51
|
Ciuria S, Brouwer MSM, de Gier MM, van Zeeland Y, Bossers A, Prähauser B, Schädler J, Hatt JM, Heijne M, Borel N. Chlamydia caviae in Swiss and Dutch Guinea Pigs-Occurrence and Genetic Diversity. Pathogens 2021; 10:pathogens10101230. [PMID: 34684177 PMCID: PMC8539544 DOI: 10.3390/pathogens10101230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia (C.) caviae is a known pathogen in guinea pigs, causing conjunctivitis, respiratory infections and abortions. Recently, a C. caviae-induced zoonotic link was identified as the etiology of severe community-acquired pneumonia in humans. Here, 784 conjunctival and rectal swabs originating from 260 guinea pigs and 110 rabbits from 64 husbandries in Switzerland, as well as 200 composite conjunctival swabs originating from 878 guinea pigs from 37 husbandries in The Netherlands were examined by real-time PCR followed by conventional PCR and sequencing. Chlamydiaceae were detected in 2.3% (18/784) and 12.5% (25/200) of all Swiss and Dutch samples, respectively. An overall C. caviae occurrence was detected in 2.7% (7/260) and 8.9% (78/878) of all Swiss and Dutch guinea pigs, respectively. OmpA genotyping of 64 C. caviae-positive samples resulted in 33 sequences sharing 100% nucleotide identity with the strains isolated from the zoonotic transmission cases in The Netherlands. However, all ompA sequences of this study were distinct from the C. caviae GPIC reference strain. C. caviae was not detected in rabbits but C. psittaci genotype A was identified in guinea pigs and rabbits, raising concerns about the importance of these animal species as novel zoonotic sources for C. psittaci.
Collapse
Affiliation(s)
- Silvia Ciuria
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (S.C.); (B.P.)
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.S.M.B.); (A.B.); (M.H.)
| | - Marende M. de Gier
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (M.M.d.G.); (Y.v.Z.)
| | - Yvonne van Zeeland
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (M.M.d.G.); (Y.v.Z.)
| | - Alex Bossers
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.S.M.B.); (A.B.); (M.H.)
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (S.C.); (B.P.)
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Julia Schädler
- National Reference Centre for Poultry and Rabbit Diseases, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland;
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland;
| | - Marloes Heijne
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.S.M.B.); (A.B.); (M.H.)
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland; (S.C.); (B.P.)
- Correspondence: ; Tel.: +41-44-6358563
| |
Collapse
|
52
|
Characteristics of Chlamydia suis Ocular Infection in Pigs. Pathogens 2021; 10:pathogens10091103. [PMID: 34578134 PMCID: PMC8470092 DOI: 10.3390/pathogens10091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia (C.) suis can often be isolated from conjunctival swab specimens from pigs with conjunctivitis or keratoconjunctivitis. In the field, it is assumed to be a multifactorial disease triggered by immunosuppressing factors. This is the first experimental study to provoke clinical signs of conjunctivitis in pigs after C. suis primary mono-infection. Five six-week-old male piglets, free of ocular chlamydia shedding and seronegative for Chlamydia, were conjunctivally infected with the C. suis-type strain S45 (1 × 109 inclusion forming units), while four piglets served as negative controls. The infection group developed clinical signs of conjunctivitis with a peak in the first week post-infection. Immunohistochemical evaluation revealed the presence of Chlamydia not only in the conjunctival epithelium, but also in the enlarged lacrimal glands, lungs, and intestine. No circulating antibodies could be detected during the whole study period of three weeks, although three different test systems were applied as follows: the complement fixation test, MOMP-based Chlamydiaceae ELISA, and PmpC-based C. suis ELISA. Meanwhile, high numbers of IFN-γ-producing lymphocytes within PBMC were seen after C. suis re-stimulation 14 days post-infection. Hence, these data suggest that entry via the eye may not elicit immunological responses comparable to other routes of chlamydial infections.
Collapse
|
53
|
Phillips P, Parkhurst JM, Kounatidis I, Okolo C, Fish TM, Naismith JH, Walsh MA, Harkiolaki M, Dumoux M. Single Cell Cryo-Soft X-ray Tomography Shows That Each Chlamydia Trachomatis Inclusion Is a Unique Community of Bacteria. Life (Basel) 2021; 11:life11080842. [PMID: 34440586 PMCID: PMC8399160 DOI: 10.3390/life11080842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria within the inclusion influences individual bacterium. The life cycle of Chlamydia involves transitioning between the invasive elementary bodies (EBs) and replicative reticulate bodies (RBs). We have used cryo-soft X-ray tomography to observe individual inclusions, an approach that combines 40 nm spatial resolution and large volume imaging (up to 16 µm). Using semi-automated segmentation pipeline, we considered each inclusion as an individual bacterial niche. Within each inclusion, we identifyed and classified different forms of the bacteria and confirmed the recent finding that RBs have a variety of volumes (small, large and abnormal). We demonstrate that the proportions of these different RB forms depend on the bacterial concentration in the inclusion. We conclude that each inclusion operates as an autonomous community that influences the characteristics of individual bacteria within the inclusion.
Collapse
Affiliation(s)
- Patrick Phillips
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- Division of Structural Biology Department, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
| | - Ilias Kounatidis
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - Chidinma Okolo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - Thomas M. Fish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
| | - James H. Naismith
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Maud Dumoux
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (P.P.); (J.M.P.); (I.K.); (C.O.); (T.M.F.); (M.A.W.); (M.H.)
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Fermi Road, Didcot OX11 0FA, UK
- Correspondence:
| |
Collapse
|
54
|
Livingstone M, Wattegedera SR, Palarea-Albaladejo J, Aitchison K, Corbett C, Sait M, Wilson K, Chianini F, Rocchi MS, Wheelhouse N, Entrican G, Longbottom D. Efficacy of Two Chlamydia abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion. Vaccines (Basel) 2021; 9:vaccines9080898. [PMID: 34452023 PMCID: PMC8402522 DOI: 10.3390/vaccines9080898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chlamydia abortus, the aetiological agent of enzootic abortion of ewes, is a major cause of reproductive loss in small ruminants worldwide, accounting for significant economic losses to the farming industry. Disease can be managed through the use of commercial inactivated or live whole organism-based vaccines, although both have limitations particularly in terms of efficacy, safety and disease-associated outbreaks. Here we report a comparison of two experimental vaccines (chlamydial outer membrane complex (COMC) and octyl glucoside (OG)-COMC) based on detergent extracted outer membrane preparations of C. abortus and delivered as prime-boost immunisations, with the commercial live vaccine Cevac® Chlamydia in a pregnant sheep challenge model. No abortions occurred in either experimental vaccine group, while a single abortion occurred in the commercial vaccine group. Bacterial shedding, as a measure of potential risk of transmission of infection to naïve animals, was lowest in the COMC vaccinated group, with reductions of 87.5%, 86.4% and 74% observed for the COMC, OG-COMC and live commercial vaccine groups, respectively, compared to the unvaccinated challenge control group. The results show that the COMC vaccine performed the best and is a safer efficacious alternative to the commercial vaccines. However, to improve commercial viability, future studies should optimise the antigen dose and number of inoculations required.
Collapse
Affiliation(s)
- Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Sean Ranjan Wattegedera
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | | | - Kevin Aitchison
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Cecilia Corbett
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Michelle Sait
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Kim Wilson
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Mara Silvia Rocchi
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Nicholas Wheelhouse
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
- Correspondence:
| |
Collapse
|
55
|
Anstey SI, Kasimov V, Jenkins C, Legione A, Devlin J, Amery-Gale J, Gilkerson J, Hair S, Perkins N, Peel AJ, Borel N, Pannekoek Y, Chaber AL, Woolford L, Timms P, Jelocnik M. Chlamydia Psittaci ST24: Clonal Strains of One Health Importance Dominate in Australian Horse, Bird and Human Infections. Pathogens 2021; 10:pathogens10081015. [PMID: 34451478 PMCID: PMC8401489 DOI: 10.3390/pathogens10081015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Chlamydia psittaci is traditionally regarded as a globally distributed avian pathogen that can cause zoonotic spill-over. Molecular research has identified an extended global host range and significant genetic diversity. However, Australia has reported a reduced host range (avian, horse, and human) with a dominance of clonal strains, denoted ST24. To better understand the widespread of this strain type in Australia, multilocus sequence typing (MLST) and ompA genotyping were applied on samples from a range of hosts (avian, equine, marsupial, and bovine) from Australia. MLST confirms that clonal ST24 strains dominate infections of Australian psittacine and equine hosts (82/88; 93.18%). However, this study also found novel hosts (Australian white ibis, King parrots, racing pigeon, bovine, and a wallaby) and demonstrated that strain diversity does exist in Australia. The discovery of a C. psittaci novel strain (ST306) in a novel host, the Western brush wallaby, is the first detection in a marsupial. Analysis of the results of this study applied a multidisciplinary approach regarding Chlamydia infections, equine infectious disease, ecology, and One Health. Recommendations include an update for the descriptive framework of C. psittaci disease and cell biology work to inform pathogenicity and complement molecular epidemiology.
Collapse
Affiliation(s)
- Susan I. Anstey
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Vasilli Kasimov
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Alistair Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Joanne Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - James Gilkerson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Sam Hair
- WA Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| | - Nigel Perkins
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia;
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8066 Zurich, Switzerland;
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 3508 Amsterdam, The Netherlands;
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
- Correspondence:
| |
Collapse
|
56
|
Song X, Zhang J, Song J, Zhai Y. Decisive Effects of Life Stage on the Gut Microbiota Discrepancy Between Two Wild Populations of Hibernating Asiatic Toads ( Bufo gargarizans). Front Microbiol 2021; 12:665849. [PMID: 34413833 PMCID: PMC8369469 DOI: 10.3389/fmicb.2021.665849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Until now, the effects of driving factors on the gut microbiota of amphibians are still mostly confounded. Due to a long-term fasting, hibernating amphibians are ideal experimental materials to explore this question. In this study, we characterized the small intestine microbiota of adult hibernating Asiatic toads (Bufo gargarizans) collected from two geographical populations using 16S rRNA amplicon sequencing technique and evaluated the effects of non-dietary factors (e.g., sex and host genetic background). Proteobacteria (0.9196 ± 0.0892) was characterized as the most dominant phylum in the small gut microbiota of hibernating Asiatic toads, among which five core OTUs were identified and three were classified into Pseudomonas. In view of the coincidence between the dominant KEGG pathways (such as the two-component system) and Pseudomonas, Pseudomonas appeared to be a key adaptor for small gut microbiota during hibernation. Furthermore, we detected a greater discrepancy of gut microbiota between geographical populations than between sexes. Both sex and host genetic background showed a minor effect on the gut microbiota variation. Finally, life stage was determined to be the decisive factor driving the gut microbiota discrepancy between populations. However, a large proportion of the gut microbiota variation (∼70%) could not be explained by the measured deterministic factors (i.e., sex, location, body length, and routine blood indices). Therefore, other factors and/or stochastic processes may play key roles in shaping gut bacterial community of hibernating amphibians.
