a characteristic feature of type II diabetes mellitus and obesity. Although defects in glucose homeostasis have been recognized for decades, the molecular mechanisms accounting for impaired whole body glucose uptake are still not fully understood. Skeletal muscle constitutes the largest insulin-sensitive organ in humans; thus, insulin resistance in this tissue will have a major impact on whole body glucose homeostasis. Intense efforts are under way to define the molecular mechanisms that regulate glucose metabolism and gene expression in insulin-sensitive tissues. Knowledge of the human genome sequence, used in concert with gene and/or protein array technology, will provide a powerful means to facilitate efforts in revealing molecular targets that regulate glucose homeostasis in type II diabetes mellitus. This will offer quicker ways forward to identifying gene expression profiles in insulin-sensitive and insulin-resistant human tissue. This review will present our current understanding of potential defects in insulin signal transduction pathways, with an emphasis on mechanisms regulating glucose transport in skeletal muscle from people with type II diabetes mellitus. Elucidation of the pathways involved in the regulation of glucose homeostasis will offer insight into the causation of insulin resistance and type II diabetes mellitus. Furthermore, this will identify biochemical entry points for drug intervention to improve glucose homeostasis.
Collapse
Affiliation(s)
- Juleen R Zierath
- Department of Clinical Physiology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
91
|
Abstract
Glucose transport, the rate limiting step in glucose metabolism in skeletal muscle, is mediated by insulin-sensitive glucose transporter 4 (GLUT4) and can be activated in skeletal muscle by two separate and distinct signalling pathways: one stimulated by insulin and the second by muscle contractions. Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and thus the major site of peripheral insulin resistance. Impaired glucose transport in skeletal muscle leads to impaired whole body glucose uptake, and contributes to the pathogenesis of Type 2 diabetes mellitus. A combination of genetic and environmental factors is likely to contribute to the pathogenesis of Type 2 diabetes mellitus; however, the primary defect is still unknown. Intense efforts are underway to define the molecular mechanisms that regulate glucose metabolism in insulin sensitive tissues. This review will present our current understanding of mechanisms regulating glucose transport in skeletal muscle in humans. Elucidation of the pathways involved in the regulation of glucose homeostasis will offer insight into the pathogenesis of insulin resistance and Type 2 diabetes mellitus and may lead to the identification of biochemical entry points for drug intervention to improve glucose homeostasis.
Collapse
Affiliation(s)
- H A Koistinen
- Department of Clinical Physiology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
92
|
Mandarino LJ, Bonadonna RC, Mcguinness OP, Halseth AE, Wasserman DH. Regulation of Muscle Glucose Uptake In Vivo. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
93
|
|
94
|
Abstract
Though the overall prevalence of type 2 diabetes is increasing in US and in all other westernized countries, significant differences are noted among different ethnic groups. The reasons for ethnic differences in the risk of type 2 diabetes are not entirely understood. For example, Asian Indians (people from India, Pakistan, and Bangladesh) have remarkably high prevalence of type 2 diabetes compared to Caucasians. However, the incidence of obesity, an important risk factor in the development of type 2 diabetes, is significantly lower in Asian Indians compared to Caucasians. Though westernization of lifestyle with dietary changes and lack of exercise may play a role in increased prevalence of type 2 diabetes in migrant Asian Indians, various epidemiological studies have shown that these factors alone are not sufficient to explain this trend. One important factor contributing to increased type 2 diabetes in Asian Indians is excessive insulin resistance compared to Caucasians. This difference in the degree of insulin resistance may be explained by either an environmental or a genetic factor or by combination of both. The understanding of the etiology and mechanisms causing increased insulin resistance in Asian Indians will provide clues to more effective prevention and treatment of diabetes in this ethnic group. Furthermore, the information may help in understanding the pathophysiology of type 2 diabetes in other ethnic groups and improve methods of treatment and prevention in all ethnic groups. Since the ethnic mix of the US population is changing rapidly and it is estimated that by the year 2020, over 50% of US population will include non-Caucasian ethnicity, the identification of the mechanism involved in the excessive development of type 2 diabetes in non-Caucasians becomes important. In this review, possible etiology of excessive insulin resistance and role of free fatty acids (FFA) in insulin resistance in Asian Indians is discussed. Finally, the role of targeting insulin resistance in prevention and treatment of diabetes is discussed.
