51
|
Emission Factors for Biofuels and Coal Combustion in a Domestic Boiler of 18 kW. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The differences in the pollutant emissions from the combustion of bituminous coal and biofuels (wood, straw, and miscanthus pellets) under real-world boiler operating conditions were investigated. The experiments were performed on an experimental installation that comprised an 18 kW boiler, used in domestic central heating systems, equipped with a retort furnace, an automatic fuel feeder, a combustion air fan, and a fuel storage bin. The emission factors of gaseous pollutants, particulate matter, organic carbon, elemental carbon, and polycyclic aromatic hydrocarbons (PAHs), as well as some PAH concentration ratios for coal and biofuel combustion, were determined. The obtained results indicate that fuel properties have a strong influence on the emission factors of gaseous and carbonaceous pollutants. The total particulate matter (PM) emissions from the biofuel combustion were about 5-fold lower than those from the coal burned in the same boiler. The emission factors of the total carbons from the biofuel combustion were between 10 and 20 times lower than those from the coal combustion. The mean organic carbon (OC) and elemental carbon (EC) emission factors, based on the burned fuel, were 161–232 and 42–221 mg/kg for the biofuels and 1264 and 3410 g/kg for the coal, respectively. The obtained results indicate that molecular diagnostic ratios, based on the concentration of PAHs, vary significantly, depending on the fuel type.
Collapse
|
52
|
Developmental Study of Soot-Oxidation Catalysts for Fireplaces: The Effect of Binder and Preparation Techniques on Catalyst Texture and Activity. Catalysts 2019. [DOI: 10.3390/catal9110957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An awareness of increasing climate and health problems has driven the development of new functional and affordable soot-oxidation catalysts for stationary sources, such as fireplaces. In this study, Al(OH)3, water glass and acidic aluminium phosphate binder materials were mixed with soot-oxidation catalysts. The effect of the binder on the performance of the Ag/La-Al2O3 catalyst was examined, while the Pt/La-Al2O3 catalyst bound with Al(OH)3 was used as a reference. Soot was oxidised above 340 °C on the Ag/La-Al2O3 catalyst, but at 310 °C with same catalyst bound with Al(OH)3. The addition of water glass decreased the catalytic performance because large silver crystals and agglomeration resulted in a blockage of the support material’s pores. Pt/La-Al2O3 bound with Al(OH)3 was ineffective in a fireplace environment. We believe that AgOx is the active form of silver in the catalyst. Hence, Ag/La-Al2O3 was shown to be compatible with the Al(OH)3 binder as an effective catalyst for fireplace soot oxidation.
Collapse
|
53
|
Quinteiro P, Tarelho L, Marques P, Martín-Gamboa M, Freire F, Arroja L, Dias AC. Life cycle assessment of wood pellets and wood split logs for residential heating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:580-589. [PMID: 31279204 DOI: 10.1016/j.scitotenv.2019.06.420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Wood-fuelled systems are commonly used all over the world for residential heating, and recently wood pellets have been replacing traditional firewood. This article presents an environmental life cycle assessment of five wood-based combustion systems for residential heating: i) a pellet stove using maritime pine pellets; a wood stove using ii) eucalyptus (Eucalyptus globulus Labill.) and iii) maritime pine (Pinus pinaster Ait.) split logs; and a fireplace using iv) eucalyptus and v) maritime pine split logs. The functional unit is 1 MJ of thermal energy for residential heating. System boundaries include four stages: (1) forest management; (2) pellet and wood split log production; (3) distribution; and (4) thermal energy generation. Environmental impacts were calculated for seven impact categories from the ReCiPe 2016 midpoint method, and a sensitivity analysis was performed using the Product Environmental Footprint (PEF) life cycle impact assessment method and modifying the distances travelled. Of the five heating systems analysed, the fireplace presents the worst performance for all the impact categories with the exception of freshwater eutrophication and marine eutrophication, when maritime pine split logs are burned in the fireplace. Comparing the pellet stove with the wood stove, neither system is better for all the impact categories analysed. Regarding sensitivity analysis, the use of an alternative characterisation method leads to similar trends in the results in comparison with those obtained from the ReCiPe method, while changes in transport distances do not affect the total impacts to a large extent.
Collapse
Affiliation(s)
- Paula Quinteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luís Tarelho
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Marques
- ADAI-LAETA Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Mario Martín-Gamboa
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fausto Freire
- ADAI-LAETA Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Luís Arroja
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Cláudia Dias
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
54
|
He L, Schaefer T, Otto T, Kroflič A, Herrmann H. Kinetic and Theoretical Study of the Atmospheric Aqueous-Phase Reactions of OH Radicals with Methoxyphenolic Compounds. J Phys Chem A 2019; 123:7828-7838. [PMID: 31397571 DOI: 10.1021/acs.jpca.9b05696] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methoxyphenols, which are emitted through biomass burning, are an important species in atmospheric chemistry. In the present study, temperature-dependent aqueous-phase OH radical reactions of six methoxyphenols and two related phenols have been investigated through laser flash photolysis and the density functional theory. The rate constants obtained were in a range of (1.1-1.9) × 1010 L mol-1 s-1 with k(3-MC) > k(Cre) ≈ k(Syr) ≈ k(MEP) > k(Res) > k(3-MP) > k(2-EP) ≈ k(2-MP). We derived the parameters of these reactions from the obtained T-dependent rate constants and found a mean Arrhenius activation energy of 16.9 kJ mol-1. The diffusion rate constants were calculated for each case and compared to the measured ones. Generally, the rate constants are found to be close to fully diffusion-controlled (kdiff = (1.4-1.5) × 1010 L mol-1 s-1 for all reactions). A structure-function relationship was established through the measurement result, which could be used for predicting unknown rate constants of other phenolic compounds. All of these findings are expected to enhance the predictive capabilities of models, such as the chemical aqueous-phase radical mechanism.
Collapse
Affiliation(s)
- Lin He
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Tobias Otto
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Ana Kroflič
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany.,Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany.,School of Environmental Science and Engineering , Shandong University , Binhai Road 72 , 266237 Qingdao , China
| |
Collapse
|
55
|
Sippula O, Huttunen K, Hokkinen J, Kärki S, Suhonen H, Kajolinna T, Kortelainen M, Karhunen T, Jalava P, Uski O, Yli-Pirilä P, Hirvonen MR, Jokiniemi J. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:888-897. [PMID: 30856504 DOI: 10.1016/j.envpol.2019.02.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed. The total suspended particulate matter and fine particulate matter (PM1) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Collapse
Affiliation(s)
- Olli Sippula
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, P. O. Box 111, FI-80101, Joensuu, Finland.
| | - Kati Huttunen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jouni Hokkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Sara Kärki
- Fortum Power and Heat, Keilaniementie 1, 02150, Espoo, Finland
| | - Heikki Suhonen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tuula Kajolinna
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Miika Kortelainen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tommi Karhunen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Oskari Uski
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pasi Yli-Pirilä
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maija-Riitta Hirvonen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jorma Jokiniemi
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
56
|
Zotter P, Richard S, Egli M, Rothen-Rutishauser B, Nussbaumer T. A Simple Method to Determine Cytotoxicity of Water-Soluble Organic Compounds and Solid Particles from Biomass Combustion in Lung Cells in Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3959-3968. [PMID: 30821962 DOI: 10.1021/acs.est.8b03101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adverse health effects of condensable organic compounds (COC) and potential secondary organic aerosols from wood combustion emissions are difficult to determine. Hence, available information is usually limited to a small number of specific applications. Therefore, we introduced a simple, fast, and economic method where water-soluble COC (WSCOC) and WSCOC together with water-soluble primary solid particles (WSpSP) from wood combustion were sampled and subsequently exposed to cultured human lung cells. Comparing the cell viability of H187 human epithelial lung cells from five combustion devices, operated at different combustion conditions, no, or only a minor, cytotoxicity of WSCOC is found for stationary conditions in a grate boiler, a log wood boiler, and a pellet boiler. All combustion conditions in a log wood stove and unfavorable conditions in the other devices induce, however, significant cytotoxicity (median lethal concentration LC50 5-17 mg/L). Furthermore, a significant correlation between CO and cytotoxicity was found ( R2 ∼ 0.8) suggesting that the simply measurable gas phase compound CO can be used as a first indicator for the potential harmfulness of wood combustion emissions. Samples containing WSCOC plus WSpSP show no additional cytotoxicity compared to samples with COC only, indicating that WSCOC exhibit much higher cytotoxicity than WSpSP.