Collapse
Affiliation(s)
- Xiaowei Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jingwei Zhang
- Hospital of Xinyang Normal University, Xinyang Normal University, Xinyang, China
| | - Jinghan Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuanyuan Zhai
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
57
|
Occurrence of Chlamydiaceae and Chlamydia felis pmp9 Typing in Conjunctival and Rectal Samples of Swiss Stray and Pet Cats. Pathogens 2021; 10:pathogens10080951. [PMID: 34451415 PMCID: PMC8400119 DOI: 10.3390/pathogens10080951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Chlamydia (C.) felis primarily replicates in feline conjunctival epithelial cells and is an important cause of conjunctivitis in cats. Data on C. felis infection rates in stray cats in Switzerland has been missing so far. We performed a qPCR-based Chlamydiaceae-screening on 565 conjunctival and 387 rectal samples from 309 stray and 86 pet cats followed by Chlamydia species identification and C. felis typing using the gene pmp9, which encodes a polymorphic membrane protein. Overall, 19.1% of the stray and 11.6% of the pet cats were Chlamydiaceae-positive with significantly higher rates in cats displaying signs of conjunctivitis (37.1%) compared to healthy animals (6.9%). Rectal shedding of Chlamydiaceae occurred in 25.0% of infected cats and was mostly associated with concurrent ocular positivity (87.5%). In 92.2% of positive conjunctival and rectal samples, the Chlamydia species was identified as C. felis and in 2.6% as C. abortus. The C. felis pmp9 gene was very conserved in the sampled population with only one single-nucleotide polymorphism (SNP) in one conjunctival sample. In conclusion, C. felis strains are circulating in Swiss cats, are associated with conjunctivitis, have a low pmp9 genetic variability, and are rectally shed in about 16% of positive cases.
Collapse
|
58
|
A Review of Chlamydial Infections in Wild Birds. Pathogens 2021; 10:pathogens10080948. [PMID: 34451412 PMCID: PMC8398480 DOI: 10.3390/pathogens10080948] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
The Chlamydia are a globally distributed genus of bacteria that can infect and cause disease in a range of hosts. Birds are the primary host for multiple chlamydial species. The most well-known of these is Chlamydia psittaci, a zoonotic bacterium that has been identified in a range of wild and domesticated birds. Wild birds are often proposed as a reservoir of Chlamydia psittaci and potentially other chlamydial species. The aim of this review is to present the current knowledge of chlamydial infections in wild avian populations. We focus on C. psittaci but also consider other Chlamydiaceae and Chlamydia-related bacteria that have been identified in wild birds. We summarise the diversity, host range, and clinical signs of infection in wild birds and consider the potential implications of these infections for zoonotic transmission and avian conservation. Chlamydial bacteria have been found in more than 70 species of wild birds, with the greatest chlamydial diversity identified in Europe. The Corvidae and Accipitridae families are emerging as significant chlamydial hosts, in addition to established wild hosts such as the Columbidae. Clarifying the effects of these bacteria on avian host fitness and the zoonotic potential of emerging Chlamydiales will help us to understand the implications of these infections for avian and human health.
Collapse
|
59
|
Ravichandran K, Anbazhagan S, Karthik K, Angappan M, Dhayananth B. A comprehensive review on avian chlamydiosis: a neglected zoonotic disease. Trop Anim Health Prod 2021; 53:414. [PMID: 34312716 PMCID: PMC8313243 DOI: 10.1007/s11250-021-02859-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/09/2021] [Indexed: 01/12/2023]
Abstract
Avian chlamydiosis is one of the important neglected diseases with critical zoonotic potential. Chlamydia psittaci, the causative agent, affects most categories of birds, livestock, companion animals, and humans. It has many obscured characters and epidemiological dimensions, which makes it unique among other bacterial agents. Recent reports on transmission from equine to humans alarmed the public health authorities, and it necessitates the importance of routine screening of this infectious disease. High prevalence of spill-over infection in equines was associated with reproductive losses. Newer avian chlamydial species are being reported in the recent years. It is a potential biological warfare agent and the disease is an occupational hazard mainly to custom officers handling exotic birds. Prevalence of the disease in wild birds, pet birds, and poultry causes economic losses to the poultry industry and the pet bird trade. Interestingly, there are speculations on the ‘legal’ and ‘illegal’ bird trade that may be the global source of some of the most virulent strains of this pathogen. The mortality rate generally ranges from 5 to 40% in untreated cases, but it can sometimes be higher in co-infection. The intracellular lifestyle of this pathogen makes the diagnosis more complicated and there is also lack of accurate diagnostics. Resistance to antibiotics is reported only in some pathogens of the Chlamydiaceae family, but routine screening may assess the actual situation in all pathogens. Due to the diverse nature of the pathogen, the organism necessitates the One Health partnerships to have complete understanding. The present review focuses on the zoonotic aspects of avian chlamydiosis with its new insights into the pathogenesis, transmission, treatment, prevention, and control strategies. The review also briefs on the basic understandings and complex epidemiology of avian chlamydiosis, highlighting the need for research on emerging one health perspectives.
Collapse
Affiliation(s)
- Karthikeyan Ravichandran
- Division of Public Health and Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, India.
| | - Subbaiyan Anbazhagan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Madesh Angappan
- Division of Public Health and Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Balusamy Dhayananth
- Division of Public Health and Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
60
|
Sukon P, Nam NH, Kittipreeya P, Sara-In A, Wawilai P, Inchuai R, Weerakhun S. Global prevalence of chlamydial infections in birds: A systematic review and meta-analysis. Prev Vet Med 2021; 192:105370. [PMID: 33984601 DOI: 10.1016/j.prevetmed.2021.105370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Chamydia species are bacterial pathogens that can infect a wide range of animal hosts including humans. In birds, Chlamydia psittaci is a leading cause of chlamydial infections (avian chlamydiosis) and is a zoonotic pathogen causing human psittacosis. The objectives of this study were to estimate the global prevalence of chlamydial infections in birds, to assess heterogeneity of the prevalence for some particular characteristics (continents, bird orders, specimen types, and diagnostic techniques), and to determine the trend of the prevalence over time. The relevant citations on the prevalence of chlamydial infections in birds were retrieved from PubMed, Scopus, and Web of Science. Titles and abstracts of the retrieved citations were screened for possible eligibility. Then, full-texts of eligible articles were assessed for data extraction. A random effects model was used for estimating the global prevalence of chlamydial infections in birds and for all other meta-analyses. Subgroup meta-analysis was used to assess heterogeneity of the prevalence for the characteristics mentioned above. Meta-regression analysis and cumulative meta-analysis were used to determine the trend of the prevalence over time. The quality of each included study was also evaluated. Of 579 citations, 74 studies (a total of 39,225 bird samples from 26 countries, five continents) were included in meta-analysis. Almost all included studies reported birds with C. psittaci infections. The global prevalence of chlamydial infections in birds was 19.5 % (95 % CI, 16.3 %-23.1 %). No significant differences of the prevalence were observed among continents, the prevalence ranged from 16.5 % (95 % CI, 9.8 %-26.5 %) in South America to 21.7 % (95 % CI, 12.1 %-35.9 %) in North America. No significant differences of the prevalence were observed among bird orders, the prevalence ranged from 13.4 % (95 % CI, 7.0 %-23.9 %) in Passeriformes to 32.0 % (95 % CI, 20.6 %-46.1 %) in Galliformes. No significant differences of the prevalence were observed between specimen types; the prevalence was 18.4 % (95 % CI, 15.2 %-22.2 %) for live specimens and 26.3 % (95 % CI, 17.1 %-38.1 %) for carcass specimens. The prevalence was significantly higher in non-PCR techniques (29.5 %, [95 % CI, 22.4 %-37.8 %]) than in PCR techniques (15.3 %, [95 % CI, 12.1 %-19.1 %]). The cumulative evidence showed that the prevalence of chlamydial infections in birds has been relatively stable around 20 % since 2012. This study indicates that the global prevalence of chlamydial infections in birds is quite high and all bird orders are potential sources for human psittacosis.
Collapse
Affiliation(s)
- Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Thailand; Research and Development on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand.
| | - Nguyen Hoai Nam
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | | | | | | | - Rawikan Inchuai
- Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | | |
Collapse
|
61
|
Reliable and Sensitive Nested PCR for the Detection of Chlamydia in Sputum. Microorganisms 2021; 9:microorganisms9050935. [PMID: 33925646 PMCID: PMC8145989 DOI: 10.3390/microorganisms9050935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia are Gram-negative, intracellular pathogens colonizing epithelial mucosa. They cause primarily atypical pneumonia and have recently been associated with chronic diseases. Diagnostics relies almost exclusively on serological methods; PCR tests are used rarely because in patients with positive ELISA, it is nearly impossible to identify chlamydial DNA. This paradox is associated with DNA degradation in sputum samples, low abundance, and low sensitivity of PCR systems. In a newly designed and validated “nested” PCR (NPCR) assay, it was possible to amplify DNA of Chlamydia known to infect humans in 31% samples. The reliability of the assay was confirmed by DNA sequencing, and all PCR products belonged exclusively to the Chlamydiales, mainly recognized as Chlamydia pneumoniae. Three samples were related to Ca. Rhabdochlamydia porcellionis and Ca. Renichlamydia lutjani, which infect arthropods. In one case, samples were taken from sick individual, indicating the potential as a human pathogen.