Collapse
Affiliation(s)
- N Abate
- Department of Internal Medicine, Center for Human Nutrition, Division of Endocrinology and Metabolism, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | | |
Collapse
|
95
|
Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, Kahn CR, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 2001; 108:1205-13. [PMID: 11602628 PMCID: PMC209529 DOI: 10.1172/jci13103] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although insulin regulates metabolism in both brown and white adipocytes, the role of these tissues in energy storage and utilization is quite different. Recombination technology using the Cre-loxP approach allows inactivation of the insulin receptor in a tissue-specific manner. Mice lacking insulin receptors in brown adipocytes show an age-dependent loss of interscapular brown fat but increased expression of uncoupling protein-1 and -2. In parallel, these mice develop an insulin-secretion defect resulting in a progressive glucose intolerance, without insulin resistance. This model provides direct evidence for not only a role for the insulin receptors in brown fat adipogenesis, the data also suggest a novel role of brown adipose tissue in the regulation of insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- C Guerra
- Jackson Laboratory, Bar Harbor, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang J, Cheung AT, Kolls JK, Starks WW, Martinez-Hernandez A, Dietzen D, Bryer-Ash M. Effects of adenovirus-mediated liver-selective overexpression of protein tyrosine phosphatase-1b on insulin sensitivity in vivo. Diabetes Obes Metab 2001; 3:367-80. [PMID: 11703427 DOI: 10.1046/j.1463-1326.2001.00173.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Protein tyrosine phosphatase-1B (PTP-1B) is an intracellular PTP known to dephosphorylate and inactivate upstream tyrosine phosphoproteins in the insulin signalling cascade. We and others reported increased abundance of catalytically impaired PTP-1B in tissue lysates from obese human subjects with and without type 2 diabetes, while genetic knockout of PTP-1B improves insulin sensitivity and prevents nutritionally mediated insulin resistance and obesity. The aim of the present work was to further elucidate the role of PTP-1B in glucose metabolism in vivo. METHODS We used adenoviral constructs incorporating cDNAs for either wild-type (W/T) or a catalytically inactive C(215)S (C/S) mutant PTP-1B to achieve liver-selective PTP-1B overexpression in young Sprague-Dawley rats using tail vein injection, based on the high degree of hepatotropism of adenovirus 5 (Ad5). An Ad5-lacZ construct encoding beta-galactosidase was used as a control for viral effects alone. A hyperinsulinaemic euglycaemic clamp was used to study whole body glucose disposal and endogenous glucose production rates. RESULTS Control studies in HIRcB cells confirmed catalytic activity and inactivity of W/T and C/S respectively. Mean PTP-1B abundance was 2.24 +/- 0.02- and 2.33 +/- 0.04-fold of saline-treated control in liver lysates of W/T and C/S rats respectively. Liver selective overexpression was confirmed by analysis of tissue lysates from liver, fat and muscle tissues. Ad5 treatment did not result in a statistically or clinically significant liver injury, as determined by serum alanine aminotransferase and histological examination. Seven days post injection, no significant difference in rate of weight gain, fasting blood glucose or insulin levels were seen in any group. Similarly, under steady-state glucose clamp conditions, glucose disposal rate (R(d)), endogenous glucose production rate (EGP) and serum insulin levels were similar in all groups. CONCLUSION We conclude that moderate medium-term overabundance, to a degree resembling that seen in insulin-resistant states, of PTP-1B in liver tissue does not alter insulin action on glucose metabolism and that the major site of action of PTP-1B is presumably at insulin-responsive target tissue or tissues other than the liver.