Collapse
Affiliation(s)
- Peter Zotter
- Lucerne University of Applied Sciences and Arts , School of Engineering and Architecture, Bioenergy Research Group , Technikumstrasse 21 , 6048 Horw , Switzerland
| | - Stéphane Richard
- Lucerne University of Applied Sciences and Arts , School of Engineering and Architecture, Institute of Medical Engineering , Seestrasse 41 , 6052 Hergiswil , Switzerland
| | - Marcel Egli
- Lucerne University of Applied Sciences and Arts , School of Engineering and Architecture, Institute of Medical Engineering , Seestrasse 41 , 6052 Hergiswil , Switzerland
| | | | - Thomas Nussbaumer
- Lucerne University of Applied Sciences and Arts , School of Engineering and Architecture, Bioenergy Research Group , Technikumstrasse 21 , 6048 Horw , Switzerland
| |
Collapse
|
57
|
Tunno B, Longley I, Somervell E, Edwards S, Olivares G, Gray S, Cambal L, Chubb L, Roper C, Coulson G, Clougherty JE. Separating spatial patterns in pollution attributable to woodsmoke and other sources, during daytime and nighttime hours, in Christchurch, New Zealand. ENVIRONMENTAL RESEARCH 2019; 171:228-238. [PMID: 30685575 DOI: 10.1016/j.envres.2019.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
During winter nights, woodsmoke may be a predominant source of air pollution, even in cities with many sources. Since two major earthquakes resulted in major structural damage in 2010 and 2011, reliance on woodburning for home heating has increased substantially in Christchurch, New Zealand (NZ), along with intensive construction/demolition activities. Further, because NZ is a relatively isolated western country, it offers the unique opportunity to disentangle multiple source impacts in the absence of long-range transport pollution. Finally, although many spatial saturation studies have been published, and levoglucosan is an established tracer for woodburning emissions, few studies have monitored multiple sites simultaneously for this or other organic constituents, with the ability to distinguish spatial patterns for daytime vs. nighttime hours, in complex urban settings. We captured seven-day integrated samples of PM2.5, and elemental and organic tracers of woodsmoke and diesel emissions, during "daytime" (7 a.m. - 5:30 p.m.) and "nighttime" (7 p.m. - 5:30 a.m.) hours, at nine sites across commercial and residential areas, over three weeks in early winter (May 2014). At a subset of six sites, we also sampled during hypothesized "peak" woodburning hours (7 p.m. - 12 a.m.), to differentiate emissions during "active" residential woodburning, vs. overnight smouldering. Concentrations of PM2.5 were, on average, were twice as high during nighttime than daytime [µ = 18.4 (SD = 6.13) vs. 9.21 (SD = 6.13) µg/m3], with much greater differences in woodsmoke tracers (i.e., levoglucosan [µ = 1.83 (SD = 0.82) vs. 0.34 (SD = 0.17) µg/m3], potassium) and indicators of treated- or painted-wood burning (e.g., arsenic, lead). Only nitrogen dioxide, calcium, iron, and manganese (tracers of vehicular emissions) were higher during daytime. Levoglucosan and most PAHs were higher during "active" woodburning, vs. overnight smouldering. Our time-stratified spatial saturation detected strong spatial variability throughout the study area, which distinctly differed during daytime vs. night time hours, and quantified the substantial contribution of woodsmoke to overnight spatial variation in PM2.5 across Christchurch. Daytime vs. nighttime differences were greater than those observed across sites. Traffic, especially diesel, contributed substantially to daytime NO2 and spatial gradients in non-woodsmoke constituents.
Collapse
Affiliation(s)
- Brett Tunno
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA, United States
| | - Ian Longley
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Elizabeth Somervell
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Sam Edwards
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Gustavo Olivares
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Sally Gray
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Leah Cambal
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA, United States
| | - Lauren Chubb
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA, United States
| | - Courtney Roper
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA, United States
| | - Guy Coulson
- National Institute of Water and Atmospheric Research (NIWA), Auckland, New Zealand
| | - Jane E Clougherty
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Pittsburgh, PA, United States; Drexel University Dornsife School of Public Health, Department of Environmental and Occupational Health, Philadelphia, PA, United States.
| |
Collapse
|
58
|
Jafta N, Jeena PM, Barregard L, Naidoo RN. Association of childhood pulmonary tuberculosis with exposure to indoor air pollution: a case control study. BMC Public Health 2019; 19:275. [PMID: 30845944 PMCID: PMC6407209 DOI: 10.1186/s12889-019-6604-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background Crude measures of exposure to indicate indoor air pollution have been associated with the increased risk for acquiring tuberculosis. Our study aimed to determine an association between childhood pulmonary tuberculosis (PTB) and exposure to indoor air pollution (IAP), based on crude exposure predictors and directly sampled and modelled pollutant concentrations. Methods In this case control study, children diagnosed with PTB were compared to children without PTB. Questionnaires about children’s health; and house characteristics and activities (including household air pollution) and secondhand smoke (SHS) exposure were administered to caregivers of participants. A subset of the participants’ homes was sampled for measurements of PM10 over a 24-h period (n = 105), and NO2 over a period of 2 to 3 weeks (n = 82). IAP concentrations of PM10 and NO2 were estimated in the remaining homes using predictive models. Logistic regression was used to look for association between IAP concentrations, crude measures of IAP, and PTB. Results Of the 234 participants, 107 were cases and 127 were controls. Pollutants concentrations (μg/m3) for were PM10 median: 48 (range: 6.6–241) and NO2 median: 16.7 (range: 4.5–55). Day-to-day variability within- household was large. In multivariate models adjusted for age, sex, socioeconomic status, TB contact and HIV status, the crude exposure measures of pollution viz. cooking fuel type (clean or dirty fuel) and SHS showed positive non-significant associations with PTB. Presence of dampness in the household was a significant risk factor for childhood TB acquisition with aOR of 2.4 (95% CI: 1.1–5.0). The crude exposure predictors of indoor air pollution are less influenced by day-to-day variability. No risk was observed between pollutant concentrations and PTB in children for PM10 and NO2. Conclusion Our study suggests increased risk of childhood tuberculosis disease when children are exposed to SHS, dirty cooking fuel, and dampness in their homes. Yet, HIV status, age and TB contact are the most important risk factors of childhood PTB in this population.
Collapse
Affiliation(s)
- Nkosana Jafta
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, 321 George Campbell Building, Howard College Campus, Durban, 4041, South Africa.
| | - Prakash M Jeena
- Discipline of Pediatrics and Child Health, School of Clinical Medicine, University of KwaZulu-Natal, Private Bag X1, Congella, Durban, 4013, South Africa
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Sahlgrenska Academy at Gothenburg University, Box 414, S-405 30, Gothenburg, Sweden
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, 321 George Campbell Building, Howard College Campus, Durban, 4041, South Africa
| |
Collapse
|
59
|
Jonsdottir HR, Delaval M, Leni Z, Keller A, Brem BT, Siegerist F, Schönenberger D, Durdina L, Elser M, Burtscher H, Liati A, Geiser M. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Commun Biol 2019; 2:90. [PMID: 30854482 PMCID: PMC6401161 DOI: 10.1038/s42003-019-0332-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Aircraft emissions contribute to local and global air pollution. Health effects of particulate matter (PM) from aircraft engines are largely unknown, since controlled cell exposures at relevant conditions are challenging. We examined the toxicity of non-volatile PM (nvPM) emissions from a CFM56-7B26 turbofan, the world's most used aircraft turbine using an unprecedented exposure setup. We combined direct turbine-exhaust sampling under realistic engine operating conditions and the Nano-Aerosol Chamber for In vitro Toxicity to deposit particles onto air-liquid-interface cultures of human bronchial epithelial cells (BEAS-2B) at physiological conditions. We evaluated acute cellular responses after 1-h exposures to diluted exhaust from conventional or alternative fuel combustion. We show that single, short-term exposures to nvPM impair bronchial epithelial cells, and PM from conventional fuel at ground-idle conditions is the most hazardous. Electron microscopy of soot reveals varying reactivity matching the observed cellular responses. Stronger responses at lower mass concentrations suggest that additional metrics are necessary to evaluate health risks of this increasingly important emission source.
Collapse
Affiliation(s)
| | - Mathilde Delaval
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
| | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
| | - Alejandro Keller
- Institute of Aerosol and Sensor Technology, Swiss University of Applied Sciences and Arts Northwestern Switzerland, 5210, Windisch, Switzerland
| | - Benjamin T Brem
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland.
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| | | | - David Schönenberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland
| | - Lukas Durdina
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland
- Centre for Aviation, School of Engineering, Zurich University of Applied Sciences, 8401, Winterthur, Switzerland
| | - Miriam Elser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, 8600, Dübendorf, Switzerland
| | - Heinz Burtscher
- Institute of Aerosol and Sensor Technology, Swiss University of Applied Sciences and Arts Northwestern Switzerland, 5210, Windisch, Switzerland
| | - Anthi Liati
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, 8600, Dübendorf, Switzerland.
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
60
|
Marchetti S, Longhin E, Bengalli R, Avino P, Stabile L, Buonanno G, Colombo A, Camatini M, Mantecca P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1422-1433. [PMID: 30308911 DOI: 10.1016/j.scitotenv.2018.08.249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Biomass combustion significantly contributes to indoor and outdoor air pollution and to the adverse health effects observed in the exposed populations. Besides, the contribution to toxicity of the particles derived from combustion of different biomass sources (pellet, wood, charcoal), as well as their biological mode of action, are still poorly understood. In the present study, we investigate the toxicological properties of PM10 particles emitted indoor from a stove fueled with different biomasses. PM10 was sampled by gravimetric methods and particles were chemically analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) and elemental content. Human lung A549 cells were exposed for 24 h to 1-10 μg/cm2 PM and different biological endpoints were evaluated to comparatively estimate the cytotoxic, genotoxic and pro-inflammatory effects of the different PMs. Pellet PM decreased cell viability, inducing necrosis, while charcoal and wood ones mainly induced apoptosis. Oxidative stress-related response and cytochrome P450 enzymes activation were observed after exposure to all the biomasses tested. Furthermore, after pellet exposure, DNA lesions and cell cycle arrest were also observed. The severe genotoxic and pro-necrotic effects observed after pellet exposure were likely the consequence of the high metal content. By administering the chelating agent TPEN, the genotoxic effects were indeed rescued. The higher content in PAHs measured in wood and charcoal PMs was likely the reason of the enhanced expression of metabolizing and oxidative stress-related enzymes, like CYP1B1 and HO-1, and the consequent increase in apoptotic cell death. These data suggest that combustion particles from different biomass sources may impact on lung cells according to different pathways, finally producing different toxicities. This is strictly related to the PM chemical composition, which reflects the quality of the combustion and the fuel in particular. Further studies are needed to clarify the role of particle dimension and the molecular mechanisms behind the harmful effects observed.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Eleonora Longhin
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Pasquale Avino
- DiAAA, University of Molise, via De Sanctis, 86100 Campobasso, Italy.