Collapse
|
62
|
Sheng CY, Gong QL, Ma BY, Liu Y, Ge GY, Li DL, Luan MH, Diao NC, Li JM, Shi K, Leng X, Du R. Prevalence of Chlamydia in Pigs in China from 1985 to 2020: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2021; 21:517-533. [PMID: 33887161 DOI: 10.1089/vbz.2020.2694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia is a small gram-negative (G-) microorganism that can be dangerous to human and animals. In this study, we conducted a systematic review and meta-analysis of Chlamydia infection in swine in China. From PubMed, ScienceDirect, Chinese Web of knowledge (CNKI), VIP Chinese journal database, and Wanfang database, we collected a total of 72 publications reported in 1985-2020. The prevalence of Chlamydia was 22.48% in China. In the sampling year subgroup, the prevalence after 2011 was the highest (26.14%). In southern China, the prevalence was 30.97%. By contrast, the prevalence in northern China was only 10.79%. Also the difference was significant (p < 0.05). In the provincial level, Hubei had the highest rate of 36.23%. Boars had a higher prevalence (29.47%). The prevalence of Chlamydia detection in pigs with reproductive disorders (21.86%) was higher than that without reproductive disorders. Among the three age groups, finishing pigs (21.43%) had the highest prevalence. The prevalence in large-scale farmed pigs (28.58%) was the highest in the subgroup of feeding methods. The prevalence in farms was 24.29%, which was the highest in the survey areas. The prevalence in spring was the highest with 40.51%. Other methods had the highest prevalence (39.61%) than enzyme-linked immunosorbent assay (ELISA) and indirect hemagglutination assay. The prevalence of Chlamydia psittaci 18.41% was lower than the prevalence of Chlamydia abortus (41.35%). We also analyzed the impact of different climate factor subgroups (rainfall, temperature, and humidity) on the probability of pigs suffering from the disease. The results showed that Chlamydia was widespread in pigs in China. We suggest that we should strengthen the detection of Chlamydia in the semen of breeding pigs and pigs with reproductive disorders, and reasonably control the environment of large-scale pig farms, so as to reduce further infection of Chlamydia in pigs.
Collapse
Affiliation(s)
- Chen-Yan Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Bao-Yi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Yi Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Gui-Yang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Dong-Li Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Mei-Hui Luan
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Nai-Chao Diao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, P.R. China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|
63
|
A 2-pyridone amide inhibitor of transcriptional activity in Chlamydia trachomatis. Antimicrob Agents Chemother 2021; 95:AAC.01826-20. [PMID: 33593835 PMCID: PMC8092867 DOI: 10.1128/aac.01826-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a strict intracellular bacterium that causes sexually transmitted infections and eye infections that can lead to life-long sequelae. Treatment options are limited to broad-spectrum antibiotics that disturb the commensal flora and contribute to selection of antibiotic-resistant bacteria. Hence, development of novel drugs that specifically target C. trachomatis would be beneficial. 2-pyridone amides are potent and specific inhibitors of Chlamydia infectivity. The first generation compound KSK120, inhibits the developmental cycle of Chlamydia resulting in reduced infectivity of progeny bacteria. Here, we show that the improved, highly potent second-generation 2-pyridone amide KSK213 allowed normal growth and development of C. trachomatis and the effect was only observable upon re-infection of new cells. Progeny elementary bodies (EBs) produced in the presence of KSK213 were unable to activate transcription of essential genes in early development and did not differentiate into the replicative form, the reticulate body (RB). The effect was specific to C. trachomatis since KSK213 was inactive in the closely related animal pathogen C. muridarum and in C. caviae The molecular target of KSK213 may thus be different in C. trachomatis or non-essential in C. muridarum and C. caviae Resistance to KSK213 was mediated by a combination of amino acid substitutions in both DEAD/DEAH RNA helicase and RNAse III, which may indicate inhibition of the transcriptional machinery as the mode of action. 2-pyridone amides provide a novel antibacterial strategy and starting points for development of highly specific drugs for C. trachomatis infections.
Collapse
|
64
|
Draft Genome Sequences of Avian Chlamydia abortus Genotype G2 Strain 15-49d3, Isolated from Mallard, and Genotype 1V Strain 15-58d44, Isolated from Magpie in Poland. Microbiol Resour Announc 2021; 10:10/14/e01203-20. [PMID: 33833029 PMCID: PMC8032471 DOI: 10.1128/mra.01203-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Here, we report the draft genome sequences of avian Chlamydia abortus genotype G2 strain 15-49d3, isolated from mallard, and genotype 1V strain 15-58d44, isolated from magpie in Poland. The total genome assembly lengths are 1,140,139 bp and 1,158,207 bp, respectively. Here, we report the draft genome sequences of avian Chlamydia abortus genotype G2 strain 15-49d3, isolated from mallard, and genotype 1V strain 15-58d44, isolated from magpie in Poland. The total genome assembly lengths are 1,140,139 bp and 1,158,207 bp, respectively.
Collapse
|
65
|
Favaroni A, Trinks A, Weber M, Hegemann JH, Schnee C. Pmp Repertoires Influence the Different Infectious Potential of Avian and Mammalian Chlamydia psittaci Strains. Front Microbiol 2021; 12:656209. [PMID: 33854490 PMCID: PMC8039305 DOI: 10.3389/fmicb.2021.656209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Chlamydia psittaci is the etiological agent of chlamydiosis in birds and can be transmitted to humans, causing severe systemic disease. C. psittaci infects a broad range of hosts; strains are isolated not only from birds but also from mammals, where they seem to have a reduced infectious and zoonotic potential. Comparative analysis of chlamydial genomes revealed the coding sequences of polymorphic membrane proteins (Pmps) to be highly variable regions. Pmps are characterized as adhesins in C. trachomatis and C. pneumoniae and are immunoreactive proteins in several Chlamydia species. Thus, Pmps are considered to be associated with tissue tropism and pathogenicity. C. psittaci harbors 21 Pmps. We hypothesize that the different infectious potential and host tropism of avian and mammalian C. psittaci strains is dependent on differences in their Pmp repertoires. In this study, we experimentally confirmed the different virulence of avian and mammalian strains, by testing the survival rate of infected embryonated eggs and chlamydiae dissemination in the embryos. Further, we investigated the possible involvement of Pmps in host tropism. Analysis of pmp sequences from 10 C. psittaci strains confirmed a high degree of variation, but no correlation with host tropism was identified. However, comparison of Pmp expression profiles from different strains showed that Pmps of the G group are the most variably expressed, also among avian and mammalian strains. To investigate their functions, selected Pmps were recombinantly produced from one avian and one mammalian representative strain and their adhesion abilities and relevance for the infection of C. psittaci strains in avian and mammalian cells were tested. For the first time, we identified Pmp22D, Pmp8G, and OmcB as relevant adhesins, essential during infection of C. psittaci strains in general. Moreover, we propose Pmp17G as a possible key player for host adaptation, as it could only bind to and influence the infection in avian cells, but it had no relevant impact towards infection in mammalian cells. These data support the hypothesis that distinct Pmp repertoires in combination with specific host factors may contribute to host tropism of C. psittaci strains.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Alexander Trinks
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
66
|
Molecular Detection and Identification of Chlamydiaceae in the Eyes of Wild and Domestic Ruminant Hosts from Northern Spain. Pathogens 2021; 10:pathogens10030383. [PMID: 33806840 PMCID: PMC8005166 DOI: 10.3390/pathogens10030383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Infections by Chlamydiae are associated with ocular disease in humans and animals. In this study, the presence and diversity of Chlamydia spp. was assessed in diseased and healthy eyes of domestic sheep and wild ruminants that share mountain habitats in northern Spain. The presence of Chlamydia spp. was tested by real-time PCR in 1786 conjunctival swabs collected from both eyes of 893 animals from mountain habitats in northern Spain, and chlamydial species were identified in the positive samples by ArrayTube microarray methods. Chlamydial DNA was detected in 0.6% (CI95% 0.2–1.3) of the Pyrenean chamois (Rupicapra pyrenaica) and 1.4% (CI95% <0.01–8.1) of the sheep (Ovis aries) sampled, with Chlamydia pecorum the only chlamydial species identified. No association of C. pecorum with ocular disease or co-infection with Mycoplasma conjunctivae was found. Further studies on the pathogenesis of infectious keratoconjunctivitis are needed to better understand the ecology of C. pecorum and its possible role as a ruminant pathogen at the wildlife–livestock interface.
Collapse
|
67
|
Struthers JD, Lim A, Ferguson S, Lee JK, Chako C, Okwumabua O, Cuneo M, Valle AMD, Brower A. Meningoencephalitis, Vasculitis, and Abortions Caused by Chlamydia pecorum in a Herd of Cattle. Vet Pathol 2021; 58:549-557. [PMID: 33590807 DOI: 10.1177/0300985820985288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cow dairy (n = 2000) in close proximity to a sheep flock had third-trimester abortions and fatalities in cows and calves over a 14-month period. Eighteen of 33 aborted fetuses (55%) had multifocal random suppurative or mononuclear meningoencephalitis with vasculitis. Seventeen of these affected fetuses had intracytoplasmic bacteria in endothelial cells, and 1 fetus with pericarditis had similar bacteria within mesothelial cells or macrophages. Immunohistochemistry for Chlamydia spp. or polymerase chain reaction (PCR) for Chlamydia pecorum or both, performed on brain or pooled tissue, were positive in all 14 tested fetuses that had meningoencephalitis and in 4/4 calves and in 3/4 tested cows that had meningoencephalitis and thrombotic vasculitis. In 1 calf and 11/11 fetuses, C. pecorum PCR amplicon sequences were 100% homologous to published C. pecorum sequences. Enzootic chlamydiosis due to C. pecorum was the identified cause of the late term abortions and the vasculitis and meningoencephalitis in fetuses, calves, and cows. C. pecorum, an uncommon bovine abortogenic agent, is a differential diagnosis in late-term aborted fetuses with meningoencephalitis, vasculitis, and polyserositis.