Collapse
Affiliation(s)
- J Wang
- University of Tennessee, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The war against diabetes through the development of new drugs is an ongoing continuous process to counter the alarming global increase in the prevalence of diabetes and its complications, particularly in developing countries like India. Unfortunately, the speed with which our knowledge of diabetes and its effects is expanding is not matched by the availability of new drugs. Following the identification of the insulin receptor (IR), its intrinsic kinase activity and molecular cloning, many studies have looked at IR as an ideal drug target. This review summarizes in brief the latest advancements in this field with particular reference to the current situation in respect of the development of orally active insulin mimetics in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- M Balasubramanyam
- Madras Diabetes Research Foundation (MDRF), 35 Conran Smith Road, Gopalapuram, Chennai 600 086, India.
| | | |
Collapse
|
98
|
Suzuki T, Hiroki A, Watanabe T, Yamashita T, Takei I, Umezawa K. Potentiation of insulin-related signal transduction by a novel protein-tyrosine phosphatase inhibitor, Et-3,4-dephostatin, on cultured 3T3-L1 adipocytes. J Biol Chem 2001; 276:27511-8. [PMID: 11342532 DOI: 10.1074/jbc.m011726200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated dephostatin from Streptomyces as a novel inhibitor of CD45-associated protein-tyrosine phosphatase. We prepared Et-3,4-dephostatin as a stable analogue and found it to inhibit PTP-1B and SHPTP-1 protein-tyrosine phosphatases selectively but not to inhibit CD45 and leukocyte common antigen-related phosphatase ones effectively. Et-3,4-dephostatin increased the tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 with or without insulin in differentiated 3T3-L1 mouse adipocytes. The increase of tyrosine phosphorylation by Et-3,4-dephostatin was more prominent in 6-h than in 30-min incubation. It also increased phosphorylation and activation of Akt with or without insulin. Et-3,4-dephostatin also enhanced translocation of glucose transporter 4 from the cytoplasm to the membrane and 2-deoxy-glucose transport. Et-3,4-dephostatin-induced glucose uptake was inhibited by SB203580, a p38 inhibitor, but not by PD98059, a MEK inhibitor, or by cycloheximide as insulin-induced uptake. Interestingly, although LY294002, a phosphatidylinositol 3-kinase inhibitor, inhibited the insulin-induced glucose uptake completely, it only partially inhibited the Et-3,4-dephostatin-induced uptake. It also blocked insulin-induced glucose transporter 4 translocation but not the Et-3,4-dephostatin-induced one. The increase in c-Cbl tyrosine phosphorylation caused by Et-3,4-dephostatin was stronger than that in insulin receptor phosphorylation. These observations indicate that a phosphatidylinositol 3-kinase-independent pathway involving c-Cbl is more important in Et-3,4-dephostatin-induced glucose uptake than in insulin-induced uptake. Et-3,4-dephostatin showed an in vivo antidiabetic effect in terms of reducing the high blood glucose level in KK-A(y) mice after oral administration. Thus, Et-3,4-dephostatin potentiated insulin-related signal transductions in cultured mouse adipocytes and showed an antidiabetic effect in mice.
Collapse
Affiliation(s)
- T Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-0061, Japan
| | | | | | | | | | | |
Collapse
|
99
|
Musi N, Fujii N, Hirshman MF, Ekberg I, Fröberg S, Ljungqvist O, Thorell A, Goodyear LJ. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 2001; 50:921-7. [PMID: 11334434 DOI: 10.2337/diabetes.50.5.921] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- N Musi
- Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Insulin signaling at the target tissue results in a large array of biological outcomes. These events are essential for normal growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Elucidating the intracellular events after activation of the IR has been the primary focus of a large number of investigators for decades, and for excellent reasons. Understanding the signaling pathways involved in insulin action could lead to a better understanding of the pathophysiology of insulin resistance associated with obesity and type 2 diabetes, and identifying key molecules and processes could lead to newer and more effective therapeutic agents for treating these common disorders.
This review summarizes our previous understanding of how insulin acts and outlines some recent developments in our understanding of insulin action and insulin resistance at the cellular level, beginning with a discussion on the discovery of evolutionarily conserved molecules of the insulin signaling pathways. This article will also provide a summary of a few in vitro and cellular models of insulin resistance and a description of some new paradigms in the cellular mechanisms of insulin action.
This review will not attempt to be all-inclusive; for a more comprehensive understanding, readers are referred to more complete reviews on insulin action (1–5).
Collapse
Affiliation(s)
- D Le Roith
- Clinical Endocrinology Branch, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|