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy.
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy; University of Naples "Parthenope", Via Ammiraglio Ferdinando Acton, 38, 80133 Napoli, Italy; Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Marina Camatini
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
61
|
Guerrero F, Yáñez K, Vidal V, Cereceda-Balic F. Effects of wood moisture on emission factors for PM 2.5, particle numbers and particulate-phase PAHs from Eucalyptus globulus combustion using a controlled combustion chamber for emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:737-744. [PMID: 30130737 DOI: 10.1016/j.scitotenv.2018.08.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons, PM2.5 and micrometer-sized particles are mainly emitted by residential wood combustion, affecting air pollution in the cities of Chile. Eucalyptus globulus (EG) at 0% and 25% wood moisture was burning using a new controlled combustion chamber for emissions (3CE) to determine the emission factors of PM2.5, micrometer-sized particle numbers (0.265μm to 34.00μm) and 16 EPA-PAHs plus retene adsorbed on PM2.5 quartz filters. A method using accelerated solvent extraction, concentration, clean-up and GC-MS is proposed for determining emission factors for 16 EPA-PAHs for the concentration from biomass combustion. Chromatographic conditions and analytical steps were optimized in terms of linearity, selectivity, limits of detection and quantification, precision and accuracy. The recovery obtained from urban dust SRM 1649A (NIST reference material) analyses was between 63% (benzo[b]fluoranthene) and 102% (benzo[k]fluoranthene). In this investigation, it was shown that increasing the wood moisture in combustion tests decreased combustion efficiency (93% to 49%) and increased the emission factors of total PAHs (5215.47ngg-1 to 7644.48ngg-1), the gravimetric PM2.5 (2.01g kg-1 to 22.90gkg-1) and the total number of measured micrometer-sized particles (3.15×1012 particles kg-1 to 1.33×1013 particles kg-1) due to incomplete combustion. The PM2.5 emission rates (ERs) were estimated using EG at 0% WM (2.39g-1 to 3.15gh-1) and 25% WM (27.32gh-1 to 35.77gh-1) for three regions of Chile. In almost all regions, the Chilean emission regulations were exceeded for PM2.5 from wood combustion in the heater (stove with thermal power ≤8kW and emission limit of 2.5gh-1). Finally, when using wet wood for residential combustion, the amount of PAHs on the PM2.5 increased, presenting a potential hazard to population health. Therefore, improvements are necessary in the current regulation of PM emissions.
Collapse
Affiliation(s)
- Fabián Guerrero
- Centre for Environmental Technologies (CETAM), Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile; Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Karen Yáñez
- Centre for Environmental Technologies (CETAM), Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Víctor Vidal
- Centre for Environmental Technologies (CETAM), Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile; Department of Chemistry, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - Francisco Cereceda-Balic
- Centre for Environmental Technologies (CETAM), Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile; Department of Chemistry, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.
| |
Collapse
|
62
|
Velali E, Papachristou E, Pantazaki A, Besis A, Samara C, Labrianidis C, Lialiaris T. In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources - Role of PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1166-1176. [PMID: 30266006 DOI: 10.1016/j.envpol.2018.09.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 05/26/2023]
Abstract
The bioactivity of the extractable organic matter (EOM) of particulate matter (PM) exhausted from major urban combustion sources, including residential heating installations (wood-burning fireplace and oil-fired boiler) and vehicular exhaust from gasoline and diesel cars), was investigated in vitro by employing multiple complementary cellular and bacterial assays. Cytotoxic responses were investigated by applying the MTT ((3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)) bioassay and the lactate dehydrogenase (LDH) release bioassay on human lung cells (MRC-5). Sister Chromatids Exchange (SCE) genotoxicity was measured on human peripheral lymphocytes. Lipid peroxidation potential via reactive oxygen species (ROS) was evaluated on E. coli bacterial cells by measuring the malondialdehyde (MDA) end product. Furthermore, the DNA damage induced by the organic PM fractions was evaluated by the reporter (β-galactosidase) gene expression assay in the bacterial cells, and, by examining the fragmentation of chromosomal DNA on agarose gel electrophoresis. The correlations between the source PM-induced biological endpoints and the PM content in polycyclic aromatic hydrocarbons (PAHs), as typical molecular markers of combustion, were investigated. Fireplace wood smoke particles exhibited by far the highest content in total and carcinogenic PAHs followed by oil boilers, diesel and gasoline emissions. However, in all bioassays, the total EOM-induced toxicity, normalized to PM mass, was highest for diesel cars equipped with Diesel Particle Filter (DPF). No correlation between the toxicological endpoints and the PAHs content was observed suggesting that cytotoxicity and genotoxicity are probably driven by other extractable organic compounds than the commonly measured unsubstituted PAHs. Clearly, further research is needed to elucidate the role of PAHs in the biological effects induced by both, combustion emissions, and ambient air particles.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Christos Labrianidis
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| | - Theodore Lialiaris
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| |
Collapse
|
63
|
Design of an Emergency Energy System for a City Assisted by Renewable Energy, Case Study: Latakia, Syria. ENERGIES 2018. [DOI: 10.3390/en11113138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrical energy is one of the most important daily needs. Shortage of energy can be very dangerous for any society. This can affect the standard of living and quality of life of the people and even endanger the lives of those in hospitals, and so forth. Developed countries do not face such risks in general because they have well organized electrical systems and high energy security. The developing countries are faced daily with electric system collapses, especially in the case of wars, where many parts of the electrical grid in the country can be damaged and fuel transmission lines for generators cut off. Urban areas in developing countries should have a strategic plan to deal with any unexpected occurrence of energy shortages using any available renewable energy sources. City of Latakia is located in the region which has been suffering from the consequences of war for more than six years. The fact that a high number of migrants from other cities have come to Latakia along with a lack of fuel makes the energy shortage in the city worse. An emergency system could use the cheapest available renewable energy sources in addition to few big portable generators to provide an acceptable energy supply for the most needed requirements of daily life.
Collapse
|
64
|
Park H, Hwang JH, Han JS, Lee BS, Kim YB, Joo KM, Choi MS, Cho SA, Kim BH, Lim KM. Skin irritation and sensitization potential of oxidative hair dye substances evaluated with in vitro, in chemico and in silico test methods. Food Chem Toxicol 2018; 121:360-366. [DOI: 10.1016/j.fct.2018.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
65
|
Sahu RK, Pervez S, Chow JC, Watson JG, Tiwari S, Panicker AS, Chakrabarty RK, Pervez YF. Temporal and spatial variations of PM 2.5 organic and elemental carbon in Central India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2205-2222. [PMID: 29603086 DOI: 10.1007/s10653-018-0093-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
This study describes spatiotemporal patterns from October 2015 to September 2016 for PM2.5 mass and carbon measurements in rural (Kosmarra), urban (Raipur), and industrial (Bhilai) environments, in Chhattisgarh, Central India. Twenty-four-hour samples were acquired once every other week at the rural and industrial sites. Twelve-hour daytime and nighttime samples were acquired either a once a week or once every other week at the urban site. Each site was equipped with two portable, battery-powered, miniVol air samplers with PM2.5 inlets. Annual average PM2.5 mass concentrations were 71.8 ± 27 µg m-3 at the rural site, 133 ± 51 µg m-3 at the urban site, and 244.5 ± 63.3 µg m-3 at the industrial site, ~ 2-6 times higher than the Indian Annual National Ambient Air Quality Standard of 40 µg m-3. Average monthly nighttime PM2.5 and carbon concentrations at the urban site were consistently higher than those of daytime from November 2015 to April 2016, when temperatures were low. Annual average total carbon (TC = OC + EC) at the urban (46.8 ± 23.8 µg m-3) and industrial (98.0 ± 17.2 µg m-3) sites also exceeded the Indian PM2.5 NAAQS. TC accounted for 30-40% of PM2.5 mass. Annual average OC ranged from 17.8 ± 6.1 µg m-3 at the rural site to 64 ± 9.4 µg m-3 at the industrial site, with EC ranging from 4.51 ± 2.2 to 34.01 ± 7.8 µg m-3. The average OC/EC ratio at the industrial site (1.88) was 18% lower than that at the urban site and 52% lower than that at the rural site. OC was attributed to 43.0% of secondary organic carbon (SOC) at the rural site, twice that estimated for the urban and industrial sites. Mortality burden estimates for PM2.5 EC are 4416 and 6196 excess deaths at the urban and industrial sites, respectively, during 2015-2016.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India.
| | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV, USA
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV, USA
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology Pune, New Delhi, 110 060, India
| | | | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering (CASE), Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Yasmeen Fatima Pervez
- Department of Engineering Chemistry, CSIT, Kolihapuri, Durg, Chhattisgarh, 492010, India
| |
Collapse
|
66
|
Can Air Quality Management Drive Sustainable Fuels Management at the Temperate Wildland-Urban Interface? FIRE-SWITZERLAND 2018; 1:27. [PMID: 32123806 DOI: 10.3390/fire1020027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable fire management has eluded all industrial societies. Given the growing number and magnitude of wildfire events, prescribed fire is being increasingly promoted as the key to reducing wildfire risk. However, smoke from prescribed fires can adversely affect public health and breach air quality standards. Here we propose that air quality standards can lead to the development and adoption of sustainable fire management approaches that lower the risk of economically and ecologically damaging wildfires while improving air quality and reducing climate-forcing emissions. For example, green fire breaks at the wildland-urban interface (WUI) can resist the spread of wildfires into urban areas. These could be created through mechanical thinning of trees, and then maintained by targeted prescribed fire to create biodiverse and aesthetically pleasing landscapes. The harvested woody debris could be used for pellets and other forms of bioenergy in residential space heating and electricity generation. Collectively, such an approach would reduce the negative health impacts of smoke pollution from wildfires, prescribed fires, and combustion of wood for domestic heating. We illustrate such possibilities by comparing current and potential fire management approaches in the environmentally similar landscapes of Vancouver Island in British Columbia, Canada and the island state of Tasmania in Australia.
Collapse
|
67
|
Castro A, Calvo AI, Blanco-Alegre C, Oduber F, Alves C, Coz E, Amato F, Querol X, Fraile R. Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:169-176. [PMID: 29432928 DOI: 10.1016/j.scitotenv.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Presently, both in rural areas and in cities open fireplaces are still present and large quantities of wood are combusted every year. The present study aims to characterize aerosol size distribution, chemical composition and deposition in the human respiratory tract of particles emitted during the combustion of logs of oak in an open fireplace installed in the living room of a typical village house. CO2 and CO levels and aerosol size distribution have been continuously monitored and a PM10 sampler with two types of filters for chemical and microscopic analysis was also installed. The increment, between the operating periods and the indoor background, in the organic carbon and PM10 concentration due to the use of the fireplace is 15.7±0.6 (mean±standard deviation) and 58.5±6.2μgm-3, respectively. The two main polluting processes during the operation of the fireplace are the ignition with the subsequent refueling and the final cleaning of the residual ashes. In both phases mean values around 1800 particles cm-3 with CMD of 0.15μm were measured. However, while PM10 levels of 130±120μgm-3 were estimated for the ignition stage, values of 200±200μgm-3 were obtained during the final cleaning step. Assessment conducted according to ISO standard 7708:1995, demonstrated that a person who stays in a living room when an open fireplace is lit will inhale, on average, 217μgm-3 and 283μgm-3 during the ignition and the refueling stages, respectively. Subsequent refueling proved to be much less polluting. The ashes removal can also be very polluting and dangerous to health if there are hidden small incandescent embers among the ashes (estimated PM10 of 132μgm-3), reaching a CO2 level of 1940ppm and a dangerous level of CO of 132ppm.
Collapse
Affiliation(s)
- A Castro
- Department of Physics, IMARENAB University of León, 24071 León, Spain
| | - A I Calvo
- Department of Physics, IMARENAB University of León, 24071 León, Spain.
| | - C Blanco-Alegre
- Department of Physics, IMARENAB University of León, 24071 León, Spain
| | - F Oduber
- Department of Physics, IMARENAB University of León, 24071 León, Spain
| | - C Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal
| | - E Coz
- Centre for Energy, Environment and Technology Research (CIEMAT), Department of the Environment, 28040, Madrid, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAEA-CSIC), 08034 Barcelona, Spain
| | - R Fraile
- Department of Physics, IMARENAB University of León, 24071 León, Spain
| |
Collapse
|
68
|
Wohter D, Quicker PG, Brand P, Kraus T. [Particulate emissions from residential wood combustion : Evaluation under real-life operating conditions and toxicological relevance]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:667-673. [PMID: 29744534 DOI: 10.1007/s00103-018-2738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Due to their high emission of particulate matter, wood fired furnaces have become a focal point of public discussion in Germany. Log-fired single room heaters can be identified as a main contributor to this matter. The particulate matter emitted by outdated as well as modern furnaces directly affects the pollution inside residential areas. This is demonstrated by a test campaign of a fibrous filter system developed by the Technology of Fuels Unit at RWTH Aachen University. The filter system captures the emitted particles and retains them inside a highly porous media. Particles from different households and combustion systems were collected over half a heating season. Afterwards, the chemical composition of the accumulated particulate matter was analysed. Based on the particle composition, the furnace operation can be evaluated and consequently improved. This method can be seen as an integral evaluation of the emitted particles of small scale furnaces under real-life operating conditions.
Collapse
Affiliation(s)
- Daniel Wohter
- Lehr- und Forschungsgebiet Technologie der Energierohstoffe, RWTH Aachen University, Aachen, Deutschland
| | - Peter Georg Quicker
- Lehr- und Forschungsgebiet Technologie der Energierohstoffe, RWTH Aachen University, Aachen, Deutschland
| | - Peter Brand
- Institut für Arbeits‑, Sozial- und Umweltmedizin, Uniklinik, RWTH Aachen University, Aachen, Deutschland
| | - Thomas Kraus
- Institut für Arbeits‑, Sozial- und Umweltmedizin, Uniklinik, RWTH Aachen University, Aachen, Deutschland.
| |
Collapse
|
69
|
Stabile L, Buonanno G, Avino P, Frattolillo A, Guerriero E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:65-73. [PMID: 29274539 DOI: 10.1016/j.envpol.2017.12.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk. Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm2 h-1) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10-5): in particular, the risk due to the open fireplace (8.8 × 10-3) was non-negligible when compared to the overall lung cancer risk of typical Italian population.
Collapse
Affiliation(s)
- L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino FR, Italy.
| | - G Buonanno
- Department of Engineering, University "Parthenope", Naples, Italy; Queensland University of Technology, Brisbane, Australia; Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino FR, Italy
| | - P Avino
- D.I.P.I.A., INAIL Settore Ricerca, via Urbana 167, I-00184 Rome, Italy; DIAAA, University of Molise, Via de Sanctis, Campobasso, Italy
| | - A Frattolillo
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - E Guerriero
- Institute of Atmospheric Pollution Research, National Research Council, Rome Research Area-Montelibretti, Monterotondo Scalo, Italy
| |
Collapse
|
70
|
Wei B, Sun J, Mei Q, He M. Mechanism and kinetic of nitrate radical-initiated atmospheric reactions of guaiacol (2-methoxyphenol). COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
71
|
Kasurinen S, Happo MS, Rönkkö TJ, Orasche J, Jokiniemi J, Kortelainen M, Tissari J, Zimmermann R, Hirvonen MR, Jalava PI. Differences between co-cultures and monocultures in testing the toxicity of particulate matter derived from log wood and pellet combustion. PLoS One 2018; 13:e0192453. [PMID: 29466392 PMCID: PMC5821343 DOI: 10.1371/journal.pone.0192453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In vitro studies with monocultures of human alveolar cells shed deeper knowledge on the cellular mechanisms by which particulate matter (PM) causes toxicity, but cannot account for mitigating or aggravating effects of cell-cell interactions on PM toxicity. METHODS We assessed inflammation, oxidative stress as well as cytotoxic and genotoxic effects induced by PM from the combustion of different types of wood logs and softwood pellets in three cell culture setups: two monocultures of either human macrophage-like cells or human alveolar epithelial cells, and a co-culture of these two cell lines. The adverse effects of the PM samples were compared between these setups. RESULTS We detected clear differences in the endpoints between the mono- and co-cultures. Inflammatory responses were more diverse in the macrophage monoculture and the co-culture compared to the epithelial cells where only an increase of IL-8 was detected. The production of reactive oxygen species was the highest in epithelial cells and macrophages seemed to have protective effects against oxidative stress from the PM samples. With no metabolically active cells at the highest doses, the cytotoxic effects of the PM samples from the wood log combustion were far more pronounced in the macrophages and the co-culture than in the epithelial cells. All samples caused DNA damage in macrophages, whereas only beech and spruce log combustion samples caused DNA damage in epithelial cells. The organic content of the samples was mainly associated with cytotoxicity and DNA damage, while the metal content of the samples correlated with the induction of inflammatory responses. CONCLUSIONS All of the tested PM samples induce adverse effects and the chemical composition of the samples determines which pathway of toxicity is induced. In vitro testing of the toxicity of combustion-derived PM in monocultures of one cell line, however, is inadequate to account for all the possible pathways of toxicity.