Collapse
Affiliation(s)
| | - Ailam Lim
- Wisconsin Veterinary Diagnostic Laboratory, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Rochat E, Vuilleumier S, Aeby S, Greub G, Joost S. Nested Species Distribution Models of Chlamydiales in Ixodes ricinus (Tick) Hosts in Switzerland. Appl Environ Microbiol 2020; 87:e01237-20. [PMID: 33067199 PMCID: PMC7755253 DOI: 10.1128/aem.01237-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, which potentially cause respiratory infections. In this study, we modeled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collaborative smartphone application, and a prospective campaign. For each tick location, we retrieved from Swiss federal data sets the environmental factors reflecting the topography, climate, and land cover. We then used the Maxent modeling technique to estimate the suitability of particular areas for I. ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus habitat suitability is determined by higher temperature and normalized difference vegetation index (NDVI) values, lower temperature during the driest months, and a higher percentage of artificial and forest areas. The performance of the model was improved when extracting the environmental variables for a 100-m radius buffer around the sampling points and when considering the climatic conditions of the 2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower percentage of artificial surfaces, drier conditions, high precipitation during the coldest months, and short distances to wetlands. From 2009 to 2018, we observed an extension of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude. The importance of considering spatiotemporal variations in the environmental conditions for obtaining better prediction was also demonstrated.IMPORTANCEIxodes ricinus is the vector of pathogens including the agent of Lyme disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bacteria, which are responsible for certain respiratory infections. In this study, we identified the environmental factors influencing the presence of I. ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 2018. We found an important expansion of suitable areas for both the tick and the bacteria during the last decade. Results also provided the environmental factors that determine the presence of Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable information for decision makers in controlling tick-borne diseases in Switzerland and establishing prevention campaigns. The methodological framework presented could be used to predict the distribution and spread of other host-pathogen pairs to identify environmental factors driving their distribution and to develop control or prevention strategies accordingly.
Collapse
Affiliation(s)
- Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Séverine Vuilleumier
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Sébastien Aeby
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- La Source School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
- Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
- Group of Geographic Information Research and Analysis in Population Health (GIRAPH), Switzerland
| |
Collapse
|
69
|
Abstract
This paper provides an overview of the current knowledge of chlamydiae. These intracellular microorganisms belonging to the Chlamydiaceae family are widely distributed throughout the world. Constant development of culture-independent approaches for characterisation of microbial genomes enables new discoveries in the field of Chlamydia. The number of new taxa is continuously increasing as well as the range of hosts. New species and genotypes are constantly being discovered, particularly new avian and reptilian agents, which are discussed in this article. Interestingly, wild animals are the main hosts for new Chlamydia species including different species of bird, turtle and snake. The availability of next-generation sequencing opens up a new prospect for research and leads to deeper knowledge of these interesting microorganisms about which much is still to discover.
Collapse
|
70
|
Ostfeld N, Islam MM, Jelocnik M, Hilbe M, Sydler T, Hartnack S, Jacobson C, Clune T, Marsh I, Sales N, Polkinghorne A, Borel N. Chlamydia pecorum-Induced Arthritis in Experimentally and Naturally Infected Sheep. Vet Pathol 2020; 58:346-360. [PMID: 33208021 DOI: 10.1177/0300985820973461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chlamydia pecorum is an obligate intracellular pathogen with a wide host range including livestock such as sheep, cattle, goats, and pigs as well as wildlife species such as koalas. Chlamydial polyarthritis is an economically important disease resulting in swollen joints, lameness, stiffness, and weight loss in young sheep. In the present study, tissues from sheep experimentally or naturally infected with Chlamydia pecorum were assessed by histopathology and immunohistochemistry. Carpal, hock, and stifle joints as well as spleen, liver, kidney, lymph nodes, lung, and brain of 35 sheep from different inoculation groups were available. Two different C. pecorum strains (IPA and E58), different routes of administration (intraarticular or intravenous), UVA-irradiated IPA strain, and corresponding noninfected control groups were investigated. Similar investigations on tissues from 5 naturally infected sheep were performed. The most obvious inflammatory lesions were observed in synovial tissues and, notably, in the renal pelvis from the experimentally infected group and naturally infected animals. This resulted in chronic or chronic-active arthritis and pyelitis. Intralesional chlamydial inclusions could be demonstrated by immunohistochemistry in both tissues. Immunohistochemical evaluation of the presence and distribution of macrophages, T and B cells in synovial tissues revealed macrophages as the most prevalent inflammatory cell population. Previous observations indicated that C. pecorum isolates can infect circulating monocytes. Together with the finding of the histological lesions in synovial tissues and internal organs alongside the presence of C. pecorum DNA, these observations suggest chlamydial arthritis in lambs is the result of hematogeneous spread of C. pecorum.
Collapse
Affiliation(s)
| | - Mominul M Islam
- 5333University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Martina Jelocnik
- 5333University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | | | | | | | - Tom Clune
- 5673Murdoch University, Perth, Western Australia, Australia
| | - Ian Marsh
- NSW Department of Primary Industries, 153388Elizabeth Macarthur Agricultural Institut, Menangle, New South Wales, Australia
| | - Narelle Sales
- NSW Department of Primary Industries, 153388Elizabeth Macarthur Agricultural Institut, Menangle, New South Wales, Australia
| | - Adam Polkinghorne
- 6488Nepean Hospital, NSW Health Pathology, Penrith, New South Wales, Australia.,University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
71
|
Westermann T, Jenkins C, Onizawa E, Gestier S, McNally J, Kirkland P, Zhang J, Bogema D, Manning LK, Walker K, Pinczowski P. Chlamydia pecorum-Associated Sporadic Ovine Abortion. Vet Pathol 2020; 58:114-122. [PMID: 33205699 DOI: 10.1177/0300985820967451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite previous detection of Chlamydia pecorum in sporadic ovine abortions, published descriptions of naturally occurring infections with fetoplacental lesions are lacking. This report provides the first descriptions of severe necrosuppurative chorionitis with vasculitis, and fetal pyelonephritis and enteritis in late-term abortions of maiden ewes. Chlamydial infection was detected using a Chlamydia genus-specific qPCR (quantitative polymerase chain reaction) on tissue extracts from 3 fetuses. C. pecorum was identified using a targeted qPCR assay, which also determined infectious load within fetal tissues. The presence of viable C. pecorum in fetal samples was confirmed by cell culture. Multilocus sequence typing (MLST) data indicated that the C. pecorum strains from each fetus were identical and of sequence type (ST) 23. Chlamydia sp. immunohistochemistry showed strong positive immunolabeling of fetoplacental lesions. Other infectious abortigenic agents were excluded with specific testing. This report confirms C. pecorum as a likely cause of ovine abortion and provides the first descriptions of associated fetoplacental lesions in naturally infected sheep.
Collapse
Affiliation(s)
- Thomas Westermann
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Cheryl Jenkins
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Emily Onizawa
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Sarah Gestier
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Justine McNally
- North West Local Land Services, Moree, New South Wales, Australia
| | - Peter Kirkland
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Jing Zhang
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Daniel Bogema
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Leah K Manning
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Keith Walker
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| | - Pedro Pinczowski
- 153388Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, Australia
| |
Collapse
|
72
|
Chronic wasting associated with Chlamydia pneumoniae in three ex situ breeding facilities for tropical frogs. Antonie van Leeuwenhoek 2020; 113:2139-2154. [PMID: 33150542 PMCID: PMC7716926 DOI: 10.1007/s10482-020-01483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
A number of different Chlamydia spp. have been detected in the class Amphibia with C. pneumoniae being the predominant species involved. Chlamydiae have been linked to mass mortality events, thereby representing significant pathogens that deserve attention with respect to worldwide amphibian decline. We here present six cases of chlamydiosis and asymptomatic chlamydial infections in different frog species from three ex situ amphibian conservation facilities. Clinical signs predominantly characterised by regurgitation, chronic wasting, lethargy and suspended breeding were associated with C. pneumoniae infection. Despite various treatment regimens, it was not possible to clear infections. However, intra vitam diagnostics succeeded from skin, faeces and urine for the first time.
Collapse
|
73
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
74
|
Sanderson H, Vasquez M, Killion H, Vance M, Sondgeroth K, Fox J. Fatal Chlamydia psittaci infection in a domestic kitten. J Vet Diagn Invest 2020; 33:101-103. [PMID: 33112195 DOI: 10.1177/1040638720966960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chlamydia psittaci has not been reported to cause disease in domestic cats, to our knowledge. In contrast, C. felis infection is common in domestic cats and typically results in conjunctivitis, upper respiratory tract infection, and less frequently pneumonia. Herein, we report the pathologic findings and diagnostic features of a fatal case of psittacosis in a 7-wk-old domestic kitten. The animal was 1 of a litter of 5 that, together with the queen, were yielded to a pet rescue center in Wyoming. Over a period of ~3 wk, the kittens and queen became sick, thin, and icteric prior to death, despite antimicrobial treatments. Postmortem evaluation of a kitten revealed necrosuppurative hepatitis with Gimenez stain-positive intracellular bacteria, nonsuppurative pneumonia, and mild leptomeningitis. The diagnosis of psittacosis was made by 16S rRNA PCR using multiple primer sets and sequencing from liver. Psittacosis should be considered a differential diagnosis in domestic cats with intracellular bacterial hepatitis and interstitial pneumonia.
Collapse
Affiliation(s)
- Hailey Sanderson
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Marce Vasquez
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Hally Killion
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Madison Vance
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Kerry Sondgeroth
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| | - Jonathan Fox
- Wyoming State Veterinary Diagnostic Laboratory, University of Wyoming, Laramie, WY
| |
Collapse
|
75
|
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells, Chlamydia must complete a multiple-cell-type developmental cycle. The developmental cycle consists of specialized cells, the EB cell, which mediates infection of new host cells, and the RB cell, which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB-to-EB cell type switching, we demonstrate that RB-to-EB development follows a cell-autonomous program that does not respond to environmental cues. Additionally, we show that RB-to-EB development is a function of chlamydial growth and division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis. The obligate intracellular bacterial pathogen Chlamydia trachomatis is reliant on a developmental cycle consisting of two cell forms, termed the elementary body (EB) and the reticulate body (RB). The EB is infectious and utilizes a type III secretion system and preformed effector proteins during invasion, but it does not replicate. The RB replicates in the host cell but is noninfectious. This developmental cycle is central to chlamydial pathogenesis. In this study, we developed mathematical models of the developmental cycle that account for potential factors influencing RB-to-EB cell type switching during infection. Our models predicted that two categories of regulatory signals for RB-to-EB development could be differentiated experimentally, an “intrinsic” cell-autonomous program inherent to each RB and an “extrinsic” environmental signal to which RBs respond. To experimentally differentiate between mechanisms, we tracked the expression of C. trachomatis development-specific promoters in individual inclusions using fluorescent reporters and live-cell imaging. These experiments indicated that EB production was not influenced by increased multiplicity of infection or by superinfection, suggesting the cycle follows an intrinsic program that is not directly controlled by environmental factors. Additionally, live-cell imaging revealed that EB development is a multistep process linked to RB growth rate and cell division. The formation of EBs followed a progression with expression from the euo and ihtA promoters evident in RBs, while expression from the promoter for hctA was apparent in early EBs/IBs. Finally, expression from the promoters for the true late genes, hctB, scc2, and tarp, was evident in the maturing EB. IMPORTANCEChlamydia trachomatis is an obligate intracellular bacterium that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells, Chlamydia must complete a multiple-cell-type developmental cycle. The developmental cycle consists of specialized cells, the EB cell, which mediates infection of new host cells, and the RB cell, which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB-to-EB cell type switching, we demonstrate that RB-to-EB development follows a cell-autonomous program that does not respond to environmental cues. Additionally, we show that RB-to-EB development is a function of chlamydial growth and division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis.
Collapse
|
76
|
Inchuai R, Weerakun S, Nguyen HN, Sukon P. Global Prevalence of Chlamydial Infections in Reptiles: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2020; 21:32-39. [PMID: 32990530 DOI: 10.1089/vbz.2020.2654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives: Chlamydia spp. are potential zoonotic pathogens that can infect a wide range of animal hosts. In reptiles, Chlamydia can cause hepatitis, pneumonitis, and conjunctivitis and it can cause high mortality in young animals. The objectives of this study were to estimate the pooled prevalence of chlamydial infections in reptiles and to assess the trend of these infections over time. Materials and Methods: The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant studies were retrieved from PubMed, Scopus, and Web of Science. The retrieved studies were screened for eligibility. Then, important data were extracted from the included studies. A random effects model was used for all analyses. Subgroup analysis was used to assess heterogeneity for orders of reptiles, continents where the studies were conducted, and types of specimens. Cumulative meta-analysis and meta-regression were used to determine the trend of the prevalence over time. The quality of each included study was evaluated. Results: Of 106 studies (with a total of 2607 samples), 20 met the inclusion criteria and were included in the meta-analysis. The pooled prevalence of chlamydial infections in reptiles was 23.5% (95% confidence interval [CI]: 15.4-34.0). The trend of chlamydial infections increased from 1990 to 2008; thereafter, it was almost stable at slightly over 20%. The most commonly reported Chlamydia spp. were Chlamydia psittaci, Chlamydia pneumoniae, Chlamydia pecorum, and Chlamydia caviae. Among reptiles, the prevalence of chlamydial infections was highest in crocodiles (57.3% [95% CI: 32.5-78.9]). Among continents, the prevalence of chlamydial infections was highest in Australia (68.6% [95% CI: 36.8-89.1]). Conclusions: Based on the included studies, the prevalence of chlamydial infections in reptiles was high, especially in crocodiles. Because C. psittaci and C. pneumoniae are commonly found in reptiles and are well-known zoonotic pathogens, they should be of concern for human health.
Collapse
Affiliation(s)
- Rawikan Inchuai
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sompoth Weerakun
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hoai Nam Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Group for Animal Health Technology, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
77
|
Pagliarani S, Johnston SD, Beagley KW, Dief H, Palmieri C. The occurrence and pathology of chlamydiosis in the male reproductive tract of non-human mammals: A review. Theriogenology 2020; 154:152-160. [PMID: 32622195 DOI: 10.1016/j.theriogenology.2020.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Organisms belonging to the Family Chlamydiaceae are responsible for a broad range of diseases in humans, livestock, companion animals and non-domestic species. Infection of the reproductive organs can cause a range of syndromes of which sub- and infertility are the most frequently observed clinical manifestations. While the gross and histological lesions associated with the isolation of Chlamydiaceae from the non-human female reproductive tract are well documented, little attention has been given to the pathological effects of this infection in the male genital system. As such, the occurrence and importance of Chlamydia-associated disease in male non-human mammalian species is less well documented. In order to improve our understanding of the significance of chlamydiosis in domestic, laboratory and wild animals, this review provides an up-to-date summary of Chlamydia-associated male reproductive pathology, whether that infection occurs naturally or experimentally. Although most lesions in males are described as incidental and of minor significance, results of recent studies suggest that infection with Chlamydiaceae can adversely impact male fertility and/or be instrumental in disease transmission. Although in humans, bulls and mice Chlamydia infection has been associated with morphological and functional abnormalities of the spermatozoa, this review will focus on the gross and histological findings linked to the colonisation of the genital system by this pathogen. Advances in our understanding of male reproductive chlamydiosis are necessary for diagnostic and therapeutic strategies, as well as epidemiological and conservation studies.
Collapse
Affiliation(s)
- Sara Pagliarani
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia; School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia.
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4001, Australia
| | - Hamdy Dief
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
78
|
Occurrence of Chlamydiaceae in Raptors and Crows in Switzerland. Pathogens 2020; 9:pathogens9090724. [PMID: 32887370 PMCID: PMC7558692 DOI: 10.3390/pathogens9090724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteria of the family Chlamydiaceae are globally disseminated and able to infect many bird species. So far, 11 species of Chlamydia have been detected in wild birds, and several studies found chlamydial strains classified as genetically intermediate between Chlamydia (C.) psittaci and C.abortus. Recently, a group of these intermediate strains was shown to form a separate species, i.e., C.buteonis. In the present study, 1128 samples from 341 raptors of 16 bird species and 253 corvids representing six species were examined using a stepwise diagnostic approach. Chlamydiaceae DNA was detected in 23.7% of the corvids and 5.9% of the raptors. In corvids, the most frequently detected Chlamydia species was C.psittaci of outer membrane protein A (ompA) genotype 1V, which is known to have a host preference for corvids. The most frequently detected ompA genotype in raptors was M56. Furthermore, one of the raptors harbored C.psittaci 1V, and two others carried genotype A. C.buteonis was not detected in the bird population investigated, so it remains unknown whether this species occurs in Switzerland. The infection rate of Chlamydiaceae in corvids was high compared to rates reported in other wild bird species, but neither Chlamydiaceae-positive corvids nor raptors showed overt signs of disease. Since the Chlamydiaceae of both, raptors and crows were identified as C.psittaci and all C.psittaci genotypes are considered to be zoonotic, it can be suggested that raptors and crows pose a potential hazard to the health of their handlers.
Collapse
|
79
|
Medina WRM, Eramo A, Tu M, Fahrenfeld N. Sewer biofilm microbiome and antibiotic resistance genes as function of pipe material, source of microbes, and disinfection: field and laboratory studies. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2020; 6:2122-2137. [PMID: 33033618 PMCID: PMC7537146 DOI: 10.1039/d0ew00265h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Wastewater systems are recognized pathways for the spread of antibiotic resistant bacteria, but relatively little is known about the microbial ecology of the sewer environment. Sewer biofilm colonization by antibiotic resistance gene (ARG) carrying bacteria may impact interpretations of sewage epidemiology data, water quality during sewer overflows, and hazard to utility workers. The objectives of this research were to evaluate the (1) microbiome of real and simulated sewer biofilms and their potential to accumulate ARGs and (2) susceptibility of simulated sewer biofilms to bleach disinfection. First, biofilm samples were collected from sewer municipal systems. Next, an annular biofilm reactor was used to simulate the sewer environment while controlling the pipe material (concrete vs. PVC). The reactor was operated either as fed semi-batch with sewer sediment and synthetic wastewater (Sed-SB) or fed with a continuous flow of raw sewage (WW-CF). The abundance of ARGs, human fecal marker HF183, and 16S rRNA gene copies in these biofilm samples was measured with qPCR. Amplicon sequencing was performed to compare the prokaryotic diversity between samples. Finally, the susceptibility of reactor biofilm to a 4.6% bleach disnfection protocol was evaluated using viability qPCR and amplicon sequencing. Field and WW-CF biofilms contained the most ARG copies and the microbial community compositions varied between the different biofilm samples (field, Sed-SB, and WW-CF). Pipe material did not affect the abundance of ARGs in the reactor samples. However, log removal following bleach treatment suggested that the biofilm grown on PVC surface was primarily dislodged from the surface by the bleach treatment whereas more bacteria were lysed within the biofilm that remained on the concrete surface. Viable bacteria carrying ARGs were observed following 10 minutes of treatment. This study showed that sewer biofilms can accumulate bacteria carrying ARGs and that while bleach can reduce sewer biofilm density, the protocol tested here will not completely remove the biofilms.
Collapse
Affiliation(s)
- William R. Morales Medina
- Microbiology & Molecular Genetics, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - Alessia Eramo
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - Melissa Tu
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - N.L. Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| |
Collapse
|
80
|
Dimond ZE, Hefty PS. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors. Pathog Dis 2020; 79:5868767. [PMID: 32639528 DOI: 10.1093/femspd/ftaa035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Chlamydia suis, a ubiquitous swine pathogen, has the potential for zoonotic transmission to humans and often encodes for resistance to the primary treatment antibiotic, tetracycline. Because of this emerging threat, comparative genomics for swine isolate R19 with inter- and intra-species genomes was performed. A 1.094 Mb genome was determined through de novo assembly of Illumina high throughput sequencing reads. Annotation and subsystem analyses were conducted, revealing 986 putative genes (Chls_###) that are predominantly orthologs to other known Chlamydia genes. Subsequent comparative genomics revealed a high level of genomic synteny and overall sequence identity with other Chlamydia while 92 unique C. suis open reading frames were annotated. Direct comparison of Chlamydia-specific gene families that included the plasticity zone, inclusion membrane proteins, polymorphic membrane proteins and the major outer membrane protein, demonstrated high gene content identity with C. trachomatis and C. muridarum. These comparisons also identified diverse components that potentially could contribute to host-specificity. This study constitutes the first genome-wide comparative analysis for C. suis, generating a fully annotated reference genome. These studies will enable focused efforts on factors that provide key species specificity and adaptation to cognate hosts that are attributed to chlamydial infections, including humans.