Collapse
Affiliation(s)
- Stefanie Kasurinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko S. Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teemu J. Rönkkö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jürgen Orasche
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, Munich, Germany
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, Munich, Germany
| | - Miika Kortelainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jarkko Tissari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ralf Zimmermann
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, Munich, Germany
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, Munich, Germany
| | - Pasi I. Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
72
|
Toxicity of Urban PM 10 and Relation with Tracers of Biomass Burning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020320. [PMID: 29439546 PMCID: PMC5858389 DOI: 10.3390/ijerph15020320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 11/26/2022]
Abstract
The chemical composition of particles varies with space and time and depends on emission sources, atmospheric chemistry and weather conditions. Evidence suggesting that particles differ in toxicity depending on their chemical composition is growing. This in vitro study investigated the biological effects of PM10 in relation to PM-associated chemicals. PM10 was sampled in ambient air at an urban traffic site (Borgerhout) and a rural background location (Houtem) in Flanders (Belgium). To characterize the toxic potential of PM10, airway epithelial cells (Beas-2B cells) were exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) and the induction of interleukin-8 (IL-8). The mutagenic capacity was assessed using the Ames II Mutagenicity Test. The endotoxin levels in the collected samples were analyzed and the oxidative potential (OP) of PM10 particles was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM10 included tracers for biomass burning (levoglucosan, mannosan and galactosan), elemental and organic carbon (EC/OC) and polycyclic aromatic hydrocarbons (PAHs). Most samples displayed dose-dependent cytotoxicity and IL-8 induction. Spatial and temporal differences in PM10 toxicity were seen. PM10 collected at the urban site was characterized by increased pro-inflammatory and mutagenic activity as well as higher OP and elevated endotoxin levels compared to the background area. Reduced cell viability (−0.46 < rs < −0.35, p < 0.01) and IL-8 induction (−0.62 < rs < −0.67, p < 0.01) were associated with all markers for biomass burning, levoglucosan, mannosan and galactosan. Furthermore, direct and indirect mutagenicity were associated with tracers for biomass burning, OC, EC and PAHs. Multiple regression analyses showed levoglucosan to explain 16% and 28% of the variance in direct and indirect mutagenicity, respectively. Markers for biomass burning were associated with altered cellular responses and increased mutagenic activity. These findings may indicate a role of biomass burning in the observed adverse health effect of particulate matter.
Collapse
|
73
|
Tanaka M, Alvin AWL, Okochi M. Screening of peptide probe binding to particulate matter with a high metal content. RSC Adv 2018; 8:5953-5959. [PMID: 35539581 PMCID: PMC9078189 DOI: 10.1039/c7ra13290e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
Particulate matter (PM) is becoming an increasing health concern and there is a need to develop detection methods to keep its harmful effects in check. Generation of reactive oxygen species (ROS) by PM is often associated with metal compounds, hence our aim is to screen for a peptide probe towards improved collection and the detection of PM having a high metal content. Peptides are putative recognition molecules due to their versatility and ease of modification to enhance their binding selectivities. PM binding peptides were screened using the peptide array and different binding behaviors in terms of different spot colors (yellow, mixed and gray), indicating the different composition of bound PMs, were observed. The strongest binding peptides were identified as follows: NHVNTNYYPTLH (gray), NGYYPHSHSYHQ (mixed) and HHLHWPHHHSYT (yellow), with relative binding ratios of 125%, 144% and 136%, in comparison with WQDFGAVRSTRS, a peptide screened from a phage display in our previous study. Inductively coupled plasma mass spectrometry (ICPMS) analyses revealed that Co, Ni and Zn content in the PM bound to the HHLHWPHHHSYT peptide spot were respectively 12.5, 15.8 and 7.8 times that of the PM bound to no peptide spot, suggesting this peptide probe is applicable to collect PM with a high metal content.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - Aw Wei Liang Alvin
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku Tokyo 152-8552 Japan +81-3-5734-2116 +81-3-5734-2116
| |
Collapse
|
74
|
Kim YH, Warren SH, Krantz QT, King C, Jaskot R, Preston WT, George BJ, Hays MD, Landis MS, Higuchi M, DeMarini DM, Gilmour MI. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017011. [PMID: 29373863 PMCID: PMC6039157 DOI: 10.1289/ehp2200] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. OBJECTIVES We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. METHODS A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella. RESULTS The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. CONCLUSIONS PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.
Collapse
Affiliation(s)
- Yong Ho Kim
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
- National Research Council , Washington, DC, USA
| | - Sarah H Warren
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Q Todd Krantz
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - Charly King
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - Richard Jaskot
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | | | - Barbara J George
- Immediate Office, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Michael D Hays
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Matthew S Landis
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Mark Higuchi
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| | - David M DeMarini
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - M Ian Gilmour
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina, USA
| |
Collapse
|
75
|
Liu CW, Lee TL, Chen YC, Liang CJ, Wang SH, Lue JH, Tsai JS, Lee SW, Chen SH, Yang YF, Chuang TY, Chen YL. PM 2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol 2018; 15:4. [PMID: 29329563 PMCID: PMC5767014 DOI: 10.1186/s12989-018-0240-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that ambient air pollution is closely associated with increased respiratory inflammation and decreased lung function. Particulate matters (PMs) are major components of air pollution that damages lung cells. However, the mechanisms remain to be elucidated. This study examines the effects of PMs on intercellular adhesion molecule-1 (ICAM-1) expression and the related mechanisms in vitro and in vivo. RESULT The cytotoxicity, reactive oxygen species (ROS) generation, and monocyte adherence to A549 cells were more severely affected by treatment with O-PMs (organic solvent-extractable fraction of SRM1649b) than with W-PMs (water-soluble fraction of SRM1649b). We observed a significant increase in ICAM-1 expression by O-PMs, but not W-PMs. O-PMs also induced the phosphorylation of AKT, p65, and STAT3. Pretreating A549 cells with N-acetyl cysteine (NAC), an antioxidant, attenuated O-PMs-induced ROS generation, the phosphorylation of the mentioned kinases, and the expression of ICAM-1. Furthermore, an AKT inhibitor (LY294002), NF-κB inhibitor (BAY11-7082), and STAT3 inhibitor (Stattic) significantly down-regulated O-PMs-induced ICAM-1 expression as well as the adhesion of U937 cells to epithelial cells. Interleukin-6 (IL-6) was the most significantly changed cytokine in O-PMs-treated A549 cells according to the analysis of the cytokine antibody array. The IL-6 receptor inhibitor tocilizumab (TCZ) and small interfering RNA for IL-6 significantly reduced ICAM-1 secretion and expression as well as the reduction of the AKT, p65, and STAT3 phosphorylation in O-PMs-treated A549 cells. In addition, the intratracheal instillation of PMs significantly increased the levels of the ICAM-1 and IL-6 in lung tissues and plasma in WT mice, but not in IL-6 knockout mice. Pre-administration of NAC attenuated those PMs-induced adverse effects in WT mice. Furthermore, patients with chronic obstructive pulmonary disease (COPD) had higher plasma levels of ICAM-1 and IL-6 compared to healthy subjects. CONCLUSION These results suggest that PMs increase ICAM-1 expression in pulmonary epithelial cells in vitro and in vivo through the IL-6/AKT/STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine, College of Medicine and Hospital, Taipei, Taiwan.,Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Department of Health and Welfare, No.1492, Zhongshan Road, Taoyuan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yi Chuang
- Department of Internal Medicine, Taoyuan General Hospital, Department of Health and Welfare, No.1492, Zhongshan Road, Taoyuan, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan.
| |
Collapse
|
76
|
Reczyńska K, Tharkar P, Kim SY, Wang Y, Pamuła E, Chan HK, Chrzanowski W. Animal models of smoke inhalation injury and related acute and chronic lung diseases. Adv Drug Deliv Rev 2018; 123:107-134. [PMID: 29108862 DOI: 10.1016/j.addr.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Smoke inhalation injury leads to various acute and chronic lung diseases and thus is the dominant cause of fire-related fatalities. In a search for an effective treatment and validation of therapies different classes of animal models have been developed, which include both small and large animals. These models have advanced our understanding of the mechanism of smoke inhalation injury, enabling a better understanding of pathogenesis and pathophysiology and development of new therapies. However, none of the animal models fully mirrors human lungs and their pathologies. All animal models have their limitations in replicating complex clinical conditions associated with smoke inhalation injury in humans. Therefore, for a correct interpretation of the results and to avoid bias, a precise understanding of similarities and differences of lungs between different animal species and humans is critical. We have reviewed and presented comprehensive comparison of different animal models and their clinical relevance. We presented an overview of methods utilized to induce smoke inhalation injuries, airway micro-/macrostructure, advantages and disadvantages of the most commonly used small and large animal models.
Collapse
|
77
|
Annual Variability of Black Carbon Concentrations Originating from Biomass and Fossil Fuel Combustion for the Suburban Aerosol in Athens, Greece. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Black C, Tesfaigzi Y, Bassein JA, Miller LA. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:186-195. [PMID: 28892756 PMCID: PMC5628149 DOI: 10.1016/j.etap.2017.08.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/26/2017] [Indexed: 05/02/2023]
Abstract
Understanding the effect of wildfire smoke exposure on human health represents a unique interdisciplinary challenge to the scientific community. Population health studies indicate that wildfire smoke is a risk to human health and increases the healthcare burden of smoke-impacted areas. However, wildfire smoke composition is complex and dynamic, making characterization and modeling difficult. Furthermore, current efforts to study the effect of wildfire smoke are limited by availability of air quality measures and inconsistent air quality reporting among researchers. To help address these issues, we conducted a substantive review of wildfire smoke effects on population health, wildfire smoke exposure in occupational health, and experimental wood smoke exposure. Our goal was to evaluate the current literature on wildfire smoke and highlight important gaps in research. In particular we emphasize long-term health effects of wildfire smoke, recovery following wildfire smoke exposure, and health consequences of exposure in children.