Collapse
Affiliation(s)
- Zoe E Dimond
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence KS 66044
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence KS 66044
| |
Collapse
|
81
|
Baumann S, Gurtner C, Marti H, Borel N. Detection of Chlamydia species in 2 cases of equine abortion in Switzerland: a retrospective study from 2000 to 2018. J Vet Diagn Invest 2020; 32:542-548. [PMID: 32522107 DOI: 10.1177/1040638720932906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Species of genus Chlamydia are important pathogens of animals, with a worldwide distribution and broad host range. Some species, such as Chlamydia psittaci, also pose a zoonotic disease risk. Abortion is one of the many diseases that has been associated with chlamydial infections in animals, with most attention focused on the economic impacts to sheep production. The role of chlamydia in equine abortions is unknown. Using the family-specific 23S ribosomal RNA (rRNA) Chlamydiaceae real-time PCR, we tested 169 formalin-fixed, paraffin-embedded fetal membrane samples from 162 equine abortion cases collected between 2000 and 2018 in Switzerland. Two equine abortion cases (1.2%) tested positive for Chlamydiaceae. Further analyses by the species-specific 23S rRNA ArrayMate microarray and sequencing of a fragment of the 16S rRNA gene revealed C. abortus and C. psittaci. In both cases, equine herpesvirus 1 was also present, which might have been the abortion cause, alone or in synergy with Chlamydia. The prevalence of abortigenic chlamydial species in equine abortion cases in our study was significantly lower than rates described elsewhere. Zoonotic chlamydial agents present in equine fetal membranes nevertheless should be considered a potential risk to humans during foaling, abortion, or stillbirth.
Collapse
Affiliation(s)
- Sibylle Baumann
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Corinne Gurtner
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| |
Collapse
|
82
|
Isolation of Tetracycline-Resistant Chlamydia suis from a Pig Herd Affected by Reproductive Disorders and Conjunctivitis. Antibiotics (Basel) 2020; 9:antibiotics9040187. [PMID: 32316412 PMCID: PMC7235844 DOI: 10.3390/antibiotics9040187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Due to various challenges in diagnosing chlamydiosis in pigs, antibiotic treatment is usually performed before any molecular or antibiotic susceptibility testing. This could increase the occurrence of tetracycline-resistant Chlamydia (C.) suis isolates in the affected pig population and potentiate the reoccurrence of clinical signs. Here, we present a case of an Austrian pig farm, where tetracycline resistant and sensitive C. suis isolates were isolated from four finishers with conjunctivitis. On herd-level, 10% of the finishers suffered from severe conjunctivitis and sows showed a high percentage of irregular return to estrus. Subsequent treatment of whole-herd using oxytetracycline led to a significant reduction of clinical signs. Retrospective antibiotic susceptibility testing revealed tetracycline resistance and decreased susceptibility to doxycycline in half of the ocular C. suis isolates, and all isolates were able to partially recover following a single-dose tetracycline treatment in vitro. These findings were later confirmed in vivo, when all former clinical signs recurred three months later. This case report raises awareness of tetracycline resistance in C. suis and emphasizes the importance of preventative selection of tetracycline resistant C. suis isolates.
Collapse
|
83
|
PREVALENCE OF CHLAMYDIACEAE AND TETRACYCLINE RESISTANCE GENES IN WILD BOARS OF CENTRAL EUROPE. J Wildl Dis 2020; 56:512-522. [PMID: 32216676 DOI: 10.7589/2019-11-275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our aim was to investigate the occurrence and distribution of Chlamydia suis and other Chlamydiaceae in the wild boar (Sus scrofa) population of Switzerland and Northern Italy and the detection of tetracycline resistance genes by PCR. We collected a total of 471 conjunctival swabs (n=292), rectal swabs (n=147), and lung tissue samples (n=32) belonging to 292 wild boars. The prevalence of Chlamydiaceae in the investigated wild boar populations was very low (1.4%, 4/292). We found C. suis in rectal or conjunctival swabs but not in lung samples. The low chlamydial prevalence might be attributed to limited contacts between wild boars and outdoor domestic pigs due to strict biosecurity measures or limited numbers of rural pig herds. The tetA(C) gene fragment was detected in six samples, which were all negative for Chlamydiaceae, and was probably not of chlamydial origin but more likely from other bacteria. The low tetracycline resistance rate in wild boar might be explained by the lack of selective pressure. However, transmission of resistance genes from domestic pigs to wild boar or selective pressure in the environment could lead to the development and spread of tetracycline-resistant C. suis strains in wild boars.
Collapse
|
84
|
Cross-sectional study on Chlamydiaceae prevalence and associated risk factors on commercial and backyard poultry farms in Mexico. Prev Vet Med 2020; 176:104922. [PMID: 32062044 DOI: 10.1016/j.prevetmed.2020.104922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Chlamydiaceae infections in poultry are mainly due to Chlamydia psittaci and Chlamydia gallinacea. While C. psittaci has long been known to affect birds and to have zoonotic potential, C. gallinacea is a newly described species that has been found to be widespread in chickens. As no data were available regarding the presence of Chlamydiaceae in Mexican poultry, a cross-sectional survey to detect the presence of Chlamydiaceae on commercial and backyard farms was carried out in eight federal states of Mexico with a high poultry density. Individual cloacal swabs were collected on 14 large-scale commercial poultry farms with controlled environment houses, 23 large-scale commercial poultry farms with open-sided houses, and 16 backyard farms. Samples were tested using a specific Chlamydiaceae real-time PCR technique. Chlamydial species were subsequently identified by a species-specific real-time PCR method. Information on potential risk factors was collected through a questionnaire. Logistic regression was performed to identify risk factors associated with Chlamydiaceae-positive results at the farm level on commercial farms. For backyard farms, a mixed-effect logistic regression model was used to consider information collected either at the animal or at the farm level. Overall, 7.1 % (n = 1/14) of controlled environment commercial farms, 26.1 % (n = 6/23) of open-sided commercial farms, and 75.0 % (n = 12/16) of backyard farms were Chlamydiaceae-positive. Apparent prevalence increased inversely to the level of confinement (controlled environment vs open-sided poultry houses vs backyards). Chlamydia gallinacea was the only chlamydial species detected. On commercial farms, egg-laying hen flocks had 6.7 times higher odds of being Chlamydiaceae-infected than broilers flocks (OR = 6.7, 95 % CI: 1.1-44.3, p = 0.04). On backyard farms, two variables were significantly associated with Chlamydiaceae infection: the lack of antibiotic use (OR = 8.4, 95 % CI: 1.84-38.49, p = 0.006), and an impaired health status (OR=8.8, 95 % CI: 1.9-38.9, p = 0.004). Further studies should be carried out to investigate the impact of C. gallinacea infection on egg quality and production performance in egg-laying hen flocks.
Collapse
|
85
|
Vogler BR, Trinkler M, Marti H, Borel N, Pesch T, Prähauser B, Hoop R, Mattmann P, Albini S. Survey on Chlamydiaceae in cloacal swabs from Swiss turkeys demonstrates absence of Chlamydia psittaci and low occurrence of Chlamydia gallinacean. PLoS One 2019; 14:e0226091. [PMID: 31821353 PMCID: PMC6903705 DOI: 10.1371/journal.pone.0226091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
In Switzerland, domestic turkey meat is a niche product. Turkeys are fattened on mixed family-based farms scattered across the country, with most providing access to an uncovered outdoor pasture for the birds. Swiss fattening turkeys may therefore get infected with Chlamydiaceae via wild birds or their faeces, potentially shedding these bacteria at a later stage. The aim of the present study was to acquire baseline data about the shedding of Chlamydiaceae in clinically unremarkable Swiss fattening turkeys at slaughter, potentially exposing slaughterhouse workers to infection. In this large-scale study, 1008 cloacal swabs of Swiss turkeys out of 53 flocks from 28 different grow-out farms with uncovered outdoor pasture were collected over the course of 14 months and examined for the occurrence of Chlamydiaceae by a family-specific 23S-rRNA real-time PCR. Positive samples were further analyzed by Chlamydia psittaci (C. psittaci)-specific real-time PCR and the Arraymate DNA Microarray for species identification. All samples were negative for C. psittaci, but seven swabs out of one flock were tested positive for Chlamydia gallinacea (0.7%). Although turkeys with access to pasture may have contact with Chlamydiaceae-harbouring wild birds or their faeces, the infection rate in Swiss turkeys was shown to be low.
Collapse
Affiliation(s)
- Barbara Renate Vogler
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michal Trinkler
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Richard Hoop
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Prisca Mattmann
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
86
|
Jelocnik M. Chlamydiae from Down Under: The Curious Cases of Chlamydial Infections in Australia. Microorganisms 2019; 7:microorganisms7120602. [PMID: 31766703 PMCID: PMC6955670 DOI: 10.3390/microorganisms7120602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
In Australia, the most researched and perhaps the most successful chlamydial species are the human pathogen Chlamydia trachomatis, animal pathogens Chlamydia pecorum and Chlamydia psittaci. C. trachomatis remains the leading cause of sexually transmitted infections in Australians and trachoma in Australian Indigenous populations. C. pecorum is globally recognised as the infamous koala and widespread livestock pathogen, whilst the avian C. psittaci is emerging as a horse pathogen posing zoonotic risks to humans. Certainly not innocuous, the human infections with Chlamydia pneumoniae seem to be less prevalent that other human chlamydial pathogens (namely C. trachomatis). Interestingly, the complete host range for C. pecorum and C. psittaci remains unknown, and infections by other chlamydial organisms in Australian domesticated and wildlife animals are understudied. Considering that chlamydial organisms can be encountered by either host at the human/animal interface, I review the most recent findings of chlamydial organisms infecting Australians, domesticated animals and native wildlife. Furthermore, I also provide commentary from leading Australian Chlamydia experts on challenges and future directions in the Chlamydia research field.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs 4557, Australia
| |
Collapse
|
87
|
Longitudinal study of wild koalas (Phascolarctos cinereus) reveals chlamydial disease progression in two thirds of infected animals. Sci Rep 2019; 9:13194. [PMID: 31519969 PMCID: PMC6744427 DOI: 10.1038/s41598-019-49382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 01/12/2023] Open
Abstract
Chlamydial disease threatens many of Australia’s koala populations, and yet our understanding of chlamydial epidemiology and disease dynamics in koalas is limited by a lack of comprehensive, longitudinal population studies. To address this, we utilised longitudinal samples from a large-scale population study of wild koalas in south-east Queensland, to follow chlamydial infections over time and to investigate some of the drivers of disease progression. Our findings show, firstly, that almost two thirds of chlamydial infections progressed to disease, challenging the notion that chlamydial infections in koalas commonly remain chronic and asymptomatic. Secondly, disease progression at the urogenital tract site was associated with infection load, and urogenital tract shedding was significantly higher when koalas acquired a new infection. Thirdly, chronic chlamydial exposure was not necessary for pathogenic sequelae to develop, such as infertility and mortality. Fourthly, ompA-characterised strain sub-types may reflect tissue tropisms and pathogenicity, and the chlamydial status of some chronically infected koalas may be explained by reinfections with novel genotypes. Finally, successful antimicrobial treatment provided only short-term protection against reinfection and disease progression in susceptible koalas. These findings highlight the importance of identifying and preventing chlamydial infections in koalas, informing new population management strategies and research priorities.
Collapse
|
88
|
Álvarez D, Caro MR, Buendía AJ, Schnee C, Ortega N, Murcia-Belmonte A, Salinas J. Effect of female sex hormones on the developmental cycle of Chlamydia abortus compared to a penicillin-induced model of persistent infection. BMC Vet Res 2019; 15:259. [PMID: 31340824 PMCID: PMC6657046 DOI: 10.1186/s12917-019-2013-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chlamydia abortus, an obligate intracellular pathogen with an affinity for placenta, causes reproductive failure. In non-pregnant animals, an initial latent infection is established until the next gestation, when the microorganism is reactivated, causing abortion. The precise mechanisms that trigger the awakening of C. abortus are still unknown. Sexual hormones such as estradiol and progesterone have been shown to affect the outcome of infection in other species of the family Chlamydiaceae, while estrogens increase chlamydial infection, progesterone has the opposite effect. To try to establish whether there is a relationship between these events and the latency/ reactivation of C. abortus in the reproductive tract of small ruminants, ovine endometrial (LE) and trophoblastic (AH-1) cells were treated with estradiol or progesterone prior to their infection with C. abortus. The results are compared with those obtained for treatment with penicillin prior to infection, which is a well-established model for studying persistent infection in other chlamydial species. Cells were examined by transmission electron microscopy, and an mRNA expression analysis of 16 genes related to the chlamydial developmental cycle was made. RESULTS The changes observed in this study by the action of sex hormones seem to depend on the type of cell where the infection develops. In addition, while the changes are morphologically similar to those induced by treatment with penicillin, the patterns of gene expression are different. Gene expression patterns therefore, seem to depend on the persistence induced models of C. abortus used. Hormone treatments induced aberrant forms in infected endometrial cells but did not affect the chlamydial morphology in trophoblast cells. At the genetic level, hormones did not induce significant changes in the expression of the studied genes. CONCLUSIONS The results suggest that penicillin induces a state of persistence in in vitro cultured C. abortus with characteristic morphological features and gene transcriptional patterns. However, the influence of hormones on the C. abortus developmental cycle is mediated by changes in the host cell environment. Furthermore, a persistent state in C. abortus cannot be characterised by a single profile of gene expression pattern, but may change depending on the model used to induce persistence.
Collapse
Affiliation(s)
- D Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - M R Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain.
| | - A J Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - C Schnee
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - N Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - A Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - J Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
89
|
Fratzke A, Howard LL, Tocidlowski ME, Armién A, Oliveira F, Ritchie B, Berlin E, Snook E. Chlamydia pneumoniae Polioencephalomyelitis and Ganglionitis in Captive Houston Toads ( Anaxyrus houstonensis). Vet Pathol 2019; 56:789-793. [PMID: 31221032 DOI: 10.1177/0300985819844818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chlamydia pneumoniae is a ubiquitous pathogen causing disease in humans, mammals, birds, reptiles, and amphibians. Since 2012, C. pneumoniae infection has caused neurologic disease and mortality in a breeding colony of endangered Houston toads (Anaxyrus houstonensis) at the Houston Zoo. The purpose of this report is to present the histopathologic and ultrastructural characteristics of C. pneumoniae infection in Houston toads. Fourteen cases were evaluated by histopathology and 1 case was evaluated by electron microscopy. The major histopathologic finding was necrotizing and histiocytic polioencephalomyelitis and ganglionitis. Bacteria formed intracytoplasmic inclusions within neurons but frequently extended into the surrounding tissue from necrotic cells. Ultrastructural evaluation showed the bacteria formed reticulate and elementary bodies characteristic of Chlamydia spp.
Collapse
Affiliation(s)
- Alycia Fratzke
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | | | - Anibal Armién
- 4 Ultrastructural Pathology Unit, Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA
| | | | - Branson Ritchie
- 6 Infectious Diseases Laboratory, University of Georgia, Athens, GA, USA
| | - Erin Berlin
- 7 Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Eric Snook
- 8 TVMDL Texas A&M Veterinary Medical Diagnostic Laboratory, College Station Laboratory, College Station, TX, USA
| |
Collapse
|
90
|
Lin W, Chen T, Liao L, Wang Z, Xiao J, Lu J, Song C, Qin J, Chen F, Chang YF, Xie Q. A parrot-type Chlamydia psittaci strain is in association with egg production drop in laying ducks. Transbound Emerg Dis 2019; 66:2002-2010. [PMID: 31127977 DOI: 10.1111/tbed.13248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023]
Abstract
Chlamydophila psittaci (C. psittaci) is an avian pathogen associated with systemic wasting disease in birds, as well as a public health risk. Although duck-related cases of psittacosis have been reported, the pathogenicity and shedding status of C. psittaci in ducks are unclear. In this study, we reported that C. psittaci (genotype A) is responsible for a disease outbreak characterized by poor laying performance and severe lesions in multiple organs of ducks. Oral administration of antibiotic, doxycycline, was found to effectively control the C. psittaci infection in laying ducks. Collectively, our new findings provide evidence that C. psittaci was the major pathogen responsible for the outbreak of this disease in ducks. In order to reduce economic losses incurred by this disease, effective control measures must be taken to prevent infection in laying duck farms.
Collapse
Affiliation(s)
- Wencheng Lin
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Tong Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Liqin Liao
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Junfang Xiao
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junpeng Lu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Chuncheng Song
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jianping Qin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Feng Chen
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China.,Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Qingmei Xie
- Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
91
|
Jelocnik M, Taylor-Brown A, O'Dea C, Anstey S, Bommana S, Masters N, Katouli M, Jenkins C, Polkinghorne A. Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transbound Emerg Dis 2019; 66:1132-1137. [PMID: 30873753 DOI: 10.1111/tbed.13171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Chlamydiae are globally widespread obligate intracellular bacteria, which several species are a well-recognized threat to human and animal health. In Australia, the most successful chlamydial species are the infamous koala pathogen C. pecorum, and C. psittaci, an emerging pathogen associated with zoonotic events. Little is known about infections caused by other chlamydial organisms in Australian livestock or wildlife. Considering that these hosts can be encountered by humans at the animal/human interface, in this study, we investigated genetic diversity of chlamydial organisms infecting Australian domesticated and wild ungulates. A total of 185 samples from 129 domesticated (cattle, horses, sheep, and pigs) and 29 wild (deer) ungulate hosts were screened with C. pecorum and C. psittaci species-specific assays, followed by a screen with pan-Chlamydiales assay. Overall, chlamydial DNA was detected in 120/185 (65%) samples, including all ungulate hosts. Species-specific assays further revealed that C. pecorum and C. psittaci DNA were detected in 27% (50/185) and 6% (11/185) of the samples, respectively, however from domesticated hosts only. A total of 46 "signature" 16S rRNA sequences were successfully resolved by sequencing and were used for phylogenetic analyses. Sequence analyses revealed that genetically diverse novel as well as traditional chlamydial organisms infect an expanded range of ungulate hosts in Australia. Detection of the C. psittaci and C. pecorum in livestock, and novel taxa infecting horses and deer raises questions about the genetic make-up and pathogenic potential of these organisms, but also concerns about risks of spill-over between livestock, humans, and native wildlife.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyce Taylor-Brown
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Christian O'Dea
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Susan Anstey
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Sankhya Bommana
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mohamad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
92
|
Bommana S, Polkinghorne A. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Front Microbiol 2019; 10:113. [PMID: 30778341 PMCID: PMC6369208 DOI: 10.3389/fmicb.2019.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Chlamydia are a genus of successful obligate intracellular pathogens spread across humans, wildlife, and domesticated animals. The most common species reported in livestock in this genus are Chlamydia abortus, Chlamydia psittaci, Chlamydia suis, and Chlamydia pecorum. Chlamydial infections trigger a series of inflammatory disease-related sequelae including arthritis, conjunctivitis, pneumonia, and abortion. Other bacteria in the phylum Chlamydiae have also been reported in livestock and wildlife but their impact on animal health is less clear. Control of chlamydial infections relies on the use of macrolides, fluoroquinolones, and tetracyclines. Tetracycline resistance (TETR) reported for porcine C. suis strains in association with the use of tetracycline feed is a potentially significant concern given experimental evidence highlighting that the genetic elements inferring TETR may be horizontally transferred to other chlamydial species. As documented in human Chlamydia trachomatis infections, relapse of infections, bacterial shedding post-antibiotic treatment, and disease progression despite chlamydial clearance in animals have also been reported. The identification of novel chlamydiae as well as new animal hosts for previously described chlamydial pathogens should place a renewed emphasis on basic in vivo studies to demonstrate the efficacy of existing and new antimicrobial treatment regimes. Building on recent reviews of antimicrobials limited to C. trachomatis and C. suis, this review will explore the use of antimicrobials, the evidence and factors that influence the treatment failure of chlamydial infections in animals and the future directions in the control of these important veterinary pathogens.
Collapse
Affiliation(s)
- Sankhya Bommana
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
93
|
Phillips S, Quigley BL, Timms P. Seventy Years of Chlamydia Vaccine Research - Limitations of the Past and Directions for the Future. Front Microbiol 2019; 10:70. [PMID: 30766521 PMCID: PMC6365973 DOI: 10.3389/fmicb.2019.00070] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Chlamydia is a major bacterial pathogen that infects humans, as well as a wide range of animals, including marsupials, birds, cats, pigs, cattle, and sheep. Antibiotics are the only treatment currently available, however, with high rates of re-infection, there is mounting pressure to develop Chlamydia vaccines. In this review, we analyzed how Chlamydia vaccine trials have developed over the past 70 years and identified where future trials need to be focused. There has been a strong bias toward studies targeting C. muridarum and C. trachomatis within mice and a lack of studies matching chlamydial species to their end target host. Even though a large number of specific antigenic targets have been studied, the results from whole-cell vaccine targets show slightly more promising results overall. There has also been a strong bias toward systemic vaccine delivery systems, despite the finding that mucosal delivery systems have shown more promising outcomes. However, the only successful vaccines with matched chlamydial species/infecting host are based on systemic vaccine delivery methods. We highlight the extensive work done with mouse model trials and indicate that whole cell antigenic targets are capable of inducing an effective response, protecting from disease and reducing shedding rates. However, replication of these results using antigen preparations more conducive to commercial vaccine production has proven difficult. To date, the Major Outer Membrane Protein (MOMP) has emerged as the most suitable substitute for whole cell targets and its delivery as a combined systemic and mucosal vaccine is most effective. Finally, although mouse model trials are useful, differences between hosts and infecting chlamydial strains are preventing vaccine formulations from mouse models to be translated into larger animals or intended hosts.