Collapse
Affiliation(s)
- Carolyn Black
- California National Primate Research Center, United States
| | | | - Jed A Bassein
- California National Primate Research Center, United States
| | - Lisa A Miller
- California National Primate Research Center, United States; Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| |
Collapse
|
79
|
Marabini L, Ozgen S, Turacchi S, Aminti S, Arnaboldi F, Lonati G, Fermo P, Corbella L, Valli G, Bernardoni V, Dell’Acqua M, Vecchi R, Becagli S, Caruso D, Corrado GL, Marinovich M. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:39-46. [DOI: 10.1016/j.mrgentox.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
80
|
Arif AT, Maschowski C, Garra P, Garcia-Käufer M, Petithory T, Trouvé G, Dieterlen A, Mersch-Sundermann V, Khanaqa P, Nazarenko I, Gminski R, Gieré R. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2017; 163:138-154. [PMID: 30519142 PMCID: PMC6275551 DOI: 10.1016/j.atmosenv.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.
Collapse
Affiliation(s)
- Ali Talib Arif
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
- Sulaimani Polytechnic University (SPU) and Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
- Corresponding author. Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany., (A.T. Arif)
| | - Christoph Maschowski
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
| | - Patxi Garra
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
- Laboratoire Modélisation Intelligence des Procédés et des Systèmes (MIPS), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Manuel Garcia-Käufer
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tatiana Petithory
- Institut de Sciences des Materiaux de Mulhouse, CNRS UMR7361, Universite de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Gwenaëlle Trouvé
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Alain Dieterlen
- Laboratoire Modélisation Intelligence des Procédés et des Systèmes (MIPS), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Volker Mersch-Sundermann
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Polla Khanaqa
- Sulaimani Polytechnic University (SPU) and Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
| | - Irina Nazarenko
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Richard Gminski
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Reto Gieré
- Department of Earth and Environmental Science and Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| |
Collapse
|
81
|
Hu Z, Kang S, Li C, Yan F, Chen P, Gao S, Wang Z, Zhang Y, Sillanpää M. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15369-15378. [PMID: 28502054 DOI: 10.1007/s11356-017-9077-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MACEC) at 632 nm for the BB-sourced PM2.5 (6.10 ± 1.21 m2.g-1) was lower than that of the VE-sourced PM2.5 (8.10 ± 0.98 m2.g-1), indicating that the EC content of the BB-sourced PM2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM2.5 were 0.71 ± 0.17 m2.g-1 and 0.91 ± 0.18 m2.g-1. The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.
Collapse
Affiliation(s)
- Zhaofu Hu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaoliu Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland.
| | - Fangping Yan
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhiyong Wang
- Department of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
- Department of Civil and Environmental Engineering, Florida International University, Miami, FL, -33174, USA
| |
Collapse
|
82
|
Rokoff LB, Koutrakis P, Garshick E, Karagas MR, Oken E, Gold DR, Fleisch AF. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians. Curr Probl Pediatr Adolesc Health Care 2017; 47:123-141. [PMID: 28583817 PMCID: PMC5556683 DOI: 10.1016/j.cppeds.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and communities.
Collapse
Affiliation(s)
- Lisa B Rokoff
- Division of Endocrinology, Boston Children's Hospital, Boston, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Abby F Fleisch
- Division of Endocrinology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
83
|
Kasurinen S, Jalava PI, Happo MS, Sippula O, Uski O, Koponen H, Orasche J, Zimmermann R, Jokiniemi J, Hirvonen MR. Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1487-1499. [PMID: 27678477 DOI: 10.1002/tox.22369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 05/10/2023]
Abstract
According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017.
Collapse
Affiliation(s)
- Stefanie Kasurinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko S Happo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, German Research Center for Environmental Health, Helmholtz Association, München, Germany
| | - Oskari Uski
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Koponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jürgen Orasche
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, German Research Center for Environmental Health, Helmholtz Association, München, Germany
- Joint Mass Spectrometry Center, Cooperation Group Comprehensive Molecular Analytics, German Research Center for Environmental Health, Helmholtz Zentrum München, Germany
| | - Ralf Zimmermann
- HICE-Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health-Aerosols and Health, German Research Center for Environmental Health, Helmholtz Association, München, Germany
- Joint Mass Spectrometry Center, Cooperation Group Comprehensive Molecular Analytics, German Research Center for Environmental Health, Helmholtz Zentrum München, Germany
- Department of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
84
|
Ribeiro JP, Vicente ED, Alves C, Querol X, Amato F, Tarelho LAC. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10018-10029. [PMID: 27889888 DOI: 10.1007/s11356-016-8099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO2, MgO and K2O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.
Collapse
Affiliation(s)
- João Peres Ribeiro
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Estela Domingos Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council (CSIC), 08034, Barcelona, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council (CSIC), 08034, Barcelona, Spain
| | - Luís A C Tarelho
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
85
|
Priftis A, Papikinos K, Koukoulanaki M, Kerasioti E, Stagos D, Konstantinopoulos K, Spandidos DA, Kermenidou M, Karakitsios S, Sarigiannis D, Tsatsakis AM, Kouretas D. Development of an assay to assess genotoxicity by particulate matter extract. Mol Med Rep 2017; 15:1738-1746. [PMID: 28260086 PMCID: PMC5365018 DOI: 10.3892/mmr.2017.6171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount.
Collapse
Affiliation(s)
- Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Konstantinos Papikinos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Marina Koukoulanaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Marianthi Kermenidou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Dimosthenis Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, Thessaloniki 54124, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
86
|
Herseth JI, Volden V, Bolling AK. Particulate matter-mediated release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) in vitro: Limited importance of endotoxin and organic content. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:105-119. [PMID: 28071984 DOI: 10.1080/15287394.2016.1257399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, but it is still relatively unknown which role PM sources and physicochemical properties play in the observed effects. It was postulated that PM in vitro induces release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) and that endotoxin and organic compounds present in the PM regulate this release. A contact coculture of THP-1 human leukemia monocytes and A549 human adenocarcinoma alveolar pneumocytes was exposed to PM from Traffic, Wood, Diesel, and Quartz (10-40 µg/cm2) for 12-64 h to determine release of PTX3 and VEGF. The role of endotoxin and the organic fraction in the mediator release was assessed using polymyxin B sulfate and organic extracts, respectively. Finally, antagonists were used to investigate whether the early proinflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α affected the PTX3 and VEGF release. All PM samples induced a time-dependent release of both PTX3 and VEGF. Traffic mediated the greatest release of PTX3, whereas Wood and Diesel were more potent inducers of VEGF. The endotoxin content did not markedly affect release of either mediator, while the organic fraction exerted no significant effect on VEGF release and limited influence on PTX3 release. In addition, the IL-1 and TNF-α agonists affected PTX3 release more strongly than VEGF release. In conclusion, the current data show a limited impact of endotoxin and organic compounds on PTX3 and VEGF release. Further, the observed differences in response patterns may point toward differential regulation of PM-mediated release of PTX3 and VEGF.
Collapse
Affiliation(s)
- J I Herseth
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - V Volden
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - A K Bolling
- b Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
87
|
Hong KY, Weichenthal S, Saraswat A, King GH, Henderson SB, Brauer M. Systematic identification and prioritization of communities impacted by residential woodsmoke in British Columbia, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:797-806. [PMID: 27838060 DOI: 10.1016/j.envpol.2016.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Residential woodsmoke is an under-regulated source of fine particulate matter (PM2.5), often surpassing mobile and industrial emissions in rural communities in North America and elsewhere. In the province of British Columbia (BC), Canada, many municipalities are hesitant to adopt stricter regulations for residential wood burning without empirical evidence that smoke is affecting local air quality. The objective of this study was to develop a retrospective algorithm that uses 1-h PM2.5 concentrations and daily temperature data to identify smoky days in order to prioritise communities by smoke impacts. Levoglucosan measurements from one of the smokiest communities were used to establish the most informative values for three algorithmic parameters: the daily standard deviation of 1-h PM2.5 measurements; the daily mean temperature; and the daytime-to-nighttime ratio of PM2.5 concentrations. Alternate parameterizations were tested in 45 sensitivity analyses. Using the most informative parameter values on the most recent two years of data for each community, the number of smoky days ranged from 5 to 277. Heat maps visualizing seasonal and diurnal variation in PM2.5 concentrations showed clear differences between the higher- and lower-ranked communities. Some communities were sensitive to one or more of the parameters, but the overall rankings were consistent across the 45 analyses. This information will allow stakeholder agencies to work with local governments on implementing appropriate intervention strategies for the most smoke-impacted communities.