Collapse
Affiliation(s)
- Samuel Phillips
- Genecology Research Centre, The University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, The University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Peter Timms
- Genecology Research Centre, The University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
94
|
Vajana E, Widmer I, Rochat E, Duruz S, Selmoni O, Vuilleumier S, Aeby S, Greub G, Joost S. Indication of spatially random occurrence of Chlamydia-like organisms in Bufo bufo tadpoles from ponds located in the Geneva metropolitan area. New Microbes New Infect 2018; 27:54-63. [PMID: 30622711 PMCID: PMC6307092 DOI: 10.1016/j.nmni.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Abstract
Occurrence of bacteria belonging to the order Chlamydiales was investigated for the first time in common toad (Bufo bufo) tadpole populations collected from 41 ponds in the Geneva metropolitan area, Switzerland. A Chlamydiales-specific real-time PCR was used to detect and amplify the Chlamydiales 16S ribosomal RNA–encoding gene from the tails of 375 tadpoles. We found the studied amphibian populations to host Chlamydia-like organisms (CLOs) attributable to the genera Similichlamydia, Neochlamydia, Protochlamydia and Parachlamydia (all belonging to the family Parachlamydiaceae), Simkania (family Simkaniaceae) and Estrella (family Criblamydiaceae); additionally, DNA from the genus Thermoanaerobacter (family Thermoanaerobacteriaceae) was detected. Global autocorrelation analysis did not reveal a spatial structure in the observed CLOs occurrence rates, and association tests involving land cover characteristics did not evidence any clear effect on CLOs occurrence rates in B. bufo. Although preliminary, these results suggest a random and ubiquitous distribution of CLOs in the environment, which would support the biogeographical expectation ‘everything is everywhere’ for the concerned microorganisms.
Collapse
Affiliation(s)
- E Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - I Widmer
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.,Swiss Academy of Sciences SCNAT, Swiss Biodiversity Forum, Bern, Switzerland
| | - E Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - S Duruz
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - O Selmoni
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - S Vuilleumier
- La Source, School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
| | - S Aeby
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - G Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - S Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.,Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Community Medicine, Primary Care and Emergency Medicine, Geneva University Hospitals, Switzerland.,Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
95
|
First Report of Chlamydia abortus in Farmed Fur Animals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4289648. [PMID: 30598995 PMCID: PMC6287152 DOI: 10.1155/2018/4289648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
Chlamydia (C.) abortus, a globally distributed obligate intracellular bacterium, has attracted increasing interest according to its veterinary importance and zoonotic nature. C. abortus can infect a variety of animals and cause foetal loss in livestock resulting in economic loss. In this study, the samples collected from two farms of foxes (n=20), raccoon dogs (n=15) and minks (n=20), were investigated by Chlamydiaceae- and Chlamydia species-specific real-time PCR. The results showed that all the tested foxes (20/20) and raccoon dogs (15/15) harbored Chlamydia spp., while 5% of minks (1/20) were positive for Chlamydia spp. C. abortus was identified in all positive samples as the dominant Chlamydia species, with C. pecorum DNA coexistence in some of the rectal samples (7/20) taken from foxes. Phylogenetic analysis based on specific gene fragments of 16S rRNA, IGS-23S rRNA, and ompA revealed that all sequences obtained in this study were assigned to the Chlamydiaceae family with high similarity to C. abortus S26/3 and B577 previously identified in ruminants. This is the first report confirming that farmed foxes, raccoon dogs, and minks carry C. abortus. Further studies are needed to fully elucidate the epidemiology and pathogenicity of this pathogen in farmed fur animals as well as the potential risks to public health.
Collapse
|
96
|
Beder T, Saluz HP. Virulence-related comparative transcriptomics of infectious and non-infectious chlamydial particles. BMC Genomics 2018; 19:575. [PMID: 30068313 PMCID: PMC6090853 DOI: 10.1186/s12864-018-4961-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the phylum Chlamydiae are obligate intracellular pathogens of humans and animals and have a serious impact on host health. They comprise several zoonotic species with varying disease outcomes and prevalence. To investigate differences in virulence, we focused on Chlamydia psittaci, C. abortus and Waddlia chondrophila. Most threatening is C. psittaci, which frequently infects humans and causes psittacosis associated with severe pneumonia. The closest relative of C. psittaci is C. abortus, which shares the vast majority of genes but less frequently infects humans, and causes stillbirth and sepsis. W. chondrophila is more distantly related, and occasional human infections are associated with respiratory diseases or miscarriage. One possible explanation for differences in virulence originate from species-specific genes as well as differentially expressed homologous virulence factors. RESULTS RNA-sequencing (RNA-Seq) was applied to purified infectious elementary bodies (EBs) and non-infectious reticulate bodies (RBs) in order to elucidate the transcriptome of the infectious and replicative chlamydial states. The results showed that approximately half of all genes were differentially expressed. For a descriptive comparison, genes were categorised according to their function in the RAST database. This list was extended by the inclusion of inclusion membrane proteins, outer membrane proteins, polymorphic membrane proteins and type III secretion system effectors. In addition, the expression of fifty-six known and a variety of predicted virulence and immunogenic factors with homologs in C. psittaci, C. abortus and W. chondrophila was analysed. To confirm the RNA-Seq results, the expression of nine factors was validated using real-time quantitative polymerase chain reaction (RT-qPCR). Comparison of RNA-Seq and RT-qPCR results showed a high mean Pearson correlation coefficient of 0.95. CONCLUSIONS It was shown that both the replicative and infectious chlamydial state contained distinctive transcriptomes and the cellular processes emphasised in EBs and RBs differed substantially based on the chlamydial species. In addition, the very first interspecies transcriptome comparison is presented here, and the considerable differences in expression of homologous virulence factors might contribute to the differing infection rates and disease outcomes of the pathogens. The RNA-Seq results were confirmed by RT-qPCR and demonstrate the feasibility of interspecies transcriptome comparisons in chlamydia.
Collapse
Affiliation(s)
- Thomas Beder
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11A, 07745, Jena, Germany.,Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11A, 07745, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Hans Peter Saluz
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11A, 07745, Jena, Germany. .,Friedrich Schiller University, Fürstengraben 1, 07743, Jena, Germany.
| |
Collapse
|
97
|
Shin B, Park W. Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science: Current State and Future Perspective. Front Vet Sci 2018; 5:166. [PMID: 30140679 PMCID: PMC6095004 DOI: 10.3389/fvets.2018.00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Diseases caused by bacterial infections in small-scale and industrial livestock are becoming serious global health concern in veterinary science. Zoonotic bacteria, including Staphylococcus, Campylobacter, and Bartonella species, that infect animals and humans cause various illnesses, such as fever, diarrhea, and related complications. Bacterial diseases in animals can be treated with various classes of antibiotics, including fluoroquinolones, beta-lactams, aminoglycosides, and macrolides. However, the overuse and misuse of antibiotics have led to drug resistance in infectious agents, e.g., methicillin-resistant Staphylococcus; this hampers the treatment of infections in livestock, and such problems are increasing worldwide. Dietary phytochemicals and herbal medicines are useful and viable alternatives to pharmaceuticals because they are economical, effective, non-resistance-forming, renewable, and environmentally friendly. They are small molecules with high structural diversity that cause selective stress to or stimulation of resident microbiota, consequently causing an abundance of such microorganisms; thus, they can be used in preventing various diseases, ranging from metabolic and inflammatory diseases to cancer. In addition, the antioxidant effects of phytochemicals prevent substantial losses in the livestock industry by increasing animal fertility and preventing diseases. Potentially effective plant extracts could be used in combination with antibiotics to decrease the required dose of antibiotics and increase their effectiveness. This strategy can help avoid the side effects of chemical antimicrobials and allow the effective use of phytochemicals for treating diseases. Furthermore, phytochemicals are considered as potential alternatives to antibiotics because of their economical, non-resistance-forming and environmentally friendly properties. Flavonoids such as resveratrol, epigallocatechin gallate, and phenols such as galangin, puerarin, and ursolic acid are proven to be effective as antimicrobial agents. This review provides invaluable information about the types of microbial infections in animals and the current knowledge on phytotherapeutic agents classified by their mode of actions. It also provides insights into potential strategies for effectively treating animal infections using phytochemicals.
Collapse
Affiliation(s)
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
98
|
Zhou J, Li Z, Lou Z, Fei Y. Prevalence, Diagnosis, and Vaccination Situation of Animal Chlamydiosis in China. Front Vet Sci 2018; 5:88. [PMID: 29904637 PMCID: PMC5990863 DOI: 10.3389/fvets.2018.00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 11/24/2022] Open
Abstract
Since the first case of Chlamydia infection in duck had been reported in 1956 and the first case from domestic animal had been reported in 1979 in China, the chlamydia prevalence in China was heavily according to the published data. The Chlamydia in avian prevalence has been reported at least 11 provinces, Chlamydia in sheep and goats at least 11 provinces, in swine at least 15 provinces, in cows at least 13 provinces and in yaks at least 5 provinces with result of IHA detection. Different diagnostic method such as CFT, ELISA and ABC-ELISA (avidin-biotin-complex ELISA) had been established besides IHA. The inactivated vaccines have been developed with isolated strains from sheep, goats, swine and cows. These inactivated vaccines have been used since 1980s and Chlamydia prevalence in China has been successfully controlled in domestic animal. However, the inactivated vaccines of Chlamydia isolated from avian species have not been successful, although a series of experimental vaccine have been done. Due to the unsustainable eradication plan of Chlamydia in China, sporadic outbreak in animal would happen if the vaccinations were suspended and economy lose in some farmers. Although Chlamydia prevalence in China has a long history, however, almost all published studies are in Chinese, which, in some degree, blocked scientists in other countries to understand the prevalence situation and control measures of Chlamydia in China.
Collapse
Affiliation(s)
- Jizhang Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongzi Lou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanyuan Fei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|