Collapse
Affiliation(s)
- Kris Y Hong
- Environmental Health Services, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Purvis Hall, 1020 Pine Ave. West, Montreal, QC, H3A 1A2, Canada.
| | - Arvind Saraswat
- British Columbia Ministry of Environment, Suite 200, 10470-152 Street, Surrey, BC, V3R 0Y3, Canada; Institute for Resources, Environment & Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Gavin H King
- Institute for Resources, Environment & Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada; School of Population and Public Health, University of British Columbia, 2202 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, 2202 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
88
|
Malico I, Pereira SN, Costa MJ. Black carbon trends in southwestern Iberia in the context of the financial and economic crisis. The role of bioenergy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:476-488. [PMID: 27730506 DOI: 10.1007/s11356-016-7805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Since black carbon concentrations are useful to reveal changes in anthropogenic activities, measurements taken from 2007 to 2015 in a Portuguese city are used to assess to which extent the ambient air was impacted by the economic crisis. The average black carbon concentrations are representative of an urban area of small size (1.3 ± 1.3 μg m-3). The highest concentrations are observed in the heating season, being biomass combustion one of the causes for the high values. The daily cycle of black carbon concentrations presents both morning and evening peaks, mainly due to road traffic and, in the heating season, to domestic heating as well. The yearly averaged black carbon mass concentrations decreased 33 % from 2007 to 2015, possibly due to a combination of the economic recession and environmental legislation. The reduction in road traffic led to a decrease in the daily morning peak from 2007 to 2015. This reduction was not followed by a decrease in the evening peak, explained by an increase in biomass burning. Biomass is the cheapest heating fuel in Portugal, and its consumption increased in the aftermath of the economic crisis. The use of bioenergy is an alternative to fossil fuels and presents many advantages. However, energy policies should discourage inefficient biomass burning and promote better ways of exploiting the available energy resources and emission air pollution mitigation strategies.
Collapse
Affiliation(s)
- Isabel Malico
- Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, Évora, Portugal.
- LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Sérgio Nepomuceno Pereira
- Departamento de Física, Instituto de Ciências da Terra, Instituto de Investigação e Formação Avançada, Universidade de Évora, Rua Romão Ramalho 59, Évora, Portugal
| | - Maria João Costa
- Departamento de Física, Instituto de Ciências da Terra, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, Évora, Portugal
| |
Collapse
|
89
|
Pindus M, Orru H, Maasikmets M, Kaasik M, Jõgi R. Association Between Health Symptoms and Particulate Matter from Traffic and Residential Heating - Results from RHINE III in Tartu. Open Respir Med J 2016; 10:58-69. [PMID: 27843509 PMCID: PMC5078594 DOI: 10.2174/1874306401610010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022] Open
Abstract
Background: Traffic and residential heating are the main sources of particulate matter (PM) in Northern Europe. Wood is widely used for residential heating and vehicle numbers are increasing. Besides traffic exhaust, studded tires produce road dust that is the main source of traffic-related PM10. Several studies have associated total PM mass with health symptoms; however there has been little research on the effects of PM from specific sources. Objective: To study the health effects resulting from traffic and local heating PM. Methods: Data on respiratory and cardiac diseases were collected within the framework of RHINE III (2011/2012) in Tartu, Estonia. Respondents’ geocoded home addresses were mapped in ArcGIS and linked with local heating-related PM2.5, traffic-related PM10 and total PM2.5 concentrations. Association between self-reported health and PM was assessed using multiple logistic regression analysis. Results: The annual mean modelled exposure for local heating PM2.5 was 2.3 μg/m3, for traffic PM10 3.3 μg/m3 and for all sources PM2.5 5.6 μg/m3. We found relationship between traffic induced PM10 as well as all sources induced PM2.5 with cardiac disease, OR=1.45 (95% CI 1.06−1.93) and 1.42 (95% CI 1.02−1.95), respectively. However, we did not find any significant association between residential heating induced particles and self-reported health symptoms. People with longer and better confirmed exposure period were also significantly associated with traffic induced PM10, all sources induced PM2.5 and cardiac diseases. Conclusion: Traffic-related PM10 and all sources induced PM2.5 associated with cardiac disease; whereas residential heating induced particles did not.
Collapse
Affiliation(s)
- Mihkel Pindus
- University of Tartu, Department of Family Medicine and Public Health, Tartu, Estonia
| | - Hans Orru
- University of Tartu, Department of Family Medicine and Public Health, Tartu, Estonia; Umeå University, Department of Public Health and Clinical Medicine, Umeå, Sweden
| | - Marek Maasikmets
- Estonian Environmental Research Centre (EERC), Tallinn, Estonia; Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Tartu, Estonia
| | - Marko Kaasik
- University of Tartu, Institute of Physics, Tartu, Estonia
| | - Rain Jõgi
- Tartu University Hospital, Lung Clinic, Tartu, Estonia
| |
Collapse
|
90
|
Dienye P, Akani A, Okokon I. Respiratory effects of biomass fuel combustion on rural fish smokers in a Nigerian fishing settlement: a case control study. Afr Health Sci 2016; 16:516-23. [PMID: 27605967 PMCID: PMC4994543 DOI: 10.4314/ahs.v16i2.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUD The aim was to study the prevalence of respiratory symptoms and assess the lung function of fish smokers in Nigeria. METHODS A case control study was done among fish smokers in Nigeria. Women aged 15 years or older (n=210) involved in fish smoking and equal number of matched controls were interviewed on respiratory symptoms and their peak expiratory flow rate (PEFR) measured. Data was analysed using chi square test, student's t-test and odd ratios. RESULTS Both groups were similar in their personal characteristics. The test group had significantly increased occurrence of sneezing (153; 72.86%), catarrh (159; 75.71%), cough (138; 65.71%) and chest pain (59; 28.10%) compared with the control group, odds ratio (OR) 2.49, 95% confidence interval CI (1.62-3.82), P < 0.001), OR 3.77,95% CI (2.44- 5.85), P < 0.001, OR 3.38, 95% CI (2.22-5.15), P < 0.001, and OR 6.45,95% CI (3.22-13.15), P < 0.001, respectively. The mean PEFR of 321±58.93 L/min among the fish smokers was significantly lower than 400±42.92 L/min among the controls (p = 0.0001). CONCLUSION Fish smokers have increased risk of respiratory symptoms and reduced pulmonary function. There is a need for protective equipment and periodic evaluation.
Collapse
Affiliation(s)
- Paul Dienye
- Department of Family Medicine, University of Port Harcourt Teaching Hospital, Nigeria
| | - Alex Akani
- Department of Family Medicine, University of Port Harcourt Teaching Hospital, Nigeria
| | - Ita Okokon
- Department of Family Medicine, University of Calabar, Nigeria
| |
Collapse
|
91
|
Canha N, Lopes I, Vicente ED, Vicente AM, Bandowe BAM, Almeida SM, Alves CA. Mutagenicity assessment of aerosols in emissions from domestic combustion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10799-10807. [PMID: 26893179 DOI: 10.1007/s11356-016-6292-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Domestic biofuel combustion is one of the major sources of regional and local air pollution, mainly regarding particulate matter and organic compounds, during winter periods. Mutagenic and carcinogenic activity potentials of the ambient particulate matter have been associated with the fraction of polycyclic aromatic hydrocarbons (PAH) and their oxygenated (OPAH) and nitrogenated (NPAH) derivatives. This study aimed at assessing the mutagenicity potential of the fraction of this polycyclic aromatic compound in particles (PM10) from domestic combustion by using the Ames assays with Salmonella typhimurium TA98 and TA100. Seven biofuels, including four types of pellets and three agro-fuels (olive pit, almond shell and shell of pine nuts), were tested in an automatic pellet stove, and two types of wood (Pinus pinaster, maritime pine, and Eucalyptus globulus, eucalypt) were burned in a traditional wood stove. For this latter appliance, two combustion phases-devolatilisation and flaming/smouldering-were characterised separately. A direct-acting mutagenic effect for the devolatilisation phase of pine combustion and for both phases of eucalypt combustion was found. Almond shell revealed a weak direct-acting mutagenic effect, while one type of pellets, made of recycled wastes, and pine (devolatilisation) presented a cytotoxic effect towards strain TA100. Compared to the manually fired appliance, the automatic pellet stove promoted lower polyaromatic mutagenic emissions. For this device, only two of the studied biofuels presented a weak mutagenic or cytotoxic potential.
Collapse
Affiliation(s)
- Nuno Canha
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066, Bobadela LRS, Portugal.
- Department of Environment and Planning, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Lopes
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Estela Domingos Vicente
- Department of Environment and Planning, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana M Vicente
- Department of Environment and Planning, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066, Bobadela LRS, Portugal
| | - Célia A Alves
- Department of Environment and Planning, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
92
|
Zou Y, Jin C, Su Y, Li J, Zhu B. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:627-635. [PMID: 27039898 DOI: 10.1016/j.envpol.2016.03.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/02/2023]
Abstract
When PM2.5 enters human bodies, the water soluble (WS-PM2.5) and insoluble components (WIS-PM2.5) of PM2.5 would interact with cells and cause adverse effects. However, the knowledge about the individual toxicity contribution of these two components is limited. In this study, the physiochemical properties of PM2.5 were well characterized. The toxic effects of WS-PM2.5 and WIS-PM2.5, which include the cell viability, cell membrane damage, reactive oxygen species (ROS) generation and morphological changes, were examined with human lung epithelial A549 cells in vitro. The results indicated that WS-PM2.5 could induce the early response of ROS generation, multiplied mitochondria and multi-lamellar bodies in A549 cells, which might cause cell damage through oxidative stress. Meanwhile, WIS-PM2.5 was predominantly associated with the cell membrane disruption, which might lead to the cell damage through cell-particle interactions. Moreover, the synergistic cytotoxic effects of WS-PM2.5 and WIS-PM2.5 were observed at longer exposure time. These findings demonstrate the different cytotoxicity mechanisms of WS-PM2.5 and WIS-PM2.5, which suggest that not only the size and dosage of PM2.5 but also the solubility of PM2.5 should be taken into consideration when evaluating the toxicity of PM2.5.
Collapse
Affiliation(s)
- Yajuan Zou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyu Jin
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaru Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bangshang Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
93
|
Vicente ED, Tarelho LAC, Teixeira ER, Duarte M, Nunes T, Colombi C, Gianelle V, da Rocha GO, Sanchez de la Campa A, Alves CA. Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor. J Environ Sci (China) 2016; 42:246-258. [PMID: 27090717 DOI: 10.1016/j.jes.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution, reduced costs and improved efficiency of technologies. Under the European Union (EU) energy directive, biomass is a suitable renewable source. The aim of this study was to experimentally quantify and characterize the emission of particulate matter (PM2.5) resulting from the combustion of two biomass fuels (chipped residual biomass from pine and eucalypt), in a pilot-scale bubbling fluidized bed (BFB) combustor under distinct operating conditions. The variables evaluated were the stoichiometry and, in the case of eucalypt, the leaching of the fuel. The CO and PM2.5 emission factors were lower when the stoichiometry used in the experiments was higher (0.33±0.1 g CO/kg and 16.8±1.0 mg PM2.5/kg, dry gases). The treatment of the fuel by leaching before its combustion has shown to promote higher PM2.5 emissions (55.2±2.5 mg/kg, as burned). Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass, while carbonate (CO3(2-)) accounted for between 2.3 and 8.5 wt.%. The particulate mass was mainly composed of inorganic matter (71% to 86% of the PM2.5 mass). Compared to residential stoves, BFB combustion generated very high mass fractions of inorganic elements. Chloride was the water soluble ion in higher concentration in the PM2.5 emitted by the combustion of eucalypt, while calcium was the dominant water soluble ion in the case of pine.
Collapse
Affiliation(s)
- E D Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - L A C Tarelho
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - E R Teixeira
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Duarte
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - T Nunes
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Colombi
- Regional Centre for Air Quality Monitoring, Environmental Monitoring Sector ARPA, Lombardia, 20129 Milan, Italy
| | - V Gianelle
- Regional Centre for Air Quality Monitoring, Environmental Monitoring Sector ARPA, Lombardia, 20129 Milan, Italy
| | - G O da Rocha
- Federal University of Bahia, Chemical Institute, 40170-290, Campus de Ondina, Salvador, BA, Brazil
| | - A Sanchez de la Campa
- Centre for Research in Sustainable Chemistry (CIQSO), Joint Research Unit to CSIC "Atmospheric Pollution", University of Huelva, Campus El Carmen, Huelva, Spain
| | - C A Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
94
|
Zhang H, Yang B, Wang Y, Shu J, Zhang P, Ma P, Li Z. Gas-Phase Reactions of Methoxyphenols with NO3 Radicals: Kinetics, Products, and Mechanisms. J Phys Chem A 2016; 120:1213-21. [DOI: 10.1021/acs.jpca.5b10406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haixu Zhang
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bo Yang
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Youfeng Wang
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinian Shu
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pengkun Ma
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Li
- State Key
Joint Laboratory
of Environment Simulation and Pollution Control, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
95
|
Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc. Arch Toxicol 2016; 90:3029-3044. [DOI: 10.1007/s00204-016-1659-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
96
|
Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. CHEMOSPHERE 2016; 144:2392-400. [PMID: 26610299 DOI: 10.1016/j.chemosphere.2015.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/24/2015] [Accepted: 11/08/2015] [Indexed: 05/16/2023]
Abstract
Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms.
Collapse
Affiliation(s)
- Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Quli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Kai Liao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Peihang Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qiuhong Cui
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
97
|
Martinsson J, Eriksson AC, Nielsen IE, Malmborg VB, Ahlberg E, Andersen C, Lindgren R, Nyström R, Nordin EZ, Brune WH, Svenningsson B, Swietlicki E, Boman C, Pagels JH. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14663-71. [PMID: 26561964 DOI: 10.1021/acs.est.5b03205] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.
Collapse
Affiliation(s)
- J Martinsson
- Division of Nuclear Physics, Lund University , Box 118, Lund SE-22100, Sweden
- Centre for Environmental and Climate Research, Lund University , Ecology Building, Lund SE-223 62, Sweden
| | - A C Eriksson
- Division of Nuclear Physics, Lund University , Box 118, Lund SE-22100, Sweden
- Ergonomics and Aerosol Technology, Lund University , Box 118, Lund SE-22100, Sweden
| | - I Elbæk Nielsen
- Department of Environmental Science, Aarhus University , Roskilde 4000, Denmark
| | - V Berg Malmborg
- Ergonomics and Aerosol Technology, Lund University , Box 118, Lund SE-22100, Sweden
| | - E Ahlberg
- Division of Nuclear Physics, Lund University , Box 118, Lund SE-22100, Sweden
- Centre for Environmental and Climate Research, Lund University , Ecology Building, Lund SE-223 62, Sweden
| | - C Andersen
- Ergonomics and Aerosol Technology, Lund University , Box 118, Lund SE-22100, Sweden
| | - R Lindgren
- Thermochemical Energy Conversion Laboratory, Umeå University , Umeå SE-90187, Sweden
| | - R Nyström
- Thermochemical Energy Conversion Laboratory, Umeå University , Umeå SE-90187, Sweden
| | - E Z Nordin
- Ergonomics and Aerosol Technology, Lund University , Box 118, Lund SE-22100, Sweden
| | - W H Brune
- Department of Meteorology, Pennsylvania State University , University Park, Pennsylvania 16802-5013, United States
| | - B Svenningsson
- Division of Nuclear Physics, Lund University , Box 118, Lund SE-22100, Sweden
| | - E Swietlicki
- Division of Nuclear Physics, Lund University , Box 118, Lund SE-22100, Sweden
| | - C Boman
- Thermochemical Energy Conversion Laboratory, Umeå University , Umeå SE-90187, Sweden
| | - J H Pagels
- Ergonomics and Aerosol Technology, Lund University , Box 118, Lund SE-22100, Sweden
| |
Collapse
|
98
|
Rohr A, McDonald J. Health effects of carbon-containing particulate matter: focus on sources and recent research program results. Crit Rev Toxicol 2015; 46:97-137. [PMID: 26635181 DOI: 10.3109/10408444.2015.1107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.
Collapse
Affiliation(s)
- Annette Rohr
- a Electric Power Research Institute , Palo Alto , CA , USA
| | - Jacob McDonald
- b Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
99
|
Muala A, Rankin G, Sehlstedt M, Unosson J, Bosson JA, Behndig A, Pourazar J, Nyström R, Pettersson E, Bergvall C, Westerholm R, Jalava PI, Happo MS, Uski O, Hirvonen MR, Kelly FJ, Mudway IS, Blomberg A, Boman C, Sandström T. Acute exposure to wood smoke from incomplete combustion--indications of cytotoxicity. Part Fibre Toxicol 2015; 12:33. [PMID: 26511835 PMCID: PMC4625445 DOI: 10.1186/s12989-015-0111-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022] Open
Abstract
Background Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. Methods Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 μg/m3 for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. Results Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. Conclusions Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure. Trial registration NCT01488500 Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0111-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ala Muala
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Maria Sehlstedt
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Jon Unosson
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Robin Nyström
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Esbjörn Pettersson
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Christoffer Bergvall
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Roger Westerholm
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Pasi I Jalava
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Mikko S Happo
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Oskari Uski
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | | | - Frank J Kelly
- Environmental Research Group, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Ian S Mudway
- Environmental Research Group, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
100
|
Sigsgaard T, Forsberg B, Annesi-Maesano I, Blomberg A, Bølling A, Boman C, Bønløkke J, Brauer M, Bruce N, Héroux ME, Hirvonen MR, Kelly F, Künzli N, Lundbäck B, Moshammer H, Noonan C, Pagels J, Sallsten G, Sculier JP, Brunekreef B. Health impacts of anthropogenic biomass burning in the developed world. Eur Respir J 2015; 46:1577-88. [PMID: 26405285 DOI: 10.1183/13993003.01865-2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022]
Abstract
Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health.
Collapse
Affiliation(s)
- Torben Sigsgaard
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine/Environmental Medicine, Umeå University, Umeå, Sweden
| | - Isabella Annesi-Maesano
- INSERM UMR-S 1136, Institute Pierre Louis of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases, Paris, France UPMC, UMR-S 1136, Institute Pierre Louis of Epidemiology and Public Health, Epidemiology of Allergic and Respiratory Diseases, Paris, France
| | - Anders Blomberg
- Dept of Public Health and Clinical Medicine/Medicine, Umeå University, Umeå, Sweden
| | - Anette Bølling
- Norwegian Institute of Public Health, Division of Environmental Medicine, Dept of Air Pollution and Noise, Oslo, Norway
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Dept of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Jakob Bønløkke
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Michael Brauer
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | | | | | | | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland, University of Basel, Basel, Switzerland
| | - Bo Lundbäck
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hanns Moshammer
- Medical University of Vienna, Institute of Environmental Health, Vienna, Austria
| | - Curtis Noonan
- The University of Montana, Center for Environmental Health Sciences, Missoula, MT, USA
| | - Joachim Pagels
- Lund University, Ergonomics and Aerosol Technology, Lund, Sweden
| | - Gerd Sallsten
- Division of Occupational and Environmental Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Bert Brunekreef
